Towards Boosting Patch Execution On-the-Fly

Samuel Benton Yuntong Xie* Lan Lu
University of Texas at Dallas Tsinghua University Southern University of Science and
Samuel.Benton1@utdallas.edu xieyt18@mails.tsinghua.edu.cn Technology

11810935@mail.sustech.edu.cn

Mengshi Zhang" Xia Li Lingming Zhang
Meta Platforms, Inc. Kennesaw State University University of Illinois at
mengshizhang@fb.com xli37@kennesaw.edu Urbana-Champaign
lingming@illinois.edu
ABSTRACT 1 INTRODUCTION

Program repair is an integral part of every software system’s life-
cycle but can be extremely challenging. To date, various automated
program repair (APR) techniques have been proposed to reduce
manual debugging efforts. However, given a real-world buggy pro-
gram, a typical APR technique can generate a large number of
patches, each of which needs to be validated against the original
test suite, incurring extremely high computation costs. Although ex-
isting APR techniques have already leveraged various static and/or
dynamic information to find the desired patches faster, they are
still rather costly. In this work, we propose SeAPR (Self-Boosted
Automated Program Repair), the first general-purpose technique
to leverage the earlier patch execution information during APR to
directly boost existing APR techniques themselves on-the-fly. Our
basic intuition is that patches similar to earlier high-quality/low-
quality patches should be promoted/degraded to speed up the de-
tection of the desired patches. The experimental study on 13 state-
of-the-art APR tools demonstrates that, overall, SeAPR can sub-
stantially reduce the number of patch executions with negligible
overhead. Our study also investigates the impact of various con-
figurations on SeAPR. Lastly, our study demonstrates that SeAPR
can even leverage the historical patch execution information from
other APR tools for the same buggy program to further boost the
current APR tool.

ACM Reference Format:

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Ling-
ming Zhang. 2022. Towards Boosting Patch Execution On-the-Fly. In 44th
International Conference on Software Engineering (ICSE °22), May 21-29,
2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3510003.3510117

“The work was done during a remote summer internship at University of Illinois.
TLCorresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510117

Software systems persist everywhere in all facets of today’s so-
ciety; they drive financial institutions, facilitate communication
worldwide, oversee critical systems, and so forth. Software systems,
however, are frequently distributed with numerous bugs that will
eventually lead to severe disasters. For example, the 5th edition
of Tricentis.com’s annual report shows that software failures
impact half of the world’s population (3.7 billion users) and $1.7
trillion in assets; it also mentions that there can be far more bugs
in the wild than we will likely ever know about [1]. Therefore, it
is imperative for developers to fix these bugs as early as possible
with minimal resource consumption. However, manual bug fixing
can be extremely tedious, challenging, and time-consuming since
modern software systems can be extremely complicated [2].

Fortunately, in lieu of manual bug fixing, researchers have also
extensively studied Automated Program Repair (APR) [3-18], which
aims to automatically fix software bugs to reduce manual debug-
ging efforts. Typical APR techniques leverage off-the-shelf fault
localization [19] techniques (such as Ochiai [20] and Tarantula [21])
to identify potential buggy locations. Then, they leverage various
techniques to generate potential software patches for the potential
buggy locations. Lastly, each generated patch will need to be ex-
ecuted against the original test suite to find the plausible patches
(i.e., the patches that can pass all the original tests). Note that not
all the plausible patches are the ones that developers want; thus,
developers need to further inspect the produced plausible patches
to derive the final correct ones. To date, various APR techniques
have been proposed, including techniques based on predefined-
templates [4, 22, 23], heuristics [8, 10, 24], and constraint solv-
ing [7, 25, 26]. Furthermore, APR techniques have also drawn wide
attention from industry, e.g., Facebook [27], Fujitsu [28], and Al-
ibaba [29].

Compared with manual bug fixing, APR can automatically fix a
number of real-world bugs with minimal human intervention and
can be easily integrated with the natural workflow of continuous
integration lifecycle (e.g., Facebook’s in-house tool SapFix [27] has
been integrated into its workflow). Despite the promising future
of APR, it is not perfect yet and numerous issues still plague the
area. Among the most paramount of these issues are still the time
costs associated with numerous patches for large-scale real-world
systems. Existing studies have demonstrated that patch validation
dominates the costs of APR [30-33], since each patch needs to be
executed against the original test suite.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

To reduce the APR costs, researchers have proposed various tech-
niques to reduce the number of patches generated, e.g., based on
machine learning [28], code mining [13], and constraint solving [25].
However, prior work has demonstrated that such techniques can
incur the dataset overfitting issue, i.e., the correct patches may
be skipped for many other unstudied cases [22]. Furthermore, re-
searchers have also proposed to prioritize all the generated patches
to find the plausible patches earlier. Such existing techniques pri-
marily utilize static or dynamic information to statically prioritize
patches before the patch validation [8, 23, 26], e.g., almost all APR
techniques use the suspiciousness values computed by off-the-shelf
fault localization techniques to prioritize the patches; no further
reprioritization is employed during the patch validation process of
these tools, leading to limited improvement.

In this work, we propose SeAPR (Self-Boosted Automated Program
Repair), the first general-purpose technique to leverage the patch-
execution information during APR to directly boost existing APR
techniques themselves on-the-fly. Our basic intuition is that earlier
patch execution results can help better prioritize later patch exe-
cutions on-the-fly to speed up the detection of the desired patches
(e.g., plausible/correct patches). In this way, we promote the rank-
ing of the patches similar to the executed high-quality patches,
while degrading the ranking of the patches similar to the executed
low-quality patches. More specifically, we analyze the modified ele-
ments to compute patch similarities as patches modifying similar
program elements can exhibit close program behaviors. We have
evaluated SeAPR on 13 state-of-the-art APR systems. Our study also
investigates the impact of various configurations on SeAPR, e.g., the
formula for patch prioritization, the type of patch-validation ma-
trices (full or partial), the number of code elements considered for
SeAPR, and the additional patch pattern information for computing
patch similarity. Lastly, our study further evaluates the performance
of SeAPR with historical patch-execution information from other
APR tools on the same buggy program.

To summarize, this paper makes the following contributions:

e Direction. This paper opens a new dimension to leverage
patch-execution information to boost existing APR tech-
niques on-the-fly and can inspire more future work in this
new direction.

o Design. We design the first technique, SeAPR, in this new
direction to update each patch’s priority score based on its
similarity with the executed patches and the quality of the
executed patches.

e Extensive Study. We have performed an extensive study of
the proposed technique on 13 state-of-the-art APR systems
for JVM-based languages using the widely studied real-world
bugs from Defects4].

e Practical Guidelines. The study reveals various practical
guidelines, including (1) the default SeAPR can substantially
speed up the studied APR techniques by up to 79% with
negligible overhead (regardless of various initial patch prior-
itization strategies used by the studied APR techniques), (2)
SeAPR has stable performance when using different formulae
for computing patch priority and different types of patch-
execution matrices, (3) additional patch pattern information
for patch similarity computation can further substantially

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

improve SeAPR, and (4) SeAPR can even effectively utilize
historical patch-execution information from other APR tools
to boost current APR tools.

2 RELATED WORK

2.1 Automated Program Repair

Automated Program Repair (APR) techniques [3-18] aim to au-
tomatically fix software bugs to substantially reduce manual de-
bugging efforts and have been extensively studied during the last
decade. Typical APR techniques usually modify program code rep-
resentations based on various patch-generation techniques and
then validate each generated patch (e.g., via testing [24], formal
specification checking [34], and static analysis [35]) to find the
final desired patches. In recent years, APR techniques leveraging
testing for patch validation have gained popularity as testing is
the dominant methodology for detecting software bugs in practice.
Such APR techniques usually include the following phases. (1) Fault
localization: APR techniques first leverage off-the-shelf fault local-
ization techniques [4, 5, 7, 10, 36, 37] to localize the potential buggy
locations. (2) Patch generation: APR techniques will leverage various
strategies to generate potential patches for the identified potential
buggy locations. (3) Patch validation: all the generated patches will
be executed against the original test suite to detect the patches that
pass all the original tests, i.e., plausible patches. Of course, since
not all plausible patches are desirable, patch correctness checking
(often done via manual inspection in practice) is further involved
to find the final correct patches, which are equivalent to developer
patches.

