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abstract

Astechnologyadvances,manycomplicatedsystemscanberepresentedbynetworks/graphs.However,

whenusinglimitedcomputingresourcessuchasportablecomputersorpersonaldesktopcomputers,

usersarenotabletostoreandminelarge-scalegraphsduetotheunparalleledgrowthoftheamountof

datawegenerate.Inordertoaddressthischallenge,wepresenteffectiveedgeshedding.Effectiveedge

sheddingcanreducetheamountofdatatobeprocessedandthecorrespondingstoragespacewhile

speedingupgraphalgorithmsandqueries,therebysupportinginteractiveanalysis,helpingknowledge

discovery,andeliminatingnoise.Inthispaper,toextracttheunderlyingfeaturesofagraph,wepresent

twoeffectiveedgeshedding methodsonthebasisofpreservingtheexpectedvertexdegree.Both

methodsallowuserstocontroltheedgesheddingprocess,thusgeneratingareducedgraphofthe

predefinedsizebasedonthecomputingresourceconstraint.Usingfourreal-worlddatasetsindifferent

domains,weperformedanextensiveexperimentalevaluationofourmethodsandcomparedthemwith

thestate-of-the-artgraphsummarization methodonsevengraphanalysistasks.Theresultsindicate

thatourmethodscanachieveupto58.6%higheraccuracyongraphanalysistaskscomparedwiththe

state-of-the-artmethod.Forverylargedatasets,ourmethodsconsumesonly0.3%oftherunningtime

ofthecompetitive methodwhengeneratingthereducedgraph.Theaboveresultsfullyillustratethe

advantagesofourmethods.

©2022ElsevierB.V.Allrightsreserved.
1.Introduction

Withthefastprogressoftheinformationage,therearemul-

iple waystostoreandrepresentdata.Amongthese methods,

raphsdevelopexpressivedatarepresentationpatternsforde-

cribingentitiesandtheirrelationships. Massivegraphsarisein

anyapplications,suchassocialnetworks,academicnetworks,

ransportationnetworks,and manyknowledge-basedsystems.

hereare manytypesofinformationhiddenincomplexnet-

orks.Throughthein-depthexplorationofthesegraphs,the

otentialrelationships withinthedatacanbefoundandthen

sedeffectively.

Nevertheless,thevolumeofdataisexpandingrapidlyover

ime.Dailyactivitiessuchassocial mediainteractions,smart-

honeusage,webbrowsing,onlineshopping,andwellnesssmart

racelets willproducealargeamountofvaluableinformation.

herefore,thesizeofnetwork modelsisconstantlygrowing.

sthe world’slargestsocialnetworkplatform,Facebookhad

pproximately2.89billionactiveuserspermonthbythesecond

uarterof2021[1].Asofthefirstquarterof2019,Twitter,asocial
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950-7051/©2022ElsevierB.V.Allrightsreserved.
platformcalledan‘‘InternetSMS",hadnearly330 millionusers

andgeneratedmorethan10million‘‘tweets"everyday[2].

Although wecanusenetworkstorepresentandrecordthe

dataproducedindailyhumanlife,thecomputingfeasibilityand

efficiencyoflarge-scalenetworkanalysisand miningisincom-

parabletothevolumeofdatawithexplosivegrowth,especially

when miningusingthepersonalcomputersofeverydayusers.

Forexample,graphminingtaskssuchaslinkpredictionandnode

clusteringcannotbeexecutedonthedesktoporlaptopcomputer

ofanordinaryuser,suchasascientist,duetothesheersizes

ofthegraphs. Hence,theuseofgraphreductiontechniques,

e.g.,edgeshedding,todecreasethenetworkstorageandanalysis

costscanachievesubstantialpracticalbenefits.

