
Free Lunch for Testing:
Fuzzing Deep-Learning Libraries from Open Source

Anjiang Wei∗

Stanford University
anjiang@stanford.edu

Yinlin Deng
University of Illinois at Urbana-Champaign

yinlind2@illinois.edu

Chenyuan Yang∗

Nanjing University
cy1yang@outlook.com

Lingming Zhang
University of Illinois at Urbana-Champaign

lingming@illinois.edu

ABSTRACT

Deep learning (DL) systems can make our life much easier, and

thus are gaining more and more attention from both academia and

industry. Meanwhile, bugs in DL systems can be disastrous, and

can even threaten human lives in safety-critical applications. To

date, a huge body of research efforts have been dedicated to test-

ing DL models. However, interestingly, there is still limited work

for testing the underlying DL libraries, which are the foundation

for building, optimizing, and running DL models. One potential

reason is that test generation for the underlying DL libraries can

be rather challenging since their public APIs are mainly exposed

in Python, making it even hard to automatically determine the

API input parameter types due to dynamic typing. In this paper,

we propose FreeFuzz, the first approach to fuzzing DL libraries

via mining from open source. More specifically, FreeFuzz obtains

code/models from three different sources: 1) code snippets from the

library documentation, 2) library developer tests, and 3) DL models

in the wild. Then, FreeFuzz automatically runs all the collected

code/models with instrumentation to trace the dynamic informa-

tion for each covered API, including the types and values of each

parameter during invocation, and shapes of input/output tensors.

Lastly, FreeFuzz will leverage the traced dynamic information to

perform fuzz testing for each covered API. The extensive study of

FreeFuzz on PyTorch and TensorFlow, two of the most popular DL

libraries, shows that FreeFuzz is able to automatically trace valid

dynamic information for fuzzing 1158 popular APIs, 9X more than

state-of-the-art LEMON with 3.5X lower overhead than LEMON.

To date, FreeFuzz has detected 49 bugs for PyTorch and TensorFlow

(with 38 already confirmed by developers as previously unknown).

ACM Reference Format:

Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022.

Free Lunch for Testing: Fuzzing Deep-Learning Libraries from Open Source.

In 44th International Conference on Software Engineering (ICSE ’22), May

∗The work was done during a remote summer internship at University of Illinois.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510041

21ś29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3510003.3510041

1 INTRODUCTION

Deep Learning (DL) has been playing a significant role in various

application domains, including image classification [39, 62], natural

language processing [33, 35], game playing [61], and software engi-

neering [23, 45, 74, 75]. Through such applications, DL has substan-

tially improved our daily life [20, 36, 60, 64, 71]. The great success

achieved by DL is attributed to the proposal of more and more

advanced DL models, the availability of large-scale datasets, and

inevitably, the continuous development of DL libraries. Meanwhile,

deploying a DL model without thorough testing can be disastrous

in safety-critical applications. For example, a critical bug in the DL

system in Uber’s self-driving cars has unfortunately taken the life

of a pedestrian [12].

Due to the popularity of DL models and the critical impor-

tance of their reliability, a growing body of research efforts have

been dedicated to testing DL models, with focus on adversarial

attacks [15, 22, 34, 50ś52] for model robustness, the discussion on

various metrics for DL model testing [38, 41, 47, 56, 73], and testing

DL models for specific applications [67, 77, 84]. Meanwhile, both

running and testing DL models inevitably involve the underlying

DL libraries, which serve as central pieces of infrastructures for

building, training, optimizing and deploying DL models. For exam-

ple, the popular PyTorch and TensorFlow DL libraries, with 50K

and 159K stars on GitHub, are by far two of the most popular DL

libraries for developing and deploying DL models. Surprisingly,

despite the importance of DL library reliability, there is only limited

work for testing DL libraries to date. For example, CRADLE [57]

leverages existing DL models for testing Keras [1] and its back-

ends, and resolves the test oracle problem via differential testing.

Later, LEMON [69] further augments CRADLE via leveraging vari-

ous model mutation rules to generate more diverse DL models to

invoke more library code to expose more possible DL library bugs.

Despite their promising results, existing work on testing DL li-

braries suffers from the following limitations. Firstly, only limited

sources for test input generation are considered. For example, CRA-

DLE [57] uses 30 pre-trained DL models and LEMON [69] uses only

12 DLmodels. Our later empirical results show that they can at most

cover 59 APIs for TensorFlow, leaving a disproportionately large

number of APIs uncovered by such existing techniques. Secondly,

the state-of-the-art model mutation technique proposed by LEMON

can be rather limited for generating diverse test inputs for DL APIs.

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang

Table 1: Type Mutation

Mutation Strategies 𝑇1 𝑇2
Tensor Dim Mutation 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛1, 𝐷𝑇 ⟩ 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛2, 𝐷𝑇 ⟩ (|𝑛2 − 𝑛1 | > 0)

Tensor Dtype Mutation 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇1⟩ 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇2⟩ (𝐷𝑇2 ≠ 𝐷𝑇1)

Primitive Mutation 𝑇1 = 𝑖𝑛𝑡 |𝑏𝑜𝑜𝑙 |𝑓 𝑙𝑜𝑎𝑡 |𝑠𝑡𝑟 𝑇2 (𝑇2 ≠ 𝑇1)

Tuple Mutation (𝑇 𝑖∈1...𝑛
𝑖) (𝑡𝑦𝑝𝑒_𝑚𝑢𝑡𝑎𝑡𝑒 (𝑇𝑖)

𝑖∈1...𝑛)

List Mutation [𝑇 𝑖∈1...𝑛
𝑖] [𝑡𝑦𝑝𝑒_𝑚𝑢𝑡𝑎𝑡𝑒 (𝑇𝑖)

𝑖∈1...𝑛]