According to a recent study [38], most state-of-the-art APR tech-
niques can be divided into the following categories. (1) Heuristic-
based techniques leverage various heuristics to iteratively explore
the search space of all possible program edits. For example, the
seminal GenProg technique [24] leverages genetic programming
to synthesize donor code for high-quality patch generation, while
the recent SimFix technique [8] employs advanced code search to
obtain donor code for patch generation. (2) Template-based tech-
niques leverage predefined fixing templates (e.g., changing “>” to
“>”) to perform patch generation. Such predefined fixing templates
can be either manually summarized (e.g., KPar [39]), or automat-
ically inferred (e.g., HDRepair [40]) from historical bug fixes. (3)
Constraint-based techniques transform the program repair prob-
lem into a constraint-solving problem and leverage state-of-the-
art constraint solvers (e.g., SMT [41]) for patch generation, such
as Nopol [25]. More recently, researchers have also looked into
learning-based techniques [42, 43] to directly generate patches via
learning from historical fixes.

Since it is extremely challenging for APR techniques to fix all
possible bugs, researchers have also recently proposed the unified
debugging work [29, 44, 45] to extend the application scope of APR
to the bugs that cannot be automatically fixed. Its basic intuition is
that the massive patch execution information during APR can actu-
ally substantially boost fault localization. For example, if a patch
passes all the tests, it means the patch is likely to mute the impacts
of the bug, even though this patch may not be correct; it can then
be inferred that the patched location is highly related to the actual
buggy location, since otherwise the bug effect would not be muted.

Towards Boosting Patch Execution On-the-Fly

With unified debugging, even when APR techniques cannot fix a
bug, unified debugging still can analyze the patch-execution infor-
mation to provide useful hints about potential buggy locations to
help with manual repair. In this way, unified debugging extends
the application scope of APR to all possible bugs, not only bugs
automatically fixable. Inspired by unified debugging, we also aim
to leverage the wealth of patch execution information generated
during APR. Meanwhile, there are the following major differences.
First, while unified debugging aims to leverage patch execution
information for manual program repair, our SeAPR leverages such
information to directly boost automated program repair, i.e., we
aim to boost existing APR tools by prioritizing the desired plausi-
ble/correct patches earlier in the validation process. Second, their
technical principles are substantially different. Unified debugging
analyzes the correlation between patch locations and test outcomes
to infer potentially buggy locations, while our work analyzes the
correlation among executed and remaining patches via estimating
their behavioral similarities to speed up the detection of desired
patches. In fact, our work is inspired by prior work on mutation
testing [46], which leverages the similarities of modified elements
for different mutants to perform test prioritization/reduction for
each mutant to speed up mutation testing.

2.2 Cost Reduction for APR

Despite the promising future of APR, it can be extremely time con-
suming due to the generation and validation of a large number
of possible patches. Actually, the patch validation cost has been
shown to dominate the overall APR cost [30-33]. Therefore, re-
searchers have also looked into various techniques to further speed
up APR. To reduce the validation time spent on each patch, Ghanbari
et al. [22] and Chen et al. [30] proposed to share the same JVM
session across multiple patch executions; in this way, the patch
loading and execution time can be substantially accelerated for
both source-code and bytecode level APR techniques. In addition,
researchers have also proposed to prioritize and reduce the test exe-
cutions for each patch to reduce the validation time for each patch.
For example, Qi et al. [47] proposed TrpAutoRepair to prioritize test
executions for each patch based on historical information to falsify
implausible patches faster; Mehne et al. [33] further proposed to
reduce the number of test executions for each patch, since tests
not covering the patched location(s) cannot help validate the patch.
Our SeAPR technique is orthogonal to such existing techniques
since they aim to reduce the execution cost for each patch while
SeAPR aims to reduce the number of patch executions.

To reduce the number of validated patches, almost all existing
APR techniques leverage fault localization and various other strate-
gies to reduce the possible patch executions. Furthermore, many
existing APR techniques also leverage other available dynamic or
static information to prioritize patch executions to find the desired
patches faster (e.g., based on various fault localization informa-
tion [20, 23]). Despite various cost reduction techniques have been
proposed, APR techniques are still rather time consuming for real-
world programs [22]. In this paper, we propose the first technique
to leverage on-the-fly patch execution information to help better
prioritize patch executions. Note that our technique is orthogonal

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

to all existing patch prioritization techniques and our experimen-
tal results demonstrate that our technique can substantially speed
up state-of-the-art APR techniques with various original patch
prioritization strategies.

3 STUDIED APPROACH

In this section, we first present the necessary preliminaries (Sec-
tion 3.1). Then, we introduce the detailed SeAPR approach (Sec-
tion 3.2). We will also discuss different SeAPR variants (Section 3.3).
Lastly, we will introduce a further extension of SeAPR to leverage
the patch execution information from other APR tools for even
faster APR (Section 3.4).

3.1 Preliminaries

DEFINITION 3.1. Patch validation matrix: Matrix My defines
the validation results of all tests against all patch candidates. In the
matrix, each cell describes the validation result of test t € T against
patch p € P. Possible values for each cell are as follows: (1) - if t
remains unvalidated, (2) X ift fails on p and (3) V' if t passes on p.

[PatchID [t [t;[ts| [PatchID [t [t][t3]
pp (buggy ver.) | x | vV | X pp (buggy ver.) | X | vV | X
P1 X X X P1 X - -
P2 Vi x |V P2 VAR -
P3 X | XX P3 X-] -
N VvV i ViV

Table 1: Example of full/partial patch-validation matrix

Ideally the patch-validation matrix should be full, i.e., every cell
should be v or X. In practice during the APR process however, most
modern APR tools terminate the test execution for one patch im-
mediately after observing any failing test on that particular patch,
since the primary goal is to find correct patches and patches which
fail any test cannot even be plausible. In this way, the APR pro-
cess can be largely sped up without sacrificing repair effectiveness.
Not all APR tools employ this strategy, so we study both types
of matrices, where some tests remain unexecuted (partial matri-
ces) versus where all tests always execute (full matrices). Table 1
presents the example full/partial matrices for 4 example patches
(i-e., p1, p2, 3, and p4) on 3 example tests (i.e., t1, £z, and 3). Note
that the first row for the patch-validation matrix is always the test
execution results of the original buggy program (i.e., pp).

DEFINITION 3.2. Patch modification matrix: Matrix My presents

all program elements modified within each patch. Each cell describes
if patch p € P modifies element e € E (i.e., all possible program el-
ements). Acceptable values for each cell are as follows: (1) V' if p
modifies element e and (2) - if p does not modify element e.

l Patch ID H e1 [e [e3 [ey H Modified Element(s) ‘

- AARAE fer. ez, e3)
P2 VIV VY {e1, €2, e3, eq}
p3 - v v - {62, 63}

P4 A e {er}

Table 2: Example of patch modification matrix

Table 2 presents an example patch modification matrix for the
above four example patches on four program elements. In this

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

way, since p; patches program elements {e1, ez, e3}, the first three
columns are v’ for p1. Note that the patch modification matrix can
be defined at different levels (e.g., at the package, class, method, and
statement granularities) depending on the granularity of considered
program elements. In this paper, we mainly consider the method
granularity, e.g., the columns will be the methods modified by each
program patch. Compared with the patch validation matrix, the
patch modification matrix can be computed much faster (in fact
with negligible overhead), and thus can be leveraged to speed up
the patch validation process.

3.2 Basic SeAPR

Given the above introduced patch-validation matrix and patch-
modification matrix (which are readily available for almost all APR
tools) for the already executed/validated patches, our SeAPR per-
forms on-the-fly patch prioritization to speed up APR. Our basic
intuition is that patches similar to executed high-quality patches
are likely to also be high-quality and should therefore be prioritized
earlier; likewise, patches rather similar to executed low-quality
patches should be deprioritized. In this section, we first introduce
our definitions for patch quality (Section 3.2.1); then, we introduce
the detailed strategy to compute patch similarity with high- or low-
quality patches (Section 3.2.2); next, we introduce our final priority
score computation for all unexecuted patches (Section 3.2.3); lastly,
we present our overall algorithm (Section 3.2.4) with corresponding
examples (Section 3.2.5).

3.2.1 Patch Quality. When processing patches that have been exe-
cuted/validated, we need to estimate the patch’s quality by analyz-
ing the patch validation matrix. Intuitively, the ultimate goal of APR
is to produce plausible/correct patches that can pass all the original
tests. Therefore, in this study, a patch is classified as high-quality
(patches we wish to prioritize) if it can make any originally failing
test pass; likewise, a patch is classified as low-quality (patches we
wish to deprioritize) if it cannot make any originally failing test
pass. Formally, the set of high-quality and low-quality patches can
be defined as Equations (1) and (2), respectively.

