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ABSTRACT

Fuzzing nowadays has been commonly modeled as an optimization
problem, e.g., maximizing code coverage under a given time budget
via typical search-based solutions such as evolutionary algorithms.
However, such solutions are widely argued to cause inefficient
computing resource usage, i.e., inefficient mutations. To address
this issue, two neural program-smoothing-based fuzzers, Neuzz
and MTFuzz, have been recently proposed to approximate pro-
gram branching behaviors via neural network models, which input
byte sequences of a seed and output vectors representing program
branching behaviors. Moreover, assuming that mutating the bytes
with larger gradients can better explore branching behaviors, they
develop strategies to mutate such bytes for generating new seeds
as test cases. Meanwhile, although they have been shown to be
effective in the original papers, they were only evaluated upon a
limited dataset. In addition, it is still unclear how their key tech-
nical components and whether other factors can impact fuzzing
performance. To further investigate neural program-smoothing-
based fuzzing, we first construct a large-scale benchmark suite
with a total of 28 popular open-source projects. Then, we exten-
sively evaluate Neuzz and MTFuzz on such benchmarks. The eval-
uation results suggest that their edge coverage performance can
be unstable. Moreover, neither neural network models nor muta-
tion strategies can be consistently effective, and the power of their
gradient-guidance mechanisms have been compromised. Inspired
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by such findings, we propose a simplistic technique, PreFuzz, which
improves neural program-smoothing-based fuzzers with a resource-
efficient edge selection mechanism to enhance their gradient guid-
ance and a probabilistic byte selection mechanism to further boost
mutation effectiveness. Our evaluation results indicate that PreFuzz
can significantly increase the edge coverage of Neuzz/MTFuzz, and
also reveal multiple practical guidelines to advance future research
on neural program-smoothing-based fuzzing.
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1 INTRODUCTION

Fuzzing [44] nowadays has been widely adopted to detect soft-
ware bugs or vulnerabilities via feeding invalid, unexpected, or
random data as inputs for executing programs under test. To date,
many existing approaches model fuzzing as an optimization prob-
lem and attempt to solve it by augmenting code coverage via
mutating program seed inputs under a given time budget. Such
coverage-guided fuzzing tasks can be typically resolved by applying
search-based optimization algorithms such as evolutionary algo-
rithms [13, 15, 42, 49, 51]. Specifically, test inputs are iteratively fil-
tered, mutated, and executed such that the test results can approach
the optimal solutions to satisfy the fitness functions of the adopted
evolutionary algorithms, which are usually designed to maximize
code coverage. However, evolutionary fuzzers have been argued
that they fail to “leverage the structure (i.e., gradients or higher-
order derivatives) of the underlying optimization problem” [41]. To
address such issue, neural program-smoothing-based techniques,
e.g., Neuzz [41] and MTFuzz [40], have been recently proposed to
exploit the usage of gradients for fuzzing via neural network mod-
els. Specifically, they first adopt a neural network which, given the
byte sequence of a seed as input, outputs a vector representing its
associated program branching behaviors. Next, they compute the
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gradients of the collected output vectors with respect to the bytes
of the given seed. Accordingly, they sort the resulting gradients and
develop strategies to mutate the bytes with larger gradients more
aggressively. Eventually, all the resulting mutants are used as test
cases for fuzzing. Note that MTFuzz further attempts to outperform
Neuzz by leveraging the power of multi-task learning and adopts a
dynamic analysis module to augment the mutation strategy. In their
original papers, Neuzz outperforms 10 existing coverage-guided
fuzzers on 10 real-world projects by at least 3X more edge coverage
over 24-hour runs and further detects 31 previously-unknown bugs.
Compared to Neuzz and four other state-of-the-art fuzzers, MTFuzz
achieves 2X to 3X edge coverage upon all the benchmark projects
and exposes 11 previously-unknown bugs which cannot be detected
by the other fuzzers.

Despite the effectiveness shown in their original papers, the
evaluation on Neuzz and MTFuzz can be potentially biased due
to their limited benchmark suite with only 10 projects. Moreover,
Neuzz and MTFuzz adopt a different edge coverage metric from
many existing fuzzers [4, 9, 27, 31, 51] that can potentially bias the
performance comparison. Furthermore, the investigation on the
factors that can impact their edge coverage performance is rather
limited, i.e., they only simply presented the overall effectiveness
of the techniques without investigating the contributions made
by individual components, e.g., the model structure, the gradient
guidance mechanism, and the mutation strategy.

In this paper, to enhance the understanding of the effectiveness
and efficiency of program-smoothing-based fuzzing, we first con-
struct a large-scale benchmark by retaining all the projects adopted
in the original Neuzz and MTFuzz papers (except one that we fail to
run) and adding 19 additional open-source projects that were fre-
quently adopted in recent fuzzing research work. We then conduct
an extensive evaluation for Neuzz and MTFuzz accordingly. The
evaluation result suggests while Neuzz and MTFuzz can outperform
AFL on all the studied benchmark projects by 10.5% and 8.9% on
average in terms of edge coverage respectively, MTFuzz does not al-
ways outperform Neuzz and both their edge coverage performances
are highly program-dependent. We also find neither their mutation
strategies nor neural network models can be consistently effective.
Meanwhile, although the gradient guidance mechanisms can be
promising, their strengths have not been fully leveraged.

Inspired by the findings of our study, we propose an improved
technique, namely PreFuzz [38], upon neural program-smoothing-
based fuzzing. In particular, we develop a resource-efficient edge
selection mechanism to facilitate the exploration on unexplored
edges rather than the already covered edges. Moreover, we also
apply a probabilistic byte selection mechanism guided by gradient
information to Neuzz and MTFuzz to further boost edge exploration.
Our evaluation results suggest that PreFuzz can significantly out-
perform Neuzz and MTFuzz, i.e., 43.1% more than Neuzz and 45.2%
more than MTFuzz averagely in terms of edge coverage.

To conclude, this paper makes the following contributions:

e Dataset. A dataset including 28 real-world projects that can
be used as the benchmarks for future research on fuzzing.

e Study. An extensive study of neural program-smoothing-
based fuzzers on the large-scale benchmark suite, with de-
tailed inspection of both their strengths and limitations.
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e Technical improvement. A technique improving neural
program-smoothing-based fuzzers by combining a resource-
efficient edge selection mechanism and a probabilistic byte
selection mechanism.

e Practical guidelines. Multiple practical guidelines for ad-
vancing future program-smoothing-based fuzzing research.

2 BACKGROUND

2.1 Coverage-guided Fuzzers

Coverage-guided fuzzers nowadays widely adopt evolutionary al-
gorithms [49] for mutation strategies since they can be advanced in
discovering program vulnerabilities without prior program knowl-
edge. In this section, we first introduce the basic framework for
evolutionary algorithms, and then illustrate how a typical coverage-
guided fuzzer AFL integrates evolutionary algorithms.

2.1.1  Evolutionary Algorithm. To solve an optimization problem,
an evolutionary algorithm (EA) adopts operations such as mutat-
ing the existing solutions to generate new solutions. Among such
generated solutions, an EA applies a fitness function to filter them
based on their quality such that the remaining ones are retained
as one population. Such process is iterated until hitting the preset
time budget with the final population returned as the solutions for
the optimization problem.

