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ABSTRACT

Deep learning (DL) systems can make our life much easier, and
thus are gaining more and more attention from both academia and
industry. Meanwhile, bugs in DL systems can be disastrous, and
can even threaten human lives in safety-critical applications. To
date, a huge body of research efforts have been dedicated to test-
ing DL models. However, interestingly, there is still limited work
for testing the underlying DL libraries, which are the foundation
for building, optimizing, and running DL models. One potential
reason is that test generation for the underlying DL libraries can
be rather challenging since their public APIs are mainly exposed
in Python, making it even hard to automatically determine the
API input parameter types due to dynamic typing. In this paper,
we propose FreeFuzz, the first approach to fuzzing DL libraries
via mining from open source. More specifically, FreeFuzz obtains
code/models from three different sources: 1) code snippets from the
library documentation, 2) library developer tests, and 3) DL models
in the wild. Then, FreeFuzz automatically runs all the collected
code/models with instrumentation to trace the dynamic informa-
tion for each covered API, including the types and values of each
parameter during invocation, and shapes of input/output tensors.
Lastly, FreeFuzz will leverage the traced dynamic information to
perform fuzz testing for each covered API. The extensive study of
FreeFuzz on PyTorch and TensorFlow, two of the most popular DL
libraries, shows that FreeFuzz is able to automatically trace valid
dynamic information for fuzzing 1158 popular APIs, 9X more than
state-of-the-art LEMON with 3.5X lower overhead than LEMON.
To date, FreeFuzz has detected 49 bugs for PyTorch and TensorFlow
(with 38 already confirmed by developers as previously unknown).
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1 INTRODUCTION

Deep Learning (DL) has been playing a significant role in various
application domains, including image classification [39, 62], natural
language processing [33, 35], game playing [61], and software engi-
neering [23, 45, 74, 75]. Through such applications, DL has substan-
tially improved our daily life [20, 36, 60, 64, 71]. The great success
achieved by DL is attributed to the proposal of more and more
advanced DL models, the availability of large-scale datasets, and
inevitably, the continuous development of DL libraries. Meanwhile,
deploying a DL model without thorough testing can be disastrous
in safety-critical applications. For example, a critical bug in the DL
system in Uber’s self-driving cars has unfortunately taken the life
of a pedestrian [12].

Due to the popularity of DL models and the critical impor-
tance of their reliability, a growing body of research efforts have
been dedicated to testing DL models, with focus on adversarial
attacks [15, 22, 34, 50-52] for model robustness, the discussion on
various metrics for DL model testing [38, 41, 47, 56, 73], and testing
DL models for specific applications [67, 77, 84]. Meanwhile, both
running and testing DL models inevitably involve the underlying
DL libraries, which serve as central pieces of infrastructures for
building, training, optimizing and deploying DL models. For exam-
ple, the popular PyTorch and TensorFlow DL libraries, with 50K
and 159K stars on GitHub, are by far two of the most popular DL
libraries for developing and deploying DL models. Surprisingly,
despite the importance of DL library reliability, there is only limited
work for testing DL libraries to date. For example, CRADLE [57]
leverages existing DL models for testing Keras [1] and its back-
ends, and resolves the test oracle problem via differential testing.
Later, LEMON [69] further augments CRADLE via leveraging vari-
ous model mutation rules to generate more diverse DL models to
invoke more library code to expose more possible DL library bugs.

Despite their promising results, existing work on testing DL li-
braries suffers from the following limitations. Firstly, only limited
sources for test input generation are considered. For example, CRA-
DLE [57] uses 30 pre-trained DL models and LEMON [69] uses only
12 DL models. Our later empirical results show that they can at most
cover 59 APIs for TensorFlow, leaving a disproportionately large
number of APIs uncovered by such existing techniques. Secondly,
the state-of-the-art model mutation technique proposed by LEMON
can be rather limited for generating diverse test inputs for DL APIs.
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For example, the intact-layer mutation [69] requires that the output
tensor shape of the layer/API to be added/deleted should be identi-
cal to its input tensor shape. As a consequence, only a fixed pattern
of argument values for a limited set of APIs are explored in model-
level mutation, which substantially hinders its bug-finding abilities.
Thirdly, model-level testing can be rather inefficient. The inputs
for the original/mutated models are obtained from the external DL
datasets, and each of them will need to be completely executed
end-to-end to get the final prediction results for differential testing,
which can consume hours even for a single mutated model. Besides,
it requires an additional bug localization procedure to find the spe-
cific API invocation causing the inconsistencies between different
backends in the original/mutated DL models. During localization,
carefully-designed metrics are required to eliminate false positives.
The false positives can be due to uncertainty and variances (e.g.
floating-point precision loss) in DL APIs, further amplified in the
model-level testing scenario.

In this work, we overcome the aforementioned limitations for
testing DL libraries via fully automated API-level fuzz testing. Com-
pared with prior model-level DL library testing which resembles
system testing, API-level testing is more like unit testing, which is at
a much finer-grained level. The benefit of API-level testing is that it
can be a more general and systematic way for testing DL libraries.
With API instrumentation, we can get various and diverse input
sources from open source to serve the purpose of testing. Moreover,
API-level mutation is free of unnecessarily strict constraints on
mutation compared with model-level mutation. Besides, API-level
mutation neither depends on iterating over external datasets, nor
requires complex localization procedures since testing one API at a
time does not incur accumulated floating-point precision loss.

One main challenge that we resolve for API-level fuzz testing of
DL libraries is fully automated test input generation for DL APIs.
The public APIs in DL libraries are mainly exposed in Python, mak-
ing it difficult to automatically determine the input parameter types
due to dynamic typing. To this end, we propose FreeFuzz, the first
approach to fuzzing DL libraries via mining from actual model
and API executions. More specifically, we consider the following
sources: 1) code snippets from the library documentation, 2) library
developer tests, and 3) DL models in the wild. FreeFuzz records the
dynamic information for all the input parameters for each invoked
API on the fly while running all the collected code/models. The
dynamic information includes the types, values of the arguments,
and the shapes of tensors. The traced information can then form
a value space for each API, and an argument value space where
values can be shared across arguments of similar APIs during test-
ing. Lastly, FreeFuzz leverages the traced information to perform
mutation-based fuzzing based on various strategies (i.e., type muta-
tion, random value mutation, and database value mutation), and
detects bugs with differential testing and metamorphic testing on
different backends. Our initial evaluation of FreeFuzz on PyTorch
and TensorFlow shows that FreeFuzz can automatically trace valid
dynamic information for fuzzing 1158 out of all 2530 considered
APIs, while state-of-the-art techniques can at most cover 59 APIs
for TensorFlow [57, 69]. To date, we have submitted 49 bug reports
(detected by FreeFuzz) to developers, with 38 already confirmed
by developers as previously unknown bugs and 21 already fixed to
date.
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In summary, our paper makes the following contributions:

e Dimension. This paper opens a new dimension for fully
automated API-level fuzzing of DL libraries via mining from
actual code and model executions in the wild.

e Technique. We implement a practical API-level DL library
fuzzing technique, FreeFuzz, which leverages three different
input sources, including code snippets from library docu-
mentation, library developer tests, and DL models in the
wild. FreeFuzz traces the dynamic API invocation informa-
tion of all input sources via code instrumentation for fuzz
testing. FreeFuzz also resolves the test oracle problem with
differential testing and metamorphic testing.