Pp = {p|3 t, My[p,t] = v A My[pp.t] = x} (1)

P = {p|V t, My[pp.t] = X = My[pit] # v} (2)

Note that we can also easily compute the detailed number of origi-
nally failing tests that now pass on a patch; however, prior work has
demonstrated that the detailed test number can be misleading [29].
Of course, this is just the first work in this new direction, and we
highly encourage other researchers to investigate other better ways
to estimate patch quality.

3.2.2 Patch Similarity. After calculating patch quality for executed
patches, we iterate through all remaining patches within P to
compute their similarity information with the executed high/low-
quality patches. For each patch p that has not been validated yet,
we compare its patch modification matrix information against that
of each of the validated patches. During the comparison, we com-
pute the number of elements matching and differing among the
two compared patches (i.e., two rows in the patch modification
matrix). We calculate the number of matching elements by perform-
ing the set intersection on the two patch modification matrix rows

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

representing the two patches. Likewise, we calculate the number of
differing elements by performing a symmetric set difference (i.e., A
© B =(A-B)U (B - A)) on the two patch modification matrix rows
representing the two patches.

Based on the similarity/dissimilarity with high/low-quality patches,
we can compute the following tuple for each unvalidated patch p
for prioritization, (s, dy, s;, d;). Our basic idea is that s; should
get increased when p shares elements with high-quality patches,
s; should get increased when p shares elements with low-quality
patches, dj, should get increased when p has set difference with
high-quality patches, and d; should get increased when p has set
difference with low-quality patches. Since the detailed number of
the matching/different modified elements between two patches can
tell the detailed similarity/dissimilarity information, the increment
should also consider such detailed information. In this way, the
formulae for computing the tuple for each unvalidated patch p are:

sp[p] = 2 pl{ele € Mm[p] N Mm([p’] A p” € Py}l ®3)
silp] = X p{ele € Mm[p] N M [p’] A p’ € Py} 4)
dp[p] = 2 plfele € Mm[p] © Mm[p’] A p’ € Py (5)
dy[p] = X p'{ele € Mm[p] © Mm[p’] A p’ € Py} (6)

Note that My, [p] denotes the set of program elements modified
by patch p. For example, if a validated patch p’ is high-quality and
shares elements with the current p, the s of p is then increased for
[Mm[p] N Mm[p’]|. All the other tuple elements can be defined in
a similar way.

3.2.3 Patch Prioritization. Based on the similarity tuple we com-
puted from the previous step, we can compute the priority score for
each unvalidated patch based on the following intuition: (1) a patch
more similar/dissimilar with high-quality patches should be promot-
ed/degraded, (2) a patch similar/dissimilar with low-quality patches
should be degraded/promoted. Actually, such intuition is quite sim-
ilar to traditional spectrum-based fault localization (SBFL) [48],
where the intuition is (1) a program element executed/unexecuted
by more failed tests should be more/less suspicious, (2) a program
element executed/unexecuted by more passed tests should be less/-
more suspicious. In this way, all the traditional fault localization
formulae can be directly leveraged here to compute the patch pri-
ority. We use the Ochiai formula, shown in Equation (7), as our
default formula as it is often the default formula for SBFL [8, 22, 23].
In this way, patches will be promoted/demoted if they are simi-
lar/dissimilar with other high-quality patches, consistent with our
intuition. s

L)
V(s +dp) * (sp + 1)
3.24 Overall Algorithm. Given the above definitions, we can now
present the overall SeAPR algorithm. Shown in Algorithm 1, SeAPR
first initializes the similarity tuples of all patches considered for
SeAPR as 1s! (Line 2). Then, SeAPR iterates through all such patches
and validates them in order (Lines 3-16). During each iteration,
SeAPR first gets the patch p with the highest priority and pops that
from the patch list P. Note that for the patches with tied SeAPR
priority scores (e.g., all patches are tied before the first patch execu-
tion), SeAPR prioritizes them with their original ordering from the

Ochiai =

Note that they are initialized as 1s (not 0s) for numerical stability.

Towards Boosting Patch Execution On-the-Fly

Algorithm 1: SeAPR Algorithm

Input: The original buggy program py,, test suite T, the list of candidate patches P
considered for SeAPR, the similarity tuples (s, s7, dp,, dj)
Output: Plausible patches: P ,
1 begin

2 Initialize (s, s7, dp,, dj) for all patches
3 while P is not empty do
4 p < pop(P);// pop the remaining patch with the highest priority
5 My « execute(p, T); // validate p
6 if p is PLAUSIBLE then
7 P, < p;// put p into the resulting set for manual
inspection
8 r < computePatchQuality(p, pp, My)
// Incrementally update the similarity tuples for the remaining
patches
9 forp’ € Pdo
10 if r =HIGH — QUALITY then
11 L sp[P’] += [Mm[p] N Mm[p’]|
12 dp[p’] += [Mm[p] © Mm[p’]|
13 if r = LOW — QUALITY then
14 L s7[p’] += [Mm[p] N Mm[p’]|
15 d[p’] += [Mm[p] © Mm[p’]]
16 | P« computePriorityScore(P, s, dp, sy, dj)

corresponding APR tools. Then, SeAPR executes the patch against
the original test suite and stores the patch execution results into
the patch validation matrix My (Line 5). If p is a plausible patch, it
will be stored in the resulting set P , for manual inspection (Lines
6-7). To help with on-the-fly patch prioritization, SeAPR computes
the patch quality information for the current patch following Sec-
tion 3.2.1 (Line 8). Next, SeAPR goes through all the remaining
patches to update their similarity tuples following Section 3.2.2
(Lines 9-15). Note that all remaining patches will be compared with
the newly executed patch to incrementally update their correspond-
ing similarity tuples. Lastly, the priority scores for all remaining
patches will be updated based on the updated similarity tuples
following Section 3.2.3 (Line 16). In this way, the algorithm will
proceed until all patches have been validated or the developers find
the desired patch.

Note that the time complexity of the SeAPR algorithm is O(n?) at
first glance (n denotes the number of patches considered for SeAPR),
since all the remaining patches need to be updated after each patch
execution. Meanwhile, during our implementation, we realize that
the similarity scores do not need to be updated for each remaining
patch; instead, we can cluster all remaining patches based on the set
of program elements they modify, since all patches with the same
set of modified elements will have the same priority. In this way,
the time complexity can be reduced to O(nm), where m denotes
the number of patch clusters with the same modified element sets.
Given m << n in practice, our actual SeAPR implementation incurs
negligible overhead.

3.25 Example. Let us now use the partial patch validation matrix?
(shown in Table 1) and its corresponding patch modification matrix
(shown in Table 2) as the example to illustrate our SeAPR technique.
For this example, if we follow the original patch execution ordering
(top-down), we need to execute four patches before finding the final
plausible patch. Now we discuss how our SeAPR can help speed up
this process.

2Note that we use partial since most APR tools will collect partial matrices, but our
idea generalizes to full matrices (as studied in Section 5.3).

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Shown in Tables 3 and 4, Column “Quality” describes the patches’
actual quality (available after the corresponding patch validation);
Column “Match” describes the set of matching elements against the
last executed patch for each patch; Column “Differ” describes the
set of differing elements against the last executed patch for each
patch; Columns “s,”, “dp,”, “s;”, and “d)” represent the accumulated
similarity tuples per patch (initialized as 1s); lastly, Column “Score”
represents the Ochiai priority score as defined in Equation (7).

In the first iteration (shown in Table 3), SeAPR will compute
the quality of the executed patch, p; (marked with gray). We can
immediately determine that the patch is low quality simply because
it cannot make any originally failing tests pass. Note that we also
show the quality for all other unexecuted patches to illustrate the
quality computation. Then, given p; has been executed, we can
update the similarity tuple for each remaining patch. For example,
for p, the set intersection and symmetrical set difference with pq
is {e1, ez, es} N{eq, ez, e3, es} = {e1, ez, es} and {ey, ey, e3} © {e1, ey, €3,
es} = {ea}, respectively. Therefore, since p; is a low-quality patch,
s; increments by 3 and dj increments by 1 for pz, resulting in the
tuple (s,=1+0, dy=1+0, s;=1+3, dj=1+1). Similarly, we can compute
the similarity tuples for all the other remaining patches. Then, via
applying the default Ochiai formula on the computed tuples, we
can compute the priority scores for all the three remaining patches
as shown in Column “Score” in Table 3. In this way, the patch with
the highest priority, ps, is selected for the next patch execution.