2.1.2  Integrating fuzzing with EA. Coverage-guided fuzzers often
use increased code coverage as the fitness functions. Specifically,
they usually adopt edge coverage (where an edge refers to a basic-
block-wise transition, e.g., a conditional jump in programs) to rep-
resent code coverage and retain only the seeds that can trigger
new edge coverage for further mutations. For instance, American
Fuzzy Lop (AFL) [51], a widely-used coverage-guided fuzzer, is
launched by instrumenting programs such that it can acquire and
store the edge coverage of each program seed input at runtime.
Subsequently, AFL iterates and mutates each seed input according
to its adopted evolutionary algorithm. Like most coverage-guided
fuzzers [4, 9, 27, 31], when running a seed increases edge cover-
age, AFL identifies such seed as an “interesting” seed and retains
it for further mutations. Note that the mutations in AFL consist
of two stages: the deterministic stage (AFLpeterministic) and the
havoc stage (AFLg1a00c)- In particular, AFLpeterministic applies a
fixed set of mutators, e.g., the bitflip, arithmetic, and interesting
value mutators, for respectively mutating the bits of each existing
“interesting” seed deterministically. After AFLpeserministic> all the
collected “interesting” seeds are used to launch AFLg440 Where
random mutations, i.e., randomly chosen mutators, are iteratively
applied to the randomly selected bits of the seed inputs.

2.2 Neural Program-smoothing-based Fuzzers

Program smoothing refers to setting up a smooth (i.e., differentiable)
surrogate function to approximate program branching behaviors
with respect to program inputs [41]. While traditional program
smoothing techniques [7, 8] can incur substantial performance
overheads due to heavyweight symbolic analysis, integrating such
concept with neural network models can be rather powerful since
they can be used to cope with high-dimensional optimization tasks,
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i.e., to resolve (approximate) complex and structured program be-
haviors. To this end, Neuzz [41] and MTFuzz [40] are proposed to
smooth programs via neural network models and guide mutations
by yielding the power of their gradients. Specifically, to formulate
the optimization problem for fuzzing, the program branching behav-
iors are defined as a function F(x), where x represents a seed input
in terms of byte sequence and the solution is a vector representing
its associated branching behaviors. For instance, a solution vector
[1,0,1,...] indicates that the first and the third edges have been
accessed/explored while the second one has not. Since F(x) is typi-
cally discrete, smoothing programs, i.e., making F(x) differentiable,
is essential to cope with the usage of gradients.

We then illustrate the rationale behind Neuzz and MTFuzz. Note
that a program execution path, i.e., a sequence of edges, can be
determined by the byte sequence of a seed input. Accordingly, an
edge can be accessed/explored when the value of its corresponding
bytes satisfies its access condition. Otherwise, one of its “sibling”
edges (i.e., edges under one shared prefix edge) can be alternatively
accessed. For instance, in Figure 1, edge e can be accessed when the
value of seed|[i] satisfies the access condition for e, i.e., seed[i] < 1.
Hence, mutating such seed[i] can lead to exploring a new branching
behavior, i.e., accessing eg’s “sibling” edge e; instead of e.

= 1; seed AT ] -]
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2. z = X +Yy; ’

4. 1f(x > seed[i]) { x = 1;
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10, y-=;
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Figure 1: An example of neural program-smoothing rationale

Neuzz and MTFuzz assume that neural network models can iden-
tify the “promising” byte(s) (i.e., the byte(s) corresponding to the ac-
cess condition) for a previously explored edge. Specifically, the gra-
dient of such byte(s) (e.g., seed[i] in Figure 1) to the explored edge
is supposed to be larger than other bytes after training (illustrated
in Section 2.2.1). Accordingly, mutating such byte(s) can indicate
that the access condition of the corresponding edge may not be sat-
isfied, i.e., potentially exploring new “sibling” edges. To summarize,
Neuzz and MTFuzz learn to extract the existing branching behav-
iors to explore new edges rather than predicting “promising” bytes
for unseen edges. In particular, their mechanisms commonly con-
sist of two steps: neural program smoothing and gradient-guided
mutations as shown in Figure 2.

2.2.1  Neural Program Smoothing. Neuzz and MTFuzz adopt an it-
erative training-and-mutation process. Under each iteration, they
train neural network models using “interesting” seed inputs col-
lected in real-time (out of the “Seed Corpus” in Figure 2). Note that
Figure 2 also shows that Neuzz and MTFuzz adopt different neural
network models which will be further illustrated in Section 2.2.3.
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Figure 2: Framework of Neuzz and MTFuzz

2.2.2  Gradient-guided Mutations. After obtaining the neural net-
work models, Neuzz and MTFuzz randomly select a deterministic
number of the “interesting” seeds and the explored edges. For each
selected seed, they calculate the gradients of the selected edges
vectors with respect to all the bytes. Furthermore, all such bytes
are sorted according to their corresponding gradient rankings and
then aggregated as one vector for further mutations. In particular,
Neuzz and MTFuzz segment each selected seed such that the bytes
in the front segments have larger gradients than the bytes in the
back segments and the front segments include fewer bytes than the
back segments. Accordingly, the “promising” bytes are expected to
be located in the front segments. For any segment seg, all its bytes
are simultaneously mutated for 255 times. As a result, Neuzz and
MTFuzz can explore more mutation space of the front segments
than the back ones, i.e., mutating the more “promising” bytes more
aggressively, for exploring new branching behaviors. Eventually, all
the resulting seeds after the iterative training-and-mutation process
are used as test cases for fuzzing.

2.2.3  MTFuzz vs. Neuzz. Figure 2 also demonstrates that MTFuzz
differs from Neuzz by adopting multi-task learning technique and
a dynamic analysis module to augment its mutation strategy.

In addition to the widely-used edge coverage, MTFuzz adopts two
additional tasks—the approach-sensitive edge coverage, i.e., how far
off an unexplored edge is from getting triggered, and the context-
sensitive edge coverage, i.e., the context for an explored edge, to
construct the multi-task neural network model for smoothing pro-
grams and further guiding fuzzing. Moreover, MTFuzz adopts an
independent module, namely Crack in its implementation, which
uses dynamic program analysis to explore new edges without gra-
dient information. Specifically, Crack iterates each byte of the seed
input and mutates it to observe whether the variables associated
with an unexplored branch can be also changed. If so, such byte is
identified as a “promising” byte to be mutated for 255 times.

3 EXTENSIVE STUDY

3.1 Benchmarks

Although Neuzz and MTFuzz have been shown to outperform the
existing fuzzers in terms of the edge coverage in the original pa-
pers [40, 41], such results can be possibly biased by the used subject
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Table 1: Statistics of the studied benchmarks

Benchmark Class LOC Package
bison LEX & YACC | 18,701 3.7
xmlwf XML 6,871 expat-2.2.9
mupdf PDF 123,562 1.12.0
pngimage PNG 11,373 | libpng-1.6.36
pngfix PNG 12,173 | libpng-1.6.36
pngtest PNG 11,323 | libpng-1.6.36
tepdump PCAP 46,892 4.99.0
nasm ASM 18,941 | nasm-2.15.05
tiff2pdf TIFF 17,272 libtiff-4.2.0
tiff2ps TIFF 16,177 libtiff-4.2.0
tiffdump TIFF 15,113 libtiff-4.2.0
tiffinfo TIFF 15,014 libtiff-4.2.0
libxml XML 73,239 2.9.7
listaction SWF 6,278 | libming-0.4.8
listaction_d SWF 6,272 | libming-0.4.8
libsass SCSS 14,638 | libsass-3.6.5
jhead JPEG 1,886 3.04
readelf ELF 72,111 | Binutils 2.30
nm ELF 55,212 | Binutils 2.30
strip ELF 65,683 | Binutils 2.30
size ELF 54,463 | Binutils 2.30
objdump ELF 74,710 | Binutils 2.30
libjpeg JPEG 8,856 9c
harfbuzz TTF 9,853 1.7.6
base64 FILE 40,332 LAVA-M
md5sum FILE 40,350 LAVA-M
uniq FILE 40,286 LAVA-M
who FILE 45,257 LAVA-M

projects. For example, 10 popular real-world projects are the main
experimental subjects for both Neuzz and MTFuzz; however, it is
not clear how such 10 projects are selected and whether the experi-
mental findings can generalize to other real-world projects.