Table 2: Value Mutation

Mutation Strategies 𝑇 𝑉

Random Tensor Shape 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇 ⟩ 𝑡𝑒𝑛𝑠𝑜𝑟 (𝑠ℎ𝑎𝑝𝑒 = [𝑟𝑎𝑛𝑑𝑖𝑛𝑡 ()𝑛], 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 = 𝐷𝑇)

Random Tensor Value 𝑣 : 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇 ⟩ 𝑡𝑒𝑛𝑠𝑜𝑟 (𝑠ℎ𝑎𝑝𝑒 = 𝑣 .𝑠ℎ𝑎𝑝𝑒, 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 = 𝐷𝑇).𝑟𝑎𝑛𝑑 ()

Random Primitive 𝑖𝑛𝑡 |𝑓 𝑙𝑜𝑎𝑡 |𝑏𝑜𝑜𝑙 |𝑠𝑡𝑟 𝑟𝑎𝑛𝑑 (𝑖𝑛𝑡 |𝑓 𝑙𝑜𝑎𝑡 |𝑏𝑜𝑜𝑙 |𝑠𝑡𝑟)

Random Tuple (𝑇 𝑖∈1...𝑛
𝑖) (𝑣𝑎𝑙𝑢𝑒_𝑚𝑢𝑡𝑎𝑡𝑒 (𝑇𝑖)

𝑖∈1...𝑛)

Random List [𝑇 𝑖∈1...𝑛
𝑖] [𝑣𝑎𝑙𝑢𝑒_𝑚𝑢𝑡𝑎𝑡𝑒 (𝑇𝑖)

𝑖∈1...𝑛]

Database Tensor Shape 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇 ⟩ 𝑝𝑖𝑐𝑘_𝑠ℎ𝑎𝑝𝑒 (𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇 ⟩)

Database Tensor Value 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇 ⟩ 𝑝𝑖𝑐𝑘_𝑣𝑎𝑙𝑢𝑒 (𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇 ⟩)

Database Primitive 𝑖𝑛𝑡 |𝑓 𝑙𝑜𝑎𝑡 |𝑠𝑡𝑟 𝑝𝑖𝑐𝑘 (𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, 𝑖𝑛𝑡 |𝑓 𝑙𝑜𝑎𝑡 |𝑠𝑡𝑟, 𝑎𝑟𝑔𝑛𝑎𝑚𝑒)

Database Tuple (𝑇 𝑖∈1...𝑛
𝑖) 𝑝𝑖𝑐𝑘 (𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, (𝑇1,𝑇2, ...,𝑇𝑛), 𝑎𝑟𝑔𝑛𝑎𝑚𝑒)

Database List [𝑇 𝑖∈1...𝑛
𝑖] 𝑝𝑖𝑐𝑘 (𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, [𝑇1,𝑇2, ...,𝑇𝑛], 𝑎𝑟𝑔𝑛𝑎𝑚𝑒)

selecting a random argument index argIndex (Line 7). After deter-

mining the argument to be mutated each time, FreeFuzz gets the

type of it using our customized type system FuzzType, the argument

name argName, and the argument value argValue (Lines 8, 9 and 10).

The type mutation will be performed nondeterministically ś if it is

enabled, FreeFuzz will mutate the argument type according to our

type mutation strategies (Line 12). selectRandOverDB is another ran-

dom function called to determine whether to perform random value

mutation (Line 14) or database value mutation (Line 16) according

to the corresponding mutation rules. After mutating numMutation

arguments for entry, FreeFuzz generates a new test, which will be

executed for testing the API (Line 19). Then, the main loop will

continue to generate the next test until the termination criterion is

met, e.g., generating a specific number of new tests.

We next discuss function 𝑉𝑎𝑙𝑢𝑒𝑅𝑢𝑙𝑒𝑑𝑏 in more detail to explain

the process for mutating the value of an argument for a specific

API based on the argument value space. Shown in the algorithm,

the function takes the API name API, the type of argument argType,

the name of the argument argName, and the database DB, as input

parameters. It then queries the database to collect all the APIs

which share the same argument name and type as the current API

under test (Line 21). Next, FreeFuzz computes the text similari-

ties between the current API under test and each of the returned

APIs based on the Levenshtein Distance [10] between API defini-

tions (Line 22). Take the query 𝑉𝑎𝑙𝑢𝑒𝑅𝑢𝑙𝑒𝑑𝑏(torch.nn.MaxPool2d,

[int, int], ‘dilation’, DB) as an example, the text similarity

is computed using API definitions of those containing the same

argument name (’dilation’) and the type (tuple of two integers).

More specifically, the similarity between the current API under

test and 𝐴𝑃𝐼𝑖 , one of the returned APIs, can be computed by the

following formula:

𝑆𝑖𝑚(𝐴𝑃𝐼𝑖 , 𝐴𝑃𝐼) = 1 −
𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝐴𝑃𝐼𝑖 , 𝐴𝑃𝐼)

𝑀𝑎𝑥 (𝐿𝑒𝑛(𝐴𝑃𝐼𝑖), 𝐿𝑒𝑛(𝐴𝑃𝐼))

where function 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛 computes Levenshtein Distance be-

tween the two strings representing 𝐴𝑃𝐼𝑖 and 𝐴𝑃𝐼 , and it is divided

by the maximum length of the two strings. The whole formula com-

putes the text similarity of the two API definitions. For our example,

the result shows that the definition of torch.nn.Conv2d has the high-

est text similaritywith the target API torch.nn.MaxPool2d(kernel_size,

stride=None, padding=0, dilation=1, return_indices=False,

ceil_mode=False). Then we normalize the text similarities to trans-

form them into probabilities (summing up to 1) for selecting similar

APIs (Line 23). The basic idea is that APIs with higher similarity

scores should get higher probabilities to be selected. FreeFuzz does

this by performing the Softmax computation [14]:

𝑃𝑟𝑜𝑏 (𝐴𝑃𝐼𝑖) =
𝑒𝑆𝑖𝑚 (𝐴𝑃𝐼𝑖 ,𝐴𝑃𝐼)

Σ
𝑚
𝑗=1𝑒

𝑆𝑖𝑚 (𝐴𝑃𝐼 𝑗 ,𝐴𝑃𝐼)

where𝑚 denotes the number of APIs sharing the same argument

name and type as the current API under test. After sampling a

random API according to the probabilities (Line 24), the values

are then randomly sampled from the values recorded for the API

(Line 25). In this way, the values stored in the database from one

API can be transferred to serve as the arguments for another API.

