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Scaling of nuclear size with cell size has been observed in many species and cell types. In this work we
formulate a modeling framework based on the limiting component hypothesis. We derive a family of
spatio-temporal mathematical models for nuclear size determination based on different transport and
growth mechanisms. We analyse model properties and use in vitro experimental data to identify the most
probable mechanism. This suggests that nuclear volume scales with cell volume and that a nucleus con-
trols its import rate as it grows. We further test the model by comparing to data of early frog develop-
ment, where rapid cell divisions set the relevant time scales.
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1. Introduction

Scaling in biology concerns the question of how one quantity,
e.g. the size of an organism, relates to another quantity, e.g. its life
span. A famous example is Kleiber’s law, which states that the
metabolic rate of an animal scales to the 3=4 power of the animal’s
mass (Kleiber, 1947). While a scaling law by itself merely states an
observed relationship, if observed across many species or condi-
tions, it can point towards fundamental design principles in nature.
In this work, we are concerned with scaling at the cellular level,
specifically scaling of the size of a cell and its nucleus. We will
use mathematical modelling to understand observed scaling rela-
tionships as well the time dynamics that lead to them.

The nucleus is a critically important organelle in eukaryotic
cells. Structurally it consists of a double lipid bilayer that physi-
cally separates the cell’s genetic material from the rest of the cyto-
plasm. The transport of many proteins through nuclear pores is
regulated resulting in a nucleoplasm that is compartmentalized
and biochemically distinct from the cytoplasm. Nuclear size is
known to correlate with amount of genetic material (Baetcke
et al., 1967; Gregory, 2005), however experimental data suggests
that the amount of genetic material is more likely to set a lower
size limit, rather than determining the nuclear size (Levy and
Heald, 2012; Windner et al., 2019). For many cell types it has been
shown that the ratio between nuclear and cytoplasmic volume
(called the karyoplasmic ratio) is typically constant (Chan and
Marshall, 2010; Huber and Gerace, 2007). In fission yeast several
ingenious experiments demonstrate convincingly that it is in fact
components of the cytoplasm that control nuclear growth. Further
it has been observed that it is the relative amount of cytoplasm
that matters (Neumann and Nurse, 2007), i.e. that the position of
nucleus within a cell matters. This suggests that transport from
the cytoplasm to the nucleus is important and that cytoplasmic
volume is a possible regulator of nuclear size. However, which
cytoplasmic component or components regulate nuclear size is still
being debated.

Several works suggest that it is in fact the availability of compo-
nents of the nucleus that sets nuclear size: The inner nuclear mem-
brane is lined with a meshwork of lamin intermediate filaments. It
has been observed that Lamin depletion reduces nuclear size
(Newport et al., 1990). In Chen et al. (2019) the authors show that
the histone chaperone nucleoplasmin (Npm2), which binds core
histones, affects nuclear scaling. It has also been shown that the
transport between the cytoplasm and the nucleus plays an impor-
tant role in setting nuclear size. In ‘‘open” division cell types (Gu
et al., 2012), the nuclear membrane breaks down to allow the
genetic material to be distributed between the two daughter cells.
After division the nuclear membrane reforms and the nucleus
expands again. This growth process required communication
between the nucleus and the cytoplasm, which is mediated
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predominantly by nuclear pore complexes (NPCs). NPCs are large
protein complexes that are inserted into the nuclear membrane
(D’angelo et al., 2006) and act as gatekeepers for nuclear import
and export. In Levy and Heald (2010) they show that if nuclear
transport is affected, this impacts nuclear growth speed in Xenopus
extracts. They suggest that there might be two scaling regimes:
one where nuclear components are not limiting and nuclear size
is mostly determined by nuclear import and cell cycle timing and
one where nuclear components become limiting. We will explore
both regimes with our model.

In general, mechanistic models explaining size scaling typically
either suggest (1) a component-limiting mechanism, where the
total amount of some component determines the final size or (2)
a balancing-based mechanism, where two effects, e.g. import and
export balance in equilibrium. In this work we focus on the first
option, since the role of nuclear export in nuclear scaling is less
clear (Jorgensen et al., 2007): observed that blocking nuclear
export in budding yeast failed to affect nuclear size, while
(Neumann and Nurse, 2007) observed it does increase nuclear size
in fission yeast, suggesting mechanism might be dependent on the
species. However, it is also possible that non-export dependent
processes could play a role, such as nuclear membrane tension,
osmotic effects, etc. Though not considered here, including these
effects in the model and assessing their impact could be subject
to future work.

In this work, we assume the existence of a cytoplasmic compo-
nent that regulates nuclear size, without specifying its identity.
This molecule could be either a component of the nucleus or its
membrane, as well as a signal that causes nuclear growth through
downstream effects. In the following we will refer to it simply as
nuclear growth factor (NGF). While many scaling models focus
on the steady state behaviour, the purpose of this work is to
include the dynamics. We formulate, analyse and simulate a group
of mathematical models that capture (1) the transport of the NGF
through the cytoplasm, (2) its NPC dependent transport into the
nucleus and (3) its effect on nuclear growth. In particular, the mod-
els capture both the dynamics and the final state behaviour of
nuclear growth. The models use a common framework, that allows
to test six different hypotheses concerning how the NGF affects
nuclear growth and how NPC density on the nuclear surface
changes in time. The aim is to have a modelling framework
detailed enough to capture all relevant temporal and spatial scales,
while being simple enough to be characterized by few parameters,
allowing for parameter fitting as well as rapid simulation.

In Section 2 and Section 3 we introduce the models, consisting
of partial-differential equations posed on a moving domain cou-
pled to an ordinary differential equations model for nuclear
growth. After discussing basic properties we use asymptotic anal-
ysis in Section 4 to derive a family of approximating models that
hold in a certain parameter regime. We analyse their behaviour
in Section 5. In Section 6 we test the model against two sets of
experimental observations: Firstly, we use the nuclear growth
model to test the six hypotheses against data of nuclear growth
measured in in vitro cell-mimicking droplets, that do not divide.
Secondly, we assess how well the model predictions compare to
published observations about early frog development, where cells
undergo a rapid series of reductive divisions and the time scale of
nuclear growth determines nuclear size. Finally, in Section 7 we
discuss current model limitations and possible extensions.
2. Model derivation and general properties

To emphasise basic properties, we will start with an arbitrary
cell and nuclear shape. Further simplifications will be done below
in Section 3.
2

General set-up. To model the growth of the nucleus inside a cell,
we pose an equation for the concentration of NGF. We do not spec-
ify its identity, but a potential candidate could be Npm2 (see Sec-
tion 1). We assume the cell stays constant in size, but the nucleus
can grow. If we denote by C � R3 the inside of the cell and by
N tð Þ � C the inside of the nucleus, then the equation for the NGF
concentration at time t P 0;u x; tð Þ, will be posed on
X tð Þ :¼ C n N tð Þ. We assume no reactions involving the NGF hap-
pen inside the cytoplasm and that the NGF moves with flux J,
which can include diffusive and advective fluxes. The latter could
be caused e.g. by transport along microtubules. The NGF cannot
penetrate the cell membrane @C. At the nuclear membrane
@N tð Þ, it is absorbed with absorption rate j > 0, which is propor-
tional to NPC density and can therefore depend on time (see dis-
cussion in Section 3). We assume that once inside the nucleus,
the NGF cannot leave the nucleus and will lead to nuclear growth.
This can be the case because the NGF is a component of the nucleus
or its membrane.

Domain deformation. Our domain (the cytoplasm) X tð Þ will
change as the nucleus grows. Hence we need to prescribe how
material points move as a consequence. We denote the material
point velocity by v. In this model we focus on nuclear growth, con-
sequently the domain shrinks over time. The cytoplasm consists of
both fluid and immersed structures, such as proteins, organelles,
fibres, etc. The fluid itself can move through the nuclear membrane
by osmosis and we assume the fluid is incompressible. However,
the immersed structures can not pass through the nuclear mem-
brane and will be compressed as the nucleus grows. We assume
that the NGF is mainly transported with the (incompressible fluid)
and consequently the domain shrinkage due to nuclear growth will
only have an effect on the NGF movement at the nuclear mem-
brane, where it will be moved with the nuclear growth speed. In
B we show a model that assumes a compressible cytoplasm.

The governing equations. Since we assume the cytoplasm is
incompressible, we have v � 0 inside the domain X tð Þ. In this case
we obtain

@tu ¼ �r � J; x 2 X tð Þ
n � J ¼ 0 x 2 @C;
n � J ¼ juþ n � uvð Þ x 2 @N tð Þ;

ð1Þ

where n denotes the outward unit normal. If we assume the mate-
rial point velocity at the nuclear membrane occurs normal to the
nuclear membrane and with speed _R, we can replace it by
v ¼ �n _R and the boundary condition at @N simplifies to

n � J ¼ j� _R
� �

u x 2 @N tð Þ:

Total NGF balance.We denote by U tð Þ the total amount of NGF in
the cytoplasm at time t. By integrating (1) over the whole domain
X tð Þ and using Reynold’s transport theorem and the divergence
theorem, we see that

_U tð Þ ¼ d
dt

R
X tð Þ u x; tð ÞdV ¼ RX tð Þ @tudV þ R

@X tð Þ n � uvð ÞdC
¼ �j R

@N tð Þ udC:
ð2Þ

As expected, this shows that the total amount of NGF in the
cytoplasm will decrease over time. Next, we need to model how
the nucleus grows as a consequence of the amount of NGF it
receives. We denote by S tð Þ the amount of NGF that enters the
nucleus per time. Since this equals the amount of NGF that left
the cytoplasm per time, we have that S tð Þ ¼ � _U tð Þ.

Nuclear growth. Nuclear growth happens as a consequence of
the NGF reaching the nucleus. How absorbed NGF is translated into
nuclear growth is the key scaling question. The following scenarios
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(or combinations of them) are possible: The amount of NGF
received per time is proportional to.