To reduce such threat, we extend the benchmark for evaluat-
ing Neuzz and MTFuzz. In particular, in addition to retaining the
adopted 9 projects in the original papers (we could not successfully
run project Z1ib out of the 10 original projects), we also adopt addi-
tional 19 projects for our extended evaluations. More specifically, to
extend our benchmark projects, we first investigate all the fuzzing
papers published in ICSE, ISSTA, FSE, ASE, S&P, CCS, USENIX
Security, and NDSS in year 2020 and collect all their benchmark
projects. Next, we sort the collected benchmark projects in terms of
their usage in all the collected papers (presented in [38]). We then
collect the top 30 most used benchmark projects and successfully
run 19 of them which are eventually included in our extended bench-
marks (the failed executions are mainly caused by environmental
inconsistencies and unavailable dependencies). Table 1 presents
the statistics of our adopted benchmarks. Specifically, we consider
our benchmark to be sufficient and representative due to following
reasons: (1) to the best of our knowledge, this is a rather large-scale
benchmark suite compared with prior work; (2) the 28 collected
benchmarks cover 12 different file formats for seed inputs, e.g., ELF,
XML, and JPEG; and (3) the LoC of each program, ranging from
1,886 to over 120K, represents a wide range of program sizes.

3.2 Evaluation Setups

We conduct all our evaluations on Linux version 4.15.0-76-generic
Ubuntu18.04 with RTX 2080ti. Following the evaluation setups of
Neuzz and MTFuzz, for each selected benchmark project, we first
run AFL-2.57b on a single CPU core for 1 hour to initialize our
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seed collection and then run Neuzz, MTFuzz and all their variants
(introduced in later sections) upon the collected seeds with a time
budget of 24 hours. Note that all the edges within the 1-hour initial
seed collection are excluded from the evaluation results in the re-
maining sessions. Moreover, we run our experiments for 5 times for
each fuzzer and present the average results with close performance
under different runs. Note that we instrument all the benchmark
projects with af1-gcc to acquire runtime edge coverage.

In addition to studying Neuzz and MTFuzz, we also include AFL
as a baseline technique throughout our extensive evaluations be-
cause (1) AFL is widely adopted as baseline by many fuzzing ap-
proaches [3, 4, 28, 31, 50] and frequently upgraded for improving
its performance; and (2) Neuzz adopts multiple concepts originated
from AFL for its implementation [39].

3.3 Research Questions

We investigate the following research questions to extensively study
neural program-smoothing-based fuzzing.

e RQ1: How do Neuzz and MTFuzz perform on a large-scale
dataset? For this RQ, we investigate their effectiveness and
efficiency of edge exploration under our large-scale bench-
mark suite.

e RQ2: How do the key components of Neuzz and MTFuzz af-
fect edge exploration? For this RQ, we attempt to investigate
how exactly their adopted gradient guidance mechanisms,
neural network models, and mutation strategies can affect
edge exploration.

3.4 Results and Analysis

3.4.1 RQI: performance of Neuzz and MTFuzz on a large-scale
dataset. We first investigate the edge coverage performance of all
the studied fuzzers. In this paper, following many existing coverage-
guided fuzzers [4, 9, 27, 31, 51], we determine to adopt the number
of the edges via af 1-showmap as our default edge metric. Moreover,
note that the edge metric of the original Neuzz and MTFuzz papers
can be potentially biased since it counts the byte number of the
trace_bits structure implemented by AFL and thus is inconsistent
with the results provided by the guidance function (i.e., defining
“interesting” seeds mentioned in Section 2.1.2) in their implemen-
tations. Nevertheless, as a comprehensive study, we also evaluate
all the studied fuzzers in terms of the edge metric of the original
Neuzz and MTFuzz papers.

Table 2 presents the edge coverage results of our extensive study
for Neuzz and MTFuzz under both adopted metrics. For instance,
for AFL under bison, 10,374 corresponds to our default edge metric
and 308 corresponds to the original metric in the Neuzz/MTFuzz
papers. For our default edge metric, we can observe that Neuzz
significantly outperforms AFL by 10.5% (22,395 vs. 20,265 explored
edges) in terms of edge coverage on average. Compared with the
performance advantage claimed in its original paper (i.e., 2.7X), it
is clearly degraded. We then investigate the performance difference
among benchmark projects. Interestingly, we can observe that their
performance advantage is rather inconsistent, i.e., ranging from
-31.2% to 180.5%. Moreover, Neuzz only outperforms AFL upon 10
out of 19 extended projects. Such results suggest that Neuzz cannot
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Table 2: Edge coverage results of all the studied approaches