3.4 Test Oracle

In this phase, we leverage the following ways to resolve the test

oracle problem and detect potential DL library bugs:

Wrong-Computation Bugs.We consider three modes to run each

API: CPU, GPU with CuDNN disabled, and GPU with CuDNN

enabled. In this way, we can detect wrong-computation results by

comparing the results between different execution modes.

Performance Bugs. We leverage metamorphic relations [25, 63]

to detect performance bugs with FreeFuzz. More and more data

types and hardware accelerators have been proposed in order to

boost the DL library performance in recent years. Several floating

point data types are specially designed for tensors, including float32,

float16, tf32, bfloat16, which also appear in our aforementioned

tensor data type system. We observe the fact that on the same

machine (hardware) M, APIs with the same function arguments

𝑎𝑟𝑔𝑠 and tensors of the same shapes 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛, 𝐷𝑇 ⟩ tend to hold the

following metamorphic relationship in terms of time cost:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐷𝑇1) < 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐷𝑇2) =⇒

𝑐𝑜𝑠𝑡 (M, 𝐴𝑃𝐼, 𝑎𝑟𝑔𝑠, 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛,𝐷𝑇1 ⟩) < 𝑐𝑜𝑠𝑡 (M, 𝐴𝑃𝐼, 𝑎𝑟𝑔𝑠, 𝑡𝑒𝑛𝑠𝑜𝑟 ⟨𝑛,𝐷𝑇2 ⟩)

Free Lunch for Testing:

Fuzzing Deep-Learning Libraries from Open Source ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

Algorithm 1:Mutation algorithm

Input:
𝐴𝑃𝐼 # the API under test to be mutated

𝑉𝑆 # API value space

𝐷𝐵 # argument value space

Define:
𝑇𝑦𝑝𝑒𝑅𝑢𝑙𝑒 # type mutation strategies

𝑉𝑎𝑙𝑢𝑒𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑑 # random value mutation strategies

𝑉𝑎𝑙𝑢𝑒𝑅𝑢𝑙𝑒𝑑𝑏 # database value mutation strategies

1 Function Mutate(𝐴𝑃𝐼 , 𝑉𝑆 , 𝐷𝐵):
2 while 𝑛𝑜𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 do
3 𝑒𝑛𝑡𝑟𝑦 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡 (𝑉𝑆 [𝐴𝑃𝐼])

4 𝑎𝑟𝑔𝑁𝑢𝑚 = 𝑙𝑒𝑛(𝑒𝑛𝑡𝑟𝑦) # number of arguments

5 𝑛𝑢𝑚𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑎𝑛𝑑𝑜𝑚.𝑔𝑒𝑡 (𝑎𝑟𝑔𝑁𝑢𝑚)

6 while 𝑛𝑢𝑚𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 > 0 do
7 𝑎𝑟𝑔𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡 (𝑎𝑟𝑔𝑁𝑢𝑚)

8 𝑎𝑟𝑔𝑇𝑦𝑝𝑒 = 𝐹𝑢𝑧𝑧𝑇𝑦𝑝𝑒 (𝑒𝑛𝑡𝑟𝑦 [𝑎𝑟𝑔𝐼𝑛𝑑𝑒𝑥])

9 𝑎𝑟𝑔𝑁𝑎𝑚𝑒 = 𝑒𝑛𝑡𝑟𝑦 [𝑎𝑟𝑔𝐼𝑛𝑑𝑒𝑥] .𝑛𝑎𝑚𝑒

10 𝑎𝑟𝑔𝑉𝑎𝑙𝑢𝑒 = 𝑒𝑛𝑡𝑟𝑦 [𝑎𝑟𝑔𝐼𝑛𝑑𝑒𝑥] .𝑣𝑎𝑙𝑢𝑒

11 if 𝑑𝑜𝑇𝑦𝑝𝑒𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛() then
12 𝑎𝑟𝑔𝑇𝑦𝑝𝑒 = 𝑇𝑦𝑝𝑒𝑅𝑢𝑙𝑒 (𝑎𝑟𝑔𝑇𝑦𝑝𝑒)

13 if 𝑠𝑒𝑙𝑒𝑐𝑡𝑅𝑎𝑛𝑑𝑂𝑣𝑒𝑟𝐷𝐵() then
14 𝑛𝑒𝑥𝑡 = 𝑉𝑎𝑙𝑢𝑒𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑑 (𝑎𝑟𝑔𝑇𝑦𝑝𝑒, 𝑎𝑟𝑔𝑉𝑎𝑙𝑢𝑒)

15 else
16 𝑛𝑒𝑥𝑡 =

𝑉𝑎𝑙𝑢𝑒𝑅𝑢𝑙𝑒𝑑𝑏 (𝐴𝑃𝐼, 𝑎𝑟𝑔𝑇𝑦𝑝𝑒, 𝑎𝑟𝑔𝑁𝑎𝑚𝑒, 𝐷𝐵)

17 𝑒𝑛𝑡𝑟𝑦 [𝑎𝑟𝑔𝐼𝑛𝑑𝑒𝑥] = 𝑛𝑒𝑥𝑡

18 𝑛𝑢𝑚𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 − 1

19 𝑟𝑢𝑛(𝑒𝑛𝑡𝑟𝑦)

