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In the past decade, Deep Learning (DL) systems have been widely deployed in various application domains
to facilitate our daily life, e.g., natural language processing, healthcare, activity recognition, and autonomous
driving. Meanwhile, it is extremely challenging to ensure the correctness of DL systems (e.g., due to their intrinsic
nondeterminism), and bugs in DL systems can cause serious consequences and may even threaten human lives.
In the literature, researchers have explored various techniques to test, analyze, and verify DL models, since their
quality directly affects the corresponding system behaviors. Recently, researchers have also proposed novel
techniques for testing the underlying operator-level DL libraries (such as TensorFlow and PyTorch), which
provide general binary implementations for each high-level DL operator and are the foundation for running
DL models on different hardware platforms. However, there is still limited work targeting the reliability of the
emerging tensor compilers (also known as DL compilers), which aim to automatically compile high-level tensor
computation graphs directly into high-performance binaries for better efficiency, portability, and scalability than
traditional operator-level libraries. Therefore, in this paper, we target the important problem of tensor compiler
testing, and have proposed TZER, a practical fuzzing technique for the widely used TVM tensor compiler. TZER
focuses on mutating the low-level Intermediate Representation (IR) for TVM due to the limited mutation space for
the high-level IR. More specifically, TZER leverages both general-purpose and tensor-compiler-specific mutators
guided by coverage feedback for diverse and evolutionary IR mutation; furthermore, since tensor compilers
provide various passes (i.e., transformations) for IR optimization, TZER also performs pass mutation in tandem
with IR mutation for more effective fuzzing. Our experimental results show that TZER substantially outperforms
existing fuzzing techniques on tensor compiler testing, with 75% higher coverage and 50% more valuable tests
than the 2nd-best technique. Also, different components of TzER have been validated via ablation study. To date,
TzER has detected 49 previously unknown bugs for TVM, with 37 bugs confirmed and 25 bugs fixed (PR merged).

CCS Concepts: » Software and its engineering — Software testing and debugging.
Additional Key Words and Phrases: Fuzzing, Compiler Testing, Machine Learning Systems

ACM Reference Format:

Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022. Coverage-Guided Tensor Compiler
Fuzzing with Joint IR-Pass Mutation. Proc. ACM Program. Lang. 6, OOPSLA1, Article 73 (April 2022), 26 pages.
https://doi.org/10.1145/3527317

“The work was done during a remote summer internship at University of Illinois.

Authors’ addresses: Jiawei Liu, University of Illinois at Urbana-Champaign, USA, jiawei6@illinois.edu; Yuxiang Wei, Tongji
University, China, nolest@tongji.edu.cn; Sen Yang, Fudan University, China, syang15@fudan.edu.cn; Yinlin Deng, University
of lllinois at Urbana-Champaign, USA, yinlind2@illinois.edu; Lingming Zhang, University of Illinois at Urbana-Champaign,
USA, lingming@illinois.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/4-ART73

https://doi.org/10.1145/3527317

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 73. Publication date: April 2022.



73:2 Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang

1 INTRODUCTION

With the recent advance of deep learning (DL), DL systems have been pervasively deployed in
various application domains to facilitate our daily life, including natural language processing [De-
vlin et al. 2019; Vaswani et al. 2017; Young et al. 2018], healthcare [Esteva et al. 2019; Miotto et al.
2018], activity recognition [Cao et al. 2019; Guo et al. 2021; Kreiss et al. 2019], and autonomous
driving [Grigorescu et al. 2020; Rao and Frtunikj 2018]. Meanwhile, it is extremely challenging to
ensure the correctness of DL systems (e.g., due to their intrinsic nondeterminism), and any bug in
such decision-making systems can potentially bring serious consequences or accidents (e.g., the
life-threatening autonomous-driving failures [Garcia et al. 2020]).

To date, a large body of prior work has been dedicated to testing, analyzing, and verifying DL
models since their quality directly affects the behaviors of DL systems. For example, various tech-
niques have been designed to generate adversarial or edge-case model inputs for testing DL models,
including DeepXplore [Pei et al. 2019], DeepTest [Tian et al. 2018], DeepRoad [Zhang et al. 2018],
TensorFuzz [Odena et al. 2019], and DeepBillboard [Zhou et al. 2020]. Inrecent years, in addition to the
algorithmic/model aspect, researchers also realized the importance of ensuring the correctness of the
underlying DL infrastructure supports, and have proposed novel techniques [Pham et al. 2019; Wang
et al. 2020] specifically targeting operator-level DL libraries, such as TensorFlow [Abadi et al. 2016]
and PyTorch [Paszke et al. 2019]. Meanwhile, computation-intensive DL models are being developed
everywhere nowadays; early operator-level libraries, which usually only provide a fixed binary for
a limited number of platforms, are hardly generalizable and scalable. Therefore, DL engineers and
researchers have been building an ultimate solution, tensor compilers [Chen et al. 2018; Lattner et al.
2020; Ragan-Kelley et al. 2013; Rotem et al. 2018] (also known as DL compilers), to essentially tackle
the challenges in performance, portability, and flexibility. However, to our best knowledge, there
is limited work specifically targeting the reliability of the emerging tensor compilers.

Ensuring the correctness and reliability of tensor compilers is essential for the rise of compilation-
based DL infrastructure. Nonetheless, the complicated software stack of tensor compilers makes it non-
trivial for writing hand-crafted unit tests. For example, in TVM [Chen et al. 2018] (one of the biggest
and most widely used tensor compiler projects), there are over 117k lines of Python code specifically
targeting unit testing! Designing automated testing techniques for tensor compilers is important
but also quite challenging. First, the compiler stack is deep, meaning that an input model needs to be
compiled through various phases (including numerous parsing, lowering, and optimization passes) to
produce the final target code. Second, the compiler stack is wide, meaning that there are innumerable
possibilities for composing a single intermediate representation (IR) file or an optimization sequence,
let alone their combinations if taking various targets and execution backends into account.

Although some existing fuzzing techniques can potentially be adopted for testing tensor compilers,
they are not able to handle the complex compiler infrastructure well. For example, general-purpose
binary fuzzers [Serebryany 2016; Zalewski 2018] can hardly generate syntactically- and semantically-
valid inputs, wasting the majority of time fuzzing the lexical parsing components. Prior operator-level
DL-library testing techniques [Wang et al. 2020] systematically mutate on the input model seeds to
generate diverse model architectures, and can potentially be generalized to most DL infrastructures;
however, they are not tailored for tensor compiler testing as they do not consider triggering different
optimizations and are also too coarse-grained to generate light-weight yet valuable inputs (as demon-
strated by our experimental results in § 5.1). To our best knowledge, the only existing work specifically
targeting tensor compiler fuzzing, TVMFuzz [Pankratz 2020], employs a generation-based approach
to automatically generate arbitrary low-level IRs for fuzzing TVM. However, it suffers from the
common limitations of generation-based fuzzing techniques [Holler et al. 2012; Yang et al. 2011], e.g.,
it is challenging to simulate realistic programs to cover deep code paths and the fuzzing process lacks
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valid guidance; also, it fails to consider the rich search space of possible optimization pass sequences
for tensor compilers. As a result, it could only find out very shallow front-end bugs and its coverage
growth converges at an early stage (as also confirmed by our experimental results).

In this paper, we focus on practical tensor compiler fuzzing and have made the following de-
sign choices. First, we target low-level IR mutation due to the coarse-grained and limited mutation
space for high-level IR mutation [Wang et al. 2020]. Second, we propose the first coverage-guided
fuzzing approach for testing tensor compilers, as coverage feedback has been demonstrated to be
powerful for exploring deep code paths efficiently in general [Li et al. 2018]. Following traditional
coverage-guided fuzzers [Serebryany 2016; Zalewski 2018], in each iteration, we randomly choose
an IR file from a seed pool for mutation and add the newly mutated IR file into the pool only when
it triggers new coverage. Meanwhile, instead of relying on the bit-level mutators widely adopted
in traditional fuzzers, we develop a set of general-purpose and tensor-compiler-specific mutators
for more targeted and effective IR mutation. Third, since a large number of optimization passes can
form a pass sequence and potentially be applied to the same IR file to trigger different compiler
behaviors, we further build a novel coverage-guided fuzzing strategy to perform joint mutations
of both IR and optimization passes for more exhaustive tensor compiler testing. Although our design
is general for different tensor compilers, in this paper, we mainly focus on the TVM compiler and
have implemented a practical TVM fuzzing technique named TzER. To evaluate the effectiveness of
TZzER, we have performed an extensive study to compare TZER against LibFuzzer [Serebryany 2016]
(a state-of-the-art general-purpose fuzzer), LEMON [Wang et al. 2020] (a state-of-the-art high-level
IR fuzzer for DL libraries), and TVMFuzz [Pankratz 2020] (the only existing low-level IR fuzzer for
TVM). Furthermore, we have rigorously evaluated the importance and necessity for all the design
choices of TzER. In summary, the primary contributions of this work go as follows:

e Novelty: This paper presents the first coverage-guided fuzzing technique specifically tar-
geting tensor compilers. More specifically, we have designed various general-purpose and
tensor-compiler-specific mutators as well as the joint mutation of both IR and optimization
passes for effective tensor compiler fuzzing.

e Implementation: We have implemented the proposed technique as a practical fuzzer (named
TzER) for the TVM compiler. TZER is mainly implemented by over 8.7k lines of Python code
together with ~150 lines of C++ code for extending the LLVM Coverage Sanitizer. TZER has
been open-sourced at https://github.com/ise-uiuc/tzer.

e Study: We have performed an extensive study to compare TZER against existing fuzzers for
testing TVM, and have also rigorously validated the contribution of each component of TzEr.
The experimental results show that TzER is able to substantially outperform state-of-the-art
fuzzers with 75% higher coverage and 50% more valuable tests compared with the 2nd-best
fuzzer. Furthermore, different components of TzERr all contribute to its final effectiveness. To
date, among 49 unique new bugs' found by TzER, 37 bugs have been confirmed and 25 of them
have been fixed and merged to the main branch of TVM.