Benchmarks AFL Neuzz Neuzzpe, MTFuzz MTFuzzpe, MTFuzzp ff NeuzzonN NeuzzgnN NeuzzgpNN
bison 10,374 (308) 12,260 (432) 12,218 (264) | 13,812 (599) 12,799 (470) 12,801 (524) 12,375 (475) 12,592 (429) 12,444 (499)
xmlwf 13,729 (3.272) | 10499 (2.200) | 9,192 (1644) | 10853 (509) | 10,532 (457) | 10752 (476) | 10872 (2794) | 11465 (2.891) | 11469 (2831)
mupdf 13665 (361) | 16705 (795) | 17,664 (654) | 16,603 (328) | 16348 (237) | 16522 (334) | 16853 (796) | 16,921 (792) | 16,889 (804)
pngimage 4,077 (201) 3,369 (324) 2,522 (199) 2,347 (200) 2,172 (198) 2,373 (194) 2,946 (241) 2,553 (197) 3,011 (323)
pngfix 7,134 (135) 5,181 (85) 4,564 (71) 5,767 (80) 5350 (71) 5,737 (73) 5,157 (74) 5,194 (74) 5,247 (76)
pngtest 3,185 (68) 2828 (29) 2,933 (8) 3,166 (56) 2719 (45) 3,016 (81) 3,074 (46) 3,271 (58) 3,103 (42)
tepdump 12434 (3,525) | 18,293 (4310) | 18566 (5,005) | 17,026 (5512) | 15097 (3,715) | 17463 (4,621) | 18,091 (4495) | 18910 (4,635) | 19,411 (4,581)
nasm 33,633 (1768) | 34788 (1,654) | 33838 (1,652) | 34958 (1754) | 34451 (1722) | 33,907 (1786) | 35,375 (1,791) | 34528 (1,695) | 35,009 (1.899)
tiff2pdf 45,183 (4844) | 47,109 (4365) | 42,519 (3.993) | 44765 (4355) | 38449 (3.676) | 44230 (4044) | 46934 (3,971) | 44,617 (3765) | 50,347 (4,580)
tiff2ps 20,862 (3,621) | 23,705 (3,634) 21,063 (3,420) 22,671 (3,131) 16,700 (2,535) 21,817 (3,194) 23,931 (3,743) 21,322 (3,841) 23,160 (3,791)
tiffdump 2,416 (8) 3,239 (52) 3,117 (52) 2,617 (64) 2,262 (38) 2,509 (61) 3,124 (d6) 2,962 (47) 3,052 (43)
tiffinfo 11,964 (2,440) | 15,853 (2,618) | 15742 (2,407) | 13,785 (2,799) | 10,249 (1,431) | 12,394 (1,904) | 14,698 (2,788) | 13,239 (2,649) | 15,569 (2,379)
libxml 20,064 (541) | 31,340 (1,553) | 32,075 (1,765) | 29,236 (1,635) | 29,162 (1,553) | 27,902 (1,205) | 31421 (1,687) | 31,774 (1,695) | 31,731 (1,649)
listaction 21,340 (3,151) | 17,945 (2893) | 14969 (2328) | 13382 (622) | 12,257 (559) | 12356 (591) | 17.743 (2791) | 17.562 (2.822) | 17,073 (2.770)
listaction_d | 31,617 (2728) | 25006 (4,604) | 18,643 (3.460) | 26,629 (3376) | 21644 (2.554) | 23.619 (2.780) | 25869 (5036) | 28436 (5.271) | 23.622 (4784)
libsass 198,976 (10385) | 162,717 (3.492) | 158,800 (8,438) | 132,972 (7,373) | 132,491 (7,232) | 132,644 (7,106) | 154,793 (8,742) | 160,318 (8,902) | 163,492 (8,527)
jhead 2,082 (28) 1433 (24) 1566 (27) 1,268 (18) 1215 (16) 1273 (16) 1327 (22) 1,560 (22) 1502 (23)
readelf 14329 (898) | 40,186 (6,059) | 34,994 (4.868) | 42173 (6.684) | 35.178 (5.799) | 40,005 (6,161) | 42.889 (6257) | 44,389 (6,159) | 32,796 (5.314)
nm 11,154 (1,351) | 16,159 (2,226) | 13,505 (2,015) | 31,402 (3,707) | 28,027 (3,128) | 22,149 (3,045) | 18,070 (2312) | 20,724 (3,132) | 16,007 (4,099)
strip 20,536 (1,409) | 32,791 (3254) | 31,604 (3,348) | 41,520 (5,172) | 35649 (5,699) | 32,072 (3,674) | 33549 (3,649) | 33816 (3916) | 33348 (3,753)
size 10,730 (1,188) | 14,197 (2,450) | 12,414 (2,036) | 18,675 (3,872) | 16,525 (3,397) | 12,623 (2,087) | 14,488 (2,606) | 14,254 (2,540) | 12,284 (2,480)
objdump 15,492 (247) | 31,808 (2358) | 28,617 (1,850) | 31,507 (2,007) | 27,227 (2,117) | 30,074 (2:270) | 31,176 (2,954) | 33,165 (2639) | 33,486 (3,062)
libjpeg 8,197 (266) | 16,037 (1.600) | 13,460 (1566) 9,038 (876) 8,446 (797) 8255 (487) | 16,576 (1.729) | 16,859 (1713) | 17,566 (1.892)
harfbuzz 26420 (3,107) | 35502 (5.982) | 28,037 (5.606) | 44342 (6.268) | 37,821 (4.930) | 44364 (6,155) | 45179 (7542) | 48,959 (7.656) | 50,911 (7.764)
base64 1,344 (12) 1,202 (0) 987 (0) 935 (0) 912 (0) 819 (0) 1,247 (0) 1,226 (0) 1,243 (0)
mdSsum 2871 (33) 3,168 (131) 3,004 (37) 3,101 (35) 3,036 (35) 3,044 (35) 3,007 (33) 3,241 (33) 3,163 (35)
uniq 713 (2) 756 (2) 750 (2) 725 (0) 728 (0) 716 (0) 755 (2) 754 (2) 752 (2)
who 2,917 (14) 2,973 (17) 2,919 (17) 2,680 (15) 2,753 (17) 2,720 (17) 2,997 (17) 3,031 (17) 3,026 (17)
Average 20,265 (1640) | 22395 (2.219) | 20724 (2,026) | 22,070 (2180) | 20,007 (1872) | 20,648 (1,890) | 22,665 (2,380) | 23,130 (2.414) | 22,883 (2.429)
MRS . 251 52000165 than smaller ones. Such results clearly demonstrate that program
2 »0 . e size can significantly impact the edge coverage performance of

neural program-smoothing-based fuzzers.

We observe similar data trends in terms of the edge metric in the
original Neuzz/MTFuzz papers. In particular, Neuzz can outperform
AFL by 35.3% (2,219 vs. 1,640 explored edges) and can outperform
MTFuzz by 1.8% (2,219 vs. 2,180 explored edges). Note that under
such measure, for certain projects, e.g., base64, Neuzz and MTFuzz
explore zero edges after excluding the edges from 1-hour initial
seed collection. Such results could be misleading that the studied
fuzzers perform equally poor in base64, while such performance
gaps can be clearly presented by our default edge metric.

Edge Cov Ratio
Edge Cov Ratio

20000 40000 60000 80000 100000 120000 20000 40000 60000 80000 100000 120000
LoC

(a) Neuzz/AFL (b) MTFuzz/AFL
Figure 3: Edge coverage advantage of the fuzzers over AFL

always outperform AFL and the performance advantage of Neuzz
over AFL can be program-dependent.

We also observe that Neuzz outperforms MTFuzz by 1.5% (22,395
vs. 22,070 explored edges) averagely in terms of edge coverage on
all benchmark projects. While on 11 of 28 total projects, MTFuzz
outperforms Neuzz by 20.8% averagely, Neuzz outperforms MT-
Fuzz by 17.7% on the other 17 projects. Furthermore, even AFL

Finding 1: The performance of Neuzz and MTFuzz can
be largely program-dependent. Interestingly, such program-
smoothing-based fuzzers tend to perform better on larger pro-
grams.

outperforms MTFuzz by 33.6% averagely on a total of 11 projects.
Such results indicate that similar to Neuzz, MTFuzz cannot perform
consistently either.

We then attempt to reveal the characteristics of how the edge
coverage performance varies among the studied projects. To this
end, we delineate the correlation between the edge coverage ad-
vantage of the studied fuzzers compared with AFL and the size
of their studied projects via the Pearson Correlation Coefficient
analysis [1]. Figure 3 presents such results of Neuzz and MTFuzz. In
each subfigure, the horizontal axis denotes the LoC of each project
and the vertical axis denotes the ratio as dividing the edge coverage
result of each studied approach by the edge coverage result of AFL.
We can observe that overall, the correlation is rather strong (at the
significance level of 0.05), i.e., all the studied approaches can result
in larger edge coverage improvement over AFL upon larger projects

Note that randomness is injected to many existing fuzzers [4, 27,
31, 50] for selecting bytes to guide mutations, e.g., AFLx gp0c. HOW-
ever, Neuzz and MTFuzz utilize only deterministic mutation strate-
gies, i.e., adopting no randomness for selecting bytes which can be
deterministically identified based on their corresponding gradient
ranking. Therefore, we further investigate the edge exploration
efficiency of random byte selection to infer whether including them
in Neuzz and MTFuzz can be potentially beneficial. Specifically, we
involve AFL in a fine-grained manner, i.e., its deterministic stage
AFLpeterministic and the havoc stage AFLgg40c (i-€., essentially
the random byte selection mechanism) both of which enable non-
deterministic execution time, for performance comparison with
Neuzz and MTFuzz.

Figure 4 presents our evaluation results in terms of the explored
edge number per second, namely Edge Discovery Rate (EDR) in this



ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

paper, of Neuzz, MTFuzz, AFL, AFLpeterministic and AFLgp0c. We
can observe that overall, Neuzz and MTFuzz can outperform AFL by
10.2% and 8.5% respectively. Interestingly, AFLf400¢ achieves the
highest EDR, i.e., 21.8X larger than AFLpeterministics 7-7X larger
than Neuzz, and 7.8X larger than MTFuzz averagely on all the bench-
marks. Accordingly, we can derive that AFLp ;00 can significantly
augment edge exploration, i.e., it promptly explores edges upon
the limited seed inputs provided by AFLpeserministic- Such result
is enlightening that applying random byte selection mechanism
to neural program-smoothing fuzzers can potentially boost edge
exploration.

Finding 2: AFLH 000 dominates the efficiency of edge ex-
ploration, indicating that it is promising to augment edge
exploration by adopting random byte selection mechanism.