In the second iteration, ps gets executed (marked in gray) as
shown in Table 4. Note that p4 is a plausible patch that can pass
all tests. Therefore, the developers can immediately start manual
inspection to check if p4 is the correct patch. Of course, the patch
execution can still continue if p4 is not the correct patch. Continuing
the algorithm, the remaining patches will be further compared with
the newly executed p4 to update their similarity tuples. For example,
for pa, the set intersection and symmetrical set difference with py4
is {e1, €2, e3, ea} N {e1} = {e1} and {e1, ez, e3, ea} © {e1} = {e2, €3, e4},
respectively. Since p4 is a high-quality patch, p2’s tuple is updated
by incrementing s, by 1 and dj, by 3, resulting in the tuple (sp=1+1,
dp=1+3, s;=4+0, d;=2+0). In this way, we can compute the scores
for all remaining patches.

‘ ID ‘ Quality H Match ‘ Differ H Sp ‘ dy ‘ s
P1 Low - - - - = - -
P2 High {e1, ez, e3} | {eq} 140 | 140 | 1+3 | 1+1 0.32

P3 Low {ea, e3} {e1} 140 | 140 | 142 | 1+1 0.35
P4 | Plausible {e1} {e2, e3} || 1+0 | 140 | 1+1 | 1+2 0.41

Table 3: SeAPR step-by-step when processing p;

dy ‘ Score‘

‘ID‘ Quality H Match‘ Differ H s ‘ dy ‘ s ‘ d; H Score‘

pP1 Low - - - - - - B
ps | Plausible - - - - - - -

P2 High {e1} | {ez es eq) || 1+1 | 143 | 4+0 | 240 || 033
P3 Low {0} {e1,e2, €3} || 1+0 | 1+3 | 3+0 | 2+0 0.22

Table 4: SeAPR step-by-step when processing p4

For this example, we observe that the original patch execution
ordering requires 4 patch executions to find the first plausible patch,
while our SeAPR reduces the number of required patch executions
to only 2, i.e., % = 50% patch reduction. In this way, the devel-
opers can start manual patch inspection as soon as after 2 patch

executions.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

3.3 SeAPR Variants

3.3.1 Patch-Prioritization Formulae. Besides Ochiai, other SBFL
formulae can also be applied here. In particular, we study all SBFL
formulae from prior work [49] in Section 5.2.

3.3.2 Validation-Matrix Types. Besides the partial patch-validation
matrices widely used in practice, we also consider the impact of
full validation matrices on SeAPR in Section 5.3.

3.3.3 Additional Patch Pattern Information. By default, SeAPR only
uses the set of modified program elements to calculate patch similar-
ity for prioritizing patches on-the-fly. Another SeAPR extension is
to compute the similarity score with additional information. There-
fore, in Section 5.4, we further study another SeAPR variant, which
additionally considers that patches sharing the same fixing pat-
terns may also share similar program behaviors. In this way, we
can promote patches applying the same fixing patterns as known
high-quality patches to further boost SeAPR.

DEFINITION 3.3. Patch repair pattern matrix: Matrix Mp
presents the applied repair patterns applied to each patch. Each cell
describes if patch p € P applies repair patternt € R (i.e., all predefined
repair patterns). Acceptable values for each cell are as follows: (1) v/
if p applies pattern r and (2) - otherwise.

SeAPR Features
PatchID |\ r1 | r2 | 13 Modified Element(s) ‘ Pattern(s)
Pt 71 - - {e1, €2, e3} {r1}
P2 N VA {e1, ez, e3, eq} {ra}
s N V4 {e2, es} {rs}
P4 _ v - {61 } {VZ}

Table 5: Example of patch repair pattern matrix

This variant only slightly differs from the default SeAPR when
computing patch similarity, e.g., this variant considers both (1) the
set of modified elements and (2) the applied repair patterns. Based
on the above patch-pattern matrix definition, we can recompute
the similarity tuples for further improving SeAPR, e.g., sy[p] in
Equation (3) becomes:

sulp] =) plfele € Mm[p] N Mm[p'] A p’ € Py}l +
> lirlr € Mp[p] N Mp[p’] A p’ € Py}

®)

3.4 Further Leveraging APR Results from
Other Tools

In practice, one repair tool is often insufficient to successfully find
a correct patch. Thus developers often need to run multiple repair
tools to automatically fix a bug. Currently, different repair tools
are run in isolation. Our basic idea is that the execution results of
other repair tools on the same program can be used to further
boost the current repair tool under SeAPR. In particular, we use the
repair information from all but one repair tools to initialize the
priority score of all patches. For example, when applying SeAPR
to TBar on Chart-1, all patch executions results of other tools on
Chart-1 will be treated as the already executed patches to initialize
the priority scores of all TBar patches on Chart-1. With the priority
scores initialized, SeAPR starts with the most prioritized patch and
follows the algorithm outlined in Algorithm 1, updating the already

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

initialized priority scores of each patch. In this way, SeAPR can get
a jumpstart for faster validation.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

In this paper, we study the following research questions:

e RQ1: How does the default SeAPR perform on state-of-the-
art APR systems?

e RQ2: How do different prioritization formulae impact SeAPR?

¢ RQ3: How do full patch validation matrices impact SeAPR?

e RQ4: How does SeAPR perform when leveraging additional
patch pattern information?

e RQ5: How does SeAPR perform when further leveraging
historical repair information from other APR systems?

Note that we first study our default SeAPR configuration with
the Ochiai formula, partial patch validation matrices, similarity
computation based on modified elements in RQ1. Then, in RQ2 and
RQ3, we investigate the impact of different formulae and types of
patch validation matrices to study the robustness of SeAPR. In RQ4,
we leverage the additional patch pattern information (available for
state-of-the-art template-based APR techniques [4, 22]) to further
boost the effectiveness of SeAPR. Lastly, in RQ5, we investigate
whether historical patch validation information from other APR
tools can help achieve even more effective SeAPR for the current
APR tool.

4.2 Evaluation Dataset

We choose to evaluate SeAPR against Defects4] (V1.2.0), the most
widely used APR dataset to date, which will allow SeAPR to be
easily compared with and replicated in the future. The details for
the dataset are shown in Table 6. Column “#Bugs” presents the
number of buggy versions studied for each subject. Columns “#Tests”
and “LOC” present the number of JUnit tests and lines of code
available within the head (i.e., most recent) version of each subject,
respectively. For each studied buggy version, the average number
of failing tests is 2.37 (ranging from 1 to 66). Please also note that Py,
(the set of high-quality patches, which is closely related to SeAPR
effectiveness) is not necessarily related to the number of failed tests
since Py, patches can pass the failed test(s) but fail on the other
originally passing tests (i.e., Equation 1 does not check whether
the originally passing tests still pass). For example, for the recent
PraPR tool, there are 178 high-quality patches for each bug version
on average.

‘ Subject ‘ Name ‘ # Bugs ‘ # Tests ‘ LOC ‘
Chart JFreeChart 26 2,205 96K
Lang Apache Lang 65 2,245 22K
Math Apache Math 106 3,602 85K
Time Joda-Time 27 4,130 28K

Mockito Mockito framework 38 1,366 23K
Closure | Google Closure compiler 133 7,927 90K
\ Total [395 [21,475 [344K |

Table 6: Studied bugs from Defects4] v1.2.0

Towards Boosting Patch Execution On-the-Fly

4.3 Studied APR Tools

Following prior work [38, 44], we consider 17 program repair tools
publicly available and applicable to Defects4] in this study, show
in Table 7. Of these tool candidates, we exclude ACS, DynaMoth,
and Nopol due to low numbers of patches generated (i.e., <500
total patches across all studied Defects4] projects). Evaluating our
technique on such tools with small numbers of patches will induce
noise into our results; also, in practice, it is not necessary to perform
on-the-fly patch prioritization on such tools with a small number
of patches. We further exclude Simfix since the tool stops execu-
tion after finding the first plausible patch. The validation results
of such tools cannot be degraded, since the last patch is always
the desired plausible patch; results from such tools can only be
improved, biasing our findings. In total, we studied 13 repair tools
in this paper. Note that Arja, GenProg-A, and JGenProg generate
new patches based on patch executions from earlier iterations due
to their evolutionary design. Therefore, we should also have ex-
cluded these 3 tools; however, we decided to include these tools
simply to demonstrate the potential benefits of SeAPR (excluding
them also does not affect our findings as their results are consistent
with other tools). Note that among all the three categories of APR
tools, the template-based tools have been widely recognized as the
state-of-the-art [22, 38], and can generate a large number of patches.
Therefore, the template-based APR tools are the main focus of our
technique and study.