Study. Our extensive study on the two most popular DL

libraries, PyTorch and TensorFlow, shows that FreeFuzz can

successfully trace 1158 out of 2530 APIs, and effectively de-
tect 49 bugs, with 38 already confirmed by developers as
previously unknown, and 21 already fixed.

2 BACKGROUND

2.1 Preliminaries for Deep Learning Libraries

User

class MyNet(nn.Module):
self.11 = Conv2d(32, 16, 3)
self.12 = Maxpool2d((3,2),2) Python
Model Definition def foruard(self, x):
X = self.11(x)
x = self.12(x)
return F.relu(x) C
++
class MyDataset(Dataset):
def _getitem_ (self, idx):
Loading Dataset image = read_image(-.) )
image = normalize(image
label = read_label(..) Aten CuDNN

net = MyNet()
for data, label in MyDataset:

P out = net(data)
Training / Inference| | 705" "CE000 o, 1aben CPU| |GPU| |Mobile

1oss.backward()

Figure 1: Example DL library (PyTorch)

In this section, we will give a brief introduction to the prelimi-
naries of deep learning libraries based on PyTorch [55].
Training and Inference. As shown on the left-hand side of Fig-
ure 1, developers usually leverage DL libraries to support the train-
ing and inference tasks on Deep Neural Networks (DNNs). Concep-
tually, DNNs are composed of multiple layers, which are what the
adjective “deep” in deep learning refers to. In the model definition
part of Figure 1, Conv2d and Maxpool2d are the APIs invoked to add
two layers into the example DNN. Then the forward function defines
how the input data should flow in the defined layers. Before the ac-
tual training and inference, the datasets should also be loaded with
necessary pre-processing, e.g., torchvision.transforms.Normalize
is a crucial step in data pre-processing, which aims to rescale the
values of input and target variables for better performance.

Training is the process for a DNN to learn how to perform a task
(with its weights updated along the way). For example, for image
classification, by feeding a DNN with known data and correspond-
ing labels, we can obtain a trained DL model. Training a DL model
involves iterating over the dataset, defining a loss function (e.g.,
torch.nn.CrossEntropyLoss) to calculate the difference between the
network outputs and its expected outputs (according to the labels),
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CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, padding_mode="'zeros ",
device=None, dtype=None)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Cy, H, W) and output
(N, Couty Houty Wout) can be precisely described as:

Cin—1
out(Ni, Cout;) = bias(Cou;) + Y weight(Cou;, k) * input(IV;, k)
k=0

Figure 2: The API definition for 2D-Convolution in PyTorch

and updating the weights of the DNN via a back-propagation pro-
cedure (i.e., loss.backward). Different from the training phase, in-
ference is the process of using a trained DL model to complete a
certain task (with its weights unchanged), e.g., making predictions
against previously unseen data based on the trained model.
Abstraction for Hardware. Shown on the right-hand side of
Figure 1, DL libraries (such as PyTorch and TensorFlow) usually
provide a unified abstraction for different hardware, which can be
easily configured by the end users to perform the actual execution.
They usually integrate different backends in DL libraries for flex-
ibility and performance. Take PyTorch as an example, Aten [13]
is a backend implemented in C++ serving as a tensor library for
hundreds of operations. It has specialized low-level implementa-
tions for hardware including both CPUs and GPUs. Besides Aten,
CuDNN [26] is another backend integrated into PyTorch, which
is a widely-used third-party high-performance library, developed
specifically for deep learning tasks on Nvidia GPUs. Furthermore, as
shown in Figure 1, PyTorch now not only supports general-purpose
devices such as CPUs and GPUs, but also allows users to run DL
models on mobile devices due to the growing need to execute DL
models on edge devices.

2.2 Fuzzing Deep Learning libraries

As shown in the previous subsection, hundreds or even thousands
of APIs are implemented in a typical DL library to support various
tasks. Therefore, it is almost impossible to manually construct test
inputs for each APL. Meanwhile, most public APIs from DL libraries
are exposed in Python due to its popularity and simplicity, which
makes it extremely challenging to automatically generate test inputs
given the API definitions. The reason is that we cannot determine
the types of the input parameters statically because Python is a dy-
namically typed language. Take the operator 2D-Convolution from
PyTorch as an example, the definition of which is shown in Figure 2,
a snapshot captured from Pytorch official documentation [5]. From
the definition of 2D-Convolution shown Figure 2, we do not know
what types of parameters in_channels, out_channels, kernel_size
are. Also, one may conclude that parameter stride must be an integer
(inferred from the default value stride=1) and parameter padding
must also be an integer (inferred from the default value padding=0).
However, this is not the case actually. The documentation below
(not included in Figure 2 due to space limitations) says that “stride
controls the stride for the cross-correlation, a single number or a
tuple” and “padding controls the amount of padding applied to the
input. It can be either a string ‘valid’, ‘same’ or a tuple of ints giving
the amount of implicit padding applied on both sides”. In fact, the
parameters kernel_size, stride, padding, dilation can be either a
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single int or a tuple of two ints, and padding can even be a string
besides the two types mentioned above. Therefore, there can exist
multiple valid types for a specific argument, and the valid types of
arguments cannot be easily inferred from the definition.

Due to the above challenge of test generation for DL APIs,
CRADLE [57] proposes to directly leverage existing DL models
to test DL libraries. The insight of CRADLE is to check the cross-
implementation inconsistencies when executing the same DL mod-
els on different backends to detect DL library bugs. It uses 30 mod-
els and 11 datasets. After detecting inconsistencies when execut-
ing models between different backends by feeding the input from
datasets, a confirmation procedure to identify bug-revealing in-
consistencies and a localization procedure to precisely localize the
source of the inconsistencies have to be launched. In such model-
level testing, where inconsistencies can be either due to real bugs or
accumulated floating point precision loss propagated through the
execution of multiple APIs, carefully designed metrics are needed
to distinguish real bugs from false positives. Furthermore, such
model-level testing technique only covers a limited range of APIs
in DL libraries, e.g., all models used by CRADLE only cover 59 APIs
for TensorFlow.

Based on CRADLE, LEMON [69] advances testing DL libraries
by proposing model-level mutation. A set of model-level mutation
rules are designed to generate mutated models, with the goal of
invoking more library code. Model-level mutation is composed of
intact-layer mutation and inner-layer mutation. The intact-layer
mutation rules pose very strict constraints on the set of APIs to
be mutated and the arguments passed to them. As stated in the
LEMON paper [69], one explicit constraint for intact-layer mutation
is that the output shape of the API to be inserted and the input
shape of it must be identical. As a result, only a limited set of APIs
with fixed parameters can used for mutation in order to meet such
constraints, which substantially hinders LEMON’s ability in bug-
finding. Moreover, selecting such APIs with specific arguments for
layer-level mutation requires expert knowledge of the input-output
relation of each API. For example, only a limited range of APIs
(e.g., convolution, linear and pooling) with fixed parameters can be
added or deleted during model-level mutation. According to our
later study, LEMON’s various mutation rules can only help cover 5
more APIs in total for all the studied models.