Edge Discover Rate

0.259 0.255

AFL AFLpeierminisic AFLpaye

Figure 4: EDR of the studied approaches

3.4.2 RQ2: Effectiveness of the key components.

Gradient guidance. The inconsistencies between our finding
and the declared results in the original papers (i.e., finding 1) inspire
us to further investigate the performance impact of the adopted
mechanisms of Neuzz and MTFuzz. To this end, we determine to
first investigate the effectiveness of their dominating factor, i.e., the
gradient guidance mechanism. In particular, since such mechanism
is proposed to facilitate the mutations on the “promising” bytes for
edge exploration via gradient computation, our purpose is to inves-
tigate whether their derived gradients can locate such bytes. More
specifically, we propose an intuitive gradient guidance mechanism—
instead of aggressively mutating the bytes with larger gradients in
the original Neuzz and MTFuzz, we aggressively mutate the bytes
with smaller gradients. Such mechanism is injected to Neuzz and
MTFuzz to form their variants Neuzzge, and MTFuzzge,. We thus
evaluate Neuzzge, and MTFuzzg,, to observe their performance
difference from the original Neuzz and MTFuzz to investigate the
effect of the gradient guidance mechanisms.

We can observe from Table 2 that Neuzz can explore 8.1% (1,671)
more edges than Neuzzg,, and MTFuzz can explore 10.3% (2,063)
more edges than MTFuzzg., on average. Such consistent results
suggest that larger gradients can be a better indicator to promising
bytes, i.e., the derived gradients can reflect promising bytes.

Interestingly, Neuzzge, can outperform Neuzz on 5 out of 28
projects, i.e., libxml, mupdf, jhead, tcpdump and pngtest. Mean-
while, MTFuzzg,, can outperform MTFuzz under uniq and who.
Such results also indicate that the power of the gradient guidance
in Neuzz and MTFuzz has not been completely leveraged.

M. Wu et al.

Finding 3: Although the gradient guidance mechanisms
adopted by Neuzz and MTFuzz are overall effective for iden-
tifying the promising bytes, their performance can be rather
unstable on some programs.

DNN models. Now that the gradients derived by Neuzz and MT-
Fuzz can be proven to be effective in reflecting promising bytes for
mutations, we further investigate how their corresponding neural
network models impact edge exploration. Specifically, since com-
pared to Neuzz, MTFuzz enables the independent dynamic analysis
module Crack to augment their mutation strategy, we turn it off
and form its variant MTFuzzp rf, i.e., applying the mutation strat-
egy of Neuzz in MTFuzz, such that they only differ in the adopted
neural network models. Moreover, we also include the Convolu-
tional Neural Network (CNN) [26] model and two commonly-used
Recursive Neural Network (RNN) [14] models, i.e., LSTM [24] and
Bi-LSTM [22], and adopt them in the original Neuzz to form its
variants Neuzzonn, Neuzzgnyn, and Neuzzgryn. Note that we
investigate more RNN-based models since they are typically used
in learning the distribution over a sequence to predict the future
symbol sequence [10] (e.g., for speech recognition) and expected to
better match the program input features than CNN-based models.
Eventually, we determine to evaluate Neuzz and all the variant
techniques to detect how multiple neural network models impact
the edge exploration of program-smoothing-based fuzzers. Note
that their hyper-parameter setups are introduced in our GitHub
page [38].

We can observe from Table 2 that overall, all our studied ap-
proaches perform similarly in terms of edge coverage. Specifically,
Neuzz slightly outperforms MTFuzzp g r by 8.5% (22,395 vs 20,648 ex-
plored edges), underperforms Neuzzonn by 1.2% (22,395 vs. 22,665
explored edges), Neuzzrnn by 3.3% (22,395 vs. 23,130 explored
edges) and Neuzzgpnn by 2.2% (22,395 vs. 22,883 explored edges).
Meanwhile, we can also observe that none of the studied approaches
can dominate on top of all the studied projects, i.e., Neuzz dominates
7, MTFuzzopp dominates 2, Neuzzenn dominates 4, Neuzzpnyn
dominates 9, and Neuzzgrnyn dominates 6. Therefore, we derive
that upgrading neural network models cannot significantly impact
the performance of edge exploration.

Finding 4: Different neural network models have limited im-
pact on the effectiveness of program-smoothing-based fuzzing.

Mutation Strategies. We then investigate the impact from the
mutation strategy of the neural program-smoothing-based fuzzers.
Specifically, since MTFuzz differs from Neuzz mainly by enabling
Crack for mutations and their respective neural network models do
not significantly impact the edge exploration (reflected by Finding
4), we concentrate our investigation on the impact from Crack. To
this end, we evaluate MTFuzz and MTFuzzpry. Table 2 demon-
strates that overall, MTFuzz can outperform MTFuzzp s by 6.9%
(22,070 vs. 20,648 explored edges). However, such advantage can be
rather inconsistent, ranging from -2.5% to 47.9% upon individual
projects. On the other hand, applying Crack can be potentially cost-
ineffective since it is quite heavyweight. Therefore, it is essential
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to consider whether it is worthwhile in applying such technique
for neural program-smoothing-based fuzzing.

Finding 5: The dynamic analysis module Crack adopted by
MTFuzz can be cost-ineffective.

3.5 Discussion

We first discuss why neural network models do not significantly
impact the edge coverage performance. To this end, we ought to
understand the effect of the adopted neural network models of
Neuzz and MTFuzz. In particular, note that neural networks are
usually used for data prediction, i.e., learning and generalizing
historical data to predict unseen data. Accordingly, researchers
have developed many neural network models to strengthen their
generalization and prediction capabilities. Therefore, one may mis-
understand that Neuzz and MTFuzz attempt to use neural network
models to predict the bytes corresponding to unexplored edges.
Instead, as a matter of fact, Neuzz and MTFuzz leverage neural net-
work models which compute the gradients to reflect the relations
between explored edges and seed inputs, i.e., mutating the byte
corresponding to a larger gradient can be more likely to explore a
new edge other than the existing edge under one shared prefix edge.
As a result, any neural network model can be applied as long as it
can successfully deliver gradients to reflect such explored edge—seed
input relations, i.e., how its generalization or prediction capability
does not quite matter under such scenarios. Therefore, it is quite
likely that a simplistic model (e.g., feed-forwarded network model
adopted by Neuzz) can perform similarly as fine-grained models
(e.g., multi-task learning model adopted by MTFuzz and the RNN
models adopted by the studied Neuzz variants).

We then attempt to illustrate why Neuzz and MTFuzz cannot al-
ways be effective. Note that even though Neuzz and MTFuzz enable
gradient guidance mechanisms to explore new edges, their iterative
training-and-mutation strategy via randomly selecting edges and
seeds in the beginning can nevertheless select existing edges other
than unexplored edges to compute gradients (illustrated in Section
2.2.2), i.e, they still allow inefficient mutations. Specifically for the
smaller programs where Neuzz and MTFuzz cannot outperform
AFL, their edge exploration converges faster than larger programs
due to the limited number of edges, i.e., they have a higher chance
to select an existing edge whose “sibling” edges have already been
explored by other seeds for gradient computation. Thus, it can be
difficult to mutate its “promising” bytes for exploring new edges.

4 PREFUZZ

Our findings reveal that we can possibly leverage the power of the
gradient guidance mechanism to enhance the edge exploration of
neural program-smoothing-based fuzzers. To this end, we propose
PreFuzz (Probabilistic resource-efficient program-smoothing-based
Fuzzing). Figure 5 presents the workflow of PreFuzz. PreFuzz first
trains a neural network model by applying all the existing seeds
as the training set. Next, PreFuzz adopts a resource-efficient edge
selection mechanism to select edges for gradient computation. Then,
the gradient information is utilized to generate mutants for fuzzing.
Note that a mutant which explores new edges can be used as a seed
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Figure 5: Framework of PreFuzz

for further edge exploration. Meanwhile, PreFuzz adopts probabilis-
tic byte selection mechanism (PBS in Figure 5) to facilitate mutations.