2 BACKGROUND AND RELATED WORK
2.1 Tensor Compilers

The computation of deep learning models can be logically described in the dataflow model [Wong-
suphasawat et al. 2017], which is commonly called the computation graph [Jia et al. 2019]. A computa-
tion graph consists of anumber of operators (e.g., convolution, max pooling, and many other tensor op-
erations), each of which transforms one or multiple input tensors (i.e., multi-dimensional arrays) into a
series of output tensors. Given the computation graph description, there are mainly two approaches for

IWe count the number of bugs by unique root fixes (see § 4.4).
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Fig. 1. Compilation Flow of TVM.

existing DL software to compute it. Previously, for fast software delivery, ML engineers implemented
various operator-level DL libraries, such as TensorFlow [Abadi et al. 2016] and PyTorch [Paszke et al.
2019], whose operators are implemented with fixed and hand-optimized kernel functions. However,
hand-crafted optimization is time-consuming in the long run and a fixed binary cannot meet the
ultimate performance requirements for all hardware vendors. Therefore, to fundamentally resolve
those challenges, recently DL infrastructures have been focusing on developing tensor compilers
[Chen et al. 2018; Google 2016; Intel 2017; Jin et al. 2020; Rotem et al. 2018; Tillet et al. 2019; Zhao et al.
2021] to automatically generate best-in-class target code for different vendors or even architectures.

Figure 1illustrates the compilation flow of TVM [Chen et al. 2018], one of the most widely-used and
advanced tensor compilers (other tensor compilers including XLA [Google 2016] and Glow [Rotem
et al. 2018] also follow such logical flow). First, tensor compilers will transform 3rd-party model files
into their own graph representation (i.e., Relay IR in TVM). Furthermore, a sequence of optimizations
(known as passes or transformations) is applied for either high-level graph IRs and low-level Tensor
IRs (TIR). Within a pass sequence, each pass iteratively transforms an IR to a new IR to either optimize
the computation or propagate valuable information for upcoming optimizations. Once the low-level
IR is ultimately optimized, the code generation component will produce corresponding binaries for
different targets (i.e., NVIDIA GPU, X86 CPU, etc.)

Existing work on DL-library testing [Pham et al. 2019; Wang et al. 2020; Wei et al. 2022] mainly
focuses on testing at the graph-operator level. For example, while CRADLE [Pham et al. 2019] and
LEMON [Wang et al. 2020] focus on leveraging/mutating existing DL models for differential testing
of DL libraries, FreeFuzz [Wei et al. 2022] directly performs fuzz testing at the DL APIlevel via mining
API inputs from open source (including code snippets from library documentation, library tests, and
DL models in the wild), and has reported state-of-the-art results for DL library testing. Contrastingly,
for tensor compilers, we target the low-level representation since there are many limitations if the
input files are simply constructed via such graph-level abstraction. First, low-level IRs are closer to
code generation and optimization which can guide the fuzzers to find deeper compiler bugs. Second,
there is a limited search space for graph-level construction since deep learning operators are too
coarse-grained and it suffers from various shape constraints. Furthermore, graph-level representa-
tion can be lowered to concrete low-level IR but not vice versa. In this work, we have empirically
compared our TZER technique that operates on the low-level IRs with state-of-the-art DL-library
fuzzer, LEMON [Wang et al. 2020], which performs graph-level model mutation. The evaluation
results also confirm that LEMON generates 7.7x less valuable tests (i.e., the tests that are compilable
and can trigger new compiler coverage) compared with TZER.
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2.2 Fuzzing

Fuzzing [Bohme et al. 2017; Fioraldi et al. 2020; Lemieux and Sen 2018; Serebryany 2016; Wu et al.
2022; Zalewski 2018; Zhao et al. 2022], known as an advanced automatic testing technique, has been
widely employed to efficiently detect software bugs in the wild. The key features of fuzzing, is the
extreme 1) efficiency: no heavy-weight analysis is required, and 2) simplicity: fuzzers are mostly
general-purpose and could be as easily employed as compiling a program and then executing it.

The big idea of fuzzing, is to generate randomized inputs in sharp and explore unexpected behav-
iors (e.g., crashes) of the program under test. One of the most effective techniques of fuzzing is called
the coverage-guided fuzzing (CGF), which is a mutation-based approach that leverages coverage
feedback to focus on test inputs (known as seeds) that have achieved new coverage, instead of doing
so in a randomized fashion.

The idea of CGF has led to many existing general-purpose binary fuzzers both in industry and
in research [Bohme et al. 2017; Fioraldi et al. 2020; Lemieux and Sen 2018; Serebryany 2016; Zalewski
2018]. AFL [Zalewski 2018] is one of the pioneers among CGF tools that have found numerous vulner-
abilities in diverse applications. The development of AFL has inspired many further enhancements
and extensions. AFLFast [Bohme et al. 2017] further leverages the Markov chain to model CGF as a
systematic exploration of its state space and develops a set of power schedules and search strategies
to focus on low-frequency paths. FairFuzz [Lemieux and Sen 2018], which outperforms AFLFast in
its evaluation, prioritizes seeds that hit rare branches, instead of rare paths, and develops a mutation
mask algorithm to bias mutation towards producing inputs that hit such rare branches. AFL++ [Fio-
raldi et al. 2020] further incorporates state-of-the-art fuzzing research ideas into one useful tool,
which is prospective to be a new baseline tool for future research in Fuzzing. LibFuzzer [Serebryany
2016] has been widely recognized as one of the most representative coverage-guided fuzzers that
builds in-process fuzzing loop and powerful evolutionary fuzzing engine with its integration with
the LLVM infrastructure [Lattner 2002]. It has been under active development and keeping adopting
the most recent and influential research ideas [Bohme et al. 2020].

In addition to general-purpose fuzzers, CGF has also inspired many domain-specific fuzzers.
D1k [Park et al. 2020], an aspect-preserving evolutionary fuzzing technique for JavaScript, has been
shown to outperform state-of-the-art JavaScript fuzzers in terms of both bug discovery and valid
test input generation. SQUIRREL [Zhong et al. 2020] is a database management system (DBMS) fuzzer
that takes language validity into consideration during fuzzing, which has found numerous bugs
in DBMSs including SQLite, MySQL, PostgreSQL, and MariaDB. FuzzChick [Lampropoulos et al.
2019], an extension of QuickChick [Dénes et al. 2014], incorporates coverage guidance to perform
property-based testing for Coq programs, and has been shown to perform far better than the vanilla
QuickChick with the help of coverage guidance.

The existing general-purpose fuzzers cannot be simply applied here for tensor compilers like TVM
because tensor compilers require structural IRs in specific form as input, which does not have a direct
correspondence to the binary stream. Furthermore, many traditional compiler fuzzing techniques [Le
etal. 2014; Yang et al. 2011; Zhang et al. 2017], though also theoretically general and applicable, are
insufficient for tensor compiler fuzzing as they are not tailored for such purposes. For instance, the
well-known EMI [Le et al. 2014] is general for any compilers supporting control flows. However,
it is not suitable for DL computation as most existing DL models are static graphs (i.e., no control
flows) mainly except for some RNN models. In addition, in TVM the de facto compilation mode (i.e.,
the “graph” mode) requires constant input tensor shape so that any control flows related to shape
sizes can be statically inferred to allow maximum optimization (e.g., unrolling loops in an optimal
way), making it unsuitable for applying EMI. To date, there are very few domain-specific fuzzers for
tensor compilers, with TVMFuzz [Pankratz 2020] being the only existing fuzzer specifically targeting
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TVM to our knowledge. Therefore, this paper aims to build a practical fuzzing technique specifically
targeting modern tensor compilers.

