
Towards Boosting Patch Execution On-the-Fly

Samuel Benton
University of Texas at Dallas
Samuel.Benton1@utdallas.edu

Yuntong Xie∗

Tsinghua University
xieyt18@mails.tsinghua.edu.cn

Lan Lu∗

Southern University of Science and
Technology

11810935@mail.sustech.edu.cn

Mengshi Zhang†

Meta Platforms, Inc.
mengshizhang@fb.com

Xia Li
Kennesaw State University

xli37@kennesaw.edu

Lingming Zhang†

University of Illinois at
Urbana-Champaign

lingming@illinois.edu

ABSTRACT

Program repair is an integral part of every software system’s life-

cycle but can be extremely challenging. To date, various automated

program repair (APR) techniques have been proposed to reduce

manual debugging efforts. However, given a real-world buggy pro-

gram, a typical APR technique can generate a large number of

patches, each of which needs to be validated against the original

test suite, incurring extremely high computation costs. Although ex-

isting APR techniques have already leveraged various static and/or

dynamic information to find the desired patches faster, they are

still rather costly. In this work, we propose SeAPR (Self-Boosted

Automated Program Repair), the first general-purpose technique

to leverage the earlier patch execution information during APR to

directly boost existing APR techniques themselves on-the-fly. Our

basic intuition is that patches similar to earlier high-quality/low-

quality patches should be promoted/degraded to speed up the de-

tection of the desired patches. The experimental study on 13 state-

of-the-art APR tools demonstrates that, overall, SeAPR can sub-

stantially reduce the number of patch executions with negligible

overhead. Our study also investigates the impact of various con-

figurations on SeAPR. Lastly, our study demonstrates that SeAPR

can even leverage the historical patch execution information from

other APR tools for the same buggy program to further boost the

current APR tool.

ACM Reference Format:

Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Ling-

ming Zhang. 2022. Towards Boosting Patch Execution On-the-Fly. In 44th

International Conference on Software Engineering (ICSE ’22), May 21ś29,

2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3510003.3510117

∗The work was done during a remote summer internship at University of Illinois.
†Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510117

1 INTRODUCTION

Software systems persist everywhere in all facets of today’s so-

ciety; they drive financial institutions, facilitate communication

worldwide, oversee critical systems, and so forth. Software systems,

however, are frequently distributed with numerous bugs that will

eventually lead to severe disasters. For example, the 5th edition

of Tricentis.com’s annual report shows that software failures

impact half of the world’s population (3.7 billion users) and $1.7

trillion in assets; it also mentions that there can be far more bugs

in the wild than we will likely ever know about [1]. Therefore, it

is imperative for developers to fix these bugs as early as possible

with minimal resource consumption. However, manual bug fixing

can be extremely tedious, challenging, and time-consuming since

modern software systems can be extremely complicated [2].

Fortunately, in lieu of manual bug fixing, researchers have also

extensively studied Automated ProgramRepair (APR) [3ś18], which

aims to automatically fix software bugs to reduce manual debug-

ging efforts. Typical APR techniques leverage off-the-shelf fault

localization [19] techniques (such as Ochiai [20] and Tarantula [21])

to identify potential buggy locations. Then, they leverage various

techniques to generate potential software patches for the potential

buggy locations. Lastly, each generated patch will need to be ex-

ecuted against the original test suite to find the plausible patches

(i.e., the patches that can pass all the original tests). Note that not

all the plausible patches are the ones that developers want; thus,

developers need to further inspect the produced plausible patches

to derive the final correct ones. To date, various APR techniques

have been proposed, including techniques based on predefined-

templates [4, 22, 23], heuristics [8, 10, 24], and constraint solv-

ing [7, 25, 26]. Furthermore, APR techniques have also drawn wide

attention from industry, e.g., Facebook [27], Fujitsu [28], and Al-

ibaba [29].

Compared with manual bug fixing, APR can automatically fix a

number of real-world bugs with minimal human intervention and

can be easily integrated with the natural workflow of continuous

integration lifecycle (e.g., Facebook’s in-house tool SapFix [27] has

been integrated into its workflow). Despite the promising future

of APR, it is not perfect yet and numerous issues still plague the

area. Among the most paramount of these issues are still the time

costs associated with numerous patches for large-scale real-world

systems. Existing studies have demonstrated that patch validation

dominates the costs of APR [30ś33], since each patch needs to be

executed against the original test suite.

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

To reduce the APR costs, researchers have proposed various tech-

niques to reduce the number of patches generated, e.g., based on

machine learning [28], codemining [13], and constraint solving [25].

However, prior work has demonstrated that such techniques can

incur the dataset overfitting issue, i.e., the correct patches may

be skipped for many other unstudied cases [22]. Furthermore, re-

searchers have also proposed to prioritize all the generated patches

to find the plausible patches earlier. Such existing techniques pri-

marily utilize static or dynamic information to statically prioritize

patches before the patch validation [8, 23, 26], e.g., almost all APR

techniques use the suspiciousness values computed by off-the-shelf

fault localization techniques to prioritize the patches; no further

reprioritization is employed during the patch validation process of

these tools, leading to limited improvement.

In this work, we propose SeAPR (Self-BoostedAutomatedProgram

Repair), the first general-purpose technique to leverage the patch-

execution information during APR to directly boost existing APR

techniques themselves on-the-fly. Our basic intuition is that earlier

patch execution results can help better prioritize later patch exe-

cutions on-the-fly to speed up the detection of the desired patches

(e.g., plausible/correct patches). In this way, we promote the rank-

ing of the patches similar to the executed high-quality patches,

while degrading the ranking of the patches similar to the executed

low-quality patches. More specifically, we analyze the modified ele-

ments to compute patch similarities as patches modifying similar

program elements can exhibit close program behaviors. We have

evaluated SeAPR on 13 state-of-the-art APR systems. Our study also

investigates the impact of various configurations on SeAPR, e.g., the

formula for patch prioritization, the type of patch-validation ma-

trices (full or partial), the number of code elements considered for

SeAPR, and the additional patch pattern information for computing

patch similarity. Lastly, our study further evaluates the performance

of SeAPR with historical patch-execution information from other

APR tools on the same buggy program.

To summarize, this paper makes the following contributions:

• Direction. This paper opens a new dimension to leverage

patch-execution information to boost existing APR tech-

niques on-the-fly and can inspire more future work in this

new direction.

• Design.We design the first technique, SeAPR, in this new

direction to update each patch’s priority score based on its

similarity with the executed patches and the quality of the

executed patches.

• Extensive Study.We have performed an extensive study of

the proposed technique on 13 state-of-the-art APR systems

for JVM-based languages using the widely studied real-world

bugs from Defects4J.

• Practical Guidelines. The study reveals various practical

guidelines, including (1) the default SeAPR can substantially

speed up the studied APR techniques by up to 79% with

negligible overhead (regardless of various initial patch prior-

itization strategies used by the studied APR techniques), (2)

SeAPR has stable performancewhen using different formulae

for computing patch priority and different types of patch-

execution matrices, (3) additional patch pattern information

for patch similarity computation can further substantially

improve SeAPR, and (4) SeAPR can even effectively utilize

historical patch-execution information from other APR tools

to boost current APR tools.

2 RELATED WORK

2.1 Automated Program Repair

Automated Program Repair (APR) techniques [3ś18] aim to au-

tomatically fix software bugs to substantially reduce manual de-

bugging efforts and have been extensively studied during the last

decade. Typical APR techniques usually modify program code rep-

resentations based on various patch-generation techniques and

then validate each generated patch (e.g., via testing [24], formal

specification checking [34], and static analysis [35]) to find the

final desired patches. In recent years, APR techniques leveraging

testing for patch validation have gained popularity as testing is

the dominant methodology for detecting software bugs in practice.