4.1 The Details

4.1.1  Resource-Efficient Edge Selection Mechanism. The purpose of
the resource-efficient edge selection mechanism is to prevent explor-
ing the existing branching behaviors (i.e., edges). To this end, our
mechanism is designed to identify the edge worthy being explored
for later selecting and mutating its corresponding byte. Intuitively,
when one edge can identify the number of its “sibling” edges (as
defined in Section 2.2), such edge number can be a potential indica-
tor whether the given edge should be included for further gradient
computation. More specifically, the more “sibling” edges have been
explored, the less likely new “sibling” edges can be explored via the
gradient computation for the given edge.

Algorithm 1 presents the details of the resource-efficient edge
selection mechanism. First, it is quite essential to acquire the run-
time edge exploration states, e.g., the number of “sibling” edges of
a given edge and how many have been explored (lines 2 to 3). To
this end, we decompile the assembly-level programs, parse them
to the instructions via AFL-specific instrumentation, and construct
the edge exploration states via statically analyzing the parsed in-
structions. Next, given one edge, we derive the ratio of its explored
“sibling” edge number over its total “sibling” number (lines 5 to 9).
If such ratio is lower than a preset threshold, we retain the given
edge and stores it in a Candidate Edge Set where we later randomly
select such edges for further gradient computation (lines 10 to 12).
We use Figure 1 to further illustrate such algorithm. Assuming
that ey can be explored given the “seed” in Figure 1, mutating the
byte of the given seed corresponding to the access condition of
ep can explore its “sibling” edge e;. While Neuzz and MTFuzz are
designed to perform such mutation for edge exploration, e; could
have nevertheless been explored already due to the randomness
injected to their mechanisms (illustrated in Section 2.2.2). Thus,
the effectiveness of the gradient guidance mechanism may be com-
promised. However, our resource-efficient edge selection mechanism
can collect the exploration information of the “sibling” edge of e,
i.e., e, before computing the gradient for ey. If it finds out that
e1 has already been explored, it would not select e for gradient
computation in the first place to save the computing resource.
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Figure 6: Edge coverage ratio upon Neuzz

Algorithm 1 Candidate Edge Set Construction

Input : threshold, exploredEdge
Output:selectedEdges

1: function CONSTRUCT _CANDIDATE_EDGE_SET
2 candidate « set()
3 correspRelation « getEdgeRelation()
4 for edge in exploredEdge do
5: explored < 0
6 siblings « |correspRelation[edge]|
7 for neighbour in correspRelation[edge] do
8 if neighbour in exploredEdge then
9 explored « explored + 1
10: if explored/siblings < threshold then
11: candidate.add(edge)
12: selectedEdges « randomlySelectFromSet(candidate)
13: return selectedEdges
Table 3: Edge coverage results of PreFuzz
Benchmarks AFL Neuzz | MTFuzz | Neuzzpggeseliecrion | Neuzzp,op | PreFuzz
bison 10374 | 12,260 | 13,812 13,003 13,744 15,078
xmlwf 13,729 | 10499 | 10,853 12,290 16,960 21,009
mupdf 13,665 | 16,705 | 16,603 17,002 19,995 21,203
pngimage | 4,077 | 3369 | 2347 2,883 2,838 4,876
pngfix 7134 | 5181 | 5767 7,307 7,422 7,930
pngtest 3,185 | 2,828 | 3,166 3,993 4,199 4,703
tepdump | 12,434 | 18,293 | 17,026 19,764 30,767 34,947
nasm 33,633 | 34,788 | 34,958 37,534 41,973 43,628
tiffzpdf | 45,183 | 47,109 | 44,765 51,506 50,555 57,172
tiff2ps 20,862 | 23,705 | 22,671 23,649 24,247 29,332
tiffdump | 2416 | 3239 | 2617 3,590 3,554 3,888
tiffinfo 11964 | 15853 | 13,785 17,157 17,572 21,839
libxml 20,064 | 31,340 | 29,236 32,161 40,935 47,689
listaction | 21,340 | 17,945 | 13,382 20,208 29,161 32,447
listaction_d | 31,617 | 25006 | 26,629 26,351 40,355 146,762
libsass 198,976 | 162,717 | 132,972 169,936 215510 | 218,130
jhead 2082 | 1433 | 1,268 1,952 2,463 2,464
readelf 14329 | 40,186 | 42,173 40,396 47,727 53,859
nm 11,154 | 16,159 | 31,402 19,040 22,605 30,709
strip 20,536 | 32,791 | 41,520 33,864 37,705 42,943
size 10730 | 14,197 | 18,675 14,734 15,261 19,231
objdump | 15492 | 31,808 | 31,507 34,036 38,983 43,195
libjpeg 8197 | 16,037 | 9,038 17,192 22,615 24,365
harfbuzz | 26420 | 35502 | 44,342 47,877 45412 60,333
base64 1344 | 1,202 935 1,454 1,631 1,644
md5sum 2871 | 3,168 | 3,101 3,415 3,580 3,518
uniq 713 756 725 792 794 795
who 2917 | 2973 | 2,680 3,262 3,255 3,491
Average | 20,265 | 22395 | 22,070 24,155 28,636 32,042

4.1.2  Probabilistic Byte Selection Mechanism. Inspired by Finding
2, we further inject an additional nondeterministic stage to neural
program-smoothing fuzzers. To this end, we develop a Probabilistic

Byte Selection Mechanism and append it to Neuzz to expand edge
exploration. Note that the probabilistic byte selection mechanism
utilizes the gradient information generated by the resource-efficient
edge selection mechanism, and gets activated after the mutation stage
inherited from Neuzz. This stage contains three steps: (1) dividing
each seed input into segments, (2) selecting segments by gradient-
based probability distribution, and (3) randomly selecting bytes
from the selected segment for mutation via AFLp 40 mutators.

Unlike AFLy 440 Which randomly selects bytes from the whole
seed, we first divide a seed into a constant number (8 by default in
our paper) of equal-length segments. We then select seed segments
based on their probabilities. Note that while intuitively leveraging
byte-wise probability distribution for byte selection is more natural,
this is essentially deterministic and excludes the benefits of ran-
domness (as in Finding 2). Therefore, our probability distribution is
established upon seed segments rather than individual bytes so as
to leverage the power of randomness and AFLgp0c-

Next, we calculate the fitness score for each segment, presented
in Equation 1, where Zj.igli grad; denotes the gradient sum for all
the bytes within a given segment seg;, length(seg;) denotes its byte
number, and the fitness score for a given segment seg; is computed
as the average gradient of all the bytes within seg;.

Dy
length(seg;)

grad;
(1)

fitnessseq; =

Accordingly, the probability Probseg; for selecting a segment seg;
for mutation is presented in Equation 2, i.e., the ratio of the fitness
score of seg; over the total fitness scores of all the segments.

fitnessseg;

Z;‘;tl“l fitnessseg;
Finally, we apply AFLpg00c to mutate the selected segments. In
particular, AFLg 4400 randomly selects a byte from the segment for
mutation based on its mechanism. Note that if the mutants are also
“Interesting”, they are retained for further gradient computation and
the probabilistic byte selection mechanism. Such process is iterated
until hitting the time budget.

@

Probseq; =

4.2 Performance Evaluation

We attempt to evaluate the performance of PreFuzz and its technical
components respectively. To evaluate the usage of the resource-
efficient edge selection mechanism and the probabilistic byte selection
mechanism, we form two Neuzz variants, i.e., Neuzzgygeseiection
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which injects resource-efficient edge selection mechanism to Neuzz
and Neuzzp,,;, which appends the probabilistic byte selection mech-
anism to Neuzz. Note that we retain Neuzz, MTFuzz, and AFL as our
baselines for performance comparison. The experimental setups in
this section follow the same settings in Section 3.2. The threshold
for Algorithm 1 is set to 0.4!.