3 APPROACH

In this section, we present the detailed design of TZER, a practical tensor compiler fuzzer via coverage-
guided joint IR-Pass mutation. Figure 2 illustrates the overview of TzEr. As shown in the figure,
like traditional coverage-guided fuzzing work [Li et al. 2018], TZER maintains a seed pool to store
interesting seeds (i.e., the test inputs that can trigger new coverage) for further mutations. Different
from prior work that mainly maintains the input files within the seed pool, TZER maintains two
dimensions of information in the seed pool (i.e., both IR files and their corresponding optimization
pass sequences) for effective joint IR-pass mutation.

During the fuzzing process, for each pair of IR and pass sequence from the seed pool, Tzer will apply
the corresponding mutation strategies to generate a new input pair in each iteration. For example,
TzER applies both general-purpose and tensor-compiler-specific mutators on IR files to generate new
IR files, and applies pass mutation to randomly generate a new pass sequence. Then, for each newly
generated IR-pass pair, TZER leverages the tensor compiler under test (i.e., TVM in this work) to
compile IR with the corresponding pass sequence and collect the compiler coverage information. Any
input pairs that violate the test oracles are reported, while any input pairs that can help trigger new
compiler coverage are further fed back to the seed pool for generating more valuable inputs. In this
way, the generated inputs can cover more and more code for tensor compilers, and can detect more and
more potential bugs. The fuzzing loop will terminate until the allowed time/resource budget runs out.

In the remainder of this section, we will first present the detailed algorithm design for our fuzzing
loop (§ 3.1). Then, we will present the details for our general-purpose mutators (§ 3.2) and tensor-
compiler-specific mutators (§ 3.3). Finally, we will briefly discuss the test oracle information used
in this work (§ 3.4).

. i ?
IR Files [ Replacement ] [ Loop Nesting ] Diff. Testing ‘{ Inconsistency? ]
IR [ Insertion ] [ Memory Operations ] pAoelbinaryj ‘
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Fig. 2. Overview of TzErR

3.1 Fuzzing Loop

Algorithm 1 presents the detailed design of our main TzeR fuzzing loop. The algorithm only takes
three inputs, including the initial seed pool (Sp), the time budget (T), and the parameter for controlling
the interleaving of IR and pass mutations (Npax). Different from all prior work on evolutionary
coverage-guided fuzzing [Serebryany 2016; Zalewski 2018], the seed pool of TZER maintains two
dimensions of information for effective tensor-compiler fuzzing, i.e., both the IR files and their
corresponding pass sequences. Thus, we can denote each input for TzERr as a pair (F,P), where F
represents an IR file while P represents the corresponding pass sequence for the IR. In the algorithm,
we further extend (F,P) into (F,P,N) to additionally consider the interleaving control N for the join
IR-pass mutation. With the interleaving control N, for each seed input IR file F, TZER can 1) keep
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mutating F with P if such mutations were rewarding, and 2) also occasionally (controlled by N) seek
a better P’ to pair with F when the current P get stuck in local minima.

The main algorithm of TzER is similar to traditional evolutionary fuzzers, except for the additional
code logic added to handle the additional pass mutation (highlighted in colored boxes). Basically,
TzeR first initializes the seed pool with pairs of IR files and pass sequences, as well as setting N=0
for all pairs (Line 2). For example, in this work, the initial seed pool consists of all possible model
architectures in the TVM model zoo [Community 2020] with randomly generated pass sequences.
The coverage achieved by the initial seed inputs is also collected to evaluate newly generated inputs
(Line 3). Then, Tzer will go through the main loop for generating new inputs (Lines 4-26).

In each iteration, Tzer will randomly fetch an input tuple from the seed pool. If the current (F,P)
pair cannot trigger any new coverage during the past N4, consecutive IR mutations (Line 6), TZER
will try to mutate the pass sequence P into another random sequence P’ in the hope that P’ will bring
this input pair to a better state for further mutations (Line 7). The coverage and error information will
be recorded when compiling the input pair (F,P’) with the compiler under test (Line 8). In case of any
error, the input pair will be reported to the developers. If P’ does help trigger new coverage, the total
coverage information will be updated (Line 12); the input pair (F,P,N) in the seed pool will also be
updated to (F,P’,0) since it is more promising to go with P’ in future runs on mutating F (Lines 13). If

Algorithm 1: Tzer Fuzzing Loop

1 Function Fuzz(set of initial seeds Sy, time budget T, pass mutation frequency control Npgx ):

2 S« So
3 | Crotar = Uses,Coverace(i)
4 while within time budget T do
5 (F,P,N) < SELECT(S)
6 (if N=Npqx then )
7 P’ « MuTATEPASS(P)
8 err,cov < EXECUTETVM(F,F)
9 if Jerr then
10 ‘ RePORT(F,P’)
1 else if cov ¢ Cyysq1 then
12 Ctotal < Ciotal Ucov
13 UpDATE(S,(F,P’,0))
14 else
15 L UprpATE(S,(F,P,0))
16 CONTINUE
—— J
17 F’ « MuTaTEIR(F)
18 err,cov < EXECUTETVM(F’,P)
19 if Jerr then
20 | ReporT(F’.P)
21 else if cov £ C;y; 41 then
22 S «—SU(F',P,0)
23 Ctotal <= Ciotal Ycov
24 | UppaTE(S,(F.P,0))
25 else
26 L UpDATE(S,(F,P,N+1))
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P’ does not help trigger new coverage, TZER simply clears the interleaving control counter to 0 to allow
more file mutations with the current P (Line 15). This indicates that we do not perform consecutive pass
mutations for any seed input regardless of the coverage outcome. The reason is that mutating pass se-
quences is not as rewarding as mutating IR files in general, and we only need occasional pass mutation
(controlled via N) to guide the evolutionary process to more promising states to avoid local minima.

On the other hand, if the fetched input tuple has not failed to trigger new coverage for Ny qx
consecutive IR mutations, TZER will go ahead to further mutate the IR file following a very similar
process to traditional fuzzers. TzER first mutates the IR F into F’ by selecting one mutator among the
mutator pool (including 3 general-purpose and 3 domain-specific mutators), and then collects the
resultinformation for compiling the pair (F’,P) (Lines 17 and 18). In case of any error, the input pair will
bereported.If F” does help trigger new coverage, the new IR file with the current P will be inserted into
the seed pool for future runs (Line 22). The total coverage information will also be updated (Line 23).
Different from prior fuzzers, TZER also needs to update the original seed pair to (F,P,0) since it helped
trigger new coverage (Line 24); also, if F” did not help achieve new coverage, the original seed pair will
be updated to (F,P,N+1) to record the current attempt that failed to trigger new coverage (Line 26).

Theoretically, some specific (F, P) might fail due to 1) lack of pass dependency, or 2) pass/IR
incompatibility, resulting in waste of time for compiling invalid (F,P). Executing too many invalid
compilations will make fuzzing process less efficient. The evolutionary joint IR-Pass mutation (Algo-
rithm 1) can easily avoid such frequent invalid compilation by design. Asis shown in Line 22, only valid
(F,P) with new coverage will be added into the seed pool S, whereas the invalid and ineffective ones
will be ignored to keep seed pool filled with compilable samples during evolutionary fuzzing process.

In this way, after being launched, the algorithm can then continuously generate valuable IR and
pass sequence pairs for triggering tensor-compiler bugs.

3.2 General-Purpose Mutation

Following prior work on fuzzing programming languages [Holler et al. 2012; Lampropoulos et al.
2019; Zhong et al. 2020], we design a general-purpose IR mutation approach. In addition, program
analysis techniques are integrated into mutation to ensure syntax correctness and to mitigate seman-
tic errors. This is because, to dig high-quality bugs in the code generation and optimization phases
of a compiler, the produced IRs should be able to pass standard pre-condition checks (e.g., syntax
checks and semantics checks). In the remainder of this section, we first introduce our definition of
the low-level Tensor IR (TIR) of TVM and then elaborate on the the mutation details.
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We first discuss the abstract syntax tree (AST) of TIR since it is the entry point of TVM’s compi-
lation. Figure 3a depicts a simplified TIR AST sample. The AST tree contains different types of nodes,
with the root node representing the input IR to the compiler. As is shown Figure 3a, the type of the
root node is PrimFunc which stands for the basic function type in TIR. The While node is of type
Stmt while the EQ and GT nodes are of type PrimExpr. The corpus of all node types can be defined as

NodeTypes={NodeType,,NodeType,,....NodeType,}. (1)

We assume these types are disjoint (e.g., no subtype relation), but our implementation leverages
the concept of constructor to simulate the original subtype relations. For each type, there could be
multiple constructors, which are functions/operators from one or more node types to one return node
type, generally having the signature

(NodeType; ,NodeType; ,.. .,NodeTypeip) — NodeType; . (2)

Some types also have primitives, which are values that cannot be broken down into subparts (i.e.,
leaf nodes).

Table 1 shows a detailed list of common TIR AST node types, constructors, and primitives. Note that
VarInjection, one constructor of PrimExpr, is added by us to switch the variable from type Var to
PrimExpr without changing its internal value. This is required because Var is a subtype of PrimExpr
in the implementation of TIR by TVM, which means each Var is implicitly a PrimExpr, but in our defi-
nition, we assume no subtype relation. By using injective constructors, this could be easily expressed.