G1 the change in nuclear radius per time. This would be the case
if the NGF is a component of a linear structure inside the
nucleus.
G2 the change in nuclear surface area per time. For instance, if
the NGF is a component of the nuclear membrane, this would
be the case.
G3 the change in nuclear volume per time. This could be the
case if the NGF molecule consists of or affects components of
the nucleoplasm.

Basic scaling relationships. If we denote by Z tð Þ either nuclear
radius (G1), nuclear surface area (G2) or nuclear volume (G3), then
the above considerations can be written as

_Z tð Þ ¼ aS tð Þ;
where a > 0 is the proportionality constant that quantifies how one
unit NGF is translated into one unit size (radius, area or volume).
Noting that S tð Þ ¼ � _U tð Þ, we can integrate the relationship
_Z tð Þ ¼ �a _U tð Þ from zero to t > 0. Rearranging yields

U tð Þ ¼ 1
a

Z l �Z tð Þð Þ; Z l :¼ Z 0ð Þ þ aU0; ð3Þ

where U0 denotes the initial total amount of NGF and Zl is defined
as the limiting nuclear size reached if all the NGF is eventually
absorbed into the nucleus, i.e. U ¼ 0. In this case Z tð Þ ! Z l and
we have a linear relationship between the final nuclear size and
the total initial amount of NGF. Note that the final nuclear size is
not a consequence of the balancing of different effects, rather it is
the limiting size, when all the NGF has been absorbed. If we assume
that Z 0ð Þ � 0 and that the initial average concentration of NGF is
the same in each cell, then we can express U0 as U0 ¼ �ujCj, where
jCj is the volume of the cell and �u is the initial average concentration
of NGF in the cytoplasm. This yields the following scaling
relationship

Zl ¼ a �u jCj; ð4Þ
or, expressed in words

final nuclear size / cell volume

where final nuclear size can mean radius, surface area or volume.
Hence, if we can measure the initial cell and nuclear size, then (4)
gives a way to test the hypotheses C1-C3 for a dataset with a range
of cell sizes and nuclear sizes. However, there are some notable lim-
itations: Firstly, it requires having data on fully equilibrated nuclei
and secondly, all dynamical information, i.e. how that steady state is
reached, is not used. Next we make some simplifying assumptions
allowing us to derive a model for nuclear growth that has the same
basic scaling properties, but can be analysed on a deeper mathemat-
ical level.
3. Radially symmetric nuclear growth model.

The model in the above section was formulated for an arbitrary
cell and nuclear shape, and arbitrary fluxes and material point
velocity. To further analyse the model, we now make a number
of assumptions. We assume a purely diffusive flux J ¼ �Dru with
diffusion constant D > 0. Further, with regards to the geometry, we
assume both the cell and the nucleus are concentric spheres with
radii Rc and R tð Þ respectively and radial symmetry is assumed for
all involved quantities. As a consequence, the NGF concentration
is now a function of the radial direction r and time t only, u r; tð Þ.
3

Rewriting all operators in spherical coordinates, we can now sim-
plify the equations.

Main Model. If the NGF is transported mainly with the incom-
pressible components of the cytoplasm, we use (1), which simpli-
fies to

@tu ¼ D 1
r2 @r r2@ru

� �
; R tð Þ < r < Rc;

D@ru ¼ 0; r ¼ Rc;

D@ru ¼ j� _R
� �

u; r ¼ R tð Þ:
ð5Þ

Note that the boundary condition at r ¼ R tð Þ shows that if
nuclear growth dominates absorption, i.e. _R > j, then the gradient
of uwill be negative, since the NGF is being pushed outwards faster
than it is being absorbed. Conversely if absorption dominates
growth _R < j, the gradient will be positive.

We supply given initial conditions: We set R 0ð Þ ¼ R0 < Rc . We
always assume R0 to be small, but positive (see discussion in Sec-
tion 4.1). Further we set u r;0ð Þ ¼ w rð Þ and define the initial aver-
age concentration �u by

�u ¼ 1
jX 0ð Þj

Z
X 0ð Þ

wdV ¼ 3
R3
c � R3

0

Z Rc

R0

r2w rð Þdr: ð6Þ

The total NGF amount at time t > 0 is now given by

U tð Þ ¼
Z
X tð Þ

udV ¼ 4p
Z Rc

R tð Þ
r2u r; tð Þdr

Nuclear growth. As before, we assume that the change in nuclear
size (quantified by nuclear radius, surface area or volume) per time
is proportional to the amount of NGF the nucleus receives per time,
given by S tð Þ. In this radially symmetric setting we can simplify (2)
and obtain

S tð Þ ¼ � _U tð Þ ¼ 4pjR tð Þ2u R tð Þ; tð Þ:
We see that this is simply the NGF amount at the nuclear mem-

brane u R tð Þ; tð Þ, multiplied by the nuclear surface area 4pR tð Þ2 and
the (potentially time dependent) absorption rate j.

We denote by A tð Þ and V tð Þ the nuclear surface area and nuclear
volume respectively and recapitulate the growth assumptions G1-
G3 and corresponding scaling relationship results of Section 2.
Here Vc ¼ 4p

3 R3
c is the cell volume.

G1: _R tð Þ ¼ aS tð Þ leading to Rl ¼ R0 þ aU0. If R0 � 0, we obtain
Rl ¼ a�uVc .

G2: _A tð Þ ¼ aS tð Þ leading to Al ¼ A0 þ aU0. If R0 � 0, we obtain
Al ¼ a�uVc .
G3: _V tð Þ ¼ aS tð Þ leading to Vl ¼ V0 þ aU0. If R0 � 0, we obtain
Vl ¼ a�uVc .

An important note is that in principle in this model the nucleus
could reach cell size, which isn’t meaningful biologically. To be
specific and assuming R0 is small this would happen if

1 <

4pa�uR2c
3 forG1

a�uRc
3 forG2
a�u forG3

8><>: ð7Þ

Biologically, this means that irrespective of a�u, for both G1 and
G2 large enough cells would lead to too large nuclei. Only for G3 is
it possible to have cell-independent parameters a�u such that nuclei
will never outgrow the cell for any cell size. Below in Section 5 we
explore further what happens if the limiting conditions are vio-
lated. In real cells we of course do not expect nuclei to reach the
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size of the cell, however in vitro it might happen that the nucleus
grows very large and that subsequently the cell is destroyed. This
could be tested experimentally.

Absorption rate. From the derived scaling relationships we see
that the final nuclear size is fully determined by the initial nuclear
size, the initial amount of NGF and the ‘‘translation rate” a, which
quantifies how one unit NGF is translated to nuclear growth. The
absorption rate j on the other hand sets the time scale for nuclear
growth. Larger sized molecules are transported into the nucleus via
nuclear pore complexes (NPCs) on the nuclear membrane.

The relationship between the absorption rate j and NPC organi-
zation has been studied in the context where NPCs are small open
pores and homogeneously spaced on the otherwise impermeable
nuclear envelope. For individual NPC radius a0, surface NPC cover-
age fraction f and small dimensionless parameter r ¼ a0=Rð Þ, it was
shown in (Lindsay et al., 2017; Bernoff and Lindsay, 2018) that
j � D
R

4f
pr

1� 4
p

ffiffiffi
f

p
þ r
p

log b
ffiffiffi
f

p� �
þO r2� �� ��1

; b ¼ 4e�1=2:

ð8Þ
For low NPC coverage fraction f � 1, the absorption rate j is

therefore proportional to the NPC surface density. The correction
term

ffiffiffi
f

p
describes how flux competition between neighboring

NPCs reduces the permeability of the membrane while the loga-
rithmic term is a consequence of the spherical geometry of the
nucleus.

In modelling of NPC dynamics during nuclear growth, we con-
sider two options:

A1: As the nucleus grows, new NPCs are produced to keep the
NPC surface density constant. This means that j remains con-
stant in time and we assume this constant to be global across
different cells.
A2: The NPC number is constant and no new NPCs are produced
(or destroyed) during nuclear growth. We assume the NPC
number is determined by some component initially present in
the cytoplasm, whose concentration is the same for different
cells. This means that the NPC number is proportional to the
size of the cell. Hence the NPC density (number of NPCs per sur-
face area) is proportional to R3

c and decreases with nuclear sur-

face area. Consequentially also j is proportional to R3
c and

decreases with nuclear surface area, i.e. quadratically in R tð Þ.

Summary of nuclear growth models. In total we examine six dif-
ferent models for nuclear growth as depicted in Fig. 1: All combi-
Fig. 1. Summary of model components.

4

nations of nuclear growth assumptions G1-G3 and NPC density
assumptions A1, A2. Since the model Eqs. (5) are formulated in
terms of the nuclear radius, we use the formulas for the surface
area and volume of a sphere, A ¼ 4pR2 and V ¼ 4p

3 R3, to reformu-
late the growth relationships in terms of the change in nuclear
radius R. This yields

d
dt

z Rð Þð Þ ¼ 4paj Rð ÞR2u R; tð Þ; R 0ð Þ ¼ R0: ð9Þ

The constant a has units length per amount NGF for A1, length
squared per amount NGF for A2 and length cubed per amount NGF
for A3. The function z Rð Þ corresponds to the different measures of
nuclear size: nuclear radius, nuclear area or nuclear volume and
j Rð Þ is determined by assumption A1,A2, i.e.

z Rð Þ ¼
R for G1
4pR2 for G2
4p
3 R3 for G3

8><>: ; j Rð Þ ¼ k forA1
k R3c

R2
for A2;

(
ð10Þ

where k > 0 with units length per time for A1 and per time for A2.
Eq. (9) complements the NGF Eq. (5) by defining the dynamics of the
free boundary.