‘ Tool Category ‘ Tool(s) ‘
Constraint-based | AES [26], Cardumen [7], ByraMeth [6], Nepel [25]
Heuristic-based | Arja [10], GenProg-A [10], JGenProg [9], JKali [9], JMutRe-
pair [9], Kali-A [10], RSRepair-A [10], Strfix [8]
Template-based | Avatar [5], FixMiner [36], KPar [37], PraPR [22], TBar [4]
Table 7: Repair tools under consideration

4.4 Evaluation Metrics

We have adopted the following two evaluation metrics: the reduc-
tion on the number of patch executions before finding (1) the first
plausible patch and (2) the first correct patch. We study (1) since
in practice developers will begin manual inspection after the first
plausible patch is found; in this way, faster plausible patch detec-
tion can enable developers to start manual inspection earlier (and
potentially speed up the APR process). Similarly, we study (2) since
developers will stop the patch validation process once the correct
patch is found; in this way, faster correct patch detection can save
overall APR time. Also note that we mainly leverage the reduc-
tion on the number of patch executions as recommended by prior
work [38] since time costs are dependent on many factors (e.g., spe-
cific implementations and test execution engines) unrelated to APR
approaches and are often unstable. Furthermore, we also discuss
the results of time costs in Section 5.6.

To this end, our primary evaluation metric (patch reduction)

w. Ppaseline represents the position

can be computed as P——

of the first desired (i.e., plausible/correct) patch, pre-prioritization.
Pjew represents the position of the first desired plausible/correct
patch, post-prioritization. Note that when multiple desired patches
are produced, the initial desired patch and the final desired patch

are not necessarily the same patch.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

4.5 Experimental Procedure

For each studied APR tool, we evaluate the effectiveness of SeAPR
on all patches that can be generated and validated by the tool within
its original time limit (used in its original paper). We first analyze
the original execution of each tool on a subject-by-subject basis
to obtain (1) the original patch execution ordering per repair tool
and (2) the position of the earliest plausible/correct patch. After
information collection, we then repeat the patch validation process
for each tool again with our SeAPR on-the-fly patch prioritization.
For each given subject, SeAPR initially executes the first patch
produced by the tool. After the first patch execution, SeAPR iterates
through all patches not yet validated, following Algorithm 1, to
record the new position for the first plausible/correct patch. Note
that when computing patch similarity based on patch modification
information, SeAPR will only be applied to the patches belonging
to the Top-30 methods since most APR tools only patch such top
methods (the impact of applying SeAPR to different numbers of top
methods is also studied in Section 5.6.1); the remaining patches are
simply executed with their original ranking.

All our experiments were conducted within the following en-
vironment: 36 3.0GHz Intel Xeon Platinum Processors, 60GB of
memory, and Ubuntu 18.04.4 LTS operating system.

5 RESULT ANALYSIS
5.1 RQ1: Overall SeAPR Effectiveness

5.1.1 Quantitative Analysis. In this section, we first investigate
the overall effectiveness of our default SeAPR on all 13 studied
repair tools against Defects4]. Table 8 shows the patch reduction
in terms of the first plausible patches. In this table, Column 1
presents the APR systems studied in this work; Columns 2 and 3
present the average rank of the first plausible patches before and
after applying SeAPR to each studied APR system, while Columns
4 and 5 present the absolute improvement and the reduction ratio
achieved by SeAPR. Note that not all the studied APR tools can
generate plausible patches for all the studied bugs. Therefore, in
this table, for each APR tool, we only present the results for the
buggy versions on which it can produce plausible patches. From
this table, we have the following observations. First, SeAPR im-
proves the overall effectiveness of patch validations for almost all
repair tools. For example, SeAPR reduces patch validation by 78.91%
on GenProg-A and 54.87% on Avatar. Meanwhile, SeAPR slightly
degrades the performance of Cardumen. One reason is that Cardu-
men only generates a small number of patches for the few buggy
versions with plausible patches, leaving limited room for further
improvement. Second, the SeAPR reduction rates tend to be higher
for APR systems with more patch executions (i.e., the APR systems
that tend to be more expensive and need more optimizations). For
example, the reduction rate is above 20% for all APR systems with
over 100 patch executions before the first plausible patch before
applying SeAPR, and is above 40% for all APR systems with over 200
patch executions before the first plausible patch before applying
SeAPR. This further demonstrates the effectiveness of SeAPR in
boosting potentially expensive APR systems.

Similarly, Table 9 further shows the patch reduction ratios for
finding the first correct patches. In this table, for each APR tool,
we only present the results for the buggy versions on which it can

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

produce correct patches. Note that there exists no precise infor-
mation on the number of correct patches reported in the original
or subsequent papers for GenProg-A, RSRepair-A, and Kali-A [10],
as well as PraPR (due to the large number of plausible patches
generated at the bytecode level) [22]. For JKali and JGenProg, we
cannot generate any correct patches as reported by the tool’s origi-
nal paper [9], likely due to the tools’ nondeterminism and different
execution environments. Therefore, we exclude these six repair
tools from Table 9. We can find that SeAPR can achieve even higher
patch reduction rates in terms of the first correct patch (compared
with reductions for the first plausible patches). For example, SeAPR
improves the overall performance of Arja, Avatar, JMutRepair, KPar,
and TBar by 72.96%, 80.15%, 53.57%, 64.06%, and 48.33%, respectively.
Another interesting finding is that SeAPR does not degrade the per-
formance of any of the studied tools, although some tools remain
unimproved. Note that the patch reductions for correct patches do
not apply to all studied repair tools. Also, the results are mainly
consistent with (and even better than) that for plausible patches,
since SeAPR aims to improve the ranking of plausible patches while
whether a plausible patch is correct is orthogonal to our technique.
Therefore, we use patch reductions for plausible patches for all
following RQs due to the space limit.

[APR Systems | Orig. Rank | SeAPR Rank | Diff. [Reduction

Arja 203.22 121.83 81.39 40.05%
Avatar 57.52 25.96 31.56 54.87%
Cardumen 10.25 11.00 -0.75 -7.32%
FixMiner 85.26 48.13 37.13 43.55%
GenProg-A 226.21 47.71 178.50 78.91%
JGenProg 10.67 9.83 0.84 7.81%
JKali 6.50 4.75 1.75 26.92%
JMutRepair 25.50 23.67 1.83 7.19%
Kali-A 25.33 23.72 1.61 6.36%
KPar 76.59 63.14 13.45 17.56%
RSRepair-A 105.55 82.50 23.05 21.84%
TBar 55.19 49.18 6.01 10.90%
PraPR 2052.8 774.87 | 1277.93 62.25%

Table 8: Default SeAPR results for plausible patches

‘ APR Systems ‘ Orig. Rank ‘ SeAPR Rank ‘ Diff. ‘ Reduction

Arja 355.00 96.00 | 259.00 72.96%
Avatar 44.50 8.83 35.67 80.15%
Cardumen 17.00 17.00 0.00 0.00%
FixMiner 3.50 3.50 0.00 0.00%
JMutRepair 28.00 13.00 15.00 53.57%
KPar 58.43 21.00 37.43 64.06%
TBar 33.00 17.05 15.95 48.33%

Table 9: Default SeAPR results for correct patches

5.1.2 Qualitative Analysis. Next, we present detailed examples to
investigate the performance of SeAPR. We first look into cases
where SeAPR can help boost APR:

Example 1: Figure 1a shows one of the low-quality patches pro-
duced by Arja on Chart-19 while Figure 1b shows one of several
generated plausible patches. Note that these two patches modify
different files. In this example, we observe how low-quality patches
may help prioritize plausible patches. According to our technique,
other patches sharing similar modified elements with these low-
quality patches are deprioritized. Thus as any low-quality patch

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

@e -911,7 +911,6 @@ ...
public void setRangeAxis(int index, ValueAxis axis) {
= setRangeAxis(index, axis, true);

}

(a) Low-quality patch

ee -161,7 +161,10 ee
protected int indexOf(Object object) {
return -1;
if (object == null) {
throw new IllegalArgumentException("Null_'object' _argument."); }
return -1;

+ o+

3

(b) Plausible patch
Figure 1: Arja Chart-19 patches

@@ -1456,7 +1456,7 @e
NodeMismatch checkTreeEqualsImpl (Node node2) {

res = n.checkTreeEqualsImpl(n2);
if (res != null) {
- return res;
+ return null;
}
3

(a) High-quality patch

@@ -1450,7 +1450,7 ee
NodeMismatch checkTreeEqualsImpl (Node node2) {
Node n, n2;
for (n = first, n2 = node2.first;
res == null & n != null;
- n = n.next, n2 = n2.next) {
+ n =n, n2 = n2.next) {
if (node2 == null) {
throw new IllegalStateException();
¥