3 APPROACH

Figure 3 shows the overview of our approach, FreeFuzz, which is
mainly composed of four different stages. The first stage is code
collection (Section 3.1). As shown in the figure, FreeFuzz obtains
code from three different sources: 1) code snippets from library
documentation, 2) library developer tests, and 3) various DL models
in the wild, all of which can be obtained from open source automat-
ically. The second stage is dynamic tracing with instrumentation
(Section 3.2). FreeFuzz first hooks the invocation of APIs, and then
executes the code collected in the first stage to trace various dy-
namic execution information for each API invocation, including
value and type information for all parameters of all executed APIs.
As a result of this stage, FreeFuzz constructs the type space, API
value space, and argument value space for the later fuzzing stage.
The third stage is mutation-based fuzzing (Section 3.3). Basically,
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# in_channel -> 32, 64, .. 1
1 = torch.nn.Conv2d(in_channels,..) ¥ Tensors Tensors
input = torch.randn(.., dtype=float16) <float16> <float32>

Figure 3: FreeFuzz overview

FreeFuzz effectively generates mutants for the test inputs (i.e., the
argument lists) used to invoke the targeted APIs, based on the
traced information collected in the second stage. The mutation
strategies are composed of type mutation, random value mutation,
and database value mutation. The last stage is running all the gen-
erated tests with oracles (Section 3.4). FreeFuzz resolves the test
oracle problem by differential testing and metamorphic testing on
different DL library backends and hardware. FreeFuzz is able to
detect various types of bugs, including wrong-computation bugs,
crash bugs, and performance bugs for DL libraries.

3.1 Code Collection

FreeFuzz is a general approach and can work with dynamic API
information traced from various types of code executions. In this pa-
per, we mainly explore code collection from the following sources:
Code Snippets from Library Documentation. In order to help
users better understand the usage of APIs, almost all DL libraries
will provide detailed documentations on how to invoke the APIs.
Usually, detailed specifications written in natural languages are
presented to show the usage of each parameter of each API in detail.
Meanwhile, to better help the developers, such natural-language-
based specifications are also often accompanied by code snippets
for better illustrations. To illustrate, an example code snippet for
invoking the 2D-Convolution API within PyTorch is shown in
Figure 4. Of course, it is worth noting that not all APIs have example
code and example code cannot enumerate all possible parameter
values. Therefore, it is also important to consider other sources.
>>> # non-square kernels and unequal stride and with padding and dilation

>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))

>>> input = torch.randn(20, 16, 50, 100)
>>> output = m(input)

Figure 4: Example Code for 2D-Convolution from PyTorch’s
Documentation

Library Developer Tests. Software testing has become the most
widely adopted way for quality assurance of software systems in
practice. As a result, DL library developers also write/generate a
large number of tests to ensure the reliability and correctness of
DL libraries. For example, the popular TensorFlow and PyTorch
DL libraries have 1493 and 1420 tests for testing the Python APIs,

respectively. We simply run all such Python tests as they dominate
DL library testing and this work targets Python API fuzzing.

DL Models in the Wild. Popular DL libraries have been widely
used for training and deploying DL models in the wild. Therefore,
we can easily collect a large number of models for a number of
diverse tasks, each of which will cover various APIs during model
training and inference. More specifically, from popular repositories
in Github, we obtain 102 models for PyTorch, and 100 models for
TensorFlow. These models are diverse in that they cover various
tasks such as image classification, natural language processing, rein-
forcement learning, autonomous driving, etc. The detailed informa-
tion about the leveraged models can be found in our repository [8].

3.2 Instrumentation

In this phase, FreeFuzz performs code instrumentation to collect
various dynamic execution for test-input generation. We first get
the list of Python APIs to be instrumented from the official docu-
mentations of the studied DL libraries in this work, i.e., PyTorch
and TensorFlow. More specifically, we hook the invocation of the
list of 630 APIs from PyTorch and 1900 APIs from TensorFlow for
dynamic tracing. The list includes all the necessary APIs for train-
ing and inference of neural networks as well as performing tensor
computations. FreeFuzz is able to collect dynamic information for
each API invoked by all the three sources of code/model executions,
including the type and value for each parameter. No matter how
the APIs are invoked (e.g., executed in code snippets, tests, or mod-
els), the corresponding runtime information of the arguments is
recorded to form the following type/value spaces for fuzzing:

Customized Type Space. FreeFuzz constructs our customized
type monitoring system FuzzType for API parameters by dynami-
cally recording the type of each parameter during API invocation.
Compared with Python’s original type system, the customized type
system is at a finer-grained level, which can better guide the next
mutation phase for fuzzing. In Python’s dynamic type system, the
type of parameter stride=(2,1) (shown in Figure 4) can be calcu-
lated by running type((2,1)). This will return <class ’tuple’>,
which does not encode all the necessary useful information for
fuzzing because we only know that it is a tuple. In our type monitor-
ing system FuzzType, we collect such information at a finer-grained
level: FuzzType ((2,1)) returns (int, int) (a tuple of two integers).
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Similarly, for tensors, executing type(torch.randn(20,16,50,100))
simply returns <class ’torch.Tensor’> in Python’s type system
while we can obtain finer-grained type Tensor<4,float32> (a 4-
dimensional tensor with torch.float32 as its data type) by running
FuzzType (torch.randn(20,16,50,100)). Our customized type mon-
itoring system used to guide API-level fuzzing of DL libraries is
formally defined in Figure 5.

DT ::= Tensor Data Types
int32 | int64 | int8 | ... int
float32 | float16 | tf32 | bfloatl16 | ... float

complex32 | complex64 | ... complex

other numeric types
Tu= Types

tensor<n, DT> n-dimensional tensor

(TjEL-my tuple of typed-values

[Tiiel---n] list of typed-values

int | bool | float | str | ... Python built-in types

Figure 5: Customized Type Monitoring System FuzzType

Note that type inference for dynamically typed languages (such
as Ruby and JavaScript) via dynamic program tracing has been
explored in the literature for traditional applications [16, 17, 58].
In this work, we further extend such techniques for fuzzing deep
learning libraries. Different from prior work, FreeFuzz collects dy-
namic traces from various sources, including developer tests, code
snippets documents, and DL models in the wild; also, FreeFuzz aug-
ments the Python built-in types to trace and mutate tensor shapes
and heterogeneous data types.