Such APR techniques usually include the following phases. (1) Fault

localization: APR techniques first leverage off-the-shelf fault local-

ization techniques [4, 5, 7, 10, 36, 37] to localize the potential buggy

locations. (2) Patch generation: APR techniques will leverage various

strategies to generate potential patches for the identified potential

buggy locations. (3) Patch validation: all the generated patches will

be executed against the original test suite to detect the patches that

pass all the original tests, i.e., plausible patches. Of course, since

not all plausible patches are desirable, patch correctness checking

(often done via manual inspection in practice) is further involved

to find the final correct patches, which are equivalent to developer

patches.

According to a recent study [38], most state-of-the-art APR tech-

niques can be divided into the following categories. (1) Heuristic-

based techniques leverage various heuristics to iteratively explore

the search space of all possible program edits. For example, the

seminal GenProg technique [24] leverages genetic programming

to synthesize donor code for high-quality patch generation, while

the recent SimFix technique [8] employs advanced code search to

obtain donor code for patch generation. (2) Template-based tech-

niques leverage predefined fixing templates (e.g., changing ł>ž to

ł≥ž) to perform patch generation. Such predefined fixing templates

can be either manually summarized (e.g., KPar [39]), or automat-

ically inferred (e.g., HDRepair [40]) from historical bug fixes. (3)

Constraint-based techniques transform the program repair prob-

lem into a constraint-solving problem and leverage state-of-the-

art constraint solvers (e.g., SMT [41]) for patch generation, such

as Nopol [25]. More recently, researchers have also looked into

learning-based techniques [42, 43] to directly generate patches via

learning from historical fixes.

Since it is extremely challenging for APR techniques to fix all

possible bugs, researchers have also recently proposed the unified

debugging work [29, 44, 45] to extend the application scope of APR

to the bugs that cannot be automatically fixed. Its basic intuition is

that the massive patch execution information during APR can actu-

ally substantially boost fault localization. For example, if a patch

passes all the tests, it means the patch is likely to mute the impacts

of the bug, even though this patch may not be correct; it can then

be inferred that the patched location is highly related to the actual

buggy location, since otherwise the bug effect would not be muted.

Towards Boosting Patch Execution On-the-Fly ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

With unified debugging, even when APR techniques cannot fix a

bug, unified debugging still can analyze the patch-execution infor-

mation to provide useful hints about potential buggy locations to

help with manual repair. In this way, unified debugging extends

the application scope of APR to all possible bugs, not only bugs

automatically fixable. Inspired by unified debugging, we also aim

to leverage the wealth of patch execution information generated

during APR. Meanwhile, there are the following major differences.

First, while unified debugging aims to leverage patch execution

information for manual program repair, our SeAPR leverages such

information to directly boost automated program repair, i.e., we

aim to boost existing APR tools by prioritizing the desired plausi-

ble/correct patches earlier in the validation process. Second, their

technical principles are substantially different. Unified debugging

analyzes the correlation between patch locations and test outcomes

to infer potentially buggy locations, while our work analyzes the

correlation among executed and remaining patches via estimating

their behavioral similarities to speed up the detection of desired

patches. In fact, our work is inspired by prior work on mutation

testing [46], which leverages the similarities of modified elements

for different mutants to perform test prioritization/reduction for

each mutant to speed up mutation testing.

2.2 Cost Reduction for APR

Despite the promising future of APR, it can be extremely time con-

suming due to the generation and validation of a large number

of possible patches. Actually, the patch validation cost has been

shown to dominate the overall APR cost [30ś33]. Therefore, re-

searchers have also looked into various techniques to further speed

up APR. To reduce the validation time spent on each patch, Ghanbari

et al. [22] and Chen et al. [30] proposed to share the same JVM

session across multiple patch executions; in this way, the patch

loading and execution time can be substantially accelerated for

both source-code and bytecode level APR techniques. In addition,

researchers have also proposed to prioritize and reduce the test exe-

cutions for each patch to reduce the validation time for each patch.

For example, Qi et al. [47] proposed TrpAutoRepair to prioritize test

executions for each patch based on historical information to falsify

implausible patches faster; Mehne et al. [33] further proposed to

reduce the number of test executions for each patch, since tests

not covering the patched location(s) cannot help validate the patch.

Our SeAPR technique is orthogonal to such existing techniques

since they aim to reduce the execution cost for each patch while

SeAPR aims to reduce the number of patch executions.

To reduce the number of validated patches, almost all existing

APR techniques leverage fault localization and various other strate-

gies to reduce the possible patch executions. Furthermore, many

existing APR techniques also leverage other available dynamic or

static information to prioritize patch executions to find the desired

patches faster (e.g., based on various fault localization informa-

tion [20, 23]). Despite various cost reduction techniques have been

proposed, APR techniques are still rather time consuming for real-

world programs [22]. In this paper, we propose the first technique

to leverage on-the-fly patch execution information to help better

prioritize patch executions. Note that our technique is orthogonal

to all existing patch prioritization techniques and our experimen-

tal results demonstrate that our technique can substantially speed

up state-of-the-art APR techniques with various original patch

prioritization strategies.

3 STUDIED APPROACH

In this section, we first present the necessary preliminaries (Sec-

tion 3.1). Then, we introduce the detailed SeAPR approach (Sec-

tion 3.2). We will also discuss different SeAPR variants (Section 3.3).

Lastly, we will introduce a further extension of SeAPR to leverage

the patch execution information from other APR tools for even

faster APR (Section 3.4).

3.1 Preliminaries

Definition 3.1. Patch validationmatrix: MatrixMv defines

the validation results of all tests against all patch candidates. In the

matrix, each cell describes the validation result of test t ∈ T against

patch p ∈ P. Possible values for each cell are as follows: (1) - if t

remains unvalidated, (2) × if t fails on p and (3) ✓ if t passes on p.

Patch ID t1 t2 t3

pb (buggy ver.) × ✓ ×

p1 × × ×

p2 ✓ × ✓

p3 × × ×

p4 ✓ ✓ ✓

Patch ID t1 t2 t3

pb (buggy ver.) × ✓ ×

p1 × - -

p2 ✓ × -

p3 × - -

p4 ✓ ✓ ✓

Table 1: Example of full/partial patch-validation matrix

Ideally the patch-validation matrix should be full, i.e., every cell

should be ✓ or ×. In practice during the APR process however, most

modern APR tools terminate the test execution for one patch im-

mediately after observing any failing test on that particular patch,

since the primary goal is to find correct patches and patches which

fail any test cannot even be plausible. In this way, the APR pro-

cess can be largely sped up without sacrificing repair effectiveness.

Not all APR tools employ this strategy, so we study both types

of matrices, where some tests remain unexecuted (partial matri-

ces) versus where all tests always execute (full matrices). Table 1

presents the example full/partial matrices for 4 example patches

(i.e., p1, p2, p3, and p4) on 3 example tests (i.e., 𝑡1, 𝑡2, and 𝑡3). Note

that the first row for the patch-validation matrix is always the test

execution results of the original buggy program (i.e., pb).

Definition 3.2. Patchmodificationmatrix: MatrixMm presents

all program elements modified within each patch. Each cell describes

if patch p ∈ P modifies element e ∈ E (i.e., all possible program el-

ements). Acceptable values for each cell are as follows: (1) ✓ if p

modifies element e and (2) - if p does not modify element e.