4.2.1 Edge exploration effectiveness. Table 3 presents the experi-
mental results of edge exploration effectiveness. We can find that
overall, PreFuzz outperforms all the existing baselines in terms
of edge coverage averagely, e.g., PreFuzz can outperform AFL by
58.1% (32,042 vs. 20,265 explored edges) and Neuzz by 43.1% (32,042
vs. 22,395 explored edges). Note that under the originally adopted
metric of edge coverage, PreFuzz also outperforms Neuzz and MT-
Fuzz by 34.3% and 36.7%. Such results suggest that combining the
resource-efficient edge selection mechanism and the probabilistic byte
selection mechanism for Neuzz can be rather powerful. Moreover,
Neuzzgggeselection Outperforms Neuzz by 7.9% (24,155 vs. 22,395
explored edges) and MTFuzz by 9.4% (24,155 vs. 22,070 explored
edges). Specifically, Neuzz obtains 271 more edges averagely than
Neuzzpggeselection O 2 projects while Neuzzgggeselection Obtains
1,917 more edges averagely than Neuzz on the rest 26 projects.
Such results indicate that the resource-efficient edge selection mech-
anism can enhance the overall effectiveness of Neuzz. In addition,
Neuzzp,op also outperforms Neuzz by 27.9% (28,636 vs. 22,395 ex-
plored edges) and MTFuzz by 29.8% (28,636 vs. 22,070 explored
edges). Such results demonstrate that introducing randomness can
also significantly increase the edge coverage of the neural program-
smoothing-based fuzzers.

Figure 6 presents the correlation between the edge coverage ad-
vantage of Neuzzpggeselection> Neuzzprop, PreFuzz over Neuzz by
dividing their corresponding edge coverage results and the LoC of
the studied benchmark projects. Interestingly, we can observe that
the correlation is rather weak, i.e., all presented p values (0.0688,
0.2211 and 0.1602) fail to reach the significance level of 0.05. It in-
dicates that the edge coverage advantage over the original Neuzz is
not affected by the program size. Moreover, such advantage is rather
consistent. Specifically, we determine to use Coefficient of Variation
(CV) [5], a widely-used metric for measuring the dispersion of a
probability distribution [35, 37, 48], to measure the consistency of
their performance improvement. Note that a lower CV indicates a
more consistent performance improvement. As a result, PreFuzz,
Neuzzpggeselection and Neuzzp,op, can achieve 19.6%, 11.5%, and
17.4% of CV for their performance improvement over Neuzz, which
are all significantly reduced compared with the CV of Neuzz (37.6%)
for its improvement over AFL. Therefore, we summarize that our
proposed mechanisms can significantly and consistently strengthen
the neural program-smoothing-based fuzzers. Note that we find un-
der the edge coverage metric adopted in the original Neuzz/MTFuzz
papers, the performance gain of PreFuzz over Neuzz is 34.3% (2,981
vs. 2,219 explored edges) which is also rather significant.

Figure 7 presents the average time trend of edge coverage within
24 hours for AFL, MTFuzz, Neuzz and PreFuzz among all the bench-
mark projects. We can observe that at any time being, PreFuzz can
outperform other fuzzers significantly in terms of edge coverage.

1We also evaluate more threshold setups and present the results in our GitHub link [38]
which indicate that changing threshold setups incurs limited performance impact.
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Figure 7: Edge coverage of PreFuzz in terms of time

4.2.2  In-depth Ablation Study. In this section, we further perform
in-depth ablation studies to investigate the efficacy of our resource-
efficient edge selection mechanism and probabilistic byte selection
mechanism respectively. Specifically for the resource-efficient edge
selection mechanism, we find that overall, 24.0% edges do not need
to be explored by applying Neuzzgggeseiection Under each iteration
averagely (1,230 vs. 935 edges). Moreover, the probabilistic byte
selection mechanism in PreFuzz is more efficient when combining
with the resource-efficient edge selection mechanism since PreFuzz
explores averagely 11.9% more edges than Neuzzp,p, (32,042 vs.
28,636 explored edges in Table 3). Such results indicate that applying
the resource-efficient edge selection mechanism can significantly
save the effort on exploring the edges which cannot contribute to
increasing edge coverage.

We further investigate the probabilistic byte selection mecha-
nism in terms of Edge Discovery Rate. To this end, we also include
AFLHavoc, Neuzzgqgeselection» the gradient-guided mutation stage
of PreFuzz, and the probabilistic byte selection stage of PreFuzz (rep-
resented as PreFuzzg,qdien: and PreFuzzp,p,, respectively) for per-
formance comparison. Note that PreFuzzg,qgiens and PreFuzzp,qp
results are extracted from the two stages of a complete PreFuzz run,
e.g., PreFuzzp,p, utilizes the resource-efficient edge selection mecha-
nism to select edges for computing their gradients while Neuzzp,op
randomly selects explored edges for gradient computation. Fig-
ure 8 presents our evaluation results. We can observe that overall,
PreFuzzp,,, can significantly outperform all the other studied ap-
proaches on top of all the studied benchmarks, e.g., PreFuzzp,.
can be 62.0% more efficient than AFLpjg0c (3.656 vs. 2.256 EDR).
Accordingly, we can infer that the gradient guidance adopted by
PreFuzz can provide more “high-quality” seeds and more efficient
guidance (i.e., gradients) for launching its probabilistic byte selection
mechanism to explore more new edges than AFLjgy0c. Further-
more, we can observe that the EDR of PreFuzzg,qgien: can also
outperform the original Neuzzgggeselecrion by 91.4%. Therefore,
we also infer that PreFuzzp,,p can advance the edge exploration
efficiency of PreFuzzg,qdiens- TO summarize, combining the two
improvements can mutually advance their edge exploration.

4.2.3 Crashes. Table 4 presents the unique crashes exposed by
Neuzz, MTFuzz and PreFuzz in the studied benchmarks. Overall,
PreFuzz explores the most unique crashes by outperforming Neuzz
by 62% (149 vs. 92), and MTFuzz by 80% (149 vs. 83). In addition,
PreFuzz dominates the number of the exposed unique crashes in
each benchmark. Furthermore, the crashes exposed by Neuzz and
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Table 4: Unique crashes found by Neuzz, MTFuzz and PreFuzz

Benchmarks | Neuzz | MTFuzz | PreFuzz
size 5 9 7
readelf 15 7 37
libjpeg 2 0 5
objdump 0 0
who 2 0
bison 15 18 20
jhead 8 7 12
listaction 25 16 31
listaction_d 7 8 17
nm 3 3 3
strip 10 15 12
Total 92 83 149
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Figure 8: Edge Discovery Rate of different PreFuzz stages

MTFuzz are also detected by PreFuzz in our evaluation. Such results
suggest that PreFuzz can also be more effective than Neuzz and
MTFuzz in terms of exposing potential vulnerabilities.

4.3 Implications

Based on our findings in this paper, we propose the following
implications for advancing the future research on fuzzing.

Simplistic neural network models may suffice. Our study
results reveal that the edge coverage performance can be essentially
impacted by how the resulting gradients of the adopted neural net-
work models reflect the relations between explored edges and seed
inputs rather than their generalization or prediction capabilities.
That said, simplistic neural network models may already suffice for
program-smoothing-based fuzzing.

Think twice before applying dynamic analysis. Our evalua-
tions indicate that the dynamic analysis module adopted in MTFuzz
can be quite effective on large programs. However, executing such
module can be rather heavyweight, similar as many other program
analysis techniques [6, 12, 19]. Therefore, we recommend to think
carefully before adopting dynamic analysis techniques to enhance
neural program-smoothing-based fuzzing.