4. Deriving Approximating Models

4.1. Non-dimensionalisation

To prepare the derivation of approximating models, we non-
dimensionalise (5) and (9). We choose Rc as reference length,
tr ¼ Rc

k as reference time for A1 and tr ¼ 1
k as reference time for A2

and �u as defined in (6) as reference concentration. Using tilde to
denote dimensionless quantities, we define ~r ¼ r=Rc;~t ¼ t=tr ;
~u ~r;~t
� � ¼ u r; tð Þ=�u; ~R ~t

� � ¼ R tð Þ=Rc; ~w ~rð Þ ¼ w rð Þ=�u. Further we define
the following non-dimensional parameters

r0 ¼ R0

Rc
; e ¼

Rck
D for A1
R2c k
D for A2

(
; a ¼

4p�uaR2
c for G1

4p�uaRc for G2
4p�ua for G3:

8><>:
Note that since a and k have different units for G1-3 and A1, A2

respectively, a and e are always non-dimensional.
We obtain the non-dimensional equations

e@~t~u ¼ 1
~r2

@~r ~r2@~r~u
� �

; ~R < ~r < 1 ð11aÞ
@~r~u ¼ 0; ~r ¼ 1 ð11bÞ

@~r~u ¼ e ~j ~R
� �

� d~R
d~t

 !
~u; ~r ¼ ~R; ð11cÞ

together with the nuclear growth equation

d
d~t

~z eR� �� �
¼ a~j eR� �eR2~u eR;~t� �

; ð12Þ

where ~z eR� �
¼ z eR� �

and ~j ~R
� �

¼ 1 for A1 and ~j ~R
� �

¼ 1=eR2 for A2.

The initial conditions are given by

eR 0ð Þ ¼ r0; ~u ~r; 0ð Þ ¼ ~w ~rð Þ; with
3

1� r30

Z 1

r0

~r2 ~w ~rð Þd~r ¼ 1:

ð13Þ
Non-dimensional quantities. The non-dimensional quantities e; r0

and a characterise the system’s behaviour. Let us interpret them
one by one: r0 is simply the ratio of the initial nuclear radius to
the cell radius. While we assume quasi de nuovo nuclear growth,
r0 ¼ 0 can lead to problems, since a zero-surface nucleus cannot
absorb any NGF. Therefore we keep r0 small, but positive. Next, a
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is the ratio of the nuclear size gain upon total NGF absorption, and
the cell size. For instance for G1 it is proportional to the ratio
between a�uVc (total nuclear radius gained for de nuovo growth)
and Rc (cell radius). Hence it quantifies how efficiently NGF is
translated into size. Finally, e compares the speed at which diffu-
sion carries the NGF across the cell, D=Rc , to the speed at which
it is absorbed. Since diffusive transport acts to distribute the NGF
equally in the cell, e quantifies the spatial variation of NGF. We will
discuss the order of magnitude for e below after parameter fitting,
but at least for small cells, e will be small. Therefore we derive a
simplified model that approximates the full dynamics for e � 1.

4.2. Approximating Models

To derive approximating models, we wish to solve (11), (12)
subject to (13) in the limit as e ! 0. The solution is developed in

terms of the regular expansion for ~u ~r;~t
� �

and eR ~t
� �

,

~u ¼ ~u0 þ e~u1 þO e2
� �

; eR ¼ eR0 þ eeR1 þO e2
� �

: ð14Þ

It is convenient to introduce fW eR0
� �

¼ 1� eR0
� �3	 


=3, which is

a measure of the cytoplasmic volume. Further we define a non-

dimensional version of the total NGF amount eU ¼ R 1eR ~r2~ud~r and

expand it as eU ¼ eU0 þ eeU1 þO e2
� �

, giving

eU0 ¼
Z 1eR0

~r2~u0 ~r;~t
� �

d~r; eU1

¼
Z 1eR0

~r2~u1 ~r;~t
� �

d~r � eR1 eR0
� �2

~u0 eR0;~t
� �

:

The second term in eU1 stems from the fact that in the definition

of eU tð Þ, the lower integral boundary depends on e. In the following,
we present only results with calculation details found in C.

The well-mixed model: The limit e! 0. Taking the limit e ! 0 we
find that the NGF concentration is spatially constant
~u0 ~r;~t
� � ¼ ~u0 ~t

� �
. Its dynamics are coupled to eR0 by

d~u0

d~t
¼ � 1fW ~u0 eR0

� �2
~j eR0
� �

� _eR0
� �

; ~u0 0ð Þ ¼ 1; ð15aÞ
d
d~t

~z eR0
� �� �

¼ a~j eR0
� � eR0

� �2
~u0; eR0 0ð Þ ¼ r0: ð15bÞ

Note that the fact that nuclear growth is proportional to the
amount of NGF lost in the cytoplasmmanifests itself in the relation

d
d~t

~z eR0
� �� �

¼ �a
deU0

d~t
: ð16Þ

In Section 5. we will capitalise on this and analyse system (15)
in more depth. Note that exactly the same system is obtained if one
assumes a compressible cytoplasm with an arbitrary continuous
material point velocity (see B), showing that (15) approximates a
wide range of models.

The approximate-spatial model: The order e correction. The next
higher order approximation, which captures spatial variations of
the NGF, is given by

~u1 ~r;~t
� � ¼ d~u0

d~t
g ~rð Þ � 1fW

Z 1eR0
s2g sð Þds

	 

þ 1fW eU1 þ eR1 eR0

� �2
~u0

	 

;

where the profile g characterizing the spatial dependence, is given
by

g ~rð Þ ¼ 2þ ~r3

6~r
:

The two time dependent quantities eU1 and eR1 fulfil
5

deU1

d~t
¼� ~j0eR1 eR0

� �2
~u0þ ~j~u1 eR0

� �2
þ2~jeR0eR1~u0

� �
j
~r¼eR0

; eU1 0ð Þ¼0 ð17aÞ

d
d~t

~z0 eR0
� �eR1

� �
¼�a

deU1

d~t
; eR1 0ð Þ¼0: ð17bÞ

The shape function g, which corresponds to the spherical
Green’s function of the Laplacian, shows that the NGF profile is a
monotone function in ~r. If d~u0

d~t < 0 (i.e. nuclear growth is slow com-

pared to NGF absorption), it takes its minimum at ~r ¼ eR0 and its
maximum at ~r ¼ 1 and vice versa if d~u0

d~t < 0. This is consistent with
our intuition, since absorption leads to a local loss of NGF, while
growth pushes the NGF into the cytoplasm, leading to an accumu-
lation near the nuclear boundary.
4.3. Comparing the approximate model with the full model

One could prove a formal convergence result for e! 0 for the
asymptotic approximations, however this is not the focus of this
work. Instead we verify the asymptotic solutions numerically by
comparing them to the solution to the non-dimensional full PDE
model given by (11) and (12). For details on the numerical method
to solve the full PDE model, see D. Fig. 2A and D show the non-
dimensional nuclear radius ~R, Fig. 2B and E the non-dimensional
total NGF concentration ~U as functions of time. Fig. 2C and F show
the spatial dependence of the non-dimensional NGF concentration
~u for different time values. As expected, the graphs show that the
first order asymptotic approximation is a better approximation of
the full solution than zeroth order approximation, and as e gets
smaller this approximation gets better overall.

Next we examine the residual error between the full and the
approximate non-dimensional solution. To define a suitable norm,
we have to be careful, since the different solutions might not be
defined on the same ~r-interval. A natural choice of inner product
for functions given in spherical coordinates is the L2-norm with
weight r2, since it is equivalent to the L2-inner product for func-
tions given in Cartesian coordinates. However, the full solution

~u ~r;~t
� �

is defined for ~r 2 eR ~t
� �

;1
h i

, whereas both its approximations

are defined on ~r 2 eR0 ~t
� �

;1
h i

. To ensure all solutions are defined in a

common functional space, we extend all functions to ~r 2 0;1½ 	 by 0
whenever ~r is outside their original domain.

Hence we now define an inner product for any two functions
~u ~r;~t
� �

and ~v ~r;~t
� �

defined at a fixed time ~t and on some ~r-interval
contained in 0;1½ 	 by

~u; ~vh i ¼
Z 1

0
~r2~uc ~vcd~r;

where lowercase c denotes their continuations onto 0;1½ 	. This inner
product induces a norm by defining jj~ujj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
~u; ~uh i

p
. For a fixed time

T, we define the error between the full solution and its approxima-
tions by

E0 :¼ jj~u r; Tð Þ � ~u0 Tð Þjj; ð18aÞ
E1 :¼ jj~u r; Tð Þ � ~u0 Tð Þ þ e~u1 r; Tð Þ� �jj; ð18bÞ

where ~u is the full solution, ~u0 is the zeroth order asymptotic solu-
tion, and ~u0 þ e~u1 is the first order asymptotic solution. To verify
numerically that E0 6 C0e and that E1 6 C1e2 for some e-
independent constants C0 and C1, we use a log–log plot of the error
against e. Inspecting the gradient of the resulting line in Fig. 3 indi-
cates that the error behaves as expected.



A B

E F

C

D

Fig. 2. Comparison of the zeroth (red-dashed) and first order (red-solid) asymptotic solution with the full solution (black stars) for e ¼ 0:8 (A-C) and e ¼ 0:2 (D-F). A and D: A
plot of the non-dimensional nuclear radius against time. B and E: plot of the non-dimensional total NGF against time. C and F: profiles of the non-dimensional NGF
concentration against space for different time values. Other parameters are: t 2 0;10½ 	;R0 ¼ 0:05; a ¼ 0:4p; k ¼ 15 and u0 ¼ 2. Refer to D for a note on the ini.tial conditions.