Patch ID 𝑒1 𝑒2 𝑒3 𝑒4 Modified Element(s)

p1 ✓ ✓ ✓ - {𝑒1, 𝑒2, 𝑒3}

p2 ✓ ✓ ✓ ✓ {𝑒1, 𝑒2, 𝑒3, 𝑒4}

p3 - ✓ ✓ - {𝑒2, 𝑒3}

p4 ✓ - - - {𝑒1}

Table 2: Example of patch modification matrix

Table 2 presents an example patch modification matrix for the

above four example patches on four program elements. In this

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

way, since p1 patches program elements {𝑒1, 𝑒2, 𝑒3}, the first three

columns are ✓ for p1. Note that the patch modification matrix can

be defined at different levels (e.g., at the package, class, method, and

statement granularities) depending on the granularity of considered

program elements. In this paper, we mainly consider the method

granularity, e.g., the columns will be the methods modified by each

program patch. Compared with the patch validation matrix, the

patch modification matrix can be computed much faster (in fact

with negligible overhead), and thus can be leveraged to speed up

the patch validation process.

3.2 Basic SeAPR

Given the above introduced patch-validation matrix and patch-

modification matrix (which are readily available for almost all APR

tools) for the already executed/validated patches, our SeAPR per-

forms on-the-fly patch prioritization to speed up APR. Our basic

intuition is that patches similar to executed high-quality patches

are likely to also be high-quality and should therefore be prioritized

earlier; likewise, patches rather similar to executed low-quality

patches should be deprioritized. In this section, we first introduce

our definitions for patch quality (Section 3.2.1); then, we introduce

the detailed strategy to compute patch similarity with high- or low-

quality patches (Section 3.2.2); next, we introduce our final priority

score computation for all unexecuted patches (Section 3.2.3); lastly,

we present our overall algorithm (Section 3.2.4) with corresponding

examples (Section 3.2.5).

3.2.1 Patch Quality. When processing patches that have been exe-

cuted/validated, we need to estimate the patch’s quality by analyz-

ing the patch validation matrix. Intuitively, the ultimate goal of APR

is to produce plausible/correct patches that can pass all the original

tests. Therefore, in this study, a patch is classified as high-quality

(patches we wish to prioritize) if it can make any originally failing

test pass; likewise, a patch is classified as low-quality (patches we

wish to deprioritize) if it cannot make any originally failing test

pass. Formally, the set of high-quality and low-quality patches can

be defined as Equations (1) and (2), respectively.

Ph = {p|∃ t, Mv[p,t] = ✓ ∧Mv[pb,t] = ×} (1)

Pl = {p|∀ t,Mv[pb,t] = × ⇒ Mv[p,t] ≠ ✓} (2)

Note that we can also easily compute the detailed number of origi-

nally failing tests that now pass on a patch; however, prior work has

demonstrated that the detailed test number can be misleading [29].

Of course, this is just the first work in this new direction, and we

highly encourage other researchers to investigate other better ways

to estimate patch quality.

3.2.2 Patch Similarity. After calculating patch quality for executed

patches, we iterate through all remaining patches within P to

compute their similarity information with the executed high/low-

quality patches. For each patch p that has not been validated yet,

we compare its patch modification matrix information against that

of each of the validated patches. During the comparison, we com-

pute the number of elements matching and differing among the

two compared patches (i.e., two rows in the patch modification

matrix). We calculate the number of matching elements by perform-

ing the set intersection on the two patch modification matrix rows

representing the two patches. Likewise, we calculate the number of

differing elements by performing a symmetric set difference (i.e., A

⊖ B = (A - B) ∪ (B - A)) on the two patch modification matrix rows

representing the two patches.

Based on the similarity/dissimilaritywith high/low-quality patches,

we can compute the following tuple for each unvalidated patch p

for prioritization, (sℎ , dℎ , s𝑙 , d𝑙). Our basic idea is that sℎ should

get increased when p shares elements with high-quality patches,

s𝑙 should get increased when p shares elements with low-quality

patches, dℎ should get increased when p has set difference with

high-quality patches, and d𝑙 should get increased when p has set

difference with low-quality patches. Since the detailed number of

the matching/different modified elements between two patches can

tell the detailed similarity/dissimilarity information, the increment

should also consider such detailed information. In this way, the

formulae for computing the tuple for each unvalidated patch p are:

sℎ[p] =
∑

p′ |{e|e ∈ Mm[p] ∩Mm[p’] ∧ p’ ∈ Ph}| (3)

s𝑙 [p] =
∑

p′ |{e|e ∈ Mm[p] ∩Mm[p’] ∧ p’ ∈ Pl}| (4)

dℎ[p] =
∑

p′ |{e|e ∈ Mm[p] ⊖ Mm[p’] ∧ p’ ∈ Ph}| (5)

d𝑙 [p] =
∑

p′ |{e|e ∈ Mm[p] ⊖ Mm[p’] ∧ p’ ∈ Pl}| (6)

Note that Mm[p] denotes the set of program elements modified

by patch p. For example, if a validated patch p’ is high-quality and

shares elements with the current p, the sℎ of p is then increased for

|Mm[p] ∩Mm[p’]|. All the other tuple elements can be defined in

a similar way.

3.2.3 Patch Prioritization. Based on the similarity tuple we com-

puted from the previous step, we can compute the priority score for

each unvalidated patch based on the following intuition: (1) a patch

more similar/dissimilar with high-quality patches should be promot-

ed/degraded, (2) a patch similar/dissimilar with low-quality patches

should be degraded/promoted. Actually, such intuition is quite sim-

ilar to traditional spectrum-based fault localization (SBFL) [48],

where the intuition is (1) a program element executed/unexecuted

by more failed tests should be more/less suspicious, (2) a program

element executed/unexecuted by more passed tests should be less/-

more suspicious. In this way, all the traditional fault localization

formulae can be directly leveraged here to compute the patch pri-

ority. We use the Ochiai formula, shown in Equation (7), as our

default formula as it is often the default formula for SBFL [8, 22, 23].

In this way, patches will be promoted/demoted if they are simi-

lar/dissimilar with other high-quality patches, consistent with our

intuition.

Ochiai =
sℎ

√

(sℎ + dℎ) ∗ (sℎ + s𝑙)
(7)

3.2.4 Overall Algorithm. Given the above definitions, we can now

present the overall SeAPR algorithm. Shown in Algorithm 1, SeAPR

first initializes the similarity tuples of all patches considered for

SeAPR as 1s1 (Line 2). Then, SeAPR iterates through all such patches

and validates them in order (Lines 3-16). During each iteration,

SeAPR first gets the patch p with the highest priority and pops that

from the patch list P. Note that for the patches with tied SeAPR

priority scores (e.g., all patches are tied before the first patch execu-

tion), SeAPR prioritizes them with their original ordering from the

1Note that they are initialized as 1s (not 0s) for numerical stability.

Towards Boosting Patch Execution On-the-Fly ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

Algorithm 1: SeAPR Algorithm

Input: The original buggy program pb , test suite T, the list of candidate patches P
considered for SeAPR, the similarity tuples (sℎ , s𝑙 , dℎ , d𝑙)

Output: Plausible patches: P✓
1 begin
2 Initialize (sℎ , s𝑙 , dℎ , d𝑙) for all patches

3 while P is not empty do
4 p← pop(P) ; // pop the remaining patch with the highest priority

5 Mv ← execute(p, T); // validate p

6 if p is PLAUSIBLE then
7 P✓← p; // put p into the resulting set for manual

inspection

8 r← computePatchQuality(p, pb ,Mv)

// Incrementally update the similarity tuples for the remaining

patches

9 for p’ ∈ P do
10 if r = HIGH − QUALITY then
11 sℎ [p’] += |Mm[p] ∩Mm[p’] |

12 dℎ [p’] += |Mm[p] ⊖ Mm[p’] |

13 if r = LOW − QUALITY then
14 s𝑙 [p’] += |Mm[p] ∩Mm[p’] |

15 d𝑙 [p’] += |Mm[p] ⊖ Mm[p’] |

16 P← computePriorityScore(P, sℎ , dℎ , s𝑙 , d𝑙)

corresponding APR tools. Then, SeAPR executes the patch against

the original test suite and stores the patch execution results into

the patch validation matrix Mv (Line 5). If p is a plausible patch, it

will be stored in the resulting set P✓ for manual inspection (Lines

6-7). To help with on-the-fly patch prioritization, SeAPR computes

the patch quality information for the current patch following Sec-

tion 3.2.1 (Line 8). Next, SeAPR goes through all the remaining

patches to update their similarity tuples following Section 3.2.2

(Lines 9-15). Note that all remaining patches will be compared with

the newly executed patch to incrementally update their correspond-

ing similarity tuples. Lastly, the priority scores for all remaining

patches will be updated based on the updated similarity tuples

following Section 3.2.3 (Line 16). In this way, the algorithm will

proceed until all patches have been validated or the developers find

the desired patch.