Each AST node can be recursively defined as either a primitive (leaf node) or an application of some
constructor to other nodes (e.g., branch node). For simplicity, in our implementation of mutation
approaches, some trivial branch nodes are treated as leaf nodes, including Var, IntImm, FloatImm,
etc. As an example, the root node of the input IR in Figure 3a can be formally defined as

PrimFunc([a,b],While(And(EQ(a,5),GT(b,3)),...)):PrimFunc. (3)

The first step of our mutation approach is to randomly pick out one of the AST nodes of the given
IR and regard it as a hole, which can then be filled up to produce an IR mutant. We call an IR with a
hole at some position a context. For instance, in Figure 3b, we pick out the And node as a hole (denoted
by O) so that the corresponding context is

PrimFunc([a,b]While(q,...)): Context. (4)

Based on the context, we can derive the constraints to be satisfied (e.g., accessible variables of the
hole) when filling the hole so that the filled IR could be correct. Formally, the constraints are a tuple
of necessary information that helps determine the requirements when constructing a sub-expression
in the hole. Specifically, for TIR, we consider the following information:

o Desired AST node type (e.g., PrimExpr, Stmt, Var).

o Desired expression type (e.g., int32, float32, bool).

o Accessible variables under the current scope.

o Declared buffers. TIR uses the notion of “buffer” to store and load data. When we access a buffer,
we should ensure it is already declared.

e A boolean indicating whether the variables need to be bound. TIR only allows a commented
expression to have free variables.

Asan example, for the context in Equation 4, the hole represents a condition check for the While node.
Hence, in order to fill the hole, at least a boolean expression is needed. Also, any variable used should
be bound to some binding occurrence (e.g., parameter a and b). Therefore, the constraints should be

(PrimExpr,bool,[a,b],[],true): Constraints. (5)
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Table 1. Example node types, constructors, and primitives of the AST of TIR for Figure 3. Some constructor
could be overloaded or have the same name as their node types. The asterisk “*’ means a list type (e.g., Var™*
in the two PrimFunc constructors means a list of Var, which serves as parameters of a function). We also put
several auxiliary labels in front of some parameter types to help understand the meaning of the parameter

(e.g., “name:String” in the Var constructor signature).

Node Type

Constructors and Primitives

PrimFunc. Function type, the input
type of the compiler.

PrimFunc: (Var®,Stmt) — PrimFunc

PrimFunc: (Var®,Stmt,Buffer) — PrimFunc

Buffer. Buffer type, describing the
storage of data.

decl_buffer:(Shape,DataType) — Buffer

DataType. Basic numeric data
types for variables and expressions,
including integer, boolean, floating

point, etc.

float32:DataType
int32:DataType
uint32:DataType
bool:DataType

Var. Variable type, used for variable
declaration and as expressions.

Var:(name:String,DataType) — Var

Stmt. Statement type, the funda-
mental building block to form a
function. There are sequential state-
ments, control flow statements, etc.
Particularly, statements constructed
by the For constructor are central
to many low level optimizations.

While: (PrimExpr,Stmt) — Stmt
For:(Var,min:PrimExpr,extent:PrimExpr,ForKind,Stmt) — Stmt
IfThenElse: (PrimExpr,Stmt,Stmt) — Stmt

LetStmt: (Var,PrimExpr,Stmt) — Stmt

SeqStmt: (Stmt*) — Stmt

BufferStore: (Buffer,PrimExpr,indices: PrimExpr*) — Stmt

PrimExpr. Expression type, the
fundamental building block to
form a statement. The constructors
include basic operators that handle
numeric values, buffers, etc. The
Call constructor is responsible for
constructing pre-defined intrinsics
by TVM. Each PrimExpr has a corre-
sponding DataType, either specified
explicitly or inferred implicitly.

VarInjection:(Var)— PrimExpr

And: (PrimExpr,PrimExpr) — PrimExpr

Or: (PrimExpr,PrimExpr) — PrimExpr

EQ: (PrimExpr,PrimExpr) — PrimExpr

GT: (PrimExpr,PrimExpr) — PrimExpr

LT: (PrimExpr,PrimExpr) — PrimExpr

Add: (PrimExpr,PrimExpr) — PrimExpr
Call:(DataType,0p,args:PrimExpr*) — PrimExpr
Let:(Var,PrimExpr,PrimExpr) — PrimExpr
BufferlLoad: (Buffer,indices:PrimExpr*) — PrimExpr
FloatImm: (DataType,Float) — PrimExpr
IntImm:(DataType,Int) — PrimExpr

Based on the derived constraints and the picked node, we perform a series of mutations using the cor-
responding mutator on the node following the constraints. Formally, each mutator has the signature

(AnyNodeType,Constraints) — AnyNodeType, (6)

where AnyNodeType is a disjoint union of all possible NodeType € NodeTypes, i.e.,

AnyNodeType= |_|NodeTypes. (7)
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We use a disjoint union here because our mutator is designed to operate on nodes of any node type
and different node types should not overlap with each other in our definition.

Basically, we designed the following three general-purpose mutators, namely Insertion, Deletion,
and Replacement:
Insertion. Regardless of the input node, TZER simply returns a new node generated from scratch
that satisfies the given constraints. This is done by TZER’s generator, which is inspired by the prior
generators in the random testing community [Claessen et al. 2015; Lampropoulos et al. 2017]. The
functionality of the generator is to produce IR ingredients/snippets based on the constraints and a
size parameter which indicates the node size of generated sub-IR, as is described in Figure 3c. In the
figure, TZER generates a new boolean Let node of type PrimExpr, and ensures that all the variable
references have their corresponding binding occurrences (e.g., in the node LT(b,c), b is introduced
by the parameter list, and c is introduced by Let).
Deletion. TzER checks the child nodes of the input node, filters out those satisfying the constraints,
and randomly returns one of them. For example, in Figure 3¢, we perform deletion on the And node
by returning its right-hand side GT(b,3), the ‘greater than’ node, which is a boolean expression with
all variable references bound.
Replacement. For a primitive node, TzER simply modifies its value, or returns another primitive
based on the constraints. For a node constructed by some constructor, in the simplest case, TZER ran-
domly selects a constructor to substitute the existing one, in the restriction that after the substitution
the node should satisfy the constraints given. More generally, TZER randomly selects a constructor,
trying to use the child nodes of the input node as components to fill the parameter list of the selected
constructor; if there are parameters unable to fill, TZEr randomly generates one using the generator.
This strategy is inspired by the mutategT constructor of FuzzChick [Lampropoulos et al. 2019] for
testing Coq programs except that TZEr considers different constraints. Figure 3c gives the simplest
form of replacement, which just replaces the And constructor with the Or constructor.

3.3 Domain-Specific Mutation

Tensor compilers focus on optimizing domain-specific programs, e.g., programs with dense loops in
particular. To optimize those hot spot program structures, existing tensor compilers [Chen et al. 2018;
Google 2016; Intel 2017; Jin et al. 2020] leverage the concept of pass to optimize the given IR or insert
annotations containing valuable information for further optimization. To trigger the complex logic
behind those optimization passes, general-purpose mutators, though versatile to handle different
types of expressions, are still inefficient and not tailored to the specific domain that tensor compilers
are built for.

For domain-specific compiler testing, in addition to the general-purpose mutators, we argue that it
is also important to navigate the mutation towards the core components that the compilers specifically
target (e.g., loop-oriented optimization, memory allocation, memory latency hiding, and paralleliza-
tion [Li et al. 2020]). For example, deep and wide nested loops can be optimized with tiling [Park et al.
2003], multi-threading [Smith et al. 2014], and vectorization [Bjerstad et al. 1992] by a series of related
passes (e.g., UnrollLoop and LoopPartition). Those passes have complex optimization rules for dif-
ferent domain-specific code structures (e.g., big loops, large buffer allocation, and thread scheduling)
that general-purpose mutators can hardly target. Hence, according to the hot spot program patterns
targeted by existing tensor compilers [Chen et al. 2018; Li et al. 2020; Ragan-Kelley et al. 2013; Tillet
etal. 2019; Zhao etal. 2021], TzER specifically designed 3 types of mutators: 1) loop-nesting mutator for
creating multifarious dense loop structures; 2) memory-operation mutator for various memory alloca-
tion/store/load patterns at the index level; and 3) thread-binding mutator for diversifying the parallel
computation flows to generate interesting code patterns that tensor compilers particularly care about.
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buf[@] = 1 R L PrimFunc([]) {
) Operation Binding // attr ... virtual_thread = 2
@ 9 launch_thread (t, 0, 2) {
PrimFunc(...) { 5 A PrimFunc(...) { // attr ... unroll_max_step = 2
// attr ... unroll_max_step = 2 // attr ... unroll max_step = 2 unrolled (i, @, 16) {
unrolled (i, @, 16) { unrolled (i, @, 16) { unrolled (j, @, 16) {
unrolled (j, @, 16) { unrolled (j, @, 16) { buf[i * 16 + j] = buf[i + j * 16]
buf[i * 16 + j] = 1 buf[i * 16 + j] = buf[i + j * 16] ) }
} }
} } ¥
} } ¥

M Original Expression Ml Mutated Expression m Attribute

0 PrimFunc(...) { Memory Thread |

/

Loop
Nesting

Fig. 4. Example of Domain-Specific IR Mutation

Loop Nesting. Tensor computation usually consists of a large number of nested loops. Even for the
simplest element-wise expression, e.g., C=C+1 with broadcasting, the loop structure of a common
image tensor (whose dimensions are [height, width, channels]) will consist of 3 nested loops. To
mimic such dense loops, we introduce the loop-nesting mutator to transform IRs with different loop
structures.