API Value Space. FreeFuzz constructs the value space of each
API from the concrete values passed into the API during dynamic
tracing. One entry in the API value space stands for one API in-
vocation with its corresponding list of concrete arguments, which
is later used in our mutation phase as the starting point to gen-
erate more mutants/tests. Take Figure 3 as an example, entry1
is added to the value space of the API torch.nn.Conv2d after exe-
cuting the documentation code in the code collection phase. More
specifically, in_channels=16, out_channels=33, kernel_size=(3,5)
together with some other values (not shown in Figure 3 due to lim-
ited space) are recorded in entry1. The return value of nn.Conv2d
is a callable object, and it expects a tensor as its input, which is ini-
tialized as input=torch.randn(20,16,50,100), indicating that input
is a four-dimensional tensor with (20,16,50,100) as its shape and
the values are randomly initialized. Note that we also record the
corresponding shape and data type information for tensors, i.e.,
Input_tensor_shape=(20,16,50,100), Input_tensor_type=float32.
All the function arguments mentioned above constitute one entry
in the value space for nn.Conv2d. Each invocation can add a new
entry into the value space of the invoked APL

Argument Value Space. As shown in Figure 3, the argument
value space is composed of different argument names and types (e.g.
in_channels of type int), together with their values recorded when
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invoking different APIs. For example, for the argument in_channels
of the API torch.nn.Conv2d, the values recorded include 16,1, etc.
The argument value space is constructed based on the informa-
tion collected in the API value space to speed up the queries in
our database value mutation strategy discussed later. More specifi-
cally, argument value space aggregates values from different APIs
based on argument names. The argument value space is formed
based on the idea that values for an argument of one API can
serve as potentially reasonable values for the argument of other
similar APIs. For example, torch.nn.Conv2d and torch.nn.Conv3d
can be considered similar. The API definition of 3D-Convolution is

torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’,

device=None, dtype=None), and many parameters share the same
names as torch.nn.Conv2d (shown in Figure 2). The construction of
the argument value space is useful for the database value mutation
to be introduced in the next section.

3.3 Mutation

In this phase, FreeFuzz applies various mutation rules to mutate
the argument values traced in the second phase to generate more
tests for fuzzing DL libraries more thoroughly.

Mutation Rules. The mutation rules for FreeFuzz are composed
of two parts: type mutation and value mutation, shown in Tables 1
and 2, respectively. Type mutation strategies include Tensor Dim
Mutation that mutates nq-dimensional tensors to ny-dimensional
tensors, Tensor Dtype Mutation that mutates the data types of ten-
sors without changing their shapes, Primitive Mutation that mutates
one primitive type into another, as well as Tuple Mutation and List
Mutation that mutate the types of elements in collections of hetero-
geneous objects.

Value mutation strategies are divided into two classes: one is
random value mutation, and the other is database value mutation.
Random value mutation strategies include Random Tensor Shape
(using random integers as shapes to mutate n-dimensional tensors),
Random Tensor Value (using random values to initialize tensors),
Random Primitive, Random Tuple and Random List. Database muta-
tion strategies include Database Tensor Shape and Database Tensor
Value, which randomly pick the according shapes or values from
database of argument value space, together with Database Primi-
tive, Database Tuple, and Database List, which randomly pick the
corresponding entries from the argument value space based on the
argument names and types. Note that all the mutation rules are
type-aware, i.e., they are applied according to the types.
Algorithm. Shown in Algorithm 1, the input to our fuzzing algo-
rithm is the API to be mutated, entries in the API value space VS, and
the database of argument value space DB. Of course, we also need
to define the mutation rules as described above. In each iteration,
the algorithm always samples the next entry from the API value
space VS[API] to start the mutation process (Line 3). FreeFuzz then
computes the number of arguments argNum in the entry (Line 4), and
randomly selects an integer between 1 and argNum as the number of
arguments to be mutated, i.e., numMutation (Line 5). Then, FreeFuzz
starts an inner loop to mutate numMutation arguments to generate
a new test. The arguments are mutated one by one via randomly
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Table 1: Type Mutation

Mutation Strategies T Tz
Tensor Dim Mutation tensor{ny, DT) tensor{ny, DT) (|nz — n1| > 0)
Tensor Dtype Mutation tensor{n,DTy) tensor{n,DT) (DT> + DTy)
Primitive Mutation Ty = int|bool|float|str T (T #Th)
Tuple Mutation (T}t (type_mutate(T;)'€1m)
List Mutation [Y"iiel"'"] [type_mutate(T;) 1"
Table 2: Value Mutation
Mutation Strategies T \4
Random Tensor Shape tensor{n, DT) tensor (shape = [randint()"], datatype = DT)
Random Tensor Value | o : tensor{n,DT) | tensor(shape = v.shape, datatype = DT).rand()
Random Primitive int|float|bool|str rand (int|float|bool|str)
Random Tuple (TiiEI“‘") (value_mutate(T;) €1-1)
Random List [Y“iia"'”] [value_mutate(T;) €1-"]
Database Tensor Shape tensor{n, DT) pick_shape(database, tensor(n, DT}))
Database Tensor Value tensor{n, DT) pick_value(database, tensor{n, DT))
Database Primitive int|float|str pick(database, int|float|str, argname)
Database Tuple (Tf““'") pick(database, (11, Tz, ..., T,,), argname)
Database List [T‘ii€1"'”] pick(database, [T}, Tz, ..., Ty,], argname)

selecting a random argument index argIndex (Line 7). After deter-
mining the argument to be mutated each time, FreeFuzz gets the
type of it using our customized type system FuzzType, the argument
name argName, and the argument value argValue (Lines 8, 9 and 10).
The type mutation will be performed nondeterministically - if it is
enabled, FreeFuzz will mutate the argument type according to our
type mutation strategies (Line 12). selectRandOverDB is another ran-
dom function called to determine whether to perform random value
mutation (Line 14) or database value mutation (Line 16) according
to the corresponding mutation rules. After mutating numMutation
arguments for entry, FreeFuzz generates a new test, which will be
executed for testing the API (Line 19). Then, the main loop will
continue to generate the next test until the termination criterion is
met, e.g., generating a speciﬁc number of new tests.

We next discuss function ValueRuleg;, in more detail to explain
the process for mutating the value of an argument for a specific
API based on the argument value space. Shown in the algorithm,
the function takes the API name API, the type of argument argType,
the name of the argument argName, and the database DB, as input
parameters. It then queries the database to collect all the APIs
which share the same argument name and type as the current API
under test (Line 21). Next, FreeFuzz computes the text similari-
ties between the current API under test and each of the returned
APIs based on the Levenshtein Distance [10] between API defini-
tions (Line 22). Take the query ValueRule,p, (torch.nn.MaxPool2d,
[int, int], ‘dilation’, DB) as an example, the text similarity
is computed using API definitions of those containing the same
argument name (’dilation’) and the type (tuple of two integers).
More specifically, the similarity between the current API under
test and API;, one of the returned APIs, can be computed by the
following formula:

Levenshtein(API;, API)

Sim(API;, API) =1 -
im(API, ) Max(Len(API;), Len(API))

where function Levenshtein computes Levenshtein Distance be-
tween the two strings representing API; and API, and it is divided
by the maximum length of the two strings. The whole formula com-
putes the text similarity of the two API definitions. For our example,

the result shows that the definition of torch.nn.Conv2d has the high-
est text similarity with the target API torch.nn.MaxPool2d(kernel_size,
stride=None, padding=0, dilation=1, return_indices=False,
ceil_mode=False). Then we normalize the text similarities to trans-
form them into probabilities (summing up to 1) for selecting similar
APIs (Line 23). The basic idea is that APIs with higher similarity
scores should get higher probabilities to be selected. FreeFuzz does
this by performing the Softmax computation [14]:

Sim(API;,API)

e
Prob(API;) = sm_ Sim(API; API)
j=1

where m denotes the number of APIs sharing the same argument
name and type as the current API under test. After sampling a
random API according to the probabilities (Line 24), the values
are then randomly sampled from the values recorded for the API
(Line 25). In this way, the values stored in the database from one
API can be transferred to serve as the arguments for another APL

3.4 Test Oracle

In this phase, we leverage the following ways to resolve the test
oracle problem and detect potential DL library bugs:
Wrong-Computation Bugs. We consider three modes to run each
API: CPU, GPU with CuDNN disabled, and GPU with CuDNN
enabled. In this way, we can detect wrong-computation results by
comparing the results between different execution modes.
Performance Bugs. We leverage metamorphic relations [25, 63]
to detect performance bugs with FreeFuzz. More and more data
types and hardware accelerators have been proposed in order to
boost the DL library performance in recent years. Several floating
point data types are specially designed for tensors, including float32,
float16, tf32, bfloat16, which also appear in our aforementioned
tensor data type system. We observe the fact that on the same
machine (hardware) M, APIs with the same function arguments
args and tensors of the same shapes tensor(n, DT) tend to hold the
following metamorphic relationship in terms of time cost:

precision(DTy) < precision(DT;) =
cost(M, API, args, tensor{n,DT;)) < cost(M, API, args, tensor(n, DT,))
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Algorithm 1: Mutation algorithm

Input:
API # the API under test to be mutated
VS # API value space
DB # argument value space

Define:
TypeRule # type mutation strategies
ValueRule, ;4 # random value mutation strategies
ValueRule g, # database value mutation strategies

Function Mutate(API, VS, DB):

while notFinished do

entry = selectNext(VS[API])

argNum = len(entry) # number of arguments

numMutation = Random.get(argNum)

while numMutation > 0 do

argIndex = selectNext(argNum)

argType = FuzzType(entry|argIndex])

argName = entry[argIndex].name

argValue = entry|argIndex].value

if doTypeMutation() then

L argType = TypeRule(argType)
if selectRandOverDB() then
L next = ValueRule, ;,q(argType, argV alue)

C ® N G R W N R

[
o o= o

e
o

else

[
o

next =
L ValueRulegy, (API, argType, argName, DB)

17 entrylargIndex] = next
18 | numMutation = numMutation — 1
19 | run(entry)

20 Function ValueRuley, (API, argType, argName, DB):
21 APIs = DB.query(argType, API, argName)

22 (API;, sim) = Sim(APIs, API)

23 (API;, prob) = Softmax({API;, sim))

21 API’ = sample({API;, prob))

25 val = sample(DB, API’, argType, argN ame)

26 return val

This indicates that DTy carrying less precision information than DT,
tends to execute faster. For instance, DT can be float16 while DT,
is float32, as long as the API supports both data types of tensors.
Crash Bugs. If an API crashes or throws runtime exception, then it
may be considered as a crash bug. Meanwhile, it could also be due
to invalid test inputs which can be generated during the fuzzing
process. To automatically filter out such false alarms, we build
scripts to heuristically remove crash bugs which throw meaningful
exceptions on all backends for invalid inputs, e.g., ‘ValueError’,
‘InvalidArgumentError’, etc. As a result, if the test program crashes
(e.g., segmentation fault), or throws unexpected exception for valid
inputs on certain backend(s), it is considered as a crash bug.

4 EXPERIMENTAL SETUP
In the study, we address the following research questions:

e RQ1: How do the three different input sources of FreeFuzz
(without any mutation) contribute to DL library testing?
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e RQ2: How does FreeFuzz with different numbers of muta-
tions for each API perform for DL library testing?

e RQ3: How do different mutation strategies impact Free-
Fuzz’s performance?

e RQ4: How does FreeFuzz compare with existing work?

e RQ5: Can FreeFuzz detect real-world bugs?

Our experiments are mainly performed on the stable release ver-
sions of DL libraries: PyTorch 1.8 and TensorFlow 2.4. The machine
for running experiments is equipped with Intel Xeon CPU (4 cores,
2.20GHz), NVIDIA A100 GPUs, Ubuntu 16.04, and Python 3.9.

4.1 Implementation

Code/Model Collection. Code/model collection is essential to
form the original seed test pool for our fuzzing technique. To build
an extensive pool, for documentations, we download all 497/512
pieces of code snippets from the official documentations of Py-
Torch/TensorFlow. More specifically, we use the bs4 Python pack-
age [3] to automatically parse the documentations to obtain the
code snippets. Note that not all code snippets crawled from doc-
umentations are immediately executable. Thus we also build a
simplistic repair tool to insert omitted code in the examples (e.g.,
import sections) to make more code snippets executable. For devel-
oper tests, we run all existing Python tests for PyTorch by running
python run_test.py in the test directory, while for TensorFlow we
run all python files with suffix _test.py. For DL models, we obtain
a diverse set of 102/100 DL models from official model zoos of Py-
Torch/TensorFlow, and popular GitHub repositories. The detailed
information about the models can be found in our repository [8].
Instrumentation. We get the lists of all Python APIs from offi-
cial documentation of PyTorch and TensorFlow, and hook them in
__init__.py (afile for a package that will be automatically executed
if the package is imported) in the root of the library package by
adding a wrapper for each API in the list. This is done transparently
and fully automatically for the users so that they do not need to
modify any of their code (model code) for instrumentation. In this
way, 630 APIs from PyTorch and 1900 APIs from TensorFlow are
instrumented for dynamic value tracing. Furthermore, we lever-
age the MongoDB database [7, 11] to record API value space and
argument value space.

Mutation. We implement our main Algorithm 1 for mutation with
standard Python packages. The implementation details can also be
found in our project repository [8].

Test Oracle. The implementation of differential testing is simple.
The example code for PyTorch is shown in Figure 10. Meanwhile, the
implementation of metamorphic testing is to wrap the invocation
of APIs with code for timing.

4.2 Metrics

To thoroughly evaluate FreeFuzz, we use the following metrics:
Number of Covered APIs. Due to the large number of APIs in DL
libraries, it is of great importance to show the number of covered
APIs as an important metric of testing adequacy. Surprisingly, such
an important metric has been largely overlooked by prior work on
DL library testing [57, 69].

Size of Value Space. Each API invocation can add one entry into
the API value space. Therefore, we use the total size of value space



ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

for all APIs to serve as the metric to analyze and compare different
input sources. To be more accurate, we count the number of entries
in the API value space after removing duplicate entries. Please note
that this is just used to show the scale of the traced data, and does
not necessarily indicate fuzzing effectiveness.

Line Coverage. Code coverage is a widely adopted test adequacy
criterion for testing traditional software systems [21, 44, 76] and
even the recent tensor compilers [46]. For example, it is impossible
for a test to detect bugs in code portions without executing them.
Surprisingly, although state-of-the-art DL library testing techniques
(e.g., LEMON) claimed to invoke more library code [69], they did not
report any code coverage in their experiments. We spent tremen-
dous time and efforts setting up the environment for collecting the
most widely used line coverage via GCOV [9] for both PyTorch
and TensorFlow. More specifically, we even fixed a bug in the Bazel
build system [2] used for building TensorFlow to perform coverage
collection. Note that we only trace C/C++ code coverage because
the C/C++ implementation provides the fundamental support for
operators in DL libraries and almost all the high-level Python APIs
finally invoke the C/C++ code.