Note that the time complexity of the SeAPR algorithm is𝑂 (𝑛2) at

first glance (𝑛 denotes the number of patches considered for SeAPR),

since all the remaining patches need to be updated after each patch

execution. Meanwhile, during our implementation, we realize that

the similarity scores do not need to be updated for each remaining

patch; instead, we can cluster all remaining patches based on the set

of program elements they modify, since all patches with the same

set of modified elements will have the same priority. In this way,

the time complexity can be reduced to 𝑂 (𝑛𝑚), where𝑚 denotes

the number of patch clusters with the same modified element sets.

Given𝑚 << 𝑛 in practice, our actual SeAPR implementation incurs

negligible overhead.

3.2.5 Example. Let us now use the partial patch validation matrix2

(shown in Table 1) and its corresponding patch modification matrix

(shown in Table 2) as the example to illustrate our SeAPR technique.

For this example, if we follow the original patch execution ordering

(top-down), we need to execute four patches before finding the final

plausible patch. Now we discuss how our SeAPR can help speed up

this process.

2Note that we use partial since most APR tools will collect partial matrices, but our
idea generalizes to full matrices (as studied in Section 5.3).

Shown in Tables 3 and 4, Column łQualityž describes the patches’

actual quality (available after the corresponding patch validation);

Column łMatchž describes the set of matching elements against the

last executed patch for each patch; Column łDifferž describes the

set of differing elements against the last executed patch for each

patch; Columns łsℎž, łdℎž, łs𝑙 ž, and łd𝑙 ž represent the accumulated

similarity tuples per patch (initialized as 1s); lastly, Column łScorež

represents the Ochiai priority score as defined in Equation (7).

In the first iteration (shown in Table 3), SeAPR will compute

the quality of the executed patch, p1 (marked with gray). We can

immediately determine that the patch is low quality simply because

it cannot make any originally failing tests pass. Note that we also

show the quality for all other unexecuted patches to illustrate the

quality computation. Then, given p1 has been executed, we can

update the similarity tuple for each remaining patch. For example,

for p2, the set intersection and symmetrical set difference with p1
is {𝑒1, 𝑒2, 𝑒3} ∩ {𝑒1, 𝑒2, 𝑒3, 𝑒4} = {𝑒1, 𝑒2, 𝑒3} and {𝑒1, 𝑒2, 𝑒3} ⊖ {𝑒1, 𝑒2, 𝑒3,

𝑒4} = {𝑒4}, respectively. Therefore, since p1 is a low-quality patch,

s𝑙 increments by 3 and d𝑙 increments by 1 for p2, resulting in the

tuple (sℎ=1+0, dℎ=1+0, s𝑙=1+3, d𝑙=1+1). Similarly, we can compute

the similarity tuples for all the other remaining patches. Then, via

applying the default Ochiai formula on the computed tuples, we

can compute the priority scores for all the three remaining patches

as shown in Column łScorež in Table 3. In this way, the patch with

the highest priority, p4, is selected for the next patch execution.

In the second iteration, p4 gets executed (marked in gray) as

shown in Table 4. Note that p4 is a plausible patch that can pass

all tests. Therefore, the developers can immediately start manual

inspection to check if p4 is the correct patch. Of course, the patch

execution can still continue if p4 is not the correct patch. Continuing

the algorithm, the remaining patches will be further compared with

the newly executed p4 to update their similarity tuples. For example,

for p2, the set intersection and symmetrical set difference with p4
is {𝑒1, 𝑒2, 𝑒3, 𝑒4} ∩ {𝑒1} = {𝑒1} and {𝑒1, 𝑒2, 𝑒3, 𝑒4} ⊖ {𝑒1} = {𝑒2, 𝑒3, 𝑒4},

respectively. Since p4 is a high-quality patch, p2’s tuple is updated

by incrementing sℎ by 1 and dℎ by 3, resulting in the tuple (sℎ=1+1,

dℎ=1+3, s𝑙=4+0, d𝑙=2+0). In this way, we can compute the scores

for all remaining patches.

ID Quality Match Differ sℎ dℎ s𝑙 d𝑙 Score

p1 Low - - - - - - -

p2 High {𝑒1, 𝑒2, 𝑒3} {𝑒4} 1+0 1+0 1+3 1+1 0.32

p3 Low {𝑒2, 𝑒3} {𝑒1} 1+0 1+0 1+2 1+1 0.35

p4 Plausible {𝑒1} {𝑒2, 𝑒3} 1+0 1+0 1+1 1+2 0.41

Table 3: SeAPR step-by-step when processing p1

ID Quality Match Differ sℎ dℎ s𝑙 d𝑙 Score

p1 Low - - - - - - -

p4 Plausible - - - - - - -

p2 High {𝑒1} {𝑒2, 𝑒3, 𝑒4} 1+1 1+3 4+0 2+0 0.33

p3 Low {∅} {𝑒1, 𝑒2, 𝑒3} 1+0 1+3 3+0 2+0 0.22

Table 4: SeAPR step-by-step when processing p4

For this example, we observe that the original patch execution

ordering requires 4 patch executions to find the first plausible patch,

while our SeAPR reduces the number of required patch executions

to only 2, i.e., 4−2
4

= 50% patch reduction. In this way, the devel-

opers can start manual patch inspection as soon as after 2 patch

executions.

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

3.3 SeAPR Variants

3.3.1 Patch-Prioritization Formulae. Besides Ochiai, other SBFL

formulae can also be applied here. In particular, we study all SBFL

formulae from prior work [49] in Section 5.2.

3.3.2 Validation-Matrix Types. Besides the partial patch-validation

matrices widely used in practice, we also consider the impact of

full validation matrices on SeAPR in Section 5.3.

3.3.3 Additional Patch Pattern Information. By default, SeAPR only

uses the set of modified program elements to calculate patch similar-

ity for prioritizing patches on-the-fly. Another SeAPR extension is

to compute the similarity score with additional information. There-

fore, in Section 5.4, we further study another SeAPR variant, which

additionally considers that patches sharing the same fixing pat-

terns may also share similar program behaviors. In this way, we

can promote patches applying the same fixing patterns as known

high-quality patches to further boost SeAPR.

Definition 3.3. Patch repair pattern matrix: Matrix Mp

presents the applied repair patterns applied to each patch. Each cell

describes if patch p ∈ P applies repair pattern r ∈ R (i.e., all predefined

repair patterns). Acceptable values for each cell are as follows: (1) ✓

if p applies pattern r and (2) - otherwise.