(b) Plausible patch
Figure 2: PraPR Closure-120 patches

modifying one particular set of methods is validated, all other sim-
ilar patches are deprioritized. This essentially results in (1) the
clustering of patches based on the set of modified methods and
(2) prioritizing/deprioritizing these clusters. Upon validation of
consecutive low-quality patches, this phenomenon culminates to a
breadth-first exploration of the patch clusters, mitigating the risk
of some high-quality patches getting starved. This process repeats
until Arja finds plausible patch from Figure 1b. With SeAPR, we
observe Arja validates the plausible patch 33rd instead of 626th, a
patch reduction of 94.7%.
Example 2: Since PraPR tends to generate substantially more
patches than other APR tools, we further present how SeAPR can
help prioritize the plausible patches for PraPR. The non-plausible
high-quality patch generated by PraPR as shown in Figure 2a modi-
fies method NodeMismatch. checkTreeEqualsImpl(Node node2)
and is able to pass some originally failed tests since the method is
quite influential for the failed tests. In this way, it can help substan-
tially improve the ranking of a plausible patch modifying the same
method as shown in Figure 2b . After applying SeAPR, the first
plausible patch can be ranked at 46th now (at 3165th originally), a
patch reduction of 98.5%.

Since SeAPR is a heuristic-based technique, it does not work for
all cases. Therefore, we also look into the negative cases:

Towards Boosting Patch Execution On-the-Fly

@@ -123,7 +123,6 @@
public class StrBuilder implements Cloneable {
public StrBuilder (String str) {

buffer = new char[CAPACITY];
} else {
buffer = new char[str.length() + CAPACITYI1;
= append(str);
b

(a) Non-matching High-quality patch

ee -1113,7 +1113,7 ee
public class StrBuilder implements Cloneable {
private void deleteImpl(int startIndex, int endIndex, int len) {
System.arraycopy (buffer, endIndex, buffer, startIndex, size - endIndex);
+ System.arraycopy (buffer, endIndex, buffer, startIndex,
+ capacity () - endIndex);
size -= len;

(b) Plausible patch
Figure 3: PraPR Lang-61 patches

@@ -530 +530 ee
public final class MathUtils {
public static boolean equals(double[] x, double[] y){

for (int i = 0; i < x.length; ++i) {
- if (lequals(x[il, y[il)) {
+ if ((!'equals(x[il, y[il)) && (x.length != y.length)) {
return false;

(a) Low-quality patch

@@ -530 +530 ee
public final class MathUtils {
public static boolean equals(double[] x, double[] y){

for (int i = 0; i < x.length; ++i) {
= if (lequals(x[il, y[il)) {
+ if (lequals(x[il, y[il, 1)) {
return false;

(b) Plausible patch
Figure 4: TBar Math-63 patches

Example 3: Figure 3b presents the only plausible patch produced
by PraPR on Lang-61, which modifies method deleteImpl(int,
int, int). However, various non-plausible high-quality patches
generated by PraPR modify a number of other methods, such as the
patch shown in Figure 3a modifying StrBuiler(String). After
detecting such high-quality patches, other patches sharing the same
modified elements are prioritized, causing some patches originally
ranked below the plausible patch to be executed earlier. As a result,
the rank of the plausible patch is degraded from 182nd to 347th.
Example 4: The only plausible patch which is also the only high-
quality patch generated by TBar for Math-63 is shown in Figure 4b.
However, as depicted in Figure 4a, there are many other patches
which modify the same method as the plausible patch but cannot
make any original failing tests pass. Many of such low-quality
patches are originally ranked above the only plausible patch. As a
result, validation of these patches will degrade the execution of the
plausible patch. Eventually, the plausible patch initially ranked at
28th is then degraded to 55th.

Finding 1: SeAPR can substantially reduce patch executions
before finding the first plausible/correct patches for almost all
studied repair tools, with a maximum improvement of 78.91%
(plausible) / 80.15% (correct).

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

Arja FixMiner JKali @ KPar RSRepair-A
Tool © Avatar * GenProg-A ® JMutRepair ® Overall # TBar
Cardumen € JGenProg Kali-A o PraPR
80% -) S) — Kewunnn,,
X‘ *.
0% - B-——--— B - —F— - B——l g g
c
2
5 40% = 3
o
5 — - —e — TN T -
L
© 1% =
Q 20% b — —— — — — ——p— ——— —— — = ==F
e P e & = =N =y R =BTy}
0% =
' ' ' ' ' ' ' '
o 20 & N o & <« e
o o *\s\“"j‘\ o o™ o Vb‘a(\

Figure 5: Impact of different formulae on patch reduction

5.2 RQ2: Impact of Different Formulae

In RQ1, we studied SeAPR with the Ochiai formula. In fact, SeAPR
is a general approach and can leverage any other existing SBFL
formula. Therefore in this RQ, we further investigate the impact
of different SBFL formulae on the effectiveness of SeAPR. Figure 5
shows the experimental results of 8 widely studied SBFL formu-
lae [49] on the 13 repair tools in terms of patch reduction. From
the results, we observe that SeAPR reduces the patch validations
of studied SBFL formulae across almost all repair tools, by up to
78.94% (GenProg-A with Kulczynski and Jaccard). Furthermore, for
different SBFL formulae, the overall patch reduction on all the stud-
ied 13 tools is rather stable. For example, the formula with the best
overall improvement is SBI (30.27%) and the formula with the worst
performance is Op2 (25.74%), i.e., the difference of all studied for-
mulae is only 4.5 percentage points (pp). Op2 performs worse than
the other formulae because it mainly considers the s;, information
while largely ignoring other valuable information from the simi-
larity tuples, demonstrating the importance of all the information
traced by SeAPR.

Finding 2: All studied formulae achieve stable performance,
speeding up the overall validation by at least 25.74%, demon-
strating the effectiveness of our design.

5.3 RQ3: Impact of Full Validation Matrix

We now have studied SeAPR with the default partial patch-validation
matrices. In this section, we further investigate the performance of
SeAPR with full patch-validation matrices. Figure 6 presents the
patch reductions achieved by SeAPR with the partial and full patch-
validation matrices. From this figure, we see that SeAPR can achieve
significant reductions on both full and partial patch-validation ma-
trices, indicating the general applicability of SeAPR. For example,
the overall reduction by SeAPR with the partial/full matrices is
28.53%/20.06% on all studied tools. Interestingly, despite the over-
all positive reductions, SeAPR degrades the performance of some
repair tools when using full matrices, e.g., the patch reduction on
Arja changes from 40.05% (with partial matrices) into -16.27% (with
full matrices). One possible reason for why SeAPR performs a bit
worse with full matrices is that a significant portion of low-quality

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

- 80% = = ValidationMatrix
'2 60% - A full-matrix
g A 2 - partial-matix
g 40%- el
e Al S
p 20%- . - e
L
T 0%-
o ¥
-20%= ' ' ' ' ' ' ' ' ' ' ' '
@ X T S Y K N A N
¥ p&"’\a @\)‘(\z " \N\a ?‘og)* eﬂ?‘o‘b N \?\BQ’A\ @ > «? o 7’??\@'&\‘ > <o
o e g 95?\

Figure 6: Impact of validation matrices on SeAPRs

patches with partial matrices are considered high-quality patches
with full matrices, since full matrices execute all tests against each
patch and can potentially make more failing tests pass.

Finding 3: SeAPR substantially reduces patch executions on
both partial and full patch-validation matrices and tends to
perform slightly better with partial matrices.

5.4 RQ4: Impact of Additional Patch Pattern
Information

In this RQ, we examine the impact of utilizing additional informa-
tion for computing patch similarity. We execute the default configu-
ration of SeAPR and compute patch similarity using both (1) the set
of modified elements and (2) the applied patch patterns. We achieve
this by looking specifically only at tools which apply predefined
repair patterns, i.e., those tools categorized as template-based. Note
that we collect the applied fix patterns as directly implemented by
each tool. The studied template-based tools are TBar, KPar, Avatar,
and PraPR with 18, 13, 19, and 18 repair patterns, respectively.?
Table 10 shows the result of this configuration evaluated against
our default SeAPR setting. In this table, Column 1 presents the APR
systems studied in this RQ; Column 2 presents the reduction results
when using the method location information to compute patch
similarity (i.e., the default SeAPR); Column 3 presents the reduction
results when using only the new patch pattern information to
compute patch similarity; finally, Column 4 presents the reduction
results when combining both method and patch pattern information
for computing patch similarity. From the table, we distinctly observe
that SeAPR with only method location information or patch pattern
information can both achieve nontrivial reductions. For example,
the reduction rates range from 10.90% (TBar) to 62.25% (PraPR)
when only using method location information, while ranging from
31.25% (KPar) to 61.96% (Avatar) when only using patch pattern
information. Furthermore, the SeAPR with both method location

and patch pattern information can achieve even high reductions.