Fig. 3. Error behaviour of the approximating solutions. Graphs showing plots of E0 (A) and E1 (B), given by (18) (solid-blue), against e. Red-dashed lines are for comparison
and have gradients .1 (A) and 2 (B).
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5. Properties of the well-mixed models

In Section 4 we derived approximate equations for the nuclear
growth and NGF dynamics for small e. In this section we will dis-
cuss the main properties of the well-mixed model, i.e. the 0-th
6

order approximation obtained for e ! 0. We revert to variables
with dimensions and, for ease of notation, drop the superscript 0
for all variables. This means in the following u tð Þ denotes the (spa-
tially constant) NGF concentration and R tð Þ the nuclear radius. The
equations then read
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du
dt

¼ � 3uR2

R3
c � R3 j Rð Þ � _R

� �
; u 0ð Þ ¼ �u ð19aÞ

d
dt

z Rð Þ ¼ 4paj Rð ÞR2u; R 0ð Þ ¼ R0; ð19bÞ

where j Rð Þ and z Rð Þ are given by (10).
This constitutes a system of two nonlinear ODEs. Note that if

R tð Þ ! Rc the denominator of (19a) tends to infinity. In fact we
can further simplify this system. To see this, it is helpful to consider
the total NGF in the cytoplasm U tð Þ (to be precise, this is the 0-
order contribution to the total NGF for the full system). For a spa-
tially constant concentration, U tð Þ is obtained by multiplying the
NGF concentration u tð Þ by the volume of the cytoplasm, giving

U tð Þ ¼ 4p
3

u tð Þ R3
c � R tð Þ3

� �
: ð20Þ

Now we can capitalize on the relationships stated in (16) and
also introduced in Section 2.

G1 : _R ¼ �a _U; G2 : _A ¼ �a _U; G3 : _V ¼ �a _U: ð21Þ

where A tð Þ ¼ 4pR tð Þ2 is the nuclear surface area and V tð Þ ¼ 4p
3 R tð Þ3

is the nuclear volume. Similar to what was done in Section 2, we
Fig. 4. Left column: Dynamics in U;Rð Þ-space for G1 (A), G2 (D) and G3 (G). Colored li
direction in which the solution trajectories t # R tð Þ;U tð Þð Þ move on these curves. The
respectively. Middle and right columns depict the right-hand-sides of (23) as functions
refer to constant NPC density, dotted curves to constant NPC number, stars mark initial
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can integrate these relationships from 0 to time t and solve for
U tð Þ. This gives the following relationships, which are analogous
to (3), but formulated in terms of radii,

G1 : U tð Þ ¼ 1
a Rl � R tð Þð Þ; Rl :¼ R0 þ aU0;

G2 : U tð Þ ¼ 4p
a R2

l � R tð Þ2
� �

; R2
l :¼ R2

0 þ a
4pU0;

G3 : U tð Þ ¼ 4p
3a R3

l � R tð Þ3
� �

; R3
l :¼ R3

0 þ 3a
4pU0:

ð22Þ

The constant U0 is the initial total NGF given by

U0 ¼ 4p
3
�u R3

c � R3
0

� �
and the constant Rl represents the nuclear

radius obtained if all the NGF has been absorbed into the nucleus,
i.e. if U ¼ 0. We will discuss below for which parameter regimes
this happens.

If we now use (20), we can obtain u tð Þ as a function of R tð Þ,
which simplifies (19) to

G1 : _R ¼ 3j Rð Þ R2 Rl�Rð Þ
R3c�R3

; Rl ¼ R0 þ aU0; R 0ð Þ ¼ R0;

G2 : _R ¼ 3j Rð Þ
2

R R2l �R2ð Þ
R3c�R3

; R2
l ¼ R2

0 þ a
4pU0; R 0ð Þ ¼ R0;

G3 : _R ¼ j Rð Þ R3l �R3

R3c�R3
; R3

l ¼ R3
0 þ 3a

4pU0; R 0ð Þ ¼ R0:

ð23Þ
nes are the curves given by (22) for various initial conditions. Arrows indicate the
white and shaded regions mark the parameter regime where Rl < Rc and Rl > Rc

of R for Rl < Rc (middle column) and Rl > Rc (right column) for G1-G3. Solid curves
and final nuclear radii and the arrow marks the direction .of the dynamics.
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Now each model G1-G3 is represented by a single nonlinear,
autonomous ODE. However, note the initial nuclear radius R0 and
NGF concentration U0 enter via the constant Rl.

Limiting behaviour. For each model we have two regions with
different behaviour, depending on whether Rl < Rc or Rl > Rc. These
conditions are equivalent to those stated in (7) for the full, radially
symmetric model. However, now we can analyse the behaviour in
more depth. In Fig. 4, left column we plot the solution trajectories
lying on the curves given by (22) in U;Rð Þ-space for each of the
growth assumptions G1-3. To capture the time dynamics along
those curves we plot the right-hands-sides of (23) as functions of
R in Fig. 4, middle and right column.

If Rl < Rc , then R tð Þ ! Rl as t ! 1 (white region in Fig. 4, left
column). In this case all NGF is absorbed into the nucleus and
U tð Þ ! 0 as t ! 1. The final nuclear radius is smaller than the cell
radius Rc . If Rl > Rc then R tð Þ ! Rc as t ! T , where T is a finite time.
This time T can be evaluated explicitly, e.g. for G1 it is given by

T ¼ 1
3

Z Rc

R0

R3
c � R3

j Rð ÞR2 Rl � Rð Þ dR;

which is finite for Rl > Rc . Similar expressions can be obtained for
G2 and G3 by separating variables and integrating (23). In this case
the nucleus grows to cell size in finite time (shaded region in Fig. 4,
left column). At this time there will be a leftover amount of NGF in
the cytoplasm (given by replacing R by Rc in (22)), whose volume
has shrunk to zero. Note that the concentration u tends to infinity
in this case. As noted previously, j Rð Þ does not affect the final
nuclear size, only the time scale it takes to get there, which we will
discuss next.

Time scale of growth. As introduced in Section 3 we examine two
models for the absorption rate j;j � k (constant NPC density) or

j ¼ kR3c
R2

(constant NPC number). The constant j has units of speed
(length per time) and sets the speed of nuclear growth. Its (poten-
tial) dependence on nuclear size via R influences how the absorp-
tion speed and hence growth speed changes over time. In the
following discussion we focus on the biologically more relevant
regime Rl < Rc . For constant NPC density (solid lines in Fig. 4, mid-
dle and right column) G1 and G2 predict _R ! 0 as R0 ! 0. The
nuclear growth rates then increase as the nucleus grows (quadrat-
ically in R for G1 and linearly in R for G2) and decrease as the
nucleus approaches its final size Rl. G3, on the other hand, predicts
that nuclear growth starts with a positive growth rate which stays
Fig. 5. Nuclear growth in cell-free droplets of Xenopus laevis egg extract. A. Upper image
microscope. The two tubes at the lower left are inlets, with one carrying extract and the
frame of a transmitted light time-lapse of droplet formation in a t-junction device. Dropl
droplets within the imaging reservoir of a PDMS device at some time t > 90min after en
our green recombinant GFP-NLS probe. Image montage in C shows nuclear growth a
representative experiment.
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approximately constant initially, but decreases over time. For con-
stant NPC number (dotted lines in Fig. 4, middle and right column),
j declines as the nucleus grows, since there are fewer NPCs per
surface area. Consequently we have a decline in nuclear growth
rates in all cases, notably G2 and G3 predict very fast initial nuclear
growth ( _R ! 1 as R0 ! 0). We will examine this further below
when we compare to experimental data.
6. Comparing model predictions to experimental data

In this section we demonstrate how we can use the derived
models to understand biological data and gain biological insights.
In the first part we use experimentally measured in vitro data of
nuclear growth and focus on the following biological questions:
Which scaling assumptions G1, G2 or G3 best explains the data?
Which assumption about NPC dynamics A1, A2 explains the data
the best? We will mainly use both the well-mixed and the approx-
imate spatial model. Those have the advantage that they are much
quicker to evaluate numerically compared to the full free boundary
problem. This is helpful for data fitting, where we have to solve the
systemmany times. In the second part we apply the model to early
development in frog embryos, where cell divisions happen quickly
which puts more importance on the time scale of nuclear growth.
Since cells are very big initially, we use the full free boundary
model.

6.1. Nuclear scaling in Xenopus extract

Experimental data. To obtain information about de novo nuclear
growth we used an in vitromodel system that afforded exquisite
control of ‘‘cell” size. (Fig. 5) Effectively, microfluidic-based devices
were used to encapsulate cell-free extracts derived from Xenopus
laevis eggs into monodisperse droplets. Stochastic encapsulation
of demembranated X. laevis sperm nuclei ensured that some dro-
plets contained chromatin and would ultimately generate inter-
phase nuclei. These cell-mimicking droplets are spherical, do not
change in size over time, and initially contain no formed nucleus.
A small recombinant protein containing GFP (green fluorescent
protein) fused a nuclear localization signal was used to facilitate
nuclear labeling and subsequent imaging using time-lapse,
spinning-disk confocal microscopy (see A). Changes in nuclear size
were monitored and measured over time and these data were col-
lected for droplets of different sizes, see Fig. 6A. Each line repre-
shows a typical t-junction microfluidic device mounted on the stage of an inverted
other oil. The tube at the upper right is the outlet. The lower panel shows a single
ets can be seen entering the reservoir at the right. B. A stitched low-power image of
capsulation. Extract was spiked with a red fluorescent marker for microtubules and
nd GFP-NLS import as a function of time for two 70lm diameter droplets in a
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sents nuclear radius data averaged over several droplets of similar
size. We have included the full experimental data including stan-
dard deviations for each droplet size in E. For each of the 20 droplet
sizes we obtained data from 9 time steps (every 15 min). We focus
on two groups: Small droplets (droplet radius 10–25lm) in which
nuclei size equilibrates over the time course of the experiments,
and large droplets (droplet radius 40–80lm), for which nuclei
are still growing at the end of the experiment. In fact, we could
not obtain data of the equilibrium sizes of nuclei in the large dro-
plets, since nuclei became unstable when growing too large. Due to
the controlled nature of the experiment, this is an ideal testing
ground for the predictions of the spherically symmetric nuclear

growth model. In the following, we denote by R̂i;j the experimen-
tally measured nuclear radius for a droplet size indexed by
j ¼ 1; . . . ;ND, where ND ¼ 20 is the number of droplets and mea-
sured at a time point indexed by i ¼ 1; . . . ;NT , where NT ¼ 9 is
the number of time points. Throughout this section we use the
mean relative error (see definition below) to asses the match
between simulation results and experimental measurements. We
will always give the relative error as percent deviation. Using the
mean absolute error leads to slightly different, but qualitatively
equivalent results.