Edge selection? Yes! Gradient computation? Maybe. Our
evaluations reveal that selecting “promising” edges for mutations
can be quite effective in increasing the edge coverage performance
on programs of varying sizes. Meanwhile, one question can be asked:
is it necessary to bind such powerful mechanism with gradient
guidance? Especially when we realize that the power of neural
networks can be argued to be “underused” (i.e., their generalization
and prediction capabilities are underused), such question can then
be transformed as — is it necessary to use neural networks for
computing gradients to represent the relations between explored
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edges and seed inputs? To answer such question, it is worthwhile to
attempt other lightweight alternatives to represent such relations
as potential future research directions.

Probabilistic search helps. Our study results indicate that the
edge coverage performance of the neural program-smoothing-based
fuzzers can be significantly enhanced by appending the probabilistic
byte selection mechanism. Intuitively, we suggest the users to design
such probabilistic search strategy with more guidance to any of their
adopted fuzzers when possible. Accordingly, one possible research
direction can be how to integrate such probabilistic search strategy
with diverse fuzzers for optimizing the edge coverage performance.

5 THREATS TO VALIDITY

Threats to internal validity. The threat to internal validity lies
in the implementation of the studied fuzzing approaches in the
experimental study. To reduce this threat, we reused the source code
of Neuzz and MTFuzz when we implemented PreFuzz. Meanwhile, to
implement the probabilistic byte selection mechanism, we also reused
such code from the original AFL for the PreFuzz implementation.
Moreover, all the student authors manually reviewed PreFuzz code
carefully to ensure its correctness and consistency.

Threats to external validity. The threat to external validity
mainly lies in the benchmarks used. To reduce this threat, we adopt
the original benchmarks used by Neuzz and MTFuzz, and add 19
more projects widely used for the evaluations in many popular
fuzzers (3, 4, 28, 31, 50] published recently.

Threats to construct validity. The threat to construct validity
mainly lies in the metrics used. While the edge coverage metrics
adopted by Neuzz and MTFuzz are not widely used by the existing
fuzzers and can be arguably limited to reflect edge coverage, to
reduce this threat, we determine to follow the majority by using
the AFL built-in tool afl-showmap for measuring edge coverage
while also presenting partial results in the original measure as well.
Notably while under our metric, the performance advantages of
Neuzz and MTFuzz are reduced, our PreFuzz can incur quite strong
performance gain under both metrics.

6 RELATED WORK

As this work mainly studies deep learning-based fuzzing approaches,
we are going to discuss closely related work in the following three
dimensions: the existing fuzzing approaches (Section 6.1), the deep
learning-based fuzzing techniques (Section 6.2), and the existing
studies on fuzzing (Section 6.3).

6.1 Fuzzing

To date, various fuzzing techniques have adopted evolutionary
algorithms to improve the performance of fuzz testing. Béhme et
al. [4] proposed AFLFast which designs a seed selection strategy
to weigh seeds via Markov Chain on top of the original AFL [51].
They also proposed AFLGo [3] to take advantages in weighting
seeds based on edge structures to explore the target point specified
by users. Lemieux et al. [27] proposed FairFuzz to increase greybox
fuzz testing coverage by fuzzing rare branches of program. Manes
et al. [32] proposed Ankou, a grey-box fuzzing solution based on
different combinations of execution information. Fioraldi et al. [16]
introduced WEIZZ to automatically generate and mutate inputs



Evaluating and Improving
Neural Program-Smoothing-based Fuzzing

for unknown chunk-based binary formats. Similar to our PreFuzz,
many works also utilized light-weight program analysis to facilitate
fuzzing efficacy. Rawat et al. [36] proposed VUzzer to leverage
control- and data-flow features based on static and dynamic analysis
to infer fundamental properties of the application without any prior
knowledge or input format. Mathis et al. [33] presented a technique
to learn program tokens by tainting for fuzzing. Padhye et al. [34]
automatically guided QuickCheck-like random input generators
to semantically analyze test programs for generating test-oriented
Java bytecode. Chen et al. [9] introduced Angora, a mutation-based
fuzzer that solves path constraint without symbolic execution by
taint checking and searching. Furthermore, new guidance other
than code coverage are proposed to fuzz specific software systems.
Wu et al. [46] proposed Simulee to parse constraints of inputs from a
given GPU kernel function and mutate the inputs guided by memory
access conflict to fuzz CUDA programs. Accordingly, they further
proposed AuCS [47] to repair the detected synchronization bugs.
Wen et al. [43] proposed a memory-usage-guided fuzzer to generate
excessive memory consumption inputs and trigger uncontrolled
memory consumption bugs. Zhao et al. [53] synthesized programs
for testing JVMs based on the ingredients extracted from JVM
historical bug-revealing tests.

6.2 Deep Learning on Fuzzing

She et al. proposed Neuzz [41], the first neural program-smoothing-
based fuzzer using neural network models to discover “promis-
ing” bytes for a previously explored edge. They [40] also proposed
MTFuzz to fuzz a system more efficiently via a multi-task neural
network. Meanwhile, deep learning is also used in evolution-based
fuzzing. Zong et al. [55] proposed FuzzGuard, a deep-learning-based
approach to help evolution-based fuzzers predict the reachability
of inputs before executing programs. Moreover, researchers have
also utilized deep learning to learn how to generate valid inputs
for deeply fuzzing a system. Lyu et al. [30] introduced SmartSeed
which used Generative Adversarial Networks [21] to generate seeds
from learning the patterns of valuable existing seeds. Liu et al. [29]
proposed DeepFuzz to automatically and continuously generate
C programs by a generative Sequence-to-Sequence model [11].
Godefroid et al. [20] divided fuzzing tasks into two categories, i.e.,
learning input format to fuzz deeper and breaking input format
to trigger defects. Zhang et al. [52] proposed DeepRoad to auto-
matically generate driving scenes to fuzz image-based autonomous
driving systems. Zhou et al. [54] further generated realistic and con-
tinuous physical-world images to fuzz such systems. In this paper,
we propose PreFuzz with the resource-efficient edge selection mecha-
nism and the probabilistic byte selection mechanism to improve the
performance of neural program-smoothing-based fuzzers.

6.3 Studies on Fuzzing

The empirical studies on fuzzing give many implications for further
research. Klees et al. [25] provided guidelines on evaluating the
effectiveness of fuzzers by assessing the experimental evaluations
carried out by different fuzzers. Gavrilov et al. [17] proposed a new
metric consistently with bug-based metrics by conducting a pro-
gram behavior study during fuzzing. Bhme et al. [2] summarized
the challenges and opportunities for fuzzing by studying existing
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popular fuzzers. Geng et al. [18] performed an empirical study on
multiple artificial vulnerability benchmarks to understand how
close these benchmarks reflect reality. Herrera et al. [23] investi-
gated and evaluated how seed selection affects a fuzzer’s ability to
find bugs in real-world software. Wu et al. [45] studied the features
of the havoc mechanism adopted by many fuzzers including AFL
and found it is already a powerful fuzzer which outperforms many
existing ones. In this paper, we conduct an empirical study to inves-
tigate the power and limitation of neural program-smoothing-based
fuzzing and reveal various findings/guidelines for future learning-
based fuzzing research.

7 CONCLUSION

In this paper, we investigated the strengths and limitations of neural
program-smoothing-based fuzzing approaches, e.g., MTFuzz and
Neuzz. We first extended our benchmark suite by including addi-
tional projects that were widely adopted in the existing fuzzing
evaluations. Next, we evaluated Neuzz and MTFuzz on the exten-
sive benchmark suite to study their effectiveness and efficiency.
Inspired by our study findings, we proposed PreFuzz combining
two technical improvements, i.e., the resource-efficient edge selec-
tion mechanism and the probabilistic byte selection mechanism. The
evaluation results demonstrate that PreFuzz can significantly out-
perform Neuzz and MTFuzz in terms of edge coverage. Furthermore,
our results also reveal various findings/guidelines for advancing
future fuzzing research.
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