Applyinggraphreductionresultsinthefollowingfour main

advantages.First,graphreductiongreatlysavesstoragespace

byreducingtheamountofdatathatneedstobeprocessedfor

lateranalysis.Second,theuseofreducedgraphsacceleratesthe

processingspeedofgraphqueries.Third,fordatavisualization,

graphreductionprovidesitwithmorefeasibility.Finally,inreal

datasets,thereareusually manyhiddenorincorrectlinksand

labels.Throughgraphreduction,thenoiseinthenetworkcan

bewellcleaned,andtheunderlyingpatternfeaturescanalsobe

minedout.

https://doi.org/10.1016/j.knosys.2022.108126
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In 2020, COVID-19 swept across the world. Owing to the
impact of COVID-19, many people began to work from home, and
the demand for online platforms increased dramatically. Compa-
nies and institutions are struggling to meet the increased demand
for storage space, which reveals that in the big data era, storage
capacity and data processing capacity are of great importance.
For example, regarding the current research results, most graph
reduction techniques require high hardware resources, memory,
and CPUs. Even though hardware becomes cheaper, most labora-
tories in schools and small-scale enterprises with limited funds,
as well as individual users such as scientists not performing large-
scale data analysis on a regular basis, cannot afford the cost of
acquiring or maintaining high-end data servers. This leads to the
failure of large-scale data being effectively utilized. Moreover, if
scientists can obtain preliminary results on reduced graphs using
their personal computer very quickly, they can then decide if it is
necessary to send the data to data centers with powerful servers
for more precise analysis. Our experiments demonstrate that for
large datasets, we can consume only 0.3% of the original graph
analysis time to obtain an accurate preliminary result. Moreover,
the demand, and the market for edge computing [3] are rapidly
growing. As preliminary data processing in edge computing is
pushed to less powerful devices, graph reduction techniques will
be much needed. To the best of our knowledge, efficient graph
reduction methods under resource constraints have not been
proposed before.

1.1. Related work

Graph reduction techniques can be divided into several pop-
ular categories, such as grouping- or aggregation-based tech-
niques, bit compression-based techniques, and simplification- or
sparsification-based techniques.

Grouping-based reductionmethods involve node-grouping-based
methods and edge-grouping-based methods. LeFevre et al. [4]
proposed a graph reduction method that greedily grouped nodes
to minimize the normalized reconstruction errors. Riondato et al.
[5] focused on generating supernodes and superedges with guar-
antees while completely ignoring the preservation of important
parts and regions of graphs. Graph Dedensification [6] is an edge-
grouping-based method that compresses neighborhoods around
high-degree nodes, thereby accelerating query processing and
enabling direct operations on the compressed graph. Fan et al. [7]
proposed a ‘‘blueprint’’ for lossless queries on compressed at-
tributed graphs. Kumar et al. [8] proposed a novel iterative utility-
driven graph reduction approach. The utility is defined as the
useful information of the summarized graph and is user-specified.
This is also the state-of-the-art method, and we demonstrate the
superiority of our methods over it in the experiments.

Bit compression-based reduction methods aim to minimize the
number of bits needed to describe an input graph. Navlakha
et al. [9] introduced a highly compact two-part representation,
which allows for both lossless and lossy graph compression
with bounds on the introduced error. Ahnert [10] proposed a
framework for the discovery of dominant relationship patterns
in transcription networks by compressing a network into a power
graph with overlapping power nodes. Lee et al. [11] introduced
SSumM, a scalable and effective graph summarization algorithm.
The method not only merges nodes together but also sparsifies
the summary graph, and the two strategies are carefully balanced
based on the minimum description length principle.

Simplification-based reduction methods generate reduced
graphs by removing less ‘‘important’’ nodes or edges from original

graphs. Shen et al. [12] presented a visual analytics tool, OntoVis,

2

which allows users to perform structural abstraction and impor-
tance filtering to make large networks manageable. Li et al. [13]
designed several abstraction criteria to distill representative and
important information to construct abstracted graphs for visu-
alization. However, these methods mainly study heterogeneous
social networks. By modeling the complex semantics of heteroge-
neous social networks, they generate a condensed feature graph
representation for egocentric information abstraction. Therefore,
these methods are not suitable for homogeneous graphs.

Papers [14,15] are surveys of graph reduction. Most of the
above techniques are constrained by minimizing the reconstruc-
tion error or ensuring the utility of the results. However, these
reduction methods often need to use extremely expensive hard-
ware resources and are not suitable for small companies, some
universities and laboratories with limited resources, as we men-
tioned above. Furthermore, the performance could be arbitrarily
poor.

From another perspective, in different scenarios, users prefer
different properties. Therefore, the key issue of graph reduction
is what properties of the original graph should be preserved
in the reduced graph. The properties that have been studied
include aggregate functions [16], degree distributions [17,18],
community [19,20] and PageRank values [21]. Among the previ-
ous studies, [17,18] adopted different graph reduction methods,
such as random walks; and finally retained the degree distri-
bution well. Different from their goals, we aim to generate a
reduced graph that retains multiple properties by preserving the
distribution of vertex degrees.