Number of Detected Bugs. Following prior work on software
testing in general and DL library testing [24, 57, 69], we also report
the number of actual bugs detected for the studied DL libraries.

5 RESULT ANALYSIS

5.1 RQ1: Input Source Study

In this RQ, we aim to study the effectiveness of directly applying
FreeFuzz’s traced dynamic information (without any mutation)
for testing DL libraries. The main experimental results are shown
in Table 3, where we explore different settings, including using
documentations only, tests only, models only, and all information
together for both TensorFlow and PyTorch. For each setting, we
show the number of covered APIs (Row “# API”), the number of
traced unique API invocations (Row “# VS”), and the line coverage
achieved when directly running the traced API invocations (Row
“Line Cov.”). From the table, we can observe that different sources of
information all tend to be helpful for testing DL libraries. For exam-
ple, although the test information covers the least number of APIs
for TensorFlow, it can still help directly cover 216 APIs and 31293
lines of code; similarly, although the model information covers the
least number of APIs for PyTorch, it can still help directly cover 145
APIs and 26292 lines of code. Also, another interesting observation
is that the settings covering more APIs tend to also achieve higher
code coverage. The reason is that different APIs usually implement
different functionalities, and thus usually cover different DL library
behaviors/paths. This actually also demonstrates the effectiveness
and necessity of API-level testing for DL libraries since it is much
easier to cover more APIs at this level than traditional model-level
DL library testing [57, 69].

We can also observe that putting all three sources of informa-
tion together can achieve even better results than using any sin-
gle source of information. For example, it can cover 470/688 APIs
for PyTorch/TensorFlow, and 42425/39575 lines of code for Py-
Torch/TensorFlow. To better analyze the contribution of each source
of information, we further leverage the Venn diagrams in Figure 6
and Figure 7 to present the detailed breakdown of the number of
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Table 3: Statistics about different sources

FreeFuzz PyTorch FreeFuzz TensorFlow
Doc  Test Model All Doc  Test Model Al
# API 427 176 145 470 486 216 269 688
#VS 1259 3383 10898 15532 | 1810 6879 36638 45269

Line Cov. | 39272 30476 26292 42425 | 33906 31293 34790 39575

All: 470 All: 688

o PyTorch APIs TensorFlow APIs —

Test: 176 — — Test: 216

Model: 145 ™ — N Model: 269
/ 212 N Ve 274 N
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Flgure 6: Venn dlagram for covered APIs
All: 42425 All: 39575

Doc: 39272
Test: 30476
Model: 26292

TensorFlow Coverage Doc 33906
Test: 31293

. Model: 34790
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Flgure 7: Venn diagram for code coverage

covered APIs and coverage respectively. From the figure, for both
TensorFlow and PyTorch, each source of inputs exclusively covers
some APIs and only a small number of APIs are covered by all
three sources of information. For example, only 59/62 out of all
the 470/688 covered APIs are covered by all three sources of inputs
on PyTorch/TensorFlow. Meanwhile, although each source of in-
puts still exclusively covers different code portions, the majority
of covered code tends to be shared by all three sources of inputs.
The reason is that although different APIs implement different code
logic, they can be decomposed to a set of common low-level op-
erators implemented in C/C++. Overall, the experimental results
further confirm that it is necessary and important to consider dif-
ferent sources of information for effective DL library testing.
Tracing the three sources of inputs is a one-time effort and can
be used for testing all subsequent versions of the same DL libraries.
Meanwhile, it is also important to demonstrate that the time over-
head is acceptable and not extremely high. Therefore, we further
discuss the overhead for constructing the three sources of inputs.
For the documentation source, the code snippets are usually quite
short and fast to run. In total, FreeFuzz takes less than 20 min for
tracing all the documentation code snippets for both TensorFlow
and PyTorch. For the developer tests, tracing the 1493/1420 official
tests written by developers from PyTorch/TensorFlow consumes
about 2.5/5.0 hours. Lastly, for the model source, FreeFuzz runs all
the 102/100 models stated in Section 4.1 with instrumentation for
PyTorch/TensorFlow, consuming less than 1 hour for each of them.

5.2 RQ2: Coverage Trend Analysis

In this RQ, we present the effectiveness of FreeFuzz with different
numbers of mutations for each API under test. The experimental
results are shown as the blue lines (with legend “FreeFuzz”) in Fig-
ure 8 and Figure 9, where the x axis presents the number of mutants
generated for each API (from 100 to 1000 with the interval of 100)
while the y axis shows the overall coverage achieved via generating
different number of mutants for each API (the union of all coverage
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Figure 9: Coverage trend analysis for TensorFlow

sets for all tested APIs). Note that the start point denotes the code

coverage achieved by directly executing the original test inputs

traced without any mutation. From the figure, we can observe that

for both PyTorch and TensorFlow, FreeFuzz can indeed cover more

lines of code with more mutations enabled for each API under test,
demonstrating the overall effectiveness of our mutation strategies.
Furthermore, we can also observe that the coverage becomes largely
stable after running 600 mutations for each API, indicating that 600

mutations can be a cost-effective choice in practice. Regarding the
time cost, the total running time for generating and running all 1000
mutants for all APIs is 7.3 hours for PyTorch and 9.9 hours for Ten-
sorFlow. Note that such overhead is totally acceptable for fuzzing,
e.g., traditional binary fuzzing techniques are usually applied for
24h [19] and LEMON takes over 24h [69].

5.3 RQ3: Different Mutation Strategies

After tracing the initial inputs from various sources, FreeFuzz per-
forms three different mutation strategies in tandem (as detailed in
Algorithm 1). Therefore, in this RQ, we further study the impact of
each mutation strategy by disabling it. To this end, we have three
FreeFuzz variants, FreeFuzz-TypeMu (disabling the type mutation
strategy), FreeFuzz-RandMu (disabling the random value mutation
strategy), FreeFuzz-DBMu (disabling the database value mutation
strategy). Note that we also include the variant that does not per-
form any mutation at all, i.e., FreeFuzz-AllMu. The experimental
results for all the studied variants with different number of muta-
tions for each API are also shown in Figure 8 and Figure 9. Note that
the start point for all other variants denotes the coverage achieved
by FreeFuzz-AllMu. From the figure, we can have the following
observations. First, the default FreeFuzz outperforms all the other
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Table 4: Comparison on input coverage
| | FreeFuzz (tf1.14 full) [ LEMON [ CRADLE |

# API 313 30 59
#VS 9338 1808 2893
Line Cov. 33389 29489 28967

Table 5: Comparison with LEMON on mutation
| ‘ FreeFuzz (tf1.14 full) | FreeFuzz (models only) [ LEMON ‘

# API 313 30 35
#VS 305463 913 7916
Line Cov. 35473 30488 29766
Time 7h 20 min 25h

studied variants, indicating the importance and necessity of all
the three mutation strategies of FreeFuzz. Second, we can also ob-
serve that random-value and database-value mutation strategies
perform similarly in terms of code coverage, while type mutation
can be even more effective since the low-level implementations for
different types tend to be more different.