First, TZER randomly picks an AST node as the innermost loop body. TzER then selects one out of
the five TVM loop types (serial, vectorize, unroll, etc.), where each of them represents different
control flow semantics. Given the loop type, TZER inserts several loops with either constant or
variable loop sizes (constant loops are likely to trigger loop unrolling while variable loops will block
such optimization). For example, in step @ of Figure 4, 2 nested loops of type unrolled are inserted
after mutation. Furthermore, according to loop variables under the current context, a random expres-
sion will be used to form the indices ([i*16+3j]). Notably, TVM also annotates loop attributes for
concrete optimization in code generation. e.g., unroll_max_steps, and further tunes those integer
attributes to trigger different optimization paths. Therefore, TzER also mutates those attributes when
creating/replacing the target loops.

Memory Operations. Apart from multifarious loop structures, another dimension to increasing
the complexity of tensor computation is to introduce various memory operations, including memory
store/load and allocation.

TzER’s memory-operation mutator mimics complex memory patterns by inserting memory opera-

tions into existing IRs. Given a randomly selected node , TZER first analyzes accessible memory buffers
(represented with pointers) under the current scope. Next, TZEr randomly constructs a memory
operation (i.e., a sub-expression) and inserts it into the target AST node. As is shown in Figure 4 (step
), TzER inserts a sub-expression (i.e., ... = buf[i+j*16]) to original IR so that a new memory
access is created and the dataflow related to buf is changed.
Thread Binding. One thing that differentiates traditional compilers and tensor compilers is that
tensor compilers leverage multiple threads (either CPU threads or threads of parallel hardware like
NVIDIA GPU) to automatically parallelize the program. The thread scheduling, however, could have
many different settings, as operations could be executed by different thread groups at different stages
(manipulated by attributes, e.g., thread numbers and thread tags).

To explore the impact of different thread scheduling patterns, TZER creates various thread-binding
patterns and leverages them to mutate the multi-thread planning of given IRs. Precisely, as is
shown in Figure 4 (step ©), TzEr first selects an AST node (i.e., the 2 nested loops wrapped by the
scope of launch_thread) and then initializes its threading parameters, e.g., virtual thread number
(virtual_threadin TVM). In this way, virtual_thread is initialized by 2 which means this node
will be executed by 2 virtual threads.
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3.4 TestOracle

Test oracles are important for detecting potential bugs with fuzzing. In this paper, we consider the
following ways to resolve the test oracle problem for finding bugs in tensor compilers:

Result Inconsistency. TzER holds the hypothesis that an IR, whether it is optimized or not, should
keep the output result consistent. For each generated IR, TzeR will compile it twice, where it first
compiles the IR with the lowest optimization and then compiles it with given optimization passes.
In this way, TzZER compares the output results by feeding 2 model binaries the same input data. We
identify it as an inconsistency bug if the absolute or relative error exceeds the expectation.
Performance Degradation. The second hypothesis by TZER is that after a series of optimization
passes, the performance should not be degraded. Therefore, TZEr would instrument the running
time of optimized and non-optimized executions. If the optimized code runs even slower than the
non-optimized one, we consider it as a potential performance bug. Notably, to avoid false-positives,
we set clear performance margin in the differential testing setting. The non-optimized version is
compiled with lowest optimization level (opt_level=0) while the optimized one is compiled with
highest optimization level (opt_level=4). Note that higher optimization level allows better and
more aggressive optimization than lower levels given the same pass sequences. For example, level-3
graph fusion (i.e., FuseOps) allows more operator fusion patterns than the low-level one.

Crash and Unexpected Exception. Like most Python applications, throwing an exception is the
default behavior of errors. Hence, Python/C++ projects (e.g., most tensor compilers) need to convert
C++ exceptions into Python ones. For example, in TVM’s C++ codebase, any unexpected behavior
(e.g., assertion failure) will result in C++ exceptions, where the top-level foreign function interface
(FFI) handler will catch such C++ exceptions and pack the error message using the type TVMError for
Python front-end. Therefore, though errors might occur, the symptom should be uncaught exceptions
rather than crash. The compilation and execution phase of TzER is done by forking a sub-process,
TzER observes such crash by checking the return code of sub-processes. TZER also monitors excep-
tions thrown during compilation as potential bugs. To avoid false alarms, TZER has made the best
effort on constructing legal IRs and pass sequences.

4 EXPERIMENTAL SETUP
4.1 Research Questions
In this paper, we study the following research questions to thoroughly evaluate TzER:

e RQ1: How is the effectiveness of TZER compared with state-of-the-art fuzzing techniques on
testing the TVM tensor compiler?

o RQ2: Are all components of TZER contributing positive improvements to its final effectiveness?

o RQ3: How do different parameter settings and experimental setups affect Tzer’s effectiveness?

e RQ4: How effective is TzER in detecting previously unknown bugs?

The consideration of our experiment design largely follows suggestions made by Klees et al. [2018].
The main differences are caused by the fuzzing targets, i.e., Klees et al. [2018] mainly studied binary
fuzzing while we are working on tensor compiler fuzzing. For example, the paper suggested a 24-hour
timeout, while we evaluate Tzer with a default 4h timeout since existing techniques tend to saturate
within 4 hour. Meanwhile, we do evaluate TzeR with a 24-hour budget as well in RQ3.

4.2 Implementation

TZzER has been mainly implemented in 8.7k lines of Python code and ~150 lines of C++ code for
coverage extension with the following main components:

Mutators. We implemented all the 3 general-purpose mutators and 3 domain-specific mutators via
directly operating on TIR in-memory objects (i.e., tir.PrimFunc) for fast mutation. More specifically,
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the mutation procedure is implemented by extending the visitor pattern of TIR’s recursive post-order
traversal interface. In addition, the utility generator used by replacement and insertion is capable
of constructing various sub-expressions based on 89 TIR operator APIs. When inserting/replacing
sub-expressions into an existing TIR, we consider the syntactic/semantic correctness by maintaining
IR constraints during the visiting process (e.g., preventing the use of variables that are undeclared
or out of the scope). We further utilize casting nodes when generating intrinsic function calls.
Although casting is not necessary theoretically due to our constraints-based approach, TVM provides
more than 30 intrinsics whose detailed function signatures may vary and are not documented (e.g.,
tir.cos returns float whereas tir.clz returns int). To save manual efforts, we simply regard
those intrinsics as opaque ones and cast them to satisfy the constraints.

Executor. Once TZER generates a TIR file and pass sequence pair, they are sent to a sub-process for
compilation and execution. The sub-process mechanism is to provide process-level isolation so that
the fuzzing loop continues even though the TIR file and pass sequence make the sub-process crash.
Coverage Collector. We implemented memcov, our in-memory coverage instrumentation tool, by
extending LLVM’s Coverage Sanitizer (i.e., injecting a customized function when entering each of
CFG edges in the target program). Once a program is compiled along with memcov, we maintain a bit
vector whose size is exactly the number of CFG edges of the instrumented program (i.e., TVM). When
entering one edge, its corresponding position on the bit vector is set to True. As we implemented
TzER’s core components in Python, we also provide a Python interface to get the coverage state at
that point by invoking C++ functions through ctypes [Foundation 2021] (a Python-C++ FFI tool).
Reporter. Once a test violates our test oracle, the reporter would record necessary contextual data
to reproduce the failure and debugging.

Consistent with Algorithm 1, the TZER implementation takes three inputs, i.e., So, T, and Ny, qx-
For the initial seed pool Sy, by default TzEr uses 629 TIR functions converted from all possible official
models from TVM’s model zoo (tvm. relay. testing); for the time budget T, by default TZERr sets
it to 4 hours; for the IR-pass mutation control N,,,y, by default TZER sets it to 5. We use such default
setting for TZER unless explicitly specified, e.g., we will present the detailed impacts of different
parameter settings on TzER in RQ2 (§ 5.2).

The main techniques behind TZER are general to other tensor and even traditional compilers which
model low-level IRs and optimization passes. To implement our approaches for a new compiler, one
needs to implement language mutators following rules described in § 3.2 and § 3.3, as well as figuring
out corresponding optimization passes. The syntactic and semantic correctness of mutated IRs and
passes should also be maintained. After that, the main algorithm and skeleton of TzER shall directly

apply.