SeAPR Features
Patch ID 𝑟1 𝑟2 𝑟3 Modified Element(s) Pattern(s)

p1 ✓ - - {𝑒1, 𝑒2, 𝑒3} {𝑟1}

p2 - ✓ - {𝑒1, 𝑒2, 𝑒3, 𝑒4} {𝑟2}

p3 - - ✓ {𝑒2, 𝑒3} {𝑟3}

p4 - ✓ - {𝑒1} {𝑟2}

Table 5: Example of patch repair pattern matrix

This variant only slightly differs from the default SeAPR when

computing patch similarity, e.g., this variant considers both (1) the

set of modified elements and (2) the applied repair patterns. Based

on the above patch-pattern matrix definition, we can recompute

the similarity tuples for further improving SeAPR, e.g., sℎ[p] in

Equation (3) becomes:

sℎ[p] =
∑

p′ |{e|e ∈ Mm[p] ∩Mm[p’] ∧ p’ ∈ Ph}| +
∑

p′ |{r|r ∈ Mp[p] ∩Mp[p’] ∧ p’ ∈ Ph}|
(8)

3.4 Further Leveraging APR Results from
Other Tools

In practice, one repair tool is often insufficient to successfully find

a correct patch. Thus developers often need to run multiple repair

tools to automatically fix a bug. Currently, different repair tools

are run in isolation. Our basic idea is that the execution results of

other repair tools on the same program can be used to further

boost the current repair tool under SeAPR. In particular, we use the

repair information from all but one repair tools to initialize the

priority score of all patches. For example, when applying SeAPR

to TBar on Chart-1, all patch executions results of other tools on

Chart-1 will be treated as the already executed patches to initialize

the priority scores of all TBar patches on Chart-1. With the priority

scores initialized, SeAPR starts with the most prioritized patch and

follows the algorithm outlined in Algorithm 1, updating the already

initialized priority scores of each patch. In this way, SeAPR can get

a jumpstart for faster validation.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

In this paper, we study the following research questions:

• RQ1: How does the default SeAPR perform on state-of-the-

art APR systems?

• RQ2:Howdo different prioritization formulae impact SeAPR?

• RQ3: How do full patch validation matrices impact SeAPR?

• RQ4: How does SeAPR perform when leveraging additional

patch pattern information?

• RQ5: How does SeAPR perform when further leveraging

historical repair information from other APR systems?

Note that we first study our default SeAPR configuration with

the Ochiai formula, partial patch validation matrices, similarity

computation based on modified elements in RQ1. Then, in RQ2 and

RQ3, we investigate the impact of different formulae and types of

patch validation matrices to study the robustness of SeAPR. In RQ4,

we leverage the additional patch pattern information (available for

state-of-the-art template-based APR techniques [4, 22]) to further

boost the effectiveness of SeAPR. Lastly, in RQ5, we investigate

whether historical patch validation information from other APR

tools can help achieve even more effective SeAPR for the current

APR tool.

4.2 Evaluation Dataset

We choose to evaluate SeAPR against Defects4J (V1.2.0), the most

widely used APR dataset to date, which will allow SeAPR to be

easily compared with and replicated in the future. The details for

the dataset are shown in Table 6. Column ł#Bugsž presents the

number of buggy versions studied for each subject. Columns ł#Testsž

and łLOCž present the number of JUnit tests and lines of code

available within the head (i.e., most recent) version of each subject,

respectively. For each studied buggy version, the average number

of failing tests is 2.37 (ranging from 1 to 66). Please also note that Ph
(the set of high-quality patches, which is closely related to SeAPR

effectiveness) is not necessarily related to the number of failed tests

since Ph patches can pass the failed test(s) but fail on the other

originally passing tests (i.e., Equation 1 does not check whether

the originally passing tests still pass). For example, for the recent

PraPR tool, there are 178 high-quality patches for each bug version

on average.

Subject Name # Bugs # Tests LOC

Chart JFreeChart 26 2,205 96K

Lang Apache Lang 65 2,245 22K

Math Apache Math 106 3,602 85K

Time Joda-Time 27 4,130 28K

Mockito Mockito framework 38 1,366 23K

Closure Google Closure compiler 133 7,927 90K

Total 395 21,475 344K

Table 6: Studied bugs from Defects4J v1.2.0

Towards Boosting Patch Execution On-the-Fly ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

4.3 Studied APR Tools

Following prior work [38, 44], we consider 17 program repair tools

publicly available and applicable to Defects4J in this study, show

in Table 7. Of these tool candidates, we exclude ACS, DynaMoth,

and Nopol due to low numbers of patches generated (i.e., <500

total patches across all studied Defects4J projects). Evaluating our

technique on such tools with small numbers of patches will induce

noise into our results; also, in practice, it is not necessary to perform

on-the-fly patch prioritization on such tools with a small number

of patches. We further exclude Simfix since the tool stops execu-

tion after finding the first plausible patch. The validation results

of such tools cannot be degraded, since the last patch is always

the desired plausible patch; results from such tools can only be

improved, biasing our findings. In total, we studied 13 repair tools

in this paper. Note that Arja, GenProg-A, and JGenProg generate

new patches based on patch executions from earlier iterations due

to their evolutionary design. Therefore, we should also have ex-

cluded these 3 tools; however, we decided to include these tools

simply to demonstrate the potential benefits of SeAPR (excluding

them also does not affect our findings as their results are consistent

with other tools). Note that among all the three categories of APR

tools, the template-based tools have been widely recognized as the

state-of-the-art [22, 38], and can generate a large number of patches.

Therefore, the template-based APR tools are the main focus of our

technique and study.

Tool Category Tool(s)

Constraint-based ACS [26], Cardumen [7], DynaMoth [6], Nopol [25]

Heuristic-based Arja [10], GenProg-A [10], JGenProg [9], JKali [9], JMutRe-

pair [9], Kali-A [10], RSRepair-A [10], Simfix [8]

Template-based Avatar [5], FixMiner [36], KPar [37], PraPR [22], TBar [4]

Table 7: Repair tools under consideration

4.4 Evaluation Metrics

We have adopted the following two evaluation metrics: the reduc-

tion on the number of patch executions before finding (1) the first

plausible patch and (2) the first correct patch. We study (1) since

in practice developers will begin manual inspection after the first

plausible patch is found; in this way, faster plausible patch detec-

tion can enable developers to start manual inspection earlier (and

potentially speed up the APR process). Similarly, we study (2) since

developers will stop the patch validation process once the correct

patch is found; in this way, faster correct patch detection can save

overall APR time. Also note that we mainly leverage the reduc-

tion on the number of patch executions as recommended by prior

work [38] since time costs are dependent on many factors (e.g., spe-

cific implementations and test execution engines) unrelated to APR

approaches and are often unstable. Furthermore, we also discuss

the results of time costs in Section 5.6.

To this end, our primary evaluation metric (patch reduction)

can be computed as 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑃𝑛𝑒𝑤
𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

.P𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represents the position

of the first desired (i.e., plausible/correct) patch, pre-prioritization.

P𝑛𝑒𝑤 represents the position of the first desired plausible/correct

patch, post-prioritization. Note that when multiple desired patches

are produced, the initial desired patch and the final desired patch

are not necessarily the same patch.

4.5 Experimental Procedure

For each studied APR tool, we evaluate the effectiveness of SeAPR

on all patches that can be generated and validated by the tool within

its original time limit (used in its original paper). We first analyze

the original execution of each tool on a subject-by-subject basis

to obtain (1) the original patch execution ordering per repair tool

and (2) the position of the earliest plausible/correct patch. After

information collection, we then repeat the patch validation process

for each tool again with our SeAPR on-the-fly patch prioritization.

For each given subject, SeAPR initially executes the first patch

produced by the tool. After the first patch execution, SeAPR iterates

through all patches not yet validated, following Algorithm 1, to

record the new position for the first plausible/correct patch. Note

that when computing patch similarity based on patch modification

information, SeAPR will only be applied to the patches belonging

to the Top-30 methods since most APR tools only patch such top

methods (the impact of applying SeAPR to different numbers of top

methods is also studied in Section 5.6.1); the remaining patches are

simply executed with their original ranking.