20 Function 𝑉𝑎𝑙𝑢𝑒𝑅𝑢𝑙𝑒𝑑𝑏(𝐴𝑃𝐼 , 𝑎𝑟𝑔𝑇𝑦𝑝𝑒 , 𝑎𝑟𝑔𝑁𝑎𝑚𝑒 , 𝐷𝐵):
21 𝐴𝑃𝐼𝑠 = 𝐷𝐵.𝑞𝑢𝑒𝑟𝑦 (𝑎𝑟𝑔𝑇𝑦𝑝𝑒,𝐴𝑃𝐼, 𝑎𝑟𝑔𝑁𝑎𝑚𝑒)

22 ⟨𝐴𝑃𝐼𝑖 , 𝑠𝑖𝑚⟩ = 𝑆𝑖𝑚(𝐴𝑃𝐼𝑠, 𝐴𝑃𝐼)

23 ⟨𝐴𝑃𝐼𝑖 , 𝑝𝑟𝑜𝑏⟩ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (⟨𝐴𝑃𝐼𝑖 , 𝑠𝑖𝑚⟩)

24 𝐴𝑃𝐼 ′ = 𝑠𝑎𝑚𝑝𝑙𝑒 (⟨𝐴𝑃𝐼𝑖 , 𝑝𝑟𝑜𝑏⟩)

25 𝑣𝑎𝑙 = 𝑠𝑎𝑚𝑝𝑙𝑒 (𝐷𝐵,𝐴𝑃𝐼 ′, 𝑎𝑟𝑔𝑇𝑦𝑝𝑒, 𝑎𝑟𝑔𝑁𝑎𝑚𝑒)

26 return 𝑣𝑎𝑙

This indicates that𝐷𝑇1 carrying less precision information than𝐷𝑇2
tends to execute faster. For instance, 𝐷𝑇1 can be float16 while 𝐷𝑇2
is float32, as long as the API supports both data types of tensors.

Crash Bugs. If an API crashes or throws runtime exception, then it

may be considered as a crash bug. Meanwhile, it could also be due

to invalid test inputs which can be generated during the fuzzing

process. To automatically filter out such false alarms, we build

scripts to heuristically remove crash bugs which throw meaningful

exceptions on all backends for invalid inputs, e.g., ‘ValueError’,

‘InvalidArgumentError’, etc. As a result, if the test program crashes

(e.g., segmentation fault), or throws unexpected exception for valid

inputs on certain backend(s), it is considered as a crash bug.

4 EXPERIMENTAL SETUP

In the study, we address the following research questions:

• RQ1: How do the three different input sources of FreeFuzz

(without any mutation) contribute to DL library testing?

• RQ2: How does FreeFuzz with different numbers of muta-

tions for each API perform for DL library testing?

• RQ3: How do different mutation strategies impact Free-

Fuzz’s performance?

• RQ4: How does FreeFuzz compare with existing work?

• RQ5: Can FreeFuzz detect real-world bugs?

Our experiments are mainly performed on the stable release ver-

sions of DL libraries: PyTorch 1.8 and TensorFlow 2.4. The machine

for running experiments is equipped with Intel Xeon CPU (4 cores,

2.20GHz), NVIDIA A100 GPUs, Ubuntu 16.04, and Python 3.9.

4.1 Implementation

Code/Model Collection. Code/model collection is essential to

form the original seed test pool for our fuzzing technique. To build

an extensive pool, for documentations, we download all 497/512

pieces of code snippets from the official documentations of Py-

Torch/TensorFlow. More specifically, we use the bs4 Python pack-

age [3] to automatically parse the documentations to obtain the

code snippets. Note that not all code snippets crawled from doc-

umentations are immediately executable. Thus we also build a

simplistic repair tool to insert omitted code in the examples (e.g.,

import sections) to make more code snippets executable. For devel-

oper tests, we run all existing Python tests for PyTorch by running

python run_test.py in the test directory, while for TensorFlow we

run all python files with suffix _test.py. For DL models, we obtain

a diverse set of 102/100 DL models from official model zoos of Py-

Torch/TensorFlow, and popular GitHub repositories. The detailed

information about the models can be found in our repository [8].

Instrumentation. We get the lists of all Python APIs from offi-

cial documentation of PyTorch and TensorFlow, and hook them in

__init__.py (a file for a package that will be automatically executed

if the package is imported) in the root of the library package by

adding a wrapper for each API in the list. This is done transparently

and fully automatically for the users so that they do not need to

modify any of their code (model code) for instrumentation. In this

way, 630 APIs from PyTorch and 1900 APIs from TensorFlow are

instrumented for dynamic value tracing. Furthermore, we lever-

age the MongoDB database [7, 11] to record API value space and

argument value space.

Mutation.We implement our main Algorithm 1 for mutation with

standard Python packages. The implementation details can also be

found in our project repository [8].

Test Oracle. The implementation of differential testing is simple.

The example code for PyTorch is shown in Figure 10.Meanwhile, the

implementation of metamorphic testing is to wrap the invocation

of APIs with code for timing.

4.2 Metrics

To thoroughly evaluate FreeFuzz, we use the following metrics:

Number of Covered APIs. Due to the large number of APIs in DL

libraries, it is of great importance to show the number of covered

APIs as an important metric of testing adequacy. Surprisingly, such

an important metric has been largely overlooked by prior work on

DL library testing [57, 69].