4.3 Compared Work

To faithfully evaluate the effectiveness of TzER, we compare TZER with both the state-of-the-art
general-purpose fuzzers and domain-specific fuzzers that can be applied/adapted for TVM fuzzing.
More specifically, we include the following representative techniques in our evaluation:

e TVMFuzz [Pankratz 2020]: This is the only existing fuzzer specifically targeting TVM to
our knowledge. It follows a pure generation-based approach, which randomly generates TIR
expressions by crafting valid expression ASTs of TIR. The generation approach is based on a
user-defined probability table for different TIR nodes, while the validity is achieved by casting
the input expressions to the parameter types of the operator.

e LibFuzzer [Serebryany 2016]: Thisis one of the state-of-the-art bit-level general-purpose binary
fuzzers. It has been adopted as the first fuzzer supported by the famous Google OSS-Fuzz
project [Serebryany 2017], which has found thousands of security vulnerabilities and stability
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bugs; furthermore, it is also the officially used fuzzer for many popular projects including
Chrome [Blog 2016] and glibc [Wiki 2016]. In this work, for a fair comparison with TZER, we also
run LibFuzzer with the TVM official model files (exported in JSON) as seeds for fuzzing TVM.

e LEMON [Wang et al. 2020]: LEMON is the state-of-the-art graph-level model generator for
testing the operator-level DL libraries. At the graph level, different operators in a computation
graph usually have various tensor shape constraints that are very complex to resolve. To resolve
this difficulty, LEMON developed a series of mutators for shape-invariant operators and their
compositions, by replacing operators with equivalent shape requirements or inserting/deleting
element-wise operators. Since LEMON mutates the high-level computation graphs, its gen-
erated models can be directly applied to simulate TVM fuzzing at the high level. For a more
fair comparison with LEMON, we also run a TzeR variant with LEMON’s model seeds (this
is because LEMON leverages Keras [Google 2015] model files which can be converted to TIR
but cannot be done vice versa).

4.4 Metrics

We use the following metrics to evaluate the performance of TzZER and the compared techniques:
Code Coverage. Code coverage has been widely recognized as one of the most widely used metrics
to evaluate software testing techniques [Gopinath et al. 2014]. The reason is that it is impossible
for testing techniques to detect bugs in a code portion without actually executing it. Surprisingly,
although existing work on testing deep learning libraries [Pham et al. 2019; Wang et al. 2020] claimed
to cover more library code, they failed to present the detailed code coverage information. In this
work, we instrument the entire TVM code base by extending LLVM’s Coverage Sanitizer and collect
the detailed code coverage information at the edge level for the studied techniques to thoroughly
evaluate their test effectiveness. Note that since we are comparing techniques for fuzzing the TVM
compilation process, to make the comparison fair, we omit the coverage brought by other irrelevant
modules at the initialization phase (e.g., constructing TIR functions by converting input models).
Number of Valuable Tests. Following prior work on fuzzing [Park et al. 2020], for each compared
technique, we also present the number of generated valuable tests, i.e., the tests that are not only
valid (i.e., compilable) but also contribute new coverage during the fuzzing process. This metric is
essential since the number of syntactically/semantically valid tests with new coverage can largely
indicate the number of unique system behaviors/paths covered/tested. Also, this metric can largely
complement code coverage, because techniques that mostly generate invalid inputs can still achieve
high coverage for the error-handling code but that is clearly not what we want.

Number of Detected Bugs. Following almost all prior work on software testing and fuzzing [Li
et al. 2018; Manes et al. 2019], we further present the number of previously unknown bugs detected
by all the studied techniques since bug detection is the ultimate goal for such techniques. In this work,
we distinguish different bugs based on how they are fundamentally fixed. For instance, we found
that 21 TIR operator functions (such as tir.op.clz(None)) will crash when given NULL inputs on
a specific TVM version, but we only count this as 1 bug since all the crashes can be fixed by changing
only one C++ macro statement.

4.5 Experimental Procedure

For a fair comparison, we collect coverage of all compared techniques with the default 4-hour time
budget using the same coverage collector that we implemented based on LLVM Coverage Sanitizer.
Note that for TVMFuzz and other baselines requiring no coverage feedback, we first run them on
non-instrumented TVM binary for 4 hours to prevent unnecessary overhead introduced by coverage
tracing. Then, we collect the generated TIR files and passes (if any) from them, and compile them
on instrumented TVM binary for offline coverage analysis. Notably, for LEMON, we collect the
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Keras [Google 2015] models generated in 4 hours, and convert them to TIR functions. We then run the
TIR functions on instrumented TVM to mimic the effectiveness of LEMON’s graph-level construction
for fuzzing TVM. Of course, for those studied techniques requiring coverage feedback, we directly
record the coverage within one run on instrumented TVM.

We conducted experiments on: 1) GPU test-bed: a test-bed with Intel i9-9900X CPU (10 physical
cores), GeForce RTX 2080 Ti GPU, and 128GB RAM, running 64-bit Ubuntu 18.04 as the operating
system; and 2) CPU test-bed: a virtual cloud server (Alibaba Cloud ecs.c6e instance) with 4 CPU cores
and 8GB RAM, running 64-bit Ubuntu 20.04. Since one of the baselines, LEMON, requires a GPU
environment, we did RQ1 (comparison with existing work) on the GPU test-bed and all other RQs on
the CPU test-bed. To ensure performance fairness, we made the system environment exclusive to the
benchmarks so that the system average load is always around 1 during the process. For instrumen-
tation, we compiled TVM v0.8-dev (9b034d7) with LLVM-12 and leveraged Coverage Sanitizer to
trace edge coverage. TVM is compiled under optimization level 02 and other configurations follow
the default value. Since TVM contains as many as 17 targets, 4 executors, and many other irrelevant
utilities (e.g., debuggers and profilers), in our evaluation, we focused on the LLVM-X86 target and
the graph executor as they are widely adopted in tutorials and in practice.

5 RESULT ANALYSIS
5.1 RQ1: Comparison with Existing Work

Figure 5 presents the coverage trends for both TZER and the compared existing work within the default
4-hour budget. To be specific, the x axis presents the time costs and the y axis shows the basic block
coverage achieved. More powerful techniques are expected to achieve higher coverage at the same
timestamp. As the figure shows, TZER is able to beat other compared techniques at the very beginning
and eventually achieves 75% higher coverage than the 2nd-best baseline (i.e., TVMFuzz). Notably,
TzER is able to keep visible coverage increase even at the late stage of the 4-hour budget while other
techniques tend to converge very quickly. Another interesting observation is that Tzer with the
same seeds as LEMON even achieves slightly higher coverage than the default TZEr, demonstrating
the robustness of TZERr.

Table 2 further presents the number of valuable tests (i.e., the tests that are both compilable and
able to trigger new coverage) generated by all the compared techniques within 4 hours. Regarding
the comparison of graph-level and low-level IR mutations, TZER is able to generate 7.7x more valuable
tests than the state-of-the-art graph-level mutator LEMON. Specifically, LEMON only generates 63
valuable tests when the models are lowered to TIR functions (one model can be lowered to multiple
TIR functions); if we had considered valuable tests at its original model level, the number of valuable
tests is merely 20 out of all the 2.6k models generated by LEMON (i.e., 0.7%). We can also observe that
LibFuzzer can hardly generate valid tests since it is a bit-level fuzzer, not aware of the grammar and
semantics behind. Lastly, among the low-level IR fuzzers, TzER is still able to outperform TVMFuzz
by 50% in terms of valuable tests. The main reason is that TVMFuzz follows a pure generation-based
approach (which lacks coverage guidance and makes it challenging to simulate realistic IRs) and
does not consider the mutual effect of IR and pass combinations.

5.2 RQ2: Ablation Study of Tzer
In this RQ, we further study the effectiveness of TzeR’s individual components:

(1) RQ2.1:Is coverage feedback helpful for tensor compiler fuzzing?
(2) RQ2.2: Can domain-specific mutations further improve tensor compiler fuzzing?
(3) RQ2.3: Are pass mutations necessary for tensor compiler fuzzing?

2If not specified, TZER seeds (§ 4.5) are used by default. Initial seeds are not taken into account for fair comparison.
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Table 2. Number of Generated Valuable Tests?

Tools # Valuable Tests
Tzer 497
TVMFuzz 331
LibFuzzer 38
TzEeR (LEMON seeds) 485
LEMON (LEMON seeds) 63

(4) RQ2.4: Can our evolutionary joint IR-pass mutation (described in § 3.1) outperform a baseline
joint IR-pass mutation that mutates both IR and pass sequences simultaneously?