All our experiments were conducted within the following en-

vironment: 36 3.0GHz Intel Xeon Platinum Processors, 60GB of

memory, and Ubuntu 18.04.4 LTS operating system.

5 RESULT ANALYSIS

5.1 RQ1: Overall SeAPR Effectiveness

5.1.1 Quantitative Analysis. In this section, we first investigate

the overall effectiveness of our default SeAPR on all 13 studied

repair tools against Defects4J. Table 8 shows the patch reduction

in terms of the first plausible patches. In this table, Column 1

presents the APR systems studied in this work; Columns 2 and 3

present the average rank of the first plausible patches before and

after applying SeAPR to each studied APR system, while Columns

4 and 5 present the absolute improvement and the reduction ratio

achieved by SeAPR. Note that not all the studied APR tools can

generate plausible patches for all the studied bugs. Therefore, in

this table, for each APR tool, we only present the results for the

buggy versions on which it can produce plausible patches. From

this table, we have the following observations. First, SeAPR im-

proves the overall effectiveness of patch validations for almost all

repair tools. For example, SeAPR reduces patch validation by 78.91%

on GenProg-A and 54.87% on Avatar. Meanwhile, SeAPR slightly

degrades the performance of Cardumen. One reason is that Cardu-

men only generates a small number of patches for the few buggy

versions with plausible patches, leaving limited room for further

improvement. Second, the SeAPR reduction rates tend to be higher

for APR systems with more patch executions (i.e., the APR systems

that tend to be more expensive and need more optimizations). For

example, the reduction rate is above 20% for all APR systems with

over 100 patch executions before the first plausible patch before

applying SeAPR, and is above 40% for all APR systems with over 200

patch executions before the first plausible patch before applying

SeAPR. This further demonstrates the effectiveness of SeAPR in

boosting potentially expensive APR systems.

Similarly, Table 9 further shows the patch reduction ratios for

finding the first correct patches. In this table, for each APR tool,

we only present the results for the buggy versions on which it can

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

produce correct patches. Note that there exists no precise infor-

mation on the number of correct patches reported in the original

or subsequent papers for GenProg-A, RSRepair-A, and Kali-A [10],

as well as PraPR (due to the large number of plausible patches

generated at the bytecode level) [22]. For JKali and JGenProg, we

cannot generate any correct patches as reported by the tool’s origi-

nal paper [9], likely due to the tools’ nondeterminism and different

execution environments. Therefore, we exclude these six repair

tools from Table 9. We can find that SeAPR can achieve even higher

patch reduction rates in terms of the first correct patch (compared

with reductions for the first plausible patches). For example, SeAPR

improves the overall performance of Arja, Avatar, JMutRepair, KPar,

and TBar by 72.96%, 80.15%, 53.57%, 64.06%, and 48.33%, respectively.

Another interesting finding is that SeAPR does not degrade the per-

formance of any of the studied tools, although some tools remain

unimproved. Note that the patch reductions for correct patches do

not apply to all studied repair tools. Also, the results are mainly

consistent with (and even better than) that for plausible patches,

since SeAPR aims to improve the ranking of plausible patches while

whether a plausible patch is correct is orthogonal to our technique.

Therefore, we use patch reductions for plausible patches for all

following RQs due to the space limit.

APR Systems Orig. Rank SeAPR Rank Diff. Reduction

Arja 203.22 121.83 81.39 40.05%

Avatar 57.52 25.96 31.56 54.87%

Cardumen 10.25 11.00 -0.75 -7.32%

FixMiner 85.26 48.13 37.13 43.55%

GenProg-A 226.21 47.71 178.50 78.91%

JGenProg 10.67 9.83 0.84 7.81%

JKali 6.50 4.75 1.75 26.92%

JMutRepair 25.50 23.67 1.83 7.19%

Kali-A 25.33 23.72 1.61 6.36%

KPar 76.59 63.14 13.45 17.56%

RSRepair-A 105.55 82.50 23.05 21.84%

TBar 55.19 49.18 6.01 10.90%

PraPR 2052.8 774.87 1277.93 62.25%

Table 8: Default SeAPR results for plausible patches

APR Systems Orig. Rank SeAPR Rank Diff. Reduction

Arja 355.00 96.00 259.00 72.96%

Avatar 44.50 8.83 35.67 80.15%

Cardumen 17.00 17.00 0.00 0.00%

FixMiner 3.50 3.50 0.00 0.00%

JMutRepair 28.00 13.00 15.00 53.57%

KPar 58.43 21.00 37.43 64.06%

TBar 33.00 17.05 15.95 48.33%

Table 9: Default SeAPR results for correct patches

5.1.2 Qualitative Analysis. Next, we present detailed examples to

investigate the performance of SeAPR. We first look into cases

where SeAPR can help boost APR:

Example 1: Figure 1a shows one of the low-quality patches pro-

duced by Arja on Chart-19 while Figure 1b shows one of several

generated plausible patches. Note that these two patches modify

different files. In this example, we observe how low-quality patches

may help prioritize plausible patches. According to our technique,

other patches sharing similar modified elements with these low-

quality patches are deprioritized. Thus as any low-quality patch

@@ -911,7 +911 ,6 @@ ...

public void setRangeAxis(int index , ValueAxis axis) {

- setRangeAxis(index , axis , true);

}

(a) Low-quality patch

@@ -161,7 +161 ,10 @@

protected int indexOf(Object object) {

...

- return -1;

+ if (object == null) {

+ throw new IllegalArgumentException("Null␣'object '␣argument."); }

+ return -1;

}

(b) Plausible patch

Figure 1: Arja Chart-19 patches

@@ -1456,7 +1456 ,7 @@

NodeMismatch checkTreeEqualsImpl(Node node2) {

...

res = n.checkTreeEqualsImpl(n2);

if (res != null) {

- return res;

+ return null;

}

}

...

(a) High-quality patch

@@ -1450,7 +1450 ,7 @@

NodeMismatch checkTreeEqualsImpl(Node node2) {

...

Node n, n2;

for (n = first , n2 = node2.first;

res == null && n != null;

- n = n.next , n2 = n2.next) {

+ n = n, n2 = n2.next) {

if (node2 == null) {

throw new IllegalStateException ();

}

...

(b) Plausible patch

Figure 2: PraPR Closure-120 patches

modifying one particular set of methods is validated, all other sim-

ilar patches are deprioritized. This essentially results in (1) the

clustering of patches based on the set of modified methods and

(2) prioritizing/deprioritizing these clusters. Upon validation of

consecutive low-quality patches, this phenomenon culminates to a

breadth-first exploration of the patch clusters, mitigating the risk

of some high-quality patches getting starved. This process repeats

until Arja finds plausible patch from Figure 1b. With SeAPR, we

observe Arja validates the plausible patch 33rd instead of 626th, a

patch reduction of 94.7%.

Example 2: Since PraPR tends to generate substantially more

patches than other APR tools, we further present how SeAPR can

help prioritize the plausible patches for PraPR. The non-plausible

high-quality patch generated by PraPR as shown in Figure 2a modi-

fies method NodeMismatch.checkTreeEqualsImpl(Node node2)

and is able to pass some originally failed tests since the method is

quite influential for the failed tests. In this way, it can help substan-

tially improve the ranking of a plausible patch modifying the same

method as shown in Figure 2b . After applying SeAPR, the first

plausible patch can be ranked at 46th now (at 3165th originally), a

patch reduction of 98.5%.

Since SeAPR is a heuristic-based technique, it does not work for

all cases. Therefore, we also look into the negative cases:

Towards Boosting Patch Execution On-the-Fly ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

5.6 Discussion

5.6.1 Impact of Top Methods Considered. As shown in Section 4.5,

to avoid degrading high-quality or plausible patches to the very

end of all patches for different modified locations, we by default

apply SeAPR to the Top 30 methods for the programs under test.

