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ABSTRACT

Fuzzing nowadays has been commonly modeled as an optimization

problem, e.g., maximizing code coverage under a given time budget

via typical search-based solutions such as evolutionary algorithms.

However, such solutions are widely argued to cause inefficient

computing resource usage, i.e., inefficient mutations. To address

this issue, two neural program-smoothing-based fuzzers, Neuzz

and MTFuzz, have been recently proposed to approximate pro-

gram branching behaviors via neural network models, which input

byte sequences of a seed and output vectors representing program

branching behaviors. Moreover, assuming that mutating the bytes

with larger gradients can better explore branching behaviors, they

develop strategies to mutate such bytes for generating new seeds

as test cases. Meanwhile, although they have been shown to be

effective in the original papers, they were only evaluated upon a

limited dataset. In addition, it is still unclear how their key tech-

nical components and whether other factors can impact fuzzing

performance. To further investigate neural program-smoothing-

based fuzzing, we first construct a large-scale benchmark suite

with a total of 28 popular open-source projects. Then, we exten-

sively evaluate Neuzz and MTFuzz on such benchmarks. The eval-

uation results suggest that their edge coverage performance can

be unstable. Moreover, neither neural network models nor muta-

tion strategies can be consistently effective, and the power of their

gradient-guidance mechanisms have been compromised. Inspired
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by such findings, we propose a simplistic technique, PreFuzz, which

improves neural program-smoothing-based fuzzers with a resource-

efficient edge selection mechanism to enhance their gradient guid-

ance and a probabilistic byte selection mechanism to further boost

mutation effectiveness. Our evaluation results indicate that PreFuzz

can significantly increase the edge coverage of Neuzz/MTFuzz, and

also reveal multiple practical guidelines to advance future research

on neural program-smoothing-based fuzzing.
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1 INTRODUCTION

Fuzzing [44] nowadays has been widely adopted to detect soft-

ware bugs or vulnerabilities via feeding invalid, unexpected, or

random data as inputs for executing programs under test. To date,

many existing approaches model fuzzing as an optimization prob-

lem and attempt to solve it by augmenting code coverage via

mutating program seed inputs under a given time budget. Such

coverage-guided fuzzing tasks can be typically resolved by applying

search-based optimization algorithms such as evolutionary algo-

rithms [13, 15, 42, 49, 51]. Specifically, test inputs are iteratively fil-

tered, mutated, and executed such that the test results can approach

the optimal solutions to satisfy the fitness functions of the adopted

evolutionary algorithms, which are usually designed to maximize

code coverage. However, evolutionary fuzzers have been argued

that they fail to “leverage the structure (i.e., gradients or higher-

order derivatives) of the underlying optimization problemž [41]. To

address such issue, neural program-smoothing-based techniques,

e.g., Neuzz [41] and MTFuzz [40], have been recently proposed to

exploit the usage of gradients for fuzzing via neural network mod-

els. Specifically, they first adopt a neural network which, given the

byte sequence of a seed as input, outputs a vector representing its

associated program branching behaviors. Next, they compute the
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gradients of the collected output vectors with respect to the bytes

of the given seed. Accordingly, they sort the resulting gradients and

develop strategies to mutate the bytes with larger gradients more

aggressively. Eventually, all the resulting mutants are used as test

cases for fuzzing. Note thatMTFuzz further attempts to outperform

Neuzz by leveraging the power of multi-task learning and adopts a

dynamic analysis module to augment the mutation strategy. In their

original papers, Neuzz outperforms 10 existing coverage-guided

fuzzers on 10 real-world projects by at least 3X more edge coverage

over 24-hour runs and further detects 31 previously-unknown bugs.

Compared to Neuzz and four other state-of-the-art fuzzers,MTFuzz

achieves 2X to 3X edge coverage upon all the benchmark projects

and exposes 11 previously-unknown bugs which cannot be detected

by the other fuzzers.