Size of Value Space. Each API invocation can add one entry into

the API value space. Therefore, we use the total size of value space

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang

1 m = torch.nn.Conv2d (64 ,128 ,1 ,2). cuda()

2 tensor = torch.rand (1 ,64 ,32 ,32). cuda()

3 torch.backends.cudnn.enabled = True

4 output1 = m(tensor) # with CuDNN enabled

5 torch.backends.cudnn.enabled = False

6 output2 = m(tensor) # with CuDNN disabled

7 print(output1.sum(), output2.sum ()) # debugging

8 assert torch.allclose(output1 , output2) # fail

Figure 10: Differential testing for 2D-Convolution

only covers 5 more APIs via various model mutations compared to

the original models, since only 5 unused layers preserve the strict

input-output shape constraints imposed by LEMON and are added

into the mutated models. Furthermore, FreeFuzz with models only

can already outperform LEMON in terms of code coverage within

20min, i.e., 75X faster than LEMON! This further demonstrates the

benefits of API-level testing compared with model-level testing.

5.5 RQ5: Bugs Detected

For bug detection, we target PyTorch 1.8 and TensorFlow 2.4, which

are both officially released stable versions, with the default FreeFuzz

setting, i.e., generating 1000 mutants for each API. Note that we

do not target TensorFlow 1.14 because developers do not actively

support it anymore. Table 6 shows the detailed statistics about

the real-world bugs detected by FreeFuzz and its various variants

studied in Section 5.3. We can observe that FreeFuzz is able to

detect 49 bugs in total (with 38 already confirmed as previously

unknown bugs) for the two studied DL libraries, and 21 of them

have been fixed by the developers to date. Furthermore, we can also

observe that each mutation strategy can help detect certain bugs

that other mutation strategies fail to detect, further demonstrating

the importance of all FreeFuzz mutation strategies. Lastly, of all the

49 bugs detected by FreeFuzz, only one of them can be detected by

LEMON and CRADLE.

Table 6: Summary of detected bugs

FreeFuzz Confirmed

FreeFuzz -TypeMu -RandMu -DBMu -AllMu (Fixed)

PyTorch 28 13 24 26 5 23 (7)

TensorFlow 21 20 5 20 2 15 (14)

Note that all the detailed issue IDs for the bugs detected can be

found on our GitHub page [8]. We next present the case studies:

Wrong-computation Bug. Figure 10 shows an example bug auto-

matically detected by FreeFuzz by comparing the computation re-

sults for 2D-Convolution between two backends, one with CuDNN

enabled (output1) and one disabled, using Aten backend instead

(output2). It throws AssertionError when executing the last line.

The sum of values of output tensors in Line 7 shows that output1

= -523.5300 while output2 = -601.6165, indicating a significant

difference in computation results. Further comparing the computa-

tion results executed by CPU demonstrates that the result is wrong

only on GPU with CuDNN disabled. This is a confirmed bug by

developers and fixed in latest master.

Performance bug. FreeFuzz detects one performance bug bymeta-

morphic testing for torch.nn.functional.conv_transpose2d. Accord-

ing to the metamorphic relations, the time cost for float16 computa-

tion should be less than that for float32 given the same parameters

and tensor shapes. However, our results on NVIDIA A100 GPU

1 from torch.nn import Conv3d

2 x = torch.rand(2,3,3,3,3)

3 Conv3d(3,4,3, padding_mode='reflect ')(x) # Crash

Figure 11: Crash bug in Conv3d

1 m_gpu = torch.nn.MaxUnpool2d (2,stride =2). cuda()

2 m_cpu = torch.nn.MaxUnpool2d (2,stride =2)

3 tensor = torch.rand(1, 1, 2, 2)

4 indices = torch.randint (-32768 ,32768 ,(1 , 1, 2, 2))

5 gpu_result = m_gpu(tensor.cuda(), indices.cuda ())

6 cpu_result = cpu(tensor , indices) # only crash on CPU

Figure 12: Invalid test input for torch.nn.MaxUnpool2d

for PyTorch show that float16: cost = 0.377s, float32: cost =

0.101s on some inputs. The bug detected by FreeFuzz has spurred

a heated discussion among PyTorch developers. They confirmed

this performance bug and are trying hard to figure out the reason.

Crash bug. Figure 11 shows a crash bug detected by FreeFuzz. The

program crashes on Line 3 when invoking torch.nn.Conv3d. The

reason is that argument padding_mode is set to value ‘reflect’ and

the program will not crash if padding_mode is set to its default value

‘zeros’. The bug is triggered by the database mutation strategy. The

argument name padding_mode of type string appears in the argu-

ment value space, and there exists a value ‘reflect’, which is orig-

inally recorded for the argument padding_mode of torch.nn.Conv2d.

FreeFuzz applies the database mutation strategy to query the ar-

gument value space, and selects ‘reflect’ from Conv2d to serve as

the input for argument padding_mode of Conv3d. We confirm this

bug according to the documentation of torch.nn.Conv3d [6] where

4 string values (i.e., ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’)

should be valid for padding_mode. Developers have acknowledged

this bug and triaged it.

5.6 Threats to validity

The threats to internal validity mainly lie in the correctness of

the implementation of our own approach and the compared tech-

niques. To reduce such threats, the authors worked together to

perform testing and code review of FreeFuzz; also, we obtained the

implementation of prior work from the official websites.

The threats to external validitymainly lie in the evaluation bench-

marks used. To demonstrate that our FreeFuzz can be applied/gen-

eralized to different DL libraries, we have evaluated FreeFuzz on

two most widely used DL libraries, PyTorch and TensorFlow. Fur-

thermore, although FreeFuzz is fuzzing against 1158 APIs (each

with 1000 times) and the randomness can be largely mitigated

by such a large number of APIs, it is still possible that the non-

determinism in FreeFuzz can affect the effectiveness of FreeFuzz

in different runs [18, 42]. Therefore, following existing fuzzing

work [59, 70, 83], we rerun the experimental comparison between

FreeFuzz and LEMON (Table 5) for 5 times. The results show that

FreeFuzz achieves an average line coverage of 35997 (35473 in Ta-

ble 5), while LEMON’s average is 29769 (29766 in Table 5). Both are

quite stable with the coefficient of variation of only 0.82%/0.06%,

demonstrating the effectiveness of FreeFuzz in different runs.