Final state data gives only limited insights. We start by focusing
on the equilibrated nuclear size, disregarding any dynamical infor-
mation. Hence we only use the final time nuclear size measure-
ments of the small droplets. We use the scaling relationship
stated in (4) applied to the spherically symmetric case (also dis-
cussed in Section 2 and Section 3), reformulated in terms of the
final nuclear radius Rl, yielding
Fig. 6. Comparing model predictions to measurements. A. Experimentally measured nuc
of similar size (line color indicates droplet radius), see A and E for more details. B. Simu
a�u ¼ 0:057 and k ¼ 2:98lm=min. C. Simulation results for the G3-A1 approximate spa
D ¼ 72:8lm2=min. D. Using final state data of small droplets only, shown are the best
obtained. E. Comparing the theoretical prediction for _R of the G3-A1 model to the obtai
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Rl ¼4pa�u
3

R3
c G1ð Þ; Rl ¼ a�u

3

	 
1
2

R
3
2
c G2ð Þ; Rl ¼ a�uð Þ13Rc G3ð Þ:

For each scaling assumption, we find the best parameter p ¼ a�u
by minimizing the average relative error between predicted and
measured final nuclear size

El pð Þ ¼ 1
NDs

XNDs

j¼1

jRl;j pð Þ � R̂NT ;jj
R̂NT ;j

;

where the sum is only taken over the NDs ¼ 8 small droplets and
Rl;j pð Þ denotes the predicted final nuclear size for a droplet whose
radius Rc is the same as that with index j.

Fig. 6D shows the resulting best predictions for each model. The
errors and best parameters are El ¼ 21:6% at a�u ¼ 1:93
 10�4=lm2

for G1, El ¼ 9:3% at a�u ¼ 0:024=lm for G2 and El ¼ 5:2% at
a�u ¼ 0:074 for G3. We see that the error is minimal for scaling
assumptions G3. However, given the low number of measure-
ments, the difference in error to G2 does not give a lot of confi-
dence in this result. Since we were restricted to using only final
state data of equilibrated nuclei, we were only able to use less than
5% of the available data. Finally, no information about the dynam-
ics of nuclear growth and the question about NPC density beha-
viour was gained.

The well-mixed model identifies G3-A1 as best model. Next we use
the full dynamic experimental data to compare to the well-mixed
model derived in Section 4 and analysed in Section 5. For each dro-
plet size we solve (23) using Rc as the measured droplet radius and
R0 as the measured nuclear radius at the first time point. Hence we
now have to fit two parameters, p ¼ a�u; kð Þ which we assume to be
lear radii over time. Each line represents the average obtained from several droplets
lation results for the G3-A1 well-mixed model using the identified best parameters
tial model using the identified best parameters a�u ¼ 0:057; k ¼ 4:44lm=min and
fit results for G1 (a�u ¼ 1:9410�4=lm2), G2 (a�u ¼ 0:237=lm) and G3 (a�u ¼ 0:0737)
ned measurements. Color represents. droplet radius.
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constant across different droplet sizes. We define the mean relative
error

E pð Þ ¼ 1
NDNT

XND

j¼1

XNT

i¼1

jRi;j pð Þ � R̂i;jj
R̂i;j

;

where Ri;j pð Þ is the simulated nuclear radius at time point i for a
droplet with the same droplet radius as droplet j. Table 1 summa-
rizes the results and Fig. 6B shows the simulated nuclear growth.
We see that the smallest error is produced by scaling assumption
G3 together with NPC assumption A1 (which we will call the G3-
A1 model), where the average deviation between predicted nuclear
radius and measured nuclear radius is less than 6.5%. Hypothesis
G3, which assumes that the amount of NGF absorbed is propor-
tional to gain in nuclear volume, was already suggested by the anal-
ysis of the equilibrium data of the small droplets, but is now
confirmed using the much larger dataset. Further, this is also in line
with the frequently made observation across many organisms, that
cells maintain a constant nuclear volume to cell volume ratio (Chan
and Marshall, 2010; Huber and Gerace, 2007). Hypothesis A1 sug-
gests that NPC surface density is in fact controlled, hence new NPCs
are being incorporated into the nuclear membrane as the nucleus
grows. This is consistent with what has been suggested experimen-
tally (D’angelo et al., 2006). Fig. 7A depicts how sensitively the
result depends on the two parameters. Next we visually inspect
the G3-A1 model predictions using the identified best parameters,
Fig. 6B. We see that for most droplet sizes both the dynamics and
the final time point behaviour is recapitulated by the model. How-
ever, we see a relatively large deviation between model and exper-
iment for the three largest droplet sizes: The mean absolute error
for those three is 16%, while it is 4:6% for the remaining 17 droplet
sizes.

To assess the match between experimental measurements and
simulation rate further, we return to the nuclear growth equation
for G3 given in (23), assuming A1, i.e. j Rð Þ � k. If we assume R0 ¼ 0

and U0 ¼ �u 4pR3c
3 , we obtain that

dR
dt

¼ k
a�u� R

Rc

� �3
1� R

Rc

� �3 ;

i.e. the model predicts that if we normalize the nuclear radius by
the droplet size, the rate of change in nuclear radius should fall
on one common curve for all droplet sizes r # k a�u� r3

� �
= 1� r3
� �

.

To obtain a reliable estimates of _R from the data, we fitted a
smoothing spline through the time course data for each droplet size
and evaluated the time derivative of its analytical representation at
the original experimental time points (see D). Fig. 6E shows the
comparison between theory and measurements. We can see that
for most droplet sizes we obtain a good match between analytical
prediction and experimental values. Only for very large droplet
sizes (67� 78lm) do nuclei grow slower than predicted. This is
consistent with what we observed comparing Fig. 6A to 6B.

The approximate spatial model only improves the fit slightly. The
well-mixed model is an approximation of the full model, valid in
Table 1
Fitting results for the well-mixed model. Shown are the minimal average relative error o
identified parameters.

A1

error a�u k

G1 16:7% 9:44
 10�5=lm2 0:63lm=min

G2 8:7% 0:0135=lm 1:80lm=min

G3 6:3% 0:0573 2:98lm=min
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the limit e ! 0, where e ¼ Rck
D for the G3-A1 model. This means that

the approximation will be less good for larger droplet sizes Rc . For
constant Rc and k we can also view the well-mixed model as a
model obtained for infinitely fast diffusion. Thus, it is possible that
for larger droplet sizes, nuclear growth will happen slower, since it
takes some time until diffusion acts to redistribute NGF towards
the nuclear membrane, where absorption reduces its availability.

To test this, we now use the approximate spatial model derived
in Section 4 (reverting to physical dimensions). We now have three
free parameters p ¼ a�u; k;Dð Þ, where D is the diffusion constant.
Using the same error function, we repeat the parameter fitting pro-
cedure for G3-A1. The resulting best parameters are
a ¼ 0:0569; k ¼ 4:44lm=min and D ¼ 73lm2=min yielding a min-
imal average error of 5:7% per data point. Fig. 7B shows how sen-
sitively the error depends on the three parameters. Using the
approximate spatial model reduces the error by about 10%.
Fig. 6C shows the nuclear growth prediction. We see that while
allowing for finite diffusion slows the initial growth of nuclei in
the very large droplets, measured nuclear size at the end of the
observation interval is still smaller than the model predicts. Since
the value for e can reach up to around 5 for very large droplets,
we also tested if we can obtain a better fit solving the full free
boundary problem. However, this was not the case. The fact that
nuclei in very large droplets grow slower than the model predicts
might point to model limitations, discussed below.
6.2. Nuclear scaling in early development

Early Xenopus development. If cells divide rapidly before nuclear
size can equilibrate, the time scale of nuclear growth plays a key
role in understanding nuclear size. As an example, we use the
model to explain nuclear scaling behaviour as observed in the lit-
erature during early Xenopus development. In the first few hours
after fertilization, the Xenopus embryo (initially one cell of radius
� 600lm) undergoes a rapid series of 12 synchronized cell divi-
sions, taking around 15� 30min each and resulting in 4096 cells,
Fig. 8A. Since the total volume stays the same, cells become pro-
gressively smaller (Jones and Smith, 2008). In Jevtić and Levy
(2015) the authors note that, while nuclei become smaller and
smaller with each subsequent division, they occupy a larger per-
centage of the cell. In light of our model, an intuitive explanation
is that nuclear size takes longer to equilibrate in larger cells.

The model can recapitulate experimental behaviour. To test this,
we use our nuclear scaling model. Since diffusion in the initially
very large cells cannot be neglected, we solve the full free bound-
ary problem, not one of its approximations. We set a�u ¼ 0:04,
which corresponds to the karyoplasmic ratio measured in Jevtić
and Levy (2015) at later stages and D ¼ 300lm2=min. Further
R0 ¼ 0, since nuclei have to reform after each division. We assume
the sum of all cell volumes stays constant and calculate the cell
radius after the n-th division to be Rc ¼ 600
 2�n=3lm. We simu-
late the model for different values of cell cycle lengths (i.e. times
between cell division) T ¼ 10;20;30;60;120min. The result is
depicted in Fig. 8B,C and recapitulates qualitatively the data in
btained for each combination of hypotheses (G1-G3, A1,A2) and the corresponding

A2

error a�u k

24:6% 7:23
 10�6=lm2 0:0260=min

16:5% 0:0280=lm 1:00
 10�3/min
10:9% 2:43 6:94
 10�5=min



Fig. 7. Parameter sensitivity. A. Shown are level sets of the error between the G3-A1 well-mixed model prediction and the experimental data for plus 1% of the minimal error
(solid green), plus 2% of the minimal error (dashed blue) and plus 5% of the minimal error (dotted red). B. As in A, but using the G3-A1 approximate spatial model. Shown are
the corresponding isosurfaces and their projections.