For example, the reduction rates now range from 33.87% to 80.53%
for all the four studied APR systems.

Finding 4: Patch pattern information further improves SeAPR’s
performance on all studied repair tools by up to 29.75 pp. Fur-
thermore, SeAPR with only patch pattern information can
also achieve competitive patch reduction.

3Please note we excluded FixMiner as we failed to dump its fixing-pattern information.

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

| Method ‘ Pattern | Method+Pattern

Avatar | 54.87% | 61.96% 80.53%
KPar 17.56% | 31.25% 33.87%
TBar 10.90% | 35.73% 40.65%
PraPR 62.25% | 42.27% 66.88%

Table 10: SeAPR with patch pattern information

80% - Tech
A SeAPR
Vs oA A 4 SeAPR+History
60% - R - e N

patch reduction
¥
y

W @ o W ot e @ @ ot o
W e oo FEL

&

@ o . R
o

Figure 7: SeAPR with historical APR results from other tools

Arja + FixMiner JKali KPar TBar
Tool © Avatar % GenProg-A ¥ JMutRepair @ PraPR
Cardumen € JGenProg Kali-A RSRepair-A

80% - X . S O >ma e e U Kerem sea
o D B e

60% = T~ —— o — — o _ 1

c SO s e O e e e

S

g . R e e it el el —+= = = +

2 40%

2 S

- K

L, ~

g 20% - =

0% =
1 ' 1 i 1 \ ! ' 1 1
RY © o Y o« ® o & o o

Figure 8: Impact of top method number on patch reduction

5.5 RQ5: Boosting SeAPR via Other APR Tools

Figure 7 shows the impact of historical information for our default
configuration following Section 3.4. Note, we filter out all known
correct patches from the historical information from other APR
tools, since developers will stop the repair process after finding
any correct patch with other tools, thus alleviating the need for
SeAPR. Compared to Table 8, we observe improvements across
most repair tools, up to 60.53 pp (Kali-A). Most notably, the only
tool with originally negative performance (Cardumen) now has
34.15% reduction, i.e., over 41 pp improvement. On the other hand,
the only instances of degradation come from GenProg-A, Avatar,
TBar, and PraPR. The maximum degradation is only 14.71 pp (i.e.,
TBar degrades from 10.90% to -3.81%), while the degradation is less
than 8 pp and the reductions are still positive for all other instances.
Overall, such historical information can further boost SeAPR by
18.98 pp on average for all the studied APR tools.

Finding 5: Supplementing SeAPR with patch-execution in-
formation from other repair tools can further boost SeAPR.
This extra historical information, compared with SeAPR’s
default configuration, can further boost SeAPR by 18.98 pp
on average and up to 60.53 pp.

Towards Boosting Patch Execution On-the-Fly

5.6 Discussion

5.6.1 Impact of Top Methods Considered. As shown in Section 4.5,
to avoid degrading high-quality or plausible patches to the very
end of all patches for different modified locations, we by default
apply SeAPR to the Top 30 methods for the programs under test.
In this section, we further investigate the effectiveness of SeAPR
when applied to different numbers of top methods. Figure 8 shows
the experimental results for applying SeAPR to Top 10 to Top 100
methods (with the interval of 10). In this figure, the x axis shows
the number of top methods considered for SeAPR, while the y axis
presents the corresponding reduction achieved by different APR
systems (denoted by colored lines). According to the figure, we
have the following observations. First, the reduction rates increase
dramatically for almost all APR systems when increasing the num-
ber of top methods from 10 to 20. The reason is that SeAPR will
have the chance to improve more patches when more top methods
are considered for SeAPR. Second, the reduction rates for most APR
systems will become stable when SeAPR is applied to beyond Top
20 methods. One reason is that for all other APR systems (except
PraPR), they rarely patch more than 20 methods in a program under
test, making the SeAPR results largely unchanged when considering
more than Top 20 methods. Meanwhile, we can observe that even
for PraPR (the purple line), which can patch far more methods than
other APR systems, the reduction rate is still all positive, indicating
the scalability and wide applicability of SeAPR.

5.6.2 SeAPR Overhead. The SeAPR algorithm is only related to the
patch-validation phase, which is a pretty standard thing across APR
tools. Therefore, the changes are minimal for applying SeAPR over
existing APR tools. It is also important to analyze the overhead
of SeAPR, since it does not pay off if SeAPR itself is extremely
costly. Interestingly, we found that although SeAPR’s overhead
often increases when considering more top methods, the average
overhead for running SeAPR on each buggy version never exceeds
2s for any of the APR tools studied (even when considering 100 top
methods). The reason is that our implementation has been highly
optimized as shown in Section 3.2.4. Such overhead is negligible
for APR tools, which typically take hours to fix a bug.

5.6.3 Nondeterminism in APR Tools. We currently report the re-
sults for one run since our goal is to speed up state-of-the-art
APR techniques, while the recent state-of-the-art APR techniques
are mostly deterministic, e.g., all the studied APR tools that can
correctly fix over 20 bugs for Defects4] (including PraPR/Tbar/-
Fixminer/Avatar) are deterministic. Meanwhile, to investigate the
impact of APR non-determinism on SeAPR effectiveness, we fur-
ther rerun the experiments for the non-deterministic RSRepair-A
and Kali-A tools for 5 times. The experimental results demonstrate
that SeAPR can achieve an average reduction of 23.68%/4.88% for
RSRepair-A/Kali-A, which is similar to the results shown in Table 8.

5.6.4 Metrics. As shown by recent work [38], using time costs for
evaluating APR efficiency often depends on many random factors
(such as the execution environments, test execution engines, and
specific implementation choices) and can be quite unstable. Fur-
thermore, for the same APR tool, the reduction in patch executions
is largely proportional to the reduction in time cost since SeAPR is
oblivious to the patch execution time distribution. Therefore, we

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

followed the recommendation of the prior work [38] and have used
the number of patch executions as our main metric. Meanwhile,
it is also important to check if the reduction in terms of patch
executions aligns well with the reduction in terms of time costs.
Therefore, we further trace the detailed time cost reduction on an
example tool, i.e., state-of-the-art PraPR. The experimental result
shows that the reduction is 62.25% and 58.56% (including SeAPR
overhead) in terms of patch executions and time cost, respectively.
This further demonstrates the validity of our used metric.

5.7 Threats to Validity

5.7.1 Internal Validity. All of our results are dependent on the
correctness of the implementation of all the studied techniques.
We mitigate this threat by obtaining the source code of APR tools
from their websites/authors. Also, three authors implemented three
separate versions of SeAPR variants to perform differential testing
to ensure the result correctness. Following prior APR work [50],
three authors have participated in patch correctness checking to
ensure the inspection correctness. Still, there may be human errors
in the manual inspection process that may affect our findings.

5.7.2 External Validity. While our approach is generalizable to any
type of patch-and-validate system, we only evaluate Java-based
APR tools, which may skew results. To mitigate this threat we
1) studied a wide variety of APR tools, and 2) consider tools ac-
tively used in recent and related work. We also actively evaluate
our technique on the most widely studied Defects4] dataset, with
hundreds of real-world bugs. Adding more benchmark suites can
definitely further reduce this threat. However, some of the studied
APR tools cannot be easily applied to other benchmarks (due to
implementation/design limitations of the original APR tools).

5.7.3 Construct Validity. A major threat to validity lies in our eval-
uation metrics. To mitigate this, we compute the number of patch
executions recommended by recent work [38]. Meanwhile, we fur-
ther discuss the reduction results in terms of time cost.

6 CONCLUSION

We have proposed the first self-boosted APR technique, SeAPR,
which leverages the execution information of validated patches
during APR to prioritize the remaining patches on-the-fly for faster
APR. Our study on state-of-the-art APR systems and the widely
used Defects4] benchmark demonstrates that (1) the default SeAPR
can substantially speed up the studied APR techniques by up to
79% with negligible overhead, (2) SeAPR has stable performance
when using different formulae for computing patch priority and
different types of patch-execution matrices, (3) additional patch pat-
tern information for patch similarity computation can further boost
SeAPR, and (4) SeAPR can even utilize historical patch-execution
information from other APR tools to boost current APR tools.