To answer the above questions, we first build a simplistic variant of TzEeRr that only applies
general-purpose mutation (i.e., without coverage feedback, domain-specific mutation, or joint IR-
pass mutation). Then, we incrementally add more components to the simplistic variant in the order
of coverage feedback, domain-specific mutation, random joint IR-pass mutation, and evolutionary
joint IR-pass mutation. Curves (1) to (5) in Figure 6 represent the coverage trends after adding each
component progressively. From curves (1) and (2), we can see that coverage feedback has positive
effects on tensor compiler fuzzing. Curves (2) and (3) confirm the effectiveness of domain-specific
IR mutation in addition to general-purpose IR mutation. RQ2.3 can be answered by comparing curve
(3) against curves (4) or (5), as extended pass sequence mutation could help trigger more interesting
behaviors. Lastly, comparing curves (4) and (5), it can be shown that our evolutionary joint IR-Pass
mutation is superior to the random joint IR-pass mutation, which performs coverage-guided fuzzing
on IR files and supplies a randomly mutated pass sequence to each generated IR file. Hence, we can
draw a conclusion that all the main components of TzER contribute to tensor compiler fuzzing.

5.3 RQ3:Parameter Sensitivity

Sensitivity to Seeds (Sy) The first sub-figure in Figure 7 shows how TzEr performs with and without
the default initial seed pool. Surprisingly, the non-seed version has comparable (and even slightly
better at some time stamps) effectiveness to the default Tzer with 629 TIR seeds in terms of the
coverage trend. This is because, though each iteration TzER with seeds could generate higher-quality
tests (the yellow curve is higher than the blue one in the 2nd sub-figure of Figure 7), the non-seed
version runs 24% faster than that with seeds on average (as shown in the 3rd sub-figure). The rationale
behind is that if initial seeds are not given, TzER has to start IR mutation from an empty TIR function
(i.e, PrimFunc([]) {@3}) so that mutated variant IR files are similarly simple. Hence, the overall
compilation time of simple IRs will be smaller than the complex ones derived from real models.
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Sensitivity to Pass Mutation Frequency (N,,4x) Compared with traditional fuzzing loop, TzEr has
an extra parameter Ny, to control the IR-Pass mutation interleaving (see § 3.1). To study the impact
of Npax, we conducted the experiment using different values from 1 to 10 for Ny,,4x. Figure 8 presents
the final 4-hour coverage of different settings, while Figure 9 presents the corresponding detailed
coverage trends. From the figures, we can see that Ny, = 4 demonstrates the best effectiveness.
In addition, Ny, =1 performs the worse in terms of the peak coverage and overall trend. This is
because the coverage is mainly contributed by testing different IRs and the coverage growth will
slow down if we frequently “freeze” the newly found IRs and mutate the pass sequences instead. We
can also observe that the coverage does not keep growing if we keep increasing N4 (i.e., decreasing
the probability of pass mutation). The rationale behind is that though pass mutation contributes
less than IR mutation in the early stage, it is still important to mutate the pass sequence for an “old”
IR that is not very likely to derive new interesting IRs anymore with its current pass sequence. In
conclusion, while Tzer with different pass-mutation frequency values can all outperform existing
state-of-the-art techniques, highly frequent pass mutations may not be cost-effective, while highly
sparse pass mutations may miss the important chances to mutate the pass sequences of some IRs
to trigger new coverage. Therefore, it is important to select a proper pass mutation frequency value
(not too high or too low) to help Tzer achieve the best performance.

Sensitivity to Fuzzing Time (T) Figure 10 shows the overall coverage trend achieved by the default
TZzER across 24 hours. While the existing techniques already saturate within 4 hours (shown in RQ1),
TzER is able to successively keep coverage growth for the entire 24-hour period. Specifically, the first
4-hour window contributes the most coverage, i.e., 91.6%, while later 5 4-hour windows are still able
to contribute 2.1%, 2.8%, 1.9%, 1.1%, and 0.5% coverage respectively, demonstrating the effectiveness
of TzER.
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Fig. 10. 24-hour Coverage Trend of Tzer

In terms of the total code coverage of TVM, at the source code level, TZER can at best achieve 36.9%
line coverage and 28% branch coverage with 4 CPUhours by only tracing the source files used in normal
compilation. At the LLVM bitcode level, there are 482k CFG edges in total for our target, and TZER
achieves about 6% coverage within 4 CPU hours. This is because LLVM coverage sanitizer takes code
bloating into account (C++ headers, templates and inlined functions are repeatedly considered) and
thus can present underestimated coverage rates. Also, please note that modest overall coverage rates
are quite common for fuzz testing of complicated software systems. For example, existing state-of-the-
artLinux kernel fuzzers implement coverage collection with LLVM as well. Although they do not suffer
from template code bloating in C++ as Linux is mostly implemented in C, the fuzzers can only achieve
0.8~10.5% coverage after 50-hour fuzzing by fully utilizing a 32-core high-end CPU [Kim et al. 2020].

5.4 RQ4:Bug Detection Effectiveness

To date, TzER has found 49 previously unknown unique bugs. Table 3 shows the detailed information
about the 37 bugs that have been confirmed by TVM’s developers, where 25 of them have already
been fixed and merged to the main branch of TVM.

TZzER generates tests through pass mutation, IR mutation, and their combination. It is important
to understand the necessity and effectiveness of each part. Table 4 further presents the overall
statistics for the bugs and bug types (categorized based on bug root causes) found by different studied
techniques. In terms of confirmed bugs, we can find that in addition to only mutating IRs (i.e., Column
“Tzer-IR”), modelling IR/Pass jointly (i.e., Column “Tzer-Full”) could help detect 2.17x more bugs and
1.6x more bug types. Existing fuzzers for compilers, not limited to tensor compilers, only consider the
compiler under test as a black box ingesting input source language texts and ignore the mutual effect
of IRs and pass sequences internally applied together. TZEr demonstrates for the first time that it could
be beneficial to perform evolutionary joint IR-Pass mutation for better and deeper bug detection.

From Table 4, we can also observe that bugs detected by TzER can hardly be detected by other
compared techniques, e.g., TZER detects 6.16x more confirmed bugs compared with the 2nd-best
technique, TVMFuzz. This is mainly because TZER has a more complete modelling for both IR and pass
sequences, as well as having a better fuzzing efficiency to quickly harness the large well-modelled
search space (with coverage guidance). In addition, according to Figure 5, TZER is able to consistently
find uncovered CFG edge while other techniques converge at a very early stage, which explains why
existing techniques fail to help discover more potential bugs.

5.5 Bug Root Causes and Case Study

To demonstrate the versatility of TzEr, we study root causes of confirmed bugs detected by Tzer
as shown in Table 3, and discuss representative bugs for each category:
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Table 3. Summary of Confirmed Bugs Detected by Tzer in TVM (v0.8-dev). Abbreviations like “31~36”
represent multiple different bugs instead of one bug.

API-I: API Inconsistency (§ 5.5.5). API-M: API Misuse (§ 5.5.4). AE: Arithmetic Error (§ 5.5.9).
DL: Driver Lifetime (§ 5.5.7). FFI: Foreign Function interface (§ 5.5.2). IMA: Invalid Memory Access (§ 5.5.1).
OOM: Out Of Memory (§ 5.5.8). PMI: Pass-Module Immutability (§ 5.5.3). TE: Type Error (§ 5.5.6).

Triggering Components
D Root Cause IR Pass Runtime Symptom Status
TE v Crash Fixed
2 IMA v Crash Fixed
3 IMA v Crash Fixed
4 TE v Exception Fixed
5~7 API-M v Performance Fixed
8 API-1 v Exception Fixed
9 PMI v Inconsistency Confirmed
10 FFI v Crash Fixed
11 API-I v v Crash Fixed
12 API-I v v Exception Fixed
13 IMA v Crash Fixed
14 TE v Crash Fixed
15 IMA v v Crash Fixed
16 IMA v v Crash Fixed
17 FFI v Crash Fixed
18 FFI v Crash Fixed
19 IMA v v Crash Fixed
20~23 | AE v v Crash Fixed
24~26 | IMA v Crash Confirmed
27 DL v Crash Fixed
28 OOM v Crash Fixed
29 N/A v Exception Confirmed
30 IMA v Crash Confirmed
31~36 | AE v v Crash Confirmed
37 AE v v Crash Fixed

Table 4. Detectable Confirmed Bugs by Different Methods and Tzer Components
Methods | LEMON TVMFuzz LibFuzzer | Tzer-IR Tzer-Full

#Valid bugs 3 6 3 17 37
#Bug Type 3 5 3 6 10

5.5.1 Invalid Memory Access. Since most tensor compilers leverage memory-unsafe languages (i.e.,
C/C++) to implement the core components, it is not surprising that they will suffer from various mem-
ory problems, like out-of-bound access or NULL pointer dereference. Invalid memory access is one of
the most frequently detected bug types by TzeR. For example, TZER discovered an out-of-bound access
bug triggered by a specific combination of IR and pass. When applying pass InjectVirtualThread
on an IR module, the IR would be converted to the SSA format first, traversing all expressions to
create a variable-to-array mapping for recording variable status. Theoretically, an array might not
exist by variable name or it is temporarily empty. However, Tzer found during visiting Save or Load
expressions, the TVM compiler only checks the existence of corresponding array and then directly
accesses the last element (i.e., std: : vector: :back in C++) without boundary checking, resulting
in a crash. We illustrate a simplified fix to it in Listing 1.