Fig. 8. Nuclear scaling during early Xenopus development. A. Number of cells as function of division number. Schematics illustrate cells in embryo. B and C. Solutions of the
G3-A1 full free boundary model for nuclear scaling. Shown is how nuclear volume Vn scales with cell volume Vc for different cell cycle lengths T. The dashed line in panel B
represents the relationship for fully equilibrated nuclei, where Vn ¼ a�uVc . Parameters used a�u ¼ 0:04; k ¼ 15lm=min;D ¼ 300lm2=min. C. Nuclear to cell volume ratio as
function of division number for the simulations in B.
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the first figure in Jevtić and Levy (2015). As in their experiments,
the karyoplasmic ratio increases as cells get smaller and plateaus
at a value set by a�u. Further, in our simulations we see that as
the cell cycle length increases, nuclei become larger overall. How-
ever, this is much more pronounced for nuclei in larger cells than
for those in smaller cells. This is because the latter are already close
to their equilibrium size, even for short cell cycle lengths.
7. Model Limitations and Extensions

The presented model can be viewed as a minimal model that
only includes the most important factors determining nuclear
11
growth. In Section 6 we demonstrated that despite its simplicity
the current model can explain experimental data. However, there
are several limitations to this model and in this section we discuss
how some effects could be included in this modelling framework.
The below list is not exhaustive and any future model extension
will be guided by experimental results.

Transport mechanism in the cytoplasm. In the current model we
assume the transport of the NGF in the cytoplasm is purely diffu-
sive, however other mechanisms might play a role. For instance
there might be directed transport along microtubules. This would
change the flux used in (1) from J ¼ �Dru to J ¼ �Druþ Vu,
where V is a vector valued function modelling the transport veloc-
ity along microtubules, that could depend on space and time. Dif-
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ferent assumptions on microtubule density could be included.
Microtubules are commonly found to be anchored at a microtubule
organising center located at the nuclear membrane. In a first
approximation one could therefore assume the transport happens
radially, allowing to work with the radially symmetric model. We
note that we expect the resulting well-mixed model to be the same
as the one derived in this work. In general we expect that micro-
tubule transport would not affect the limiting nuclear size, but
rather the time scale to obtain it.

Modelling NPC dynamics. In Section 6 we observed that nuclear
growth in large droplets (or cells) is slower than predicted by the
model. A possible reason might be that the surface density of NPCs
on the nuclear membrane is only constant for small to medium
sized nuclei, but that NPC supply can become limiting for very
large nuclear sizes. Here we suggest a simple model that would
describe this behaviour: Let N tð Þ be the number of NPCs on the

nuclear surface at time t and n tð Þ ¼ N tð Þ= 4pR2
� �

the corresponding

NPC surface density for a nucleus of radius R. We assume the NGF
absorption rate j is proportional to the NPC surface density n tð Þ.
New NPCs need to be recruited from the cytoplasm, where their
number is M tð Þ and the total number of available NPCs is
N tð Þ þM tð Þ ¼ M0. We assume there is a target NPC surface density
�n implying a nuclear size dependent target NPC number 4pR tð Þ2�n.
If the recruitment rate to the nuclear membrane is proportional to
how far the current NPC number is from the target NPC number,
then we can write

_N ¼ g M0 � N tð Þð Þ 4pR tð Þ2�n� N tð Þ
� �

;

where g describes how fast NPC recruitment happens. It is easy to

see that for g large and 4pR tð Þ2 < M0, the NPC surface density
remains roughly constant n tð Þ � �n, however for large nuclear sizes,

i.e. when 4pR tð Þ2 > M0, we will have n tð Þ � M0= 4pR tð Þ2
� �

, leading

to a slowed down growth for very large nuclei. While this model
extension would almost certainly lead to a better fit with the exper-
imental data presented in Section 6, more experimental evidence is
needed to confirm it is indeed NPC dynamics that slow the growth
of very large nuclei.

Multiple nuclei. Multinucleated cells can be found in certain
fungi (Alberti-Segui et al., 2001), in developing organisms, e.g.
the early drosophila (Warn, 1986) or also muscle cells
(Bruusgaard et al., 2003). In Windner et al. (2019) it was observed
that the sum of nuclear sizes within one cell scales linearly with
cell size and that nuclei that are positioned further from other
nuclei grow larger. This is consistent with what has been observed
in Neumann and Nurse (2007) and the idea that nuclei that share a
common cytoplasm compete for the NGF. Inclusion of several
nuclei into the presented model is straightforward: For M nuclei
the new cytoplasmic domain can be written as X tð Þ :¼
C n SM

i¼1
N i tð Þ, where N i denotes the space occupied by the i-th

nucleus. The main NGF Eq. (1) then changes to

@tu ¼ �r � J; x 2 X tð Þ
n � J ¼ 0 x 2 @C;
n � J ¼ jiuþ n � uvð Þ x 2 @N i tð Þ;

where the absorption rate ji can depend on the nucleus. This is
complemented by the nuclear growth equations

d
dt

Zi tð Þ ¼ aj
Z
@N i tð Þ

udC;

where Zi, as previously, denotes some measure of nuclear size (ra-
dius, surface area or volume). In general there is no radially symme-
try in this model, making both analysis and simulation more
12
involved. However, in the simplified case of the well-mixed model,
the position of the nuclei would not play a role and some insights
about final nuclear sizes and time dynamics could be gained. For
nuclei arranged linearly one could use cylindrical symmetry to
derive a simplified model to analyse more deeply how nuclear posi-
tion affects its size.

Nuclear export and shrinking. While the role of nuclear export in
setting nuclear size is more unclear, the effects could be included
in the current model. This would require posing a separate equa-
tion for the concentration (or number) of NGF inside the nucleus.
Nuclear NGF can then either cause nuclear growth or be exported
through NPCs. Further, instances of nuclear shrinking have also
been reported and could be incorporated in future model develop-
ments (Edens and Levy, 2014).

Elastic Membrane. To incorporate the elastic nature of the
nuclear envelope, and to describe non-spherical geometries associ-
ated with large deformations, the well-known Helfrich model
(Helfrich, 1973) can be incorporated into our modeling framework.
This approach is well established in modeling the dynamics of bio-
logical membrane structures (Rangamani et al., 2014) such as vesi-
cles (Ruiz-Herrero et al., 2019) or red blood cells (Vlahovska et al.,
2009).

Specifically, the elastic energy stored in the infinitesimally thin
nuclear envelope @N takes the form

EB¼
Z
@N

2jB H�H0ð Þ2dSþ
Z
@N
jKKdS; H¼1

2
j1þj2ð Þ; K¼j1j2;

where j1;j2 are the principle curvatures of the surface and
H0;jK ;jB are quantities known as the spontaneous curvature, Gaus-
sian modulus and bending modulus respectively (Guckenberger and
Gekle, 2017). Dynamics then arise from the minimization of this
energy.
8. Discussion

Summary of work. In this work we derived and analysed a
spatio-temporal mathematical model for nuclear growth based
on the limiting component hypothesis. We used asymptotic tech-
niques to derive approximating models and tested their predic-
tions against two different experimental set-ups. Comparing to
time-dynamic experimental data, the computational model con-
firms that the prevalent scientific knowledge about nuclear growth
also applies to our model system: That nuclear volume will be pro-
portional to cell volume (G3) and that more NPCs are being incor-
porated into the nuclear membrane as it grows, keeping the NPC
surface density relatively constant (A1). A constant karyoplasmic
ratio has been observed in many species (Chan and Marshall,
2010; Huber and Gerace, 2007). That NPC surface density is con-
stant across different nuclear sizes was also observed experimen-
tally (Theerthagiri et al., 2010). Finally our model also shows that
the surprisingly slow growth of nuclei in very large droplets cannot
be explained purely by diffusion-limited transport of NGF across
the cell.

Discussion of parameters. From the parameter fitting we
obtained the following biological parameters from the G3-A1
model: a�u � 0:05� 0:07of k � 2:5� 5lm=minand possibly
D � 50� 100lm2=min. For de nuovo growth, the parameter com-
bination a�u sets the karyoplasmic ratio Vn=Vc . As necessary to
avoid nuclei reaching cell size, it is less than 1. Experimentally,
one could test whether reduction of �u, e.g. by dilution of the Xeno-
pus extract leads to a corresponding reduction in equilibrium
nuclear size. Next, the absorption rate j ¼ k is the product
between the NPC density on the nuclear surface and the processing
power per NPC. Experimentally NPC surface density has been mea-
sured to be between 5 and 10 NPCs=lm2 (Theerthagiri et al., 2010;
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Levy and Heald, 2010), hence our results suggest a processing
power of around 0.25–1 molecules NGF imported per NPC per min-
ute per molecule NGF present in one cubic micrometer. In the
future we plan to measure and manipulate import rates and com-
pare them to the model predictions. The obtained diffusion con-
stant, while within realistic biological ranges, is relatively small
compared to what we would expect: E.g. for a 50 kDa molecule dif-
fusing in Xenopus extract (dynamic viscosity of g � 20mPa-s
Valentine et al., 2005), we’d expect around 260lm2=min at room
temperature. It is of course possible that the molecule in question
is in fact larger, however it seems more likely that the result points
towards model limitations. In Section 7 we discussed model exten-
sion concerning different transport mechanism via microtubules
and incorporating time depdendent NPC dynamics, which could
explain the slowed down nuclear growth in large cells.