Despite the effectiveness shown in their original papers, the

evaluation on Neuzz and MTFuzz can be potentially biased due

to their limited benchmark suite with only 10 projects. Moreover,

Neuzz and MTFuzz adopt a different edge coverage metric from

many existing fuzzers [4, 9, 27, 31, 51] that can potentially bias the

performance comparison. Furthermore, the investigation on the

factors that can impact their edge coverage performance is rather

limited, i.e., they only simply presented the overall effectiveness

of the techniques without investigating the contributions made

by individual components, e.g., the model structure, the gradient

guidance mechanism, and the mutation strategy.

In this paper, to enhance the understanding of the effectiveness

and efficiency of program-smoothing-based fuzzing, we first con-

struct a large-scale benchmark by retaining all the projects adopted

in the original Neuzz andMTFuzz papers (except one that we fail to

run) and adding 19 additional open-source projects that were fre-

quently adopted in recent fuzzing research work. We then conduct

an extensive evaluation for Neuzz and MTFuzz accordingly. The

evaluation result suggests while Neuzz andMTFuzz can outperform

AFL on all the studied benchmark projects by 10.5% and 8.9% on

average in terms of edge coverage respectively,MTFuzz does not al-

ways outperform Neuzz and both their edge coverage performances

are highly program-dependent. We also find neither their mutation

strategies nor neural network models can be consistently effective.

Meanwhile, although the gradient guidance mechanisms can be

promising, their strengths have not been fully leveraged.

Inspired by the findings of our study, we propose an improved

technique, namely PreFuzz [38], upon neural program-smoothing-

based fuzzing. In particular, we develop a resource-efficient edge

selection mechanism to facilitate the exploration on unexplored

edges rather than the already covered edges. Moreover, we also

apply a probabilistic byte selection mechanism guided by gradient

information to Neuzz andMTFuzz to further boost edge exploration.

Our evaluation results suggest that PreFuzz can significantly out-

perform Neuzz and MTFuzz, i.e., 43.1% more than Neuzz and 45.2%

more than MTFuzz averagely in terms of edge coverage.

To conclude, this paper makes the following contributions:

• Dataset. A dataset including 28 real-world projects that can

be used as the benchmarks for future research on fuzzing.

• Study. An extensive study of neural program-smoothing-

based fuzzers on the large-scale benchmark suite, with de-

tailed inspection of both their strengths and limitations.

• Technical improvement. A technique improving neural

program-smoothing-based fuzzers by combining a resource-

efficient edge selection mechanism and a probabilistic byte

selection mechanism.

• Practical guidelines.Multiple practical guidelines for ad-

vancing future program-smoothing-based fuzzing research.

2 BACKGROUND

2.1 Coverage-guided Fuzzers

Coverage-guided fuzzers nowadays widely adopt evolutionary al-

gorithms [49] for mutation strategies since they can be advanced in

discovering program vulnerabilities without prior program knowl-

edge. In this section, we first introduce the basic framework for

evolutionary algorithms, and then illustrate how a typical coverage-

guided fuzzer AFL integrates evolutionary algorithms.

2.1.1 Evolutionary Algorithm. To solve an optimization problem,

an evolutionary algorithm (EA) adopts operations such as mutat-

ing the existing solutions to generate new solutions. Among such

generated solutions, an EA applies a fitness function to filter them

based on their quality such that the remaining ones are retained

as one population. Such process is iterated until hitting the preset

time budget with the final population returned as the solutions for

the optimization problem.

2.1.2 Integrating fuzzing with EA. Coverage-guided fuzzers often

use increased code coverage as the fitness functions. Specifically,

they usually adopt edge coverage (where an edge refers to a basic-

block-wise transition, e.g., a conditional jump in programs) to rep-

resent code coverage and retain only the seeds that can trigger

new edge coverage for further mutations. For instance, American

Fuzzy Lop (AFL) [51], a widely-used coverage-guided fuzzer, is

launched by instrumenting programs such that it can acquire and

store the edge coverage of each program seed input at runtime.