The threats to construct validity mainly lie in the metrics used.

To reduce such threats, we adopt the number of detected bugs used

by prior work on DL library testing. Furthermore, we also include

the widely used code coverage metric in traditional software testing.

Free Lunch for Testing:

Fuzzing Deep-Learning Libraries from Open Source ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

6 DISCUSSION AND FUTUREWORK

Generalizability and Specificity. Different from LEMON [69]

and CRADLE [57] that specifically target testing DL libraries via DL

models, the FreeFuzz work can potentially be generalized to more

than just DL library fuzzing. Of course, in this work, we do have

various DL-specific components, including 1) mining DL models

as inputs, 2) tensor-related types and mutation rules, and 3) DL-

specific oracles (i.e., differential testing for wrong-computation bugs

and metamorphic testing for performance bugs). Meanwhile, the

basic idea of leveraging code snippets from library documentation

and developer tests can be generalized to fuzzing library APIs in

various dynamically typed languages.We hope our work can inspire

more research on the direction of mining for fuzzing.

Validity of Test Inputs.Our inputmining and type-aware [53]/DB-

based mutations can all help generate more valid inputs. Mean-

while, FreeFuzz still does not always generate valid inputs due

to some complicated input constraints. Interestingly, even the in-

valid inputs helped detect various bugs in PyTorch/TensorFlow

(e.g., unexpected crashes). Figure 12 shows one such bug detected

in torch.nn.MaxUnpool2d. The input parameter indices is a tensor

whose values are randomly sampled integers (with respect to the

Random Primitive strategy), which is invalid. According to the

documentation, the valid indices should be obtained from the re-

turned value of torch.nn.MaxPool2d. The bug was detected because

the program only crashes when running on CPU (i.e., Line 6 fails)

but produces a wrong result silently without throwing any error

message on GPU (i.e., Line 5 passes). Thus, the GPU implementa-

tion should add the missing check. The developers have confirmed

this bug and even labelled with łhigh priorityž [4].

Future Work. FreeFuzz currently only focuses on testing the cor-

rectness of single APIs. While API-level testing has many advan-

tages over model-level testing, it may still miss bugs which can

only be triggered by invoking a sequence of APIs. Besides, when

reproducing detected bugs, we find that some tests will fail on one

machine but pass on other machines given exactly the same script

and the same library version. This is probably due to the differences

in underlying infrastructure and hardware. This type of tests are

called implementation-dependent flaky tests, described in prior

work on test flakiness [43, 54, 78]. Future work may explore how to

better detect and fix flaky tests [29ś32] in deep learning libraries.

7 RELATED WORK

DL Model Testing. There has been a growing body of research

for improving the quality of DL models. Various adversarial at-

tack techniques [34, 51, 52, 79] have been proposed to generate the

so-called ładversarial examplesž by adding perturbations impercep-

tible to humans to intentionally fool the classification results given

by DL models. To mitigate such attacks, researchers have also pro-

posed various adversarial defense techniques, including adversarial

training [34, 50, 66], detection [37, 49, 82], and others [68]. Another

recent line of research has explored the possibility of improving the

robustness of neural network from a joint perspective of traditional

software testing and the new scenario of deep learning. DeepX-

plore [56] proposes a metric called neuron coverage for whitebox

testing of DL models and leveraged gradient-based techniques to

search for more effective tests. While various other metrics [41, 47]

have also been proposed recently, the correlation between such

metrics and the robustness of models is still unclear [27, 38, 73].

Meanwhile, there are also a series of work targeting specific ap-

plications, such as autonomous driving, including DeepTest [67],

DeepRoad [77], and DeepBillboard [84]. Various techniques have

also been proposed to detect numerical bugs introduced when build-

ing a DNN model at the architecture level with static analysis [81],

and via gradient propagation [72]. Lastly, researchers have also

explored concolic testing [65] to achieve higher coverage for DNN

models, mutation testing [40, 48] to simulate real faults in DL mod-

els, and test input generation for DNNs [28] by exploiting features

learned from data with generative machine learning. Different from

all such prior work, our work targets the underlying DL libraries,

which are the basis for training and deploying various DL models.

DL Library Testing. CRADLE [57] is the trailblazing work for

testing DL libraries. The main contribution of CRADLE is resolv-

ing the test oracle challenge with differential testing on Keras.

LEMON [69] further advanced CRADLE by proposing mutation

rules to generate more models, as claimed by LEMON to invoke

more code in DL libraries. LEMON’s mutation strategies include

intact-layer and inner-layer mutation rules, which must conform

to strict constraints, e.g., for intact-layer mutation, the layer to be

inserted or deleted should preserve the shapes of input tensors.

Actually, according to our experimental results, the mutation rules

applied by LEMON can hardly help cover more DL library code. A

more recent work on testing DL library is Predoo [80], which only

mutates the input tensor values with all other API parametersman-

ually set up for precision testing. As a result, it was only applied to

7 APIs/operators from TensorFlow and we exclude it in our compar-

ison. To our knowledge, we propose the first general-purpose and

fully automated API-level fuzzing approach for popular DL libraries.

Furthermore, we adopt traditional code coverage for DL library

testing, and reveal various interesting findings (e.g., state-of-the-art

LEMON can hardly improve the DL library code coverage).

8 CONCLUSION

We have proposed FreeFuzz, the first approach to fuzzing DL li-

braries via mining from open source. More specifically, FreeFuzz

considers three different sources: 1) library documentation, 2) de-

veloper tests, and 3) DL models in the wild. Then, FreeFuzz auto-

matically runs all the collected code/models with instrumentation

to trace the dynamic information for each covered API. Lastly, Free-

Fuzz will leverage the traced dynamic information to perform fuzz

testing for each covered API. The extensive study of FreeFuzz on

PyTorch and TensorFlow shows that FreeFuzz is able to automati-

cally trace valid dynamic information for fuzzing 1158 popular APIs,

9X more than state-of-the-art LEMON with 3.5X lower overhead.