Regulation and function of nuclear size. Changes in karyoplasmic
ratio (both larger and smaller) have been associated to different
types of cancer (Rizzotto and Schirmer, 2017) and both Lamins
and NPCs have been implicated (Simon and Rout, 2014). In this
model we assumed there is only one NGF that dominates nuclear
size determination. However, in reality there are more likely a
number of such factors. Which of those factor is limiting and hence
sets nuclear size can vary between organisms, cell type, cell cycle,
disease state, etc. Future computational models should allow for
this complexity as well as incorporate other suggested transport
mechanisms of NGFs across the cytoplasm. Further, there are still
open questions regarding the function of nuclear size scaling. Com-
monly DNA copy number is not affected by size scaling (however,
there are exceptions, see e.g. Windner et al., 2019), however DNA
organisation and processing is affected by nuclear scaling (Levy
and Heald, 2012). Hence a larger nucleus can produce more mRNA
and has a larger surface area through which mRNA can be
exported. Exploring this relationship between nuclear size and
nuclear product production and transport using experimental
and computational tools will be an important task for future work.
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Appendix A. Experimental Material and Methods

Nuclear assembly in Xenopus egg extracts. Cytostatic factor (CSF)-
arrested egg extracts were prepared as described previously
(Desai et al., 1999). Interphase extract was maintained by the addi-
tion of calcium and cycloheximide. De-membranated sperm nuclei
were prepared as described previously (Hazel and Gatlin, 2018)
and fluorophores were subsequently added to the prepared
extract, which was immediately loaded into microfluidic devices
(see below for details). GFP-NLS was added to the extract at a final
concentration of 2lM to visualize nuclear import. The standard
nuclear assembly reaction was 100ll fresh extract, 0.4 mM CaCl2,
100lg/ml cycloheximide and 1000 Xenopus sperm nuclei per ll.
Reactions were incubated at 16–18�C and spherical, import- com-
petent nuclei generally formed within 30–45 min.

Microfluidic device fabrication and encapsulation of Xenopus egg
extract.Microfluidic devices were prepared essentially as described
in (Oakey and Gatlin, 2018). Briefly, devices were cast in poly-
dimethylsiloxane (PDMS, Sylgard 184, Dow Corning) using well-
established soft lithography techniques. A microchannel network
was designed in AutoCAD (Autodesk, Inc) drafting software. The
photomask was output to film (CAD/Art Services, Bandon, OR)
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and used to lithographically expose the network in a photoresist
film (SU-3025, MicroChem, Newton, MA) spun onto a silicon wafer
at 30lm. Polydimethylsiloxane (PDMS) elastomer was then poured
over the patterned wafer, cured at 70�C, and removed, producing
an imprinted channel network. Fluid inlet and outlet ports were
punched into the PDMS with a sharpened, unbeveled syringe tip
(Brico Medical, Dayton, NJ). The PDMS channel network was
exposed to oxygen plasma (Harrick Plasma, Ithaca, NY) and placed
in contact with a cover glass slip (#1.5, Thomas Scientific) to form
an irreversible bond.

Imaging and nuclear size measurements. Images were acquired in
the Gatlin lab using either a scientific-grade CMOS camera (Orca
Flash 2.8, Hamamatsu) mounted on an inverted epifluorescence
microscope (IX71 stand, Olympus) or an EM-CCD camera (ImagEM,
Hamamatsu) mounted on an IX71 stand equipped with a spinning-
disc confocal head (CSU- X1; Yokogawa). Confocal illumination
was provided by an LMM5 laser launch (Spectral Applied research).
Integration of all imaging systems components was provided by
Biovision Technologies (Exton, PA). All image acquisition and anal-
ysis was performed using Metamorph 7.7 software (Molecular
Devices). Images were acquired using Olympus objectives of vary-
ing magnification: 10x (0.24 NA), 20x (0.75 NA and 0.85 NA), 40x
(1.30 NA), and 60x (1.49 NA).

Some images were also acquired using microscopes at the Mar-
ine Biological Laboratory (MBL). This included a Nikon Ti-E fully
motorized microscope with perfect focus (PFS3), encoded motor-
ized XY stage, Plan Apo Lambda 10x 0.45 N.A., 20x 0.75 N.A., 40x
0.95 N.A., 60x 1.40 N.A. oil, 100x 1.45 N.A. oil objectives, LU-NV
laser combiner (405 nm, 445 nm, 488 nm, 515 nm, 561 nm, 647
nm), Intensilight epi-fluorescence light source, NIS-Elements AR
software (Nikon Instruments, Inc.) with Yokogawa CSU X1 5000
RPM spinning disc confocal (Solamere Technology), 6-position trig-
gered emission wheel (Finger Lakes Inc.), iXon Ultra EM-CCD
detector (Andor) for the SDC lightpath and DS-Qi2 CMOS camera
(Nikon Instruments) for the epi light path, 35 mm Smart shutters
for transmitted and epi-fluorescence (Sutter), Nano-Z100-N
piezo-z stage (Mad City Labs). We also used a wide-field system
at the MBL. Here, images were acquired using a Nikon Ti-E fully
motorized microscope with perfect focus (PFS3), encoded motor-
ized XY stage, Plan Apo Lambda 10x 0.45 N.A., 20x 0.75 N.A., 40x
0.95 N.A., 60x 1.40 N.A. oil, 100x 1.45 N.A. oil objectives with DIC
optics, HiSN Zero shift filter cubes for DAPI, GFP, TxRed and Cy5,
Intensilight epi- fluorescence light source, DS-Qi2 CMOS camera,
NIS-Elements AR software (Nikon Instruments, Inc.) with 35 mm
Smart shutters for transmitted and epi-fluorescence (Sutter).

Measurements of Nuclear Size. Multi-dimensional z-stack imag-
ing of encapsulated nuclei allowed precise determination of encap-
sulating droplet diameter and the maximum nuclear cross section
(as determined by GFP-NLS labeling). For control reactions, nuclei
were assembled in unconfined extracts at a concentration of 150
nuclei/ll and fixed every 15 min (beginning at t = 30 min) in 4ll
of extract was fixed by addition of 16ll of spindle fix with DAPI
(Desai et al., 1999). This is a concentration at which cytoplasmic
components should not be limited in bulk extract, allowing
unbounded nuclear growth over the time periods relevant to this
study (see Fig. 2A; Hara and Merten, 2015). To avoid altering
nuclear morphology, imaging of fixed nuclei was carried out in
micromanipulation chambers (Gatlin et al., 2009). 25lm2 cover-
slips were used to cover circular cutouts in custom-made metal
slides. 8ll of fixed nuclei were spread out on the coverslip and
overlaid with 200ll of mineral oil.

Maximum nuclear cross-sectional areas were measured from
thresholded 3-D image stacks in ImageJ and used to calculate
nuclear surface area and volume assuming a spherical nucleus.
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For this reason, only largely spherical nuclei (those with a spherical
form factor of 0.75–1 as calculated by ImageJ) were subjected to
analysis.

Appendix B. Compressible Cytoplasm

General Model. If the NGF moves mainly with the (compressible)
immersed structures in the cytoplasm, we assume nuclear growth
leads to movement of the material points throughout the cyto-
plasm in a continuous manner. In this case v is continuous inside
the domain. Then we obtain

@tuþr � uvð Þ ¼ �r � J; x 2 X tð Þ
n � J ¼ 0 x 2 @C;
n � J ¼ ju x 2 @N tð Þ:

ðB:1Þ

At the cell membrane v ¼ 0, since it is modelled as impenetra-
ble. At the nuclear membrane we again assume that v ¼ �n _R. In
between v is a continuous function of the position x and we will
suggest a definite shape below. Analogously to the incompressible
model, we can derive the total NGF balance (2).

Radially symmetric cell. Using the same assumptions as in Sec-
tion 3, we can simplify (B.1) to

@tuþ 1
r2 @r r2v r; tð Þu� � ¼ D 1

r2 @r r2@ru
� �

; R tð Þ < r < Rc;

D@ru ¼ 0; r ¼ Rc;

D@ru ¼ ju; r ¼ R tð Þ:
ðB:2Þ

We need to specify the material point velocity v r; tð Þ which we
require to fulfil v R tð Þ; tð Þ ¼ _R tð Þ and v Rc; tð Þ ¼ 0. Different models
are possible, but here we assume the compression to be uniform,
i.e. the density of cytoplasmic material will stay spatially constant.
This yields the following material point velocity

v r; tð Þ ¼ _R tð Þ R tð Þ
r

	 
2 R3
c � r3

R3
c � R tð Þ3

: ðB:3Þ

Since R tð Þ < Rc;v decreases as a function of r. This is due to the
fact that maintaining a constant cytoplasmic density in a spherical
geometry requires cytoplasmic material to be pushed outwards
faster near the center than at distal portions of the cell. To show
that this material point velocity indeed leads to a uniform density
upon compression, we consider a transport equation in spherical
coordinates for the radially symmetric cytoplasmic density q r; tð Þ

@tqþ 1
r2

@r r2v rð Þq� � ¼ 0;

with v given by (B.3) and an initial spatially uniform density
q r;0ð Þ ¼ q0. In the following we define R0 ¼ R 0ð Þ. It is easy to check
that the solution is given by the spatially constant density

q r; tð Þ ¼ q tð Þ ¼ q0
R3
c � R3

0

R3
c � R tð Þ3

:

Finally, to confirm that total mass is conserved, we multiply this
density by the volume of the cytoplasm at time t, we find the total
mass at time t, which is

q0
R3
c � R3

0

R3
c � R tð Þ3


 4p
3

R3
c � R tð Þ3

� �
¼ q0

4p
3

R3
c � R3

0

� �
;

which is independent of time.