5.4 RQ4: Comparison with Prior Work

In this RQ, we aim to compare FreeFuzz with the state-of-the-art
LEMON [69] and CRADLE [57] work for DL library testing. We first
compare their sources of inputs in terms of the number of covered
APIs and coverage. LEMON only uses 12 models, CRADLE uses 30
models, and FreeFuzz considers three different sources of input with
many more models in the wild. Since both LEMON and CRADLE
use Keras without supporting PyTorch, the comparison here is
only conducted on TensorFlow. Also, due to the fact that LEMON
and CRADLE do not support TensorFlow 2 (used in our earlier
experiments), we apply FreeFuzz on an old TensorFlow version
v1.14. For a fair comparison with prior work, we enforce FreeFuzz
to use exactly the same models from LEMON as the DL model input
source. To prepare the other two input sources for FreeFuzz, we
collect developer tests and documentation code for TensorFlow
v1.14. The experimental results are presented in Table 4: Column
“FreeFuzz (tf1.14 full)” simply runs the inputs traced by running
the same models from LEMON as well as documentation code and
tests from TensorFlow v1.14; Columns “LEMON” and “CRADLE”
simply run the input DL models used in their original work. From
the table, we can observe that, when no mutations are allowed, the
input sources used by FreeFuzz can achieve much higher API and
code coverage than LEMON and CRADLE.
We next study the effectiveness of the mutation strategies used
by FreeFuzz and existing work (i.e., LEMON because CRADLE
performs no mutation). We follow the same methodology as the
original LEMON work [69] when running its model-level muta-
tions. For FreeFuzz, we also use the default setting, i.e., generating
and running 1000 mutants for each covered API The experimental
results are shown in Table 5. Note that besides the default FreeFuzz
and LEMON, Column “FreeFuzz (models only)” further includes the
results of FreeFuzz with only the models from LEMON (without
documentation code and developer tests) as the input for a more
thorough comparison with LEMON. From the Table, we can observe
that the default FreeFuzz can cover ~9X more APIs than LEMON
while consuming ~3.5X less time! Although the coverage improve-
ment is not as significant as the number of covered APIs, FreeFuzz
can still outperform LEMON by ~20%. Also, surprisingly, LEMON
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m = torch.nn.Conv2d(64,128,1,2).cuda()

tensor = torch.rand(1,64,32,32).cuda()
torch.backends.cudnn.enabled = True

outputl = m(tensor) # with CuDNN enabled
torch.backends.cudnn.enabled = False

output2 = m(tensor) # with CuDNN disabled

print (outputl.sum(), output2.sum()) # debugging
assert torch.allclose(outputl, output2) # fail

® NG A W N

Figure 10: Differential testing for 2D-Convolution

only covers 5 more APIs via various model mutations compared to
the original models, since only 5 unused layers preserve the strict
input-output shape constraints imposed by LEMON and are added
into the mutated models. Furthermore, FreeFuzz with models only
can already outperform LEMON in terms of code coverage within
20min, i.e., 75X faster than LEMON! This further demonstrates the
benefits of API-level testing compared with model-level testing.

5.5 RQ5: Bugs Detected

For bug detection, we target PyTorch 1.8 and TensorFlow 2.4, which
are both officially released stable versions, with the default FreeFuzz
setting, i.e., generating 1000 mutants for each APL Note that we
do not target TensorFlow 1.14 because developers do not actively
support it anymore. Table 6 shows the detailed statistics about
the real-world bugs detected by FreeFuzz and its various variants
studied in Section 5.3. We can observe that FreeFuzz is able to
detect 49 bugs in total (with 38 already confirmed as previously
unknown bugs) for the two studied DL libraries, and 21 of them
have been fixed by the developers to date. Furthermore, we can also
observe that each mutation strategy can help detect certain bugs
that other mutation strategies fail to detect, further demonstrating
the importance of all FreeFuzz mutation strategies. Lastly, of all the
49 bugs detected by FreeFuzz, only one of them can be detected by
LEMON and CRADLE.

Table 6: Summary of detected bugs

‘ FreeFuzz Confirmed
FreeFuzz ‘ -TypeMu ‘ -RandMu ‘ -DBMu ‘ -AllMu H (Fixed)
PyTorch 28 13 24 26 5 23 (7)
TensorFlow 21 20 5 20 2 15 (14)

Note that all the detailed issue IDs for the bugs detected can be
found on our GitHub page [8]. We next present the case studies:
Wrong-computation Bug. Figure 10 shows an example bug auto-
matically detected by FreeFuzz by comparing the computation re-
sults for 2D-Convolution between two backends, one with CuDNN
enabled (output1) and one disabled, using Aten backend instead
(output2). It throws AssertionError when executing the last line.
The sum of values of output tensors in Line 7 shows that output1
= -523.5300 while output2 = -601.6165, indicating a significant
difference in computation results. Further comparing the computa-
tion results executed by CPU demonstrates that the result is wrong
only on GPU with CuDNN disabled. This is a confirmed bug by
developers and fixed in latest master.

Performance bug. FreeFuzz detects one performance bug by meta-
morphic testing for torch.nn. functional.conv_transpose2d. Accord-
ing to the metamorphic relations, the time cost for float16 computa-
tion should be less than that for float32 given the same parameters
and tensor shapes. However, our results on NVIDIA A100 GPU
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1 from torch.nn import Conv3d
2 x = torch.rand(2,3,3,3,3)
3 Conv3d(3,4,3,padding_mode='reflect')(x) # Crash

Figure 11: Crash bug in Conv3d

m_gpu = torch.nn.MaxUnpool2d(2,stride=2).cuda()

m_cpu = torch.nn.MaxUnpool2d(2,stride=2)

tensor = torch.rand(1, 1, 2, 2)

indices = torch.randint(-32768,32768,(1, 1, 2, 2))
gpu_result = m_gpu(tensor.cuda(), indices.cuda())
cpu_result = cpu(tensor, indices) # only crash on CPU

AU A W

Figure 12: Invalid test input for torch.nn.MaxUnpool2d

for PyTorch show that float16: cost = 0.377s, float32: cost =
0.101s on some inputs. The bug detected by FreeFuzz has spurred
a heated discussion among PyTorch developers. They confirmed
this performance bug and are trying hard to figure out the reason.
Crash bug. Figure 11 shows a crash bug detected by FreeFuzz. The
program crashes on Line 3 when invoking torch.nn.Conv3d. The
reason is that argument padding_mode is set to value ‘reflect’ and
the program will not crash if padding_mode is set to its default value
‘zeros’. The bug is triggered by the database mutation strategy. The
argument name padding_mode of type string appears in the argu-
ment value space, and there exists a value ‘reflect’, which is orig-
inally recorded for the argument padding_mode of torch.nn.Conv2d.
FreeFuzz applies the database mutation strategy to query the ar-
gument value space, and selects ‘reflect’ from Conv2d to serve as
the input for argument padding_mode of Conv3d. We confirm this
bug according to the documentation of torch.nn.Conv3d [6] where
4 string values (i.e., ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’)
should be valid for padding_mode. Developers have acknowledged
this bug and triaged it.