In addition to an out-of-bound access to containers, a crash occurs if a NULL pointer is dereferenced.
According to the TVM design, objects could be nullable (an optional type containing a NULL state) or
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PrimExpr VisitExpr_(const LoadNode* op) final {
if (scope_.count(v)) {
if (scope_.count(v) && !scope_[v].empty()) {
return Load(op->dtype, scope_[v].back(), op->index, op->predicate);

Listing 1. Sample fix for Missing Boundary Checking

non-nullable. In TVM, an object accesses its data members or member functions by the —> operator in
C++, which assumes any objects using operator —> are not NULL objects. However, even for nullable
objects, Tzer found over 44 functions (categorized as 3 unique bugs) do not check if a receiving
nullable object is NULL or not, resulting in immediate crashes in case of NULL objects.

5.5.2  Python-C++ FFl Handling. Same as most other deep learning software, TVM and most other
tensor compilers provide a Python interface, i.e., Foreign Function Interface (FFI), to bind Python
functions and objects to C++ functions and objects through the ctypes standard library [Foundation
2021] and cython [Behnel et al. 2010]. The motivation is that most deep learning practitioners are
familiar with Python instead of C++. However, python requires objects to support numerous built-in
functions. For example, Tzer found the StringImm object in TVM failed to provide a __hash__
implementation and threw an unexpected exception when put into a map container.

5.5.3 Pass-Module Immutability. TVM’s passes mark the input IR module as const object (i.e.,
const IRModule), meaning that member functions that mutate data members cannot be called by
such objects. However, Tzer found a pass, i.e., ToBasicBlockNormalForm, violating this contract
by permitting the input const IR object to call non-const methods using pointers (C++ codebase),
resulting in inconsistency issues in Python front-end. We fixed this bug by forcing a copy at the
beginning of the transformation. A simplified bug fix is shown in Listing 2.

IRModule ToBasicBlockNormalForm(const IRModule& mod) {

IRModule ToBasicBlockNormalForm(const IRModule& mod_) {
auto mod = IRModule(mod_->functions,
< mod_->type_definitions, mod_->Imports(), mod_->source_map); // Make 'mod' a copied object.

Listing 2. Sample Fix for the Pass-Module Immutability Bug

5.5.4 APl Misuse. TzER also surprisingly detected that sometimes O4 optimization performs even
worse than O2 (default optimization). This is actually because we followed TVM’s official tutorial
when building TzeR while their tutorial misused the API which failed to invoke the desired optimiza-
tion. In TVM’s Python API, optimization level can be be identified within a scope called PassContext
(Line 1 in Listing 3). In Listing 3, old tutorial code calls . evaluate () outside the PassContext scope.
The evaluate() function, nevertheless, is where the optimizations are applied. Therefore, when
calling evaluate out of the O4 scope, the default optimization (O2) will be applied so that when
comparing with another O2-optimized binary (they are all equally optimized), it is possible to see
one is slower than the other due to uncertainty.

5.5.5 APl Inconsistency. Inconsistency in APThappens when a program does not act as what the API
is specified. For example, when running programs on heterogeneous devices (e.g., run a program that
requires both GPU and CPU), TVM splits the functions into either the host side or the device side.
There is a parameter controlling the calling convention (i.e., calling_conv) for the heterogeneous

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 73. Publication date: April 2022.



73:22 Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang

with tvm.transform.PassContext(opt_level=4):

executor = relay.build_module.create_executor("graph", mod, dev, target)
executor = relay.build_module.create_executor("graph", mod, dev, target, params).evaluate()

tvm_out = executor .evaluate() (tvm.nd.array(data.astype(dtype))l, **params )

tvm_out = executor(tvm.nd.array(data.astype(dtype)))

Listing 3. Sample Fix to APl Misuse

compilation, which is set to kDefault by default. kDefault generally means that both host and
device targets are CPUs (e.g., LLVM as the target). However, a pass called DecorateDeviceScope
violates the calling convention by implicitly change kDefault into kDeviceKernellLaunch which is
built for non-CPU device targets (i.e., the DecorateDeviceScope is not desired to change the calling
convention). Such an inconsistency leads to a crash at runtime.

5.5.6 Type Error. TzeR found an issue regarding TVM’s constant folding in integer conversion. For
example, the expression assert tir.const(1) == tir.const(True) would throw unexpected
exceptions, whereas we expected it to be a True after evaluation. The root cause is that conversion
for signed/unsigned integers (int64 and boolean) is not well handled. Theoretically, since the range
of boolean type is the subset of int64’s, we can convert the boolean value to an int64 value. We
fundamentally fixed the issue by refining TVM’s type conversion for signed and unsigned integers.

5.5.7 Driver Lifetime Error. TzeR found that when enabling CuDNN [Chetlur et al. 2014] as the target
backend, TVM crashes after being stuck for a while when the program exits. This is because TVM made
the CuDNN device handler of a whole-process lifetime by marking it with thread_local (a specifier
in C++). Thus,according to the RAII rule [Stroustrup 2017] of C++, the deconstructor to release the han-
dler will be called during program exit. However, the CuDNN library context might have already been
exited when such release handlers are being called, causing segmentation fault after along suspension.

We further proposed 2 fixes to this problem: (1) we register the handler release function at exit
time using atexit, and make sure that the destroyer of library context will be called after it; (2) we
simply remove the handler release code and let it leak since we do not need to do recycling when
aprogram is going to exit. The community finally accepted proposal (2) since proposal (1) is more
advanced and complex, increasing the maintenance cost.

5.5.8 Out-of-Memory. TzEr found an interesting out-of-memory (OOM) bug when using the virtual
machine (VM) as TVM’s executor. The cause is that the previous VM memory allocator never releases
occupied memory in the memory pool and leverages no memory defragmentation strategies. It only
re-uses memory blocks in the pool if the incoming request size is smaller than the existing one. When
the memory requests follow a monotonic pattern, it fails eventually since it cannot release previous
memory blocks in the pool.

For example, as shown in Table 5, on a GPU of 8 GB memory, if for each time, we release i GB memory
and allocate i+1 GB memory (i starts from 0), it will fail in the 4th step. The reason is that each time,
after releasing i GB memory, the released memory chunk is returned to the free list; when requesting
i+1 GB next time, all chunks in the pool cannot be used since they are smaller than i+1 GB. Hence, in
the 4th step, even though the GPU has 8 GB physical memory, it cannot allocate a 4 GB memory chunk.

We fixed this issue by simply releasing all cache blocks and re-attempting allocation if any OOM
exceptions are caught.
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Table 5. Example of How TVM’s VM Allocator Failed in Monotonic Allocation.

#lter. Next Action Avai. System Mem. Occupied Mem. Free list (pool)
1 Alloc. 1GB 8GB 0 empty
2 Free 1 & alloc. 2 GB 7 GB 1GB empty
3 Free 2 & alloc. 3 GB 5GB 2GB [1] GB
4 Free 3 & alloc. 4 GB (Fail) 2GB 3GB [1,2] GB

5.5.9  Arithmetic Error. TzER also found some functions in TVM fail to check the legality of arithmetic
operations, such as division by zero. This bug lies in an optimization that simplifies the calculation
of TIR. Specifically, when TVM tries to simplify a division expression whose two operands are of
type Ramp and Broadcast, it will directly modulo two numbers without checking the divisor. This
causes the program to crash when the divisor is 0.

6 CONCLUSION

The evolution of tensor compilers requires automated testing to achieve high maintainability and
reliability. We demonstrate that existing fuzzing techniques are not tailored or effective enough
to fulfill this mission. To this end, we present TZER, a practical coverage-guided tensor compiler
fuzzer with joint IR-Pass mutation. Unlike traditional compiler fuzzers, TZer performs joint IR and
pass mutation to explore various program states and introduces coverage guidance to navigate the
mutation process. Specifically, in addition to general-purpose mutators, TZER also leverages tailored
domain-specific mutators to target the hotspot logics behind tensor compilers. The evaluation shows
that TzER substantially outperforms the state-of-the-art fuzzers including a general-purpose fuzzer
(i-e., LibFuzzer), a graph-level DL model fuzzer (i.e., LEMON), and the only domain-specific fuzzer
for TVM (i.e., TVMFuzz). As one of the practical contributions of TZER, to date, we have helped the
TVM community find 49 new unique bugs, with 37 confirmed and 25 of them already fixed in the
current TVM version. Our effort has been highly recognized by the TVM community, and the leading
author of TzeR has been nominated as a community reviewer for TVM.

7 DATA AVAILABILITY STATEMENT

TzER has been open-sourced at GitHub (https://github.com/ise-uiuc/tzer) with the source code, exper-
imental data used in this paper and documents. The artifact [Liu et al. 2022] is also available on Zenodo
and the detailed instructions for reproducing the results can be found at Tzer’s documentation
(tzer.rtfd.io/en/latest/markdown/artifact.html).
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