Subsequently, AFL iterates and mutates each seed input according

to its adopted evolutionary algorithm. Like most coverage-guided

fuzzers [4, 9, 27, 31], when running a seed increases edge cover-

age, AFL identifies such seed as an “interestingž seed and retains

it for further mutations. Note that the mutations in AFL consist

of two stages: the deterministic stage (AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 ) and the

havoc stage (AFL𝐻𝑎𝑣𝑜𝑐 ). In particular, AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 applies a

fixed set of mutators, e.g., the bitflip, arithmetic, and interesting

value mutators, for respectively mutating the bits of each existing

“interestingž seed deterministically. After AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 , all the

collected “interestingž seeds are used to launch AFL𝐻𝑎𝑣𝑜𝑐 where

random mutations, i.e., randomly chosen mutators, are iteratively

applied to the randomly selected bits of the seed inputs.

2.2 Neural Program-smoothing-based Fuzzers

Program smoothing refers to setting up a smooth (i.e., differentiable)

surrogate function to approximate program branching behaviors

with respect to program inputs [41]. While traditional program

smoothing techniques [7, 8] can incur substantial performance

overheads due to heavyweight symbolic analysis, integrating such

concept with neural network models can be rather powerful since

they can be used to cope with high-dimensional optimization tasks,
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Table 1: Statistics of the studied benchmarks

Benchmark Class LOC Package

bison LEX & YACC 18,701 3.7

xmlwf XML 6,871 expat-2.2.9

mupdf PDF 123,562 1.12.0

pngimage PNG 11,373 libpng-1.6.36

pngfix PNG 12,173 libpng-1.6.36

pngtest PNG 11,323 libpng-1.6.36

tcpdump PCAP 46,892 4.99.0

nasm ASM 18,941 nasm-2.15.05

tiff2pdf TIFF 17,272 libtiff-4.2.0

tiff2ps TIFF 16,177 libtiff-4.2.0

tiffdump TIFF 15,113 libtiff-4.2.0

tiffinfo TIFF 15,014 libtiff-4.2.0

libxml XML 73,239 2.9.7

listaction SWF 6,278 libming-0.4.8

listaction_d SWF 6,272 libming-0.4.8

libsass SCSS 14,638 libsass-3.6.5

jhead JPEG 1,886 3.04

readelf ELF 72,111 Binutils 2.30

nm ELF 55,212 Binutils 2.30

strip ELF 65,683 Binutils 2.30

size ELF 54,463 Binutils 2.30

objdump ELF 74,710 Binutils 2.30

libjpeg JPEG 8,856 9c

harfbuzz TTF 9,853 1.7.6

base64 FILE 40,332 LAVA-M

md5sum FILE 40,350 LAVA-M

uniq FILE 40,286 LAVA-M

who FILE 45,257 LAVA-M

projects. For example, 10 popular real-world projects are the main

experimental subjects for both Neuzz and MTFuzz; however, it is

not clear how such 10 projects are selected and whether the experi-

mental findings can generalize to other real-world projects.

To reduce such threat, we extend the benchmark for evaluat-

ing Neuzz and MTFuzz. In particular, in addition to retaining the

adopted 9 projects in the original papers (we could not successfully

run project Zlib out of the 10 original projects), we also adopt addi-

tional 19 projects for our extended evaluations. More specifically, to

extend our benchmark projects, we first investigate all the fuzzing

papers published in ICSE, ISSTA, FSE, ASE, S&P, CCS, USENIX

Security, and NDSS in year 2020 and collect all their benchmark

projects. Next, we sort the collected benchmark projects in terms of

their usage in all the collected papers (presented in [38]). We then

collect the top 30 most used benchmark projects and successfully

run 19 of themwhich are eventually included in our extended bench-

marks (the failed executions are mainly caused by environmental

inconsistencies and unavailable dependencies). Table 1 presents

the statistics of our adopted benchmarks. Specifically, we consider

our benchmark to be sufficient and representative due to following

reasons: (1) to the best of our knowledge, this is a rather large-scale

benchmark suite compared with prior work; (2) the 28 collected

benchmarks cover 12 different file formats for seed inputs, e.g., ELF,

XML, and JPEG; and (3) the LoC of each program, ranging from

1,886 to over 120K, represents a wide range of program sizes.