FreeFuzz has detected 49 bugs for PyTorch and TensorFlow (with

38 already confirmed by developers as previously unknown bugs).

ACKNOWLEDGMENTS

We thank Darko Marinov, Chenyang Yang, and Matthew Sotoudeh

for their valuable discussions and suggestions. We also appreciate

the insightful comments from the anonymous reviewers. This work

was partially supported by National Science Foundation under

Grant Nos. CCF-2131943 and CCF-2141474, as well as Ant Group.

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang

REFERENCES
[1] Keras, 2015. https://keras.io.
[2] Bazel, 2021. https://github.com/bazelbuild/bazel.
[3] bs4, 2021. https://pypi.org/project/bs4.
[4] Bug Report for torch.nn.MaxUnpool2d, 2021.

https://github.com/pytorch/pytorch/issues/68727.
[5] Definition of Conv2d from Pytorch official documentation, 2021.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html.
[6] Definition of Conv3d from Pytorch official documentation, 2021.

https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html.
[7] Documentation for PyMongo, 2021. https://pymongo.readthedocs.io/en/stable.
[8] FreeFuzz Repository, 2021. https://github.com/ise-uiuc/FreeFuzz.
[9] GCOV, 2021. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[10] Levenshtein distance, 2021. https://en.wikipedia.org/wiki/Levenshtein_distance.
[11] MongoDB: the application data platform, 2021. https://www.mongodb.com.
[12] News, 2021. https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-

self-driving-cars-in-california-after-deadly-crash.
[13] Pytorch Aten, 2021. https://pytorch.org/cppdocs/#aten.
[14] Softmax function, 2021. https://en.wikipedia.org/wiki/Softmax_function.
[15] N. Akhtar and A.Mian. Threat of adversarial attacks on deep learning in computer

vision: A survey. Ieee Access, 6:14410ś14430, 2018.
[16] J.-h. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic inference of static

types for ruby. ACM SIGPLAN Notices, 46(1):459ś472, 2011.
[17] E. Andreasen, C. S. Gordon, S. Chandra, M. Sridharan, F. Tip, and K. Sen. Trace

typing: An approach for evaluating retrofitted type systems. In 30th European
Conference on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

[18] A. Arcuri and L. Briand. A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering. In 2011 33rd International Conference
on Software Engineering (ICSE), pages 1ś10. IEEE, 2011.

[19] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing
as markov chain. IEEE Transactions on Software Engineering, 45(5):489ś506, 2017.

[20] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[21] B. Brosgol. Do-178c: the next avionics safety standard. ACM SIGAda Ada Letters,
31(3):5ś6, 2011.

[22] N. Carlini, A. Athalye, N. Papernot,W. Brendel, J. Rauber, D. Tsipras, I. Goodfellow,
A. Madry, and A. Kurakin. On evaluating adversarial robustness. arXiv preprint
arXiv:1902.06705, 2019.

[23] J. Chen, H. Ma, and L. Zhang. Enhanced compiler bug isolation via memoized
search. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, pages 78ś89, 2020.

[24] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan. Practical accuracy esti-
mation for efficient deep neural network testing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 29(4):1ś35, 2020.

[25] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q. Zhou.
Metamorphic testing: A review of challenges and opportunities. ACM Computing
Surveys (CSUR), 51(1):1ś27, 2018.

[26] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[27] Y. Dong, P. Zhang, J. Wang, S. Liu, J. Sun, J. Hao, X. Wang, L. Wang, J. Dong, and
T. Dai. An empirical study on correlation between coverage and robustness for
deep neural networks. In 2020 25th International Conference on Engineering of
Complex Computer Systems (ICECCS), pages 73ś82. IEEE, 2020.

[28] I. Dunn, H. Pouget, D. Kroening, and T. Melham. Exposing previously unde-
tectable faults in deep neural networks. arXiv preprint arXiv:2106.00576, 2021.

[29] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic. Testing probabilistic program-
ming systems. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 574ś586, 2018.

[30] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic. Detecting
flaky tests in probabilistic and machine learning applications. In Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 211ś224, 2020.

[31] S. Dutta, A. Shi, and S. Misailovic. Flex: fixing flaky tests in machine learning
projects by updating assertion bounds. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 603ś614, 2021.

[32] S. Dutta, W. Zhang, Z. Huang, and S. Misailovic. Storm: program reduction for
testing and debugging probabilistic programming systems. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 729ś739, 2019.

[33] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual
prediction with lstm. Neural computation, 12(10):2451ś2471, 2000.

[34] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[35] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645ś6649. Ieee, 2013.

[36] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep learning
techniques for autonomous driving. Journal of Field Robotics, 37(3):362ś386, 2020.

[37] S. Gu, P. Yi, T. Zhu, Y. Yao, and W. Wang. Detecting adversarial examples in deep
neural networks using normalizing filters. UMBC Student Collection, 2019.

[38] F. Harel-Canada, L. Wang, M. A. Gulzar, Q. Gu, and M. Kim. Is neuron coverage a
meaningful measure for testing deep neural networks? In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 851ś862, 2020.

[39] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[40] N. Humbatova, G. Jahangirova, and P. Tonella. Deepcrime: mutation testing
of deep learning systems based on real faults. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 67ś78,
2021.

[41] J. Kim, R. Feldt, and S. Yoo. Guiding deep learning system testing using surprise
adequacy. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1039ś1049. IEEE, 2019.

[42] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz testing. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 2123ś2138, 2018.

[43] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell. A large-scale longitu-
dinal study of flaky tests. Proceedings of the ACM on Programming Languages,
4(OOPSLA):1ś29, 2020.

[44] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An extensive study
of static regression test selection in modern software evolution. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 583ś594, 2016.