In this section, we further investigate the effectiveness of SeAPR

when applied to different numbers of top methods. Figure 8 shows

the experimental results for applying SeAPR to Top 10 to Top 100

methods (with the interval of 10). In this figure, the x axis shows

the number of top methods considered for SeAPR, while the y axis

presents the corresponding reduction achieved by different APR

systems (denoted by colored lines). According to the figure, we

have the following observations. First, the reduction rates increase

dramatically for almost all APR systems when increasing the num-

ber of top methods from 10 to 20. The reason is that SeAPR will

have the chance to improve more patches when more top methods

are considered for SeAPR. Second, the reduction rates for most APR

systems will become stable when SeAPR is applied to beyond Top

20 methods. One reason is that for all other APR systems (except

PraPR), they rarely patch more than 20 methods in a program under

test, making the SeAPR results largely unchanged when considering

more than Top 20 methods. Meanwhile, we can observe that even

for PraPR (the purple line), which can patch far more methods than

other APR systems, the reduction rate is still all positive, indicating

the scalability and wide applicability of SeAPR.

5.6.2 SeAPR Overhead. The SeAPR algorithm is only related to the

patch-validation phase, which is a pretty standard thing across APR

tools. Therefore, the changes are minimal for applying SeAPR over

existing APR tools. It is also important to analyze the overhead

of SeAPR, since it does not pay off if SeAPR itself is extremely

costly. Interestingly, we found that although SeAPR’s overhead

often increases when considering more top methods, the average

overhead for running SeAPR on each buggy version never exceeds

2s for any of the APR tools studied (even when considering 100 top

methods). The reason is that our implementation has been highly

optimized as shown in Section 3.2.4. Such overhead is negligible

for APR tools, which typically take hours to fix a bug.

5.6.3 Nondeterminism in APR Tools. We currently report the re-

sults for one run since our goal is to speed up state-of-the-art

APR techniques, while the recent state-of-the-art APR techniques

are mostly deterministic, e.g., all the studied APR tools that can

correctly fix over 20 bugs for Defects4J (including PraPR/Tbar/-

Fixminer/Avatar) are deterministic. Meanwhile, to investigate the

impact of APR non-determinism on SeAPR effectiveness, we fur-

ther rerun the experiments for the non-deterministic RSRepair-A

and Kali-A tools for 5 times. The experimental results demonstrate

that SeAPR can achieve an average reduction of 23.68%/4.88% for

RSRepair-A/Kali-A, which is similar to the results shown in Table 8.

5.6.4 Metrics. As shown by recent work [38], using time costs for

evaluating APR efficiency often depends on many random factors

(such as the execution environments, test execution engines, and

specific implementation choices) and can be quite unstable. Fur-

thermore, for the same APR tool, the reduction in patch executions

is largely proportional to the reduction in time cost since SeAPR is

oblivious to the patch execution time distribution. Therefore, we

followed the recommendation of the prior work [38] and have used

the number of patch executions as our main metric. Meanwhile,

it is also important to check if the reduction in terms of patch

executions aligns well with the reduction in terms of time costs.

Therefore, we further trace the detailed time cost reduction on an

example tool, i.e., state-of-the-art PraPR. The experimental result

shows that the reduction is 62.25% and 58.56% (including SeAPR

overhead) in terms of patch executions and time cost, respectively.

This further demonstrates the validity of our used metric.

5.7 Threats to Validity

5.7.1 Internal Validity. All of our results are dependent on the

correctness of the implementation of all the studied techniques.

We mitigate this threat by obtaining the source code of APR tools

from their websites/authors. Also, three authors implemented three

separate versions of SeAPR variants to perform differential testing

to ensure the result correctness. Following prior APR work [50],

three authors have participated in patch correctness checking to

ensure the inspection correctness. Still, there may be human errors

in the manual inspection process that may affect our findings.

5.7.2 External Validity. While our approach is generalizable to any

type of patch-and-validate system, we only evaluate Java-based

APR tools, which may skew results. To mitigate this threat we

1) studied a wide variety of APR tools, and 2) consider tools ac-

tively used in recent and related work. We also actively evaluate

our technique on the most widely studied Defects4J dataset, with

hundreds of real-world bugs. Adding more benchmark suites can

definitely further reduce this threat. However, some of the studied

APR tools cannot be easily applied to other benchmarks (due to

implementation/design limitations of the original APR tools).

5.7.3 Construct Validity. A major threat to validity lies in our eval-

uation metrics. To mitigate this, we compute the number of patch

executions recommended by recent work [38]. Meanwhile, we fur-

ther discuss the reduction results in terms of time cost.

6 CONCLUSION

We have proposed the first self-boosted APR technique, SeAPR,

which leverages the execution information of validated patches

during APR to prioritize the remaining patches on-the-fly for faster

APR. Our study on state-of-the-art APR systems and the widely

used Defects4J benchmark demonstrates that (1) the default SeAPR

can substantially speed up the studied APR techniques by up to

79% with negligible overhead, (2) SeAPR has stable performance

when using different formulae for computing patch priority and

different types of patch-execution matrices, (3) additional patch pat-

tern information for patch similarity computation can further boost

SeAPR, and (4) SeAPR can even utilize historical patch-execution

information from other APR tools to boost current APR tools.

ACKNOWLEDGMENTS

We appreciate the insightful comments from all the anonymous

reviewers. This work was partially supported by National Science

Foundation under Grant Nos. CCF-2131943 and CCF-2141474, as

well as Ant Group.

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Samuel Benton, Yuntong Xie, Lan Lu, Mengshi Zhang, Xia Li, and Lingming Zhang

REFERENCES
[1] łTricentis reports,ž 2020. [Online]. Available: https://www.tricentis.com/

resources/software-fail-watch-5th-edition/
[2] C. Boulder, łUniversity of cambridge study,ž https://www.roguewave.com/

company/news/2013/university-of-cambridge-reverse-debugging-study, 2013,
accessed: Jan. 8, 2019.

[3] S. Wang, M. Wen, B. Lin, X. Mao, H. Wu, D. Zou, H. Jin, and Y. Qin, łAutomated
Patch Correctness Assessment: How Far are We?ž in Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, 2020, pp.
1166ś1178.

[4] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, łTBAR: Revisiting template-based
automated program repair,ž in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019.

[5] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyande, łAVATAR: Fixing Semantic Bugs
with Fix Patterns of Static Analysis Violations,ž in Proceedings of the 2019 IEEE
26th International Conference on Software Analysis, Evolution, and Reengineering,
2019.

[6] T. Durieux andM.Monperrus, łDynaMoth: Dynamic code synthesis for automatic
program repair,ž in Proceedings - 11th International Workshop on Automation of
Software Test, AST 2016, 2016.

[7] M. Martinez and M. Monperrus, łUltra-large repair search space with automati-
cally mined templates: The cardumen mode of astor,ž in Lecture Notes in Computer
Science, 2018.

[8] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, łShaping program repair space
with existing patches and similar code,ž in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018.

[9] M. Martinez and M. Monperrus, łASTOR: A program repair library for Java
(Demo),ž in Proceedings of the 25th International Symposium on Software Testing
and Analysis, 2016.

[10] Y. Yuan and W. Banzhaf, łARJA: Automated Repair of Java Programs via Multi-
Objective Genetic Programming,ž IEEE Transactions on Software Engineering,
2018.

[11] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, łHistory-driven build failure
fixing: How far are we?ž in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019.

[12] M. Wu, L. Zhang, C. Liu, S. H. Tan, and Y. Zhang, łAutomating CUDA synchro-
nization via program transformation,ž in IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019, 2019.