ACKNOWLEDGMENTS

We appreciate the insightful comments from all the anonymous
reviewers. This work was partially supported by National Science
Foundation under Grant Nos. CCF-2131943 and CCF-2141474, as
well as Ant Group.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

REFERENCES

(1]
(2]

(3]

[11]

[12]

[13]

[16]

(17

(18]

[19]

[20

[21]

[22]

[23]

[24]

[25]

“Tricentis reports,” 2020. [Online]. Available: https://www.tricentis.com/
resources/software-fail-watch-5th-edition/

C. Boulder, “University of cambridge study,” https://www.roguewave.com/
company/news/2013/university-of-cambridge-reverse-debugging-study, 2013,
accessed: Jan. 8, 2019.

S. Wang, M. Wen, B. Lin, X. Mao, H. Wu, D. Zou, H. Jin, and Y. Qin, “Automated
Patch Correctness Assessment: How Far are We?” in Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, 2020, pp.
1166-1178.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé¢, “TBAR: Revisiting template-based
automated program repair,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyande, “AVATAR: Fixing Semantic Bugs
with Fix Patterns of Static Analysis Violations,” in Proceedings of the 2019 IEEE
26th International Conference on Software Analysis, Evolution, and Reengineering,
2019.

T. Durieux and M. Monperrus, “DynaMoth: Dynamic code synthesis for automatic
program repair,” in Proceedings - 11th International Workshop on Automation of
Software Test, AST 2016, 2016.

M. Martinez and M. Monperrus, “Ultra-large repair search space with automati-
cally mined templates: The cardumen mode of astor,” in Lecture Notes in Computer
Science, 2018.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program repair space
with existing patches and similar code,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018.

M. Martinez and M. Monperrus, “ASTOR: A program repair library for Java
(Demo),” in Proceedings of the 25th International Symposium on Software Testing
and Analysis, 2016.

Y. Yuan and W. Banzhaf, “ARJA: Automated Repair of Java Programs via Multi-
Objective Genetic Programming,” IEEE Transactions on Software Engineering,
2018.

Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, “History-driven build failure
fixing: How far are we?” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019.

M. Wu, L. Zhang, C. Liu, S. H. Tan, and Y. Zhang, “Automating CUDA synchro-
nization via program transformation,” in IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019, 2019.

J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transformations
from singular examples via big code,” in IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019, 2019.

F. Long and M. Rinard, “Automatic patch generation by learning correct code,” in
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2016, pp. 298-312.

Z.Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems,” International
Symposium on Software Testing and Analysis, pp. 24-36, 2015.

F. Long and M. Rinard, “Staged program repair with condition synthesis,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 166-178.

F. Long, P. Amidon, and M. Rinard, “Automatic inference of code transforms for
patch generation,” in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, 2017, pp. 727-739.

F. Long and M. Rinard, “An analysis of the search spaces for generate and vali-
date patch generation systems,” in Proceedings of the International Conference on
Software Engineering, 2016.

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software fault
localization,” IEEE Transactions on Software Engineering, vol. 42, no. 8, pp. 707-740,
2016.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of spectrum-based
fault localization,” in Proceedings - Testing: Academic and Industrial Conference
Practice and Research Techniques, TAIC PART-Mutation 2007, 2007.

J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic
fault-localization technique,” in 20th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2005, 2005.

A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via bytecode
mutation,” in ISSTA 2019 - Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019.

M. Wen, J. Chen, R. Wu, D. Hao, and S. C. Cheung, “Context-aware patch genera-
tion for better automated program repair;” in Proceedings - International Conference
on Software Engineering, vol. 2018-January, 2018.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each,” Proceedings of
International Conference on Software Engineering, pp. 313, 2012.

J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic Repair of Conditional State-
ment Bugs in Java Programs,” IEEE Transactions on Software Engineering, vol. 43,

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

[26

[27]

(28]

[30

(31]

(32]

[33]

[35

(36]

(37]

[39

[40]

[41]

[42

[43

[44

[45]

[46

[49]

[50

no. 1, 2017.

Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang, “Precise con-
dition synthesis for program repair,” in IEEE/ACM 39th International Conference
on Software Engineering, 2017, pp. 416-426.

A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and
A. Scott, “Sapfix: Automated end-to-end repair at scale,” in IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 269-278.

R.K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective object-oriented
program repair,” in IEEE/ACM International Conference on Automated Software
Engineering, 2017, pp. 648—659.

Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang, “Can
automated program repair refine fault localization? a unified debugging approach,”
in Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020.

L. Chen, Y. Ouyang, and L. Zhang, “Fast and precise on-the-fly patch validation
for all,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1123-1134.

C.Le Goues, S. Forrest, and W. Weimer, “Current challenges in automatic software
repair,” Software quality journal, vol. 21, no. 3, pp. 421-443, 2013.

W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence for adaptive
program repair: Models and first results,” in IEEE/ACM International Conference
on Automated Software Engineering, 2013, pp. 356-366.

B. Mehne, H. Yoshida, M. R. Prasad, K. Sen, D. Gopinath, and S. Khurshid, “Ac-
celerating search-based program repair,” in International Conference on Software
Testing, Verification and Validation, 2018, pp. 227-238.

Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller, “Automated fixing
of programs with contracts,” IEEE Transactions on Software Engineering, vol. 40,
no. 5, 2014.

R. van Tonder and C. L. Goues, “Static automated program repair for heap prop-
erties,” in Proceedings of the 40th International Conference on Software Engineering,
2018.

A. Koyuncu, K. Liu, T. Bissyandé, D. Kim, J. Klein, M. Monperrus, and Y. LeTraon,
“FixMiner: Mining relevant fix patterns for automated program repair,” Empirical
Software Engineering, 2020.

K. Liu, A. Koyuncu, T. Bissyande, D. Kim, J. Klein, and Y. LeTraon, “You cannot
fix what you cannot find! an investigation of fault localization bias in benchmark-
ing automated program repair systems,” Proceedings of 12th IEEE International
Conference on Software Testing, Verification and Validation, 2019.

K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyande, D. Kim, P. Wu, J. Klein,
X. Mao, and Y. L. Traon, “On the efficiency of test suite based program repair
a systematic assessment of 16 automated repair systems for java programs,” in
Proceedings of International Conference on Software Engineering, 2020.

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from
human-written patches,” in Proceedings of International Conference on Software
Engineering, 2013.

X.B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,” in IEEE
International Conference on Software Analysis, Evolution, and Reengineering, vol. 1,
2016, pp. 213-224.

L. De Moura and N. Bjerner, “Z3: An efficient SMT Solver,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 4963 LNCS, 2008.

T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “CoCoNuT: Combining
context-aware neural translation models using ensemble for program repair,”
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 101-114, 2020.

Y. Ding, B. Ray, and V. J. Hellendoorn, “Patching as Translation : the Data and
the Metaphor,” in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 327-338.

S.Benton, X. Li, Y. Lou, and L. Zhang, “On the Effectiveness of Unified Debugging:
An Extensive Study on 16 Program Repair Systems,” in Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, 2020.
——, “Evaluating and improving unified debugging,” IEEE Transactions on Software
Engineering, 2021.

L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired by test
prioritization and reduction,” in International Symposium on Software Testing and
Analysis, 2013.

Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through fault-
recorded testing prioritization,” in IEEE International Conference on Software
Maintenance, ICSM, 2013.

J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to
assist fault localization,” in Proceedings of International Conference on Software
Engineering, 2002.

M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based fault
localization using pagerank,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2017, pp. 261-272.

L. Gazzola, D. Micucci, and L. Mariani, “Automatic Software Repair: A Survey,”
IEEE Transactions on Software Engineering, vol. 45, no. 1, 2019.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated Program Repair
	2.2 Cost Reduction for APR

	3 Studied Approach
	3.1 Preliminaries
	3.2 Basic SeAPR
	3.3 SeAPR Variants
	3.4 Further Leveraging APR Results from Other Tools

	4 Experimental Design
	4.1 Research Questions
	4.2 Evaluation Dataset
	4.3 Studied APR Tools
	4.4 Evaluation Metrics
	4.5 Experimental Procedure

	5 Result Analysis
	5.1 RQ1: Overall SeAPR Effectiveness
	5.2 RQ2: Impact of Different Formulae
	5.3 RQ3: Impact of Full Validation Matrix
	5.4 RQ4: Impact of Additional Patch Pattern Information
	5.5 RQ5: Boosting SeAPR via Other APR Tools
	5.6 Discussion
	5.7 Threats to Validity

	6 Conclusion
	References