[45] X. Li, W. Li, Y. Zhang, and L. Zhang. Deepfl: Integrating multiple fault diagnosis
dimensions for deep fault localization. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 169ś180, 2019.

[46] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang. Coverage-guided tensor compiler
fuzzing with joint ir-pass mutation. arXiv preprint arXiv:2202.09947, 2022.

[47] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu,
et al. Deepgauge: Multi-granularity testing criteria for deep learning systems. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 120ś131, 2018.

[48] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao,
et al. Deepmutation: Mutation testing of deep learning systems. In 2018 IEEE
29th International Symposium on Software Reliability Engineering (ISSRE), pages
100ś111. IEEE, 2018.

[49] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, D. Song,
M. E. Houle, and J. Bailey. Characterizing adversarial subspaces using local
intrinsic dimensionality. arXiv preprint arXiv:1801.02613, 2018.

[50] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[51] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accu-
rate method to fool deep neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2574ś2582, 2016.

[52] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
The limitations of deep learning in adversarial settings. In 2016 IEEE European
symposium on security and privacy (EuroS&P), pages 372ś387. IEEE, 2016.

[53] J. Park, D. Winterer, C. Zhang, and Z. Su. Generative type-aware mutation
for testing smt solvers. Proceedings of the ACM on Programming Languages,
5(OOPSLA):1ś19, 2021.

[54] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. A survey of flaky tests.
ACM Transactions on Software Engineering and Methodology (TOSEM), 31(1):1ś74,
2021.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32:8026ś
8037, 2019.

[56] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing
of deep learning systems. In proceedings of the 26th Symposium on Operating
Systems Principles, pages 1ś18, 2017.

[57] H. V. Pham, T. Lutellier, W. Qi, and L. Tan. CRADLE: Cross-Backend Validation
to Detect and Localize Bugs in Deep Learning Libraries. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 1027ś1038, 2019.

[58] M. Pradel, P. Schuh, and K. Sen. Typedevil: Dynamic type inconsistency analysis
for javascript. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 314ś324. IEEE, 2015.

[59] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray. Mtfuzz: fuzzing with a multi-
task neural network. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software

Free Lunch for Testing:

Fuzzing Deep-Learning Libraries from Open Source ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

Engineering, pages 737ś749, 2020.
[60] D. Shen, G. Wu, and H.-I. Suk. Deep learning in medical image analysis. Annual

review of biomedical engineering, 19:221ś248, 2017.
[61] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484ś
489, 2016.

[62] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[63] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and Z. Su. Fully auto-
mated functional fuzzing of android apps for detecting non-crashing logic bugs.
Proceedings of the ACM on Programming Languages, 5(OOPSLA):1ś31, 2021.

[64] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face recognition with very
deep neural networks. arXiv preprint arXiv:1502.00873, 2015.

[65] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening. Concolic
testing for deep neural networks. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering, pages 109ś119, 2018.

[66] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[67] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In Proceedings of the 40th international confer-
ence on software engineering, pages 303ś314, 2018.

[68] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang. Adversarial sample detection
for deep neural network through model mutation testing. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 1245ś1256. IEEE,
2019.

[69] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang. Deep learning library testing
via effective model generation. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 788ś799, 2020.

[70] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen, X. Xie, G. Pu, and T. Liu.
Memlock: Memory usage guided fuzzing. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pages 765ś777, 2020.

[71] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

[72] M. Yan, J. Chen, X. Zhang, L. Tan, G. Wang, and Z. Wang. Exposing numerical
bugs in deep learning via gradient back-propagation. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 627ś638, 2021.
[73] S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, and X. Zhang. Correlations between

deep neural network model coverage criteria and model quality. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 775ś787, 2020.

[74] Y. Yang, X. Xia, D. Lo, and J. Grundy. A survey on deep learning for software
engineering. arXiv preprint arXiv:2011.14597, 2020.

[75] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang. Deep just-in-time defect prediction:
how far are we? In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 427ś438, 2021.

[76] L. Zhang. Hybrid regression test selection. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 199ś209, 2018.

[77] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad: Gan-based
metamorphic testing and input validation framework for autonomous driving
systems. In 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 132ś142. IEEE, 2018.

[78] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi. Domain-specific
fixes for flaky tests with wrong assumptions on underdetermined specifications.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 50ś61. IEEE, 2021.

[79] Q. Zhang, Y. Ding, Y. Tian, J. Guo, M. Yuan, and Y. Jiang. Advdoor: Adversarial
backdoor attack of deep learning system. 2021.

[80] X. Zhang, N. Sun, C. Fang, J. Liu, J. Liu, D. Chai, J. Wang, and Z. Chen. Predoo:
precision testing of deep learning operators. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 400ś
412, 2021.

[81] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie. Detecting numerical
bugs in neural network architectures. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 826ś837, 2020.

[82] Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, and J. Sun. Attack as defense: Charac-
terizing adversarial examples using robustness. arXiv preprint arXiv:2103.07633,
2021.

[83] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu. Squirrel: Testing
database management systems with language validity and coverage feedback. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 955ś970, 2020.

[84] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and C. Liu. Deepbill-
board: Systematic physical-world testing of autonomous driving systems. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages
347ś358. IEEE, 2020.

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries for Deep Learning Libraries
	2.2 Fuzzing Deep Learning libraries

	3 Approach
	3.1 Code Collection
	3.2 Instrumentation
	3.3 Mutation
	3.4 Test Oracle

	4 Experimental Setup
	4.1 Implementation
	4.2 Metrics

	5 Result Analysis
	5.1 RQ1: Input Source Study
	5.2 RQ2: Coverage Trend Analysis
	5.3 RQ3: Different Mutation Strategies
	5.4 RQ4: Comparison with Prior Work
	5.5 RQ5: Bugs Detected
	5.6 Threats to validity

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