[13] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, łInferring program transformations
from singular examples via big code,ž in IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019, 2019.

[14] F. Long and M. Rinard, łAutomatic patch generation by learning correct code,ž in
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2016, pp. 298ś312.

[15] Z. Qi, F. Long, S. Achour, and M. Rinard, łAn analysis of patch plausibility and
correctness for generate-and-validate patch generation systems,ž International
Symposium on Software Testing and Analysis, pp. 24ś36, 2015.

[16] F. Long and M. Rinard, łStaged program repair with condition synthesis,ž in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 166ś178.

[17] F. Long, P. Amidon, and M. Rinard, łAutomatic inference of code transforms for
patch generation,ž in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, 2017, pp. 727ś739.

[18] F. Long and M. Rinard, łAn analysis of the search spaces for generate and vali-
date patch generation systems,ž in Proceedings of the International Conference on
Software Engineering, 2016.

[19] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, łA survey on software fault
localization,ž IEEE Transactions on Software Engineering, vol. 42, no. 8, pp. 707ś740,
2016.

[20] R. Abreu, P. Zoeteweij, andA. J. VanGemund, łOn the accuracy of spectrum-based
fault localization,ž in Proceedings - Testing: Academic and Industrial Conference
Practice and Research Techniques, TAIC PART-Mutation 2007, 2007.

[21] J. A. Jones and M. J. Harrold, łEmpirical evaluation of the tarantula automatic
fault-localization technique,ž in 20th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2005, 2005.

[22] A. Ghanbari, S. Benton, and L. Zhang, łPractical program repair via bytecode
mutation,ž in ISSTA 2019 - Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019.

[23] M. Wen, J. Chen, R. Wu, D. Hao, and S. C. Cheung, łContext-aware patch genera-
tion for better automated program repair,ž in Proceedings - International Conference
on Software Engineering, vol. 2018-January, 2018.

[24] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, łA systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each,ž Proceedings of
International Conference on Software Engineering, pp. 3ś13, 2012.

[25] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote, T. Durieux,
D. Le Berre, and M. Monperrus, łNopol: Automatic Repair of Conditional State-
ment Bugs in Java Programs,ž IEEE Transactions on Software Engineering, vol. 43,

no. 1, 2017.
[26] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang, łPrecise con-

dition synthesis for program repair,ž in IEEE/ACM 39th International Conference
on Software Engineering, 2017, pp. 416ś426.

[27] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and
A. Scott, łSapfix: Automated end-to-end repair at scale,ž in IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 269ś278.

[28] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, łElixir: Effective object-oriented
program repair,ž in IEEE/ACM International Conference on Automated Software
Engineering, 2017, pp. 648ś659.

[29] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang, łCan
automated program repair refine fault localization? a unified debugging approach,ž
in Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020.

[30] L. Chen, Y. Ouyang, and L. Zhang, łFast and precise on-the-fly patch validation
for all,ž in 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1123ś1134.

[31] C. Le Goues, S. Forrest, andW.Weimer, łCurrent challenges in automatic software
repair,ž Software quality journal, vol. 21, no. 3, pp. 421ś443, 2013.

[32] W.Weimer, Z. P. Fry, and S. Forrest, łLeveraging program equivalence for adaptive
program repair: Models and first results,ž in IEEE/ACM International Conference
on Automated Software Engineering, 2013, pp. 356ś366.

[33] B. Mehne, H. Yoshida, M. R. Prasad, K. Sen, D. Gopinath, and S. Khurshid, łAc-
celerating search-based program repair,ž in International Conference on Software
Testing, Verification and Validation, 2018, pp. 227ś238.

[34] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller, łAutomated fixing
of programs with contracts,ž IEEE Transactions on Software Engineering, vol. 40,
no. 5, 2014.

[35] R. van Tonder and C. L. Goues, łStatic automated program repair for heap prop-
erties,ž in Proceedings of the 40th International Conference on Software Engineering,
2018.

[36] A. Koyuncu, K. Liu, T. Bissyandé, D. Kim, J. Klein, M. Monperrus, and Y. LeTraon,
łFixMiner: Mining relevant fix patterns for automated program repair,ž Empirical
Software Engineering, 2020.

[37] K. Liu, A. Koyuncu, T. Bissyande, D. Kim, J. Klein, and Y. LeTraon, łYou cannot
fix what you cannot find! an investigation of fault localization bias in benchmark-
ing automated program repair systems,ž Proceedings of 12th IEEE International
Conference on Software Testing, Verification and Validation, 2019.

[38] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyande, D. Kim, P. Wu, J. Klein,
X. Mao, and Y. L. Traon, łOn the efficiency of test suite based program repair
a systematic assessment of 16 automated repair systems for java programs,ž in
Proceedings of International Conference on Software Engineering, 2020.

[39] D. Kim, J. Nam, J. Song, and S. Kim, łAutomatic patch generation learned from
human-written patches,ž in Proceedings of International Conference on Software
Engineering, 2013.

[40] X. B. D. Le, D. Lo, and C. Le Goues, łHistory driven program repair,ž in IEEE
International Conference on Software Analysis, Evolution, and Reengineering, vol. 1,
2016, pp. 213ś224.

[41] L. De Moura and N. Bjùrner, łZ3: An efficient SMT Solver,ž in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 4963 LNCS, 2008.

[42] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, łCoCoNuT: Combining
context-aware neural translation models using ensemble for program repair,ž
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 101ś114, 2020.

[43] Y. Ding, B. Ray, and V. J. Hellendoorn, łPatching as Translation : the Data and
the Metaphor,ž in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 327ś338.

[44] S. Benton, X. Li, Y. Lou, and L. Zhang, łOn the Effectiveness of Unified Debugging:
An Extensive Study on 16 Program Repair Systems,ž in Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, 2020.

[45] ÐÐ, łEvaluating and improving unified debugging,ž IEEE Transactions on Software
Engineering, 2021.

[46] L. Zhang, D. Marinov, and S. Khurshid, łFaster mutation testing inspired by test
prioritization and reduction,ž in International Symposium on Software Testing and
Analysis, 2013.

[47] Y. Qi, X. Mao, and Y. Lei, łEfficient automated program repair through fault-
recorded testing prioritization,ž in IEEE International Conference on Software
Maintenance, ICSM, 2013.

[48] J. A. Jones, M. J. Harrold, and J. Stasko, łVisualization of test information to
assist fault localization,ž in Proceedings of International Conference on Software
Engineering, 2002.

[49] M. Zhang, X. Li, L. Zhang, and S. Khurshid, łBoosting spectrum-based fault
localization using pagerank,ž in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2017, pp. 261ś272.

[50] L. Gazzola, D. Micucci, and L. Mariani, łAutomatic Software Repair: A Survey,ž
IEEE Transactions on Software Engineering, vol. 45, no. 1, 2019.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated Program Repair
	2.2 Cost Reduction for APR

	3 Studied Approach
	3.1 Preliminaries
	3.2 Basic SeAPR
	3.3 SeAPR Variants
	3.4 Further Leveraging APR Results from Other Tools

	4 Experimental Design
	4.1 Research Questions
	4.2 Evaluation Dataset
	4.3 Studied APR Tools
	4.4 Evaluation Metrics
	4.5 Experimental Procedure

	5 Result Analysis
	5.1 RQ1: Overall SeAPR Effectiveness
	5.2 RQ2: Impact of Different Formulae
	5.3 RQ3: Impact of Full Validation Matrix
	5.4 RQ4: Impact of Additional Patch Pattern Information
	5.5 RQ5: Boosting SeAPR via Other APR Tools
	5.6 Discussion
	5.7 Threats to Validity

	6 Conclusion
	References