5.6 Threats to validity

The threats to internal validity mainly lie in the correctness of
the implementation of our own approach and the compared tech-
niques. To reduce such threats, the authors worked together to
perform testing and code review of FreeFuzz; also, we obtained the
implementation of prior work from the official websites.

The threats to external validity mainly lie in the evaluation bench-
marks used. To demonstrate that our FreeFuzz can be applied/gen-
eralized to different DL libraries, we have evaluated FreeFuzz on
two most widely used DL libraries, PyTorch and TensorFlow. Fur-
thermore, although FreeFuzz is fuzzing against 1158 APIs (each
with 1000 times) and the randomness can be largely mitigated
by such a large number of APIs, it is still possible that the non-
determinism in FreeFuzz can affect the effectiveness of FreeFuzz
in different runs [18, 42]. Therefore, following existing fuzzing
work [59, 70, 83], we rerun the experimental comparison between
FreeFuzz and LEMON (Table 5) for 5 times. The results show that
FreeFuzz achieves an average line coverage of 35997 (35473 in Ta-
ble 5), while LEMON’s average is 29769 (29766 in Table 5). Both are
quite stable with the coefficient of variation of only 0.82%/0.06%,
demonstrating the effectiveness of FreeFuzz in different runs.

The threats to construct validity mainly lie in the metrics used.
To reduce such threats, we adopt the number of detected bugs used
by prior work on DL library testing. Furthermore, we also include
the widely used code coverage metric in traditional software testing.
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6 DISCUSSION AND FUTURE WORK

Generalizability and Specificity. Different from LEMON [69]

and CRADLE [57] that specifically target testing DL libraries via DL

models, the FreeFuzz work can potentially be generalized to more

than just DL library fuzzing. Of course, in this work, we do have

various DL-specific components, including 1) mining DL models

as inputs, 2) tensor-related types and mutation rules, and 3) DL-
specific oracles (i.e., differential testing for wrong-computation bugs

and metamorphic testing for performance bugs). Meanwhile, the

basic idea of leveraging code snippets from library documentation

and developer tests can be generalized to fuzzing library APIs in

various dynamically typed languages. We hope our work can inspire

more research on the direction of mining for fuzzing.

Validity of Test Inputs. Our input mining and type-aware [53]/DB-
based mutations can all help generate more valid inputs. Mean-
while, FreeFuzz still does not always generate valid inputs due

to some complicated input constraints. Interestingly, even the in-
valid inputs helped detect various bugs in PyTorch/TensorFlow
(e.g., unexpected crashes). Figure 12 shows one such bug detected

in torch.nn.MaxUnpool2d. The input parameter indices is a tensor

whose values are randomly sampled integers (with respect to the

Random Primitive strategy), which is invalid. According to the

documentation, the valid indices should be obtained from the re-
turned value of torch.nn.MaxPool2d. The bug was detected because

the program only crashes when running on CPU (i.e., Line 6 fails)
but produces a wrong result silently without throwing any error
message on GPU (i.e., Line 5 passes). Thus, the GPU implementa-
tion should add the missing check. The developers have confirmed
this bug and even labelled with “high priority” [4].

Future Work. FreeFuzz currently only focuses on testing the cor-
rectness of single APIs. While API-level testing has many advan-
tages over model-level testing, it may still miss bugs which can
only be triggered by invoking a sequence of APIs. Besides, when
reproducing detected bugs, we find that some tests will fail on one

machine but pass on other machines given exactly the same script

and the same library version. This is probably due to the differences

in underlying infrastructure and hardware. This type of tests are

called implementation-dependent flaky tests, described in prior
work on test flakiness [43, 54, 78]. Future work may explore how to

better detect and fix flaky tests [29-32] in deep learning libraries.

7 RELATED WORK

DL Model Testing. There has been a growing body of research
for improving the quality of DL models. Various adversarial at-
tack techniques [34, 51, 52, 79] have been proposed to generate the
so-called “adversarial examples” by adding perturbations impercep-
tible to humans to intentionally fool the classification results given
by DL models. To mitigate such attacks, researchers have also pro-
posed various adversarial defense techniques, including adversarial
training [34, 50, 66], detection [37, 49, 82], and others [68]. Another
recent line of research has explored the possibility of improving the
robustness of neural network from a joint perspective of traditional
software testing and the new scenario of deep learning. DeepX-
plore [56] proposes a metric called neuron coverage for whitebox
testing of DL models and leveraged gradient-based techniques to
search for more effective tests. While various other metrics [41, 47]
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have also been proposed recently, the correlation between such
metrics and the robustness of models is still unclear [27, 38, 73].
Meanwhile, there are also a series of work targeting specific ap-
plications, such as autonomous driving, including DeepTest [67],
DeepRoad [77], and DeepBillboard [84]. Various techniques have
also been proposed to detect numerical bugs introduced when build-
ing a DNN model at the architecture level with static analysis [81],
and via gradient propagation [72]. Lastly, researchers have also
explored concolic testing [65] to achieve higher coverage for DNN
models, mutation testing [40, 48] to simulate real faults in DL mod-
els, and test input generation for DNNs [28] by exploiting features
learned from data with generative machine learning. Different from
all such prior work, our work targets the underlying DL libraries,
which are the basis for training and deploying various DL models.
DL Library Testing. CRADLE [57] is the trailblazing work for
testing DL libraries. The main contribution of CRADLE is resolv-
ing the test oracle challenge with differential testing on Keras.
LEMON [69] further advanced CRADLE by proposing mutation
rules to generate more models, as claimed by LEMON to invoke
more code in DL libraries. LEMON’s mutation strategies include
intact-layer and inner-layer mutation rules, which must conform
to strict constraints, e.g., for intact-layer mutation, the layer to be
inserted or deleted should preserve the shapes of input tensors.
Actually, according to our experimental results, the mutation rules
applied by LEMON can hardly help cover more DL library code. A
more recent work on testing DL library is Predoo [80], which only
mutates the input tensor values with all other API parameters man-
ually set up for precision testing. As a result, it was only applied to
7 APIs/operators from TensorFlow and we exclude it in our compar-
ison. To our knowledge, we propose the first general-purpose and
fully automated API-level fuzzing approach for popular DL libraries.
Furthermore, we adopt traditional code coverage for DL library
testing, and reveal various interesting findings (e.g., state-of-the-art
LEMON can hardly improve the DL library code coverage).

8 CONCLUSION

We have proposed FreeFuzz, the first approach to fuzzing DL li-
braries via mining from open source. More specifically, FreeFuzz
considers three different sources: 1) library documentation, 2) de-
veloper tests, and 3) DL models in the wild. Then, FreeFuzz auto-
matically runs all the collected code/models with instrumentation
to trace the dynamic information for each covered API Lastly, Free-
Fuzz will leverage the traced dynamic information to perform fuzz
testing for each covered APIL The extensive study of FreeFuzz on
PyTorch and TensorFlow shows that FreeFuzz is able to automati-
cally trace valid dynamic information for fuzzing 1158 popular APIs,
9X more than state-of-the-art LEMON with 3.5X lower overhead.
FreeFuzz has detected 49 bugs for PyTorch and TensorFlow (with
38 already confirmed by developers as previously unknown bugs).
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