3.2 Evaluation Setups

We conduct all our evaluations on Linux version 4.15.0-76-generic

Ubuntu18.04 with RTX 2080ti. Following the evaluation setups of

Neuzz and MTFuzz, for each selected benchmark project, we first

run AFL-2.57b on a single CPU core for 1 hour to initialize our

seed collection and then run Neuzz, MTFuzz and all their variants

(introduced in later sections) upon the collected seeds with a time

budget of 24 hours. Note that all the edges within the 1-hour initial

seed collection are excluded from the evaluation results in the re-

maining sessions. Moreover, we run our experiments for 5 times for

each fuzzer and present the average results with close performance

under different runs. Note that we instrument all the benchmark

projects with afl-gcc to acquire runtime edge coverage.

In addition to studying Neuzz and MTFuzz, we also include AFL

as a baseline technique throughout our extensive evaluations be-

cause (1) AFL is widely adopted as baseline by many fuzzing ap-

proaches [3, 4, 28, 31, 50] and frequently upgraded for improving

its performance; and (2) Neuzz adopts multiple concepts originated

from AFL for its implementation [39].

3.3 Research Questions

We investigate the following research questions to extensively study

neural program-smoothing-based fuzzing.

• RQ1: How do Neuzz and MTFuzz perform on a large-scale

dataset? For this RQ, we investigate their effectiveness and

efficiency of edge exploration under our large-scale bench-

mark suite.

• RQ2: How do the key components of Neuzz and MTFuzz af-

fect edge exploration? For this RQ, we attempt to investigate

how exactly their adopted gradient guidance mechanisms,

neural network models, and mutation strategies can affect

edge exploration.

3.4 Results and Analysis

3.4.1 RQ1: performance of Neuzz and MTFuzz on a large-scale

dataset. We first investigate the edge coverage performance of all

the studied fuzzers. In this paper, following many existing coverage-

guided fuzzers [4, 9, 27, 31, 51], we determine to adopt the number

of the edges via afl-showmap as our default edge metric. Moreover,

note that the edge metric of the original Neuzz and MTFuzz papers

can be potentially biased since it counts the byte number of the

trace_bits structure implemented by AFL and thus is inconsistent

with the results provided by the guidance function (i.e., defining

“interestingž seeds mentioned in Section 2.1.2) in their implemen-

tations. Nevertheless, as a comprehensive study, we also evaluate

all the studied fuzzers in terms of the edge metric of the original

Neuzz and MTFuzz papers.

Table 2 presents the edge coverage results of our extensive study

for Neuzz and MTFuzz under both adopted metrics. For instance,

for AFL under bison, 10,374 corresponds to our default edge metric

and 308 corresponds to the original metric in the Neuzz/MTFuzz

papers. For our default edge metric, we can observe that Neuzz

significantly outperforms AFL by 10.5% (22,395 vs. 20,265 explored

edges) in terms of edge coverage on average. Compared with the

performance advantage claimed in its original paper (i.e., 2.7X), it

is clearly degraded. We then investigate the performance difference

among benchmark projects. Interestingly, we can observe that their

performance advantage is rather inconsistent, i.e., ranging from

-31.2% to 180.5%. Moreover, Neuzz only outperforms AFL upon 10

out of 19 extended projects. Such results suggest that Neuzz cannot
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for unknown chunk-based binary formats. Similar to our PreFuzz,

many works also utilized light-weight program analysis to facilitate

fuzzing efficacy. Rawat et al. [36] proposed VUzzer to leverage

control- and data-flow features based on static and dynamic analysis

to infer fundamental properties of the application without any prior

knowledge or input format. Mathis et al. [33] presented a technique

to learn program tokens by tainting for fuzzing. Padhye et al. [34]

automatically guided QuickCheck-like random input generators

to semantically analyze test programs for generating test-oriented

Java bytecode. Chen et al. [9] introduced Angora, a mutation-based

fuzzer that solves path constraint without symbolic execution by

taint checking and searching. Furthermore, new guidance other

than code coverage are proposed to fuzz specific software systems.