Appendix C. Asymptotics

In this section we develop the solution of (11) in terms of the
regular expansion
14
u ¼ u0 þ eu1 þO e2
� �

; R tð Þ ¼ R0 tð Þ þ eR1 tð Þ þ O e2
� �

: ðC:1Þ
Expanding the boundary condition (11b) yields that @ruj ¼ 0 on

r ¼ 1 for j ¼ 0;1;2; . . .. On the boundary r ¼ R tð Þ, the expansion of
the left hand side of (11c) takes the form

@ru R tð Þ; tð Þ ¼ @ru0 R tð Þ; tð Þ þ e@ru1 R tð Þ; tð Þ þ O e2
� �

¼ @ru0jr¼R0 þ e R1@2
r u

0 þ @ru1
h i

r¼R0
þO e2

� �
The right hand side of (11c) expands as

e j Rð Þ � _R
h i

u ¼ e j� _R0
h i

u0jr¼R0 þO e2
� �

: ðC:2Þ

Expanding (12) the nuclear growth equation d
dt z Rð Þ½ 	 ¼ aR2ju

reveals that

d
dt

z R0
� �

þ ez0 R0
� �

R1 þO e2
� �� �

¼ �a
dU0

dt
þ e

dU1

dt
þO e2

� � !
ðC:3aÞ

while simultaneously we have that

d
dt

z Rð Þ½ 	 ¼ a R0
� �2

ju0jr¼R0 þ ae R0
� �2

ju1 þ 2R0R1ju0
	

þR1 R0
� �2

j0u0


jr¼R0 þO e2

� �
: ðC:3bÞ

Comparing (C.3a) and (C.3b), we have that

d
dt

z R0
� �� �

¼ a R0
� �2

ju0jr¼R0 ; ðC:4aÞ
d
dt

z0 R0
� �

R1
� �

¼ �a
dU1

dt

¼ a R0
� �2

ju1 þ 2R0R1ju0 þ R1 R0
� �2

j0u0
	 


jr¼R0 : ðC:4bÞ

Incorporating these expansions of the boundary terms and the

NGF rate, we sequentially formulate problems for uj;Rj
� �

for

j ¼ 0;1.O e0
� �

: The problem for u0;R0
� �

satisfies

0 ¼ 1
r2

@r r2@ru0
� �

; R0 < r < 1; t > 0; ðC:5aÞ

@ru0
0 ¼ 0; r ¼ 1; t > 0; ðC:5bÞ

@ru0
0 ¼ 0; r ¼ R0; t > 0; ðC:5cÞ

d
dt

z R0
� �� �

¼ aj R0
� �

R0
� �2

u0 : ðC:5dÞ

The solution of problem (C.5) is a time dependent constant
u0 r; tð Þ :¼ u0 tð Þ. To fix the value of this constant, we proceed to

the correction term.O e1
� �

: The problem for u1;R1
� �

satisfies

du0

dt
¼ 1

r2
@r r2@ru1� �

; R0 < r < 1; t > 0; ðC:6aÞ

@ru1 ¼ 0; r ¼ 1; t > 0; ðC:6bÞ

@ru1 ¼ u0 j R0
� �

� _R0
� �

; r ¼ R0 tð Þ; t > 0; ðC:6cÞ

d
dt

z0 R0
� �

R1
� �

¼ �a
dU1

dt
: ðC:6dÞ
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Integrating (C.6a) over R0;1
� �

and applying the boundary con-

ditions (6b-6c) fixes the dynamics of u0 tð Þ. Together with the
growth Eq. (C.5d), and suitable initial conditions, we have that

du0

dt
¼ �

R0
� �2
W

u0 R0
� �

j R0
� �

� _R0
� �

; u0 0ð Þ ¼ u0 ðC:7aÞ
d
dt

z R0
� �� �

¼ aj R0
� �

R0
� �2

u0; R0 0ð Þ ¼ r0: ðC:7bÞ

where

W ¼
Z 1

R0
r2 dr ¼

1� R0
� �3
3

;

is a measure of the cytoplasmic volume. To fully specify the correc-
tion, we proceed from (C.6) by integrating (C.6a) to obtain that
Fig. 9. Experimental data. Nuclear growth data obtained as described in A and used in S
Error bars denote mean and sta.ndard deviation.

15
u1 ¼ du0

dt
g rð Þ þ C;

for constant C and g rð Þ ¼ r3 þ 2
� �

= 6rð Þ. Here g rð Þ can be identified as
the Green’s function for the Laplacian with the source at the origin.
It then follows thatZ 1

R0
u1r2 dr ¼ du0

dt

Z 1

R0
g rð Þr2 dr þ C

Z 1

R0
r2 dr;

so that the constant C can be identified as

C ¼ 1
W

U1 þ R1 R0
� �2

u0 � du0

dt

Z 1

R0
g rð Þr2 dr

	 

;

U1 ¼
Z 1

R0
u1r2 dr � R1 R0

� �2
u0:

The final form of first order correction u1 is
ection 6. For each subplot the title denotes the diameter range of the droplets used.
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u1 r; tð Þ ¼ du0

dt
g rð Þ � 1

W

Z 1

R0
g rð Þr2 dr

	 

þ 1
W

U1 þ R1 R0
� �2

u0
	 


: ðC:8Þ

In combination with the rate Eqs. (C.6d) and (C.4b), and suitable
initial conditions, we find the time dependent constants

R1 tð Þ;U1 tð Þ
� �

satisfy

dU1

dt
¼ � R0

� �2
ju1 þ 2R0R1ju0 þ R1 R0

� �2
j0u0

	 

jr¼R0 ; U1 0ð Þ ¼ 0: ðC:9aÞ

d
dt

z0 R0
� �

R1
� �

¼ �a
dU1

dt
; R1 0ð Þ ¼ 0: ðC:9bÞ
Appendix D. Numerical Methods

Simulation of full PDE. In order to simulate the full PDE given by
(5) and (9), which is posed on a moving domain r 2 R tð Þ;Rc½ 	, we
transform it onto a stationary domain using the change of variables
s ¼ r�R tð Þ

Rc�R tð Þ ; s 2 0;1½ 	. We let u r; tð Þ ¼ û s; tð Þ, then (5) and (9) become

@û
@t þ

_R s�1ð Þ
Rc�R

@û
@s ¼ D

Rc�Rð Þ2 s Rc�Rð ÞþRð Þ2
@
@s s Rc � Rð Þ þ Rð Þ2 @û

@s

� �
;

@û
@s ¼ 0; s ¼ 1;

D 1
Rc�R

@û
@s ¼ j� _R

� �
û; s ¼ 0;

d
dt z Rð Þð Þ ¼ 4paj Rð ÞR2û 0; tð Þ; R 0ð Þ ¼ R0:

To discretise the PDE we let the timestep be Dt and the spatial
step be Ds, so we can define tm ¼ mDt; sn ¼ nDs;un

m ¼ û sn; tmð Þ and
Rm ¼ R tmð Þ, with n ¼ 0;1; . . . :;N;m ¼ 0;1; . . . ;M. We discretise the
PDE using a first order backwards finite difference for the time
derivative, which makes our numerical method implicit. A central
difference discretisation is used for the first order spatial deriva-
tive. We discretize the flux term as follows:

@
@s a sð Þ @û

@s

� � � aiþ1=2
@
@s uiþ1=2ð Þ�ai�1=2

@
@s ui�1=2ð Þ

Ds

� aiþaiþ1ð Þ uiþ1�uið Þ� aiþai�1ð Þ ui�ui�1ð Þ
2Ds2

To deal with the non-linear boundary condition at s ¼ 0, we
make an approximation where one u is evaluated at the previous
time step, as shown below. Together this yields the following:

unm�unm�1
Dt þ sn�1ð Þ _Rm

Rc�Rm
unþ1
m �un�1

m
2Ds

¼ D

Rc�Rmð Þ2 rnmð Þ2
rnmð Þ2þ rnþ1

mð Þ2
� �

unþ1
m �unmð Þ� rnmð Þ2þ rn�1

mð Þ2
� �

unm�un�1
mð Þ

2Ds2

� �
;

where we define

rnm ¼ Rc � Rmð Þsn þ Rm:

For the boundary conditions we use

uN
m � uN�1

m ¼ 0;
D

Rc�Rm
u1m�u0m

Ds ¼ j� d̂Rm

� �
u1
m;

where we define

d̂Rm ¼ 4paj Rmð ÞR2
mu

0
m

z0 Rmð Þ :

Finally, for the nuclear growth equation we use

Rm � Rm�1

Dt
¼ 4paj Rm�1ð ÞR2

m�1u
0
m�1

z0 Rm�1ð Þ :
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We note that a constant-in-space initial signal concentration u0

does not fulfill the boundary conditions, so we run the simulation
for a few time steps to create an initial signal concentration that
fulfils the boundary conditions, and then re-scale such that the
average initial signal concentration is equal to u0.

Simulation of approximate models. To simulate the coupled ODEs
for the asymptotic approximation, we use the built in MATLAB sol-
ver ode45 which is based on an explicit Runge–Kutta method.

Approximation of derivative of experimental data. In Section 6 we
use an approximation of the time derivative of the experimentally
measured nuclear growth data. We do this by fitting a smoothing
spline through each set of time dependent nuclear growth mea-
surements. A smoothing spline minimises a linear combination
between the squared distance between measurements and the
spline, and the integral of the square of the second derivative of
the spine with weights p and 1� p respectively. We used
p ¼ 0:0005. We then use the exact time derivative of the resulting
smoothing spline.

Appendix E. Experimental Data

Fig. 9 shows the experimental data used in Section 6. Each sub-
plot represents the nuclear size as a function of time measured in
droplets of varying diameter. For each data point between 13 and
195 individual measurements were made.
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