Wu et al. [46] proposed Simulee to parse constraints of inputs from a

givenGPU kernel function andmutate the inputs guided bymemory

access conflict to fuzz CUDA programs. Accordingly, they further

proposed AuCS [47] to repair the detected synchronization bugs.

Wen et al. [43] proposed a memory-usage-guided fuzzer to generate

excessive memory consumption inputs and trigger uncontrolled

memory consumption bugs. Zhao et al. [53] synthesized programs

for testing JVMs based on the ingredients extracted from JVM

historical bug-revealing tests.

6.2 Deep Learning on Fuzzing

She et al. proposed Neuzz [41], the first neural program-smoothing-

based fuzzer using neural network models to discover “promis-

ingž bytes for a previously explored edge. They [40] also proposed

MTFuzz to fuzz a system more efficiently via a multi-task neural

network. Meanwhile, deep learning is also used in evolution-based

fuzzing. Zong et al. [55] proposed FuzzGuard, a deep-learning-based

approach to help evolution-based fuzzers predict the reachability

of inputs before executing programs. Moreover, researchers have

also utilized deep learning to learn how to generate valid inputs

for deeply fuzzing a system. Lyu et al. [30] introduced SmartSeed

which used Generative Adversarial Networks [21] to generate seeds

from learning the patterns of valuable existing seeds. Liu et al. [29]

proposed DeepFuzz to automatically and continuously generate

C programs by a generative Sequence-to-Sequence model [11].

Godefroid et al. [20] divided fuzzing tasks into two categories, i.e.,

learning input format to fuzz deeper and breaking input format

to trigger defects. Zhang et al. [52] proposed DeepRoad to auto-

matically generate driving scenes to fuzz image-based autonomous

driving systems. Zhou et al. [54] further generated realistic and con-

tinuous physical-world images to fuzz such systems. In this paper,

we propose PreFuzz with the resource-efficient edge selection mecha-

nism and the probabilistic byte selection mechanism to improve the

performance of neural program-smoothing-based fuzzers.

6.3 Studies on Fuzzing

The empirical studies on fuzzing give many implications for further

research. Klees et al. [25] provided guidelines on evaluating the

effectiveness of fuzzers by assessing the experimental evaluations

carried out by different fuzzers. Gavrilov et al. [17] proposed a new

metric consistently with bug-based metrics by conducting a pro-

gram behavior study during fuzzing. Böhme et al. [2] summarized

the challenges and opportunities for fuzzing by studying existing

popular fuzzers. Geng et al. [18] performed an empirical study on

multiple artificial vulnerability benchmarks to understand how

close these benchmarks reflect reality. Herrera et al. [23] investi-

gated and evaluated how seed selection affects a fuzzer’s ability to

find bugs in real-world software. Wu et al. [45] studied the features

of the havoc mechanism adopted by many fuzzers including AFL

and found it is already a powerful fuzzer which outperforms many

existing ones. In this paper, we conduct an empirical study to inves-

tigate the power and limitation of neural program-smoothing-based

fuzzing and reveal various findings/guidelines for future learning-

based fuzzing research.

7 CONCLUSION

In this paper, we investigated the strengths and limitations of neural

program-smoothing-based fuzzing approaches, e.g., MTFuzz and

Neuzz. We first extended our benchmark suite by including addi-

tional projects that were widely adopted in the existing fuzzing

evaluations. Next, we evaluated Neuzz and MTFuzz on the exten-

sive benchmark suite to study their effectiveness and efficiency.

Inspired by our study findings, we proposed PreFuzz combining

two technical improvements, i.e., the resource-efficient edge selec-

tion mechanism and the probabilistic byte selection mechanism. The

evaluation results demonstrate that PreFuzz can significantly out-

perform Neuzz andMTFuzz in terms of edge coverage. Furthermore,

our results also reveal various findings/guidelines for advancing

future fuzzing research.
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