Inspired by [22], we propose two graph selective edge shed-
ding techniques to efficiently solve the graph reduction problem.
In a short paper published in ICDE 2021 [23], we briefly out-
lined some preliminary high-level ideas of our graph reduction
work. In contrast, we present the complete work by including
detailed graph reduction algorithms and running examples and
error analysis in this work. We also provide some theoretical
analysis of the error bound for each algorithm and show the
comprehensive evaluation results. Experimental evaluation and
comparisons with the SOTA algorithm illustrate the advantages of
our methods for highly efficient graph reduction and their higher
utility with much more accurate data analysis results.

In addition, TCM [24] and GSS [25] are novel graph stream
summarization techniques concentrating on graphs with multiple
edges that appear at different timestamps. Learning automata-
based algorithms have also been utilized in network sampling
[26]. Graph scaling techniques such as [27,28], as well as the
abovementioned techniques, focus on different problems from
ours.

1.2. Our contributions

In this work, we propose two novel edge shedding-based
graph reduction techniques: Centrality Ranking with Rewiring
(CRR) and B-Matching with Bipartite Matching (BM2). Both of our
methods aim to preserve the distribution of vertex degrees with
edge shedding in different ways.

The key contributions of this paper are as follows:
(1) We propose two effective methods for graph reduction

using edge shedding.
(2) As a basic topological characteristic of the network, the

vertex degree plays an important role in network analysis. In
order to achieve the best graph preservation effect, we constrain
the edge shedding process by maintaining the vertex degree
distribution, which can preserve the basic network topology and
is therefore beneficial to the subsequent network mining tasks. In
addition to the graph reduction methods themselves, different es-
timation techniques are given for different graph analysis tasks to
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Table 1
List of symbols used in the paper.
Symbol Definition

G Initial graph
G′ Reduced graph, which is a subset of G
G Perfect graph, which is a subset of G
p Edge preservation ratio
degG (u) Degree of node u in G
degG′ (u) Degree of node u in G′
E(degG′ (u)) Expected degree of node u in G′
E(degG′ ) Expected average node-degree of G′
dis(u) Discrepancy between the actual and expected

degree of u in G′
∆ Sum of the absolute values of the discrepancy

of each node in G′

estimate the results of the original graph. Through the estimation
process, we can greatly reduce the costs of graph analysis.

(3) At present, graph reduction research field pays increasingly
ore attention to the controllability of the reduced graph size.
onsequently, on the basis of the needs of users in different
cenes, we use the edge preservation ratio p, where p ∈ (0, 1)
enotes the size ratio between the reduced and original graphs,
o generate different sized graphs.

(4) We perform extensive experiments on four datasets in
ifferent areas, including seven graph analysis tasks. The re-
ults prove that the methods proposed in this work can run
nder resource constraints and achieve extremely high quality in
erms of efficiency and accuracy, implying that our methods are
ighly competitive with other methods in terms of efficiency and
ccuracy.
The remainder of the paper is organized as follows. In

ection 2, we state the problem and introduce the relevant back-
round knowledge. In Sections 3 and 4, we present the proposed
RR and BM2 algorithms and illustrate them with detailed run-
ing examples. Section 5 contains comprehensive experiments
hat evaluate the efficiency and accuracy of the proposed algo-
ithms on real-world datasets in four different domains. At last,
e conclude the paper in Section 6.

. Preliminaries

.1. Problem definition

The core concept of our graph reduction methods is to cap-
ure and maintain the underlying structure of the original graph.
sing the reduced graph, we can estimate various properties of
he original graph and thus accelerate the downstream graph
nalysis tasks. How to efficiently capture and maintain the un-
erlying structure of the original graph is the key requirement
f graph reduction techniques. As one of the most fundamental
haracteristics in network topology, the vertex degree is of great
ignificance in network analysis [29]. Current research has iden-
ified the importance of the vertex degree in capturing network
eatures, including the communication network topology [30] and
omplex network modeling [31].
In light of the above conclusions, we come to the follow-

ng idea: by ensuring that the expected vertex degree of each
ode fits the core idea of preserving the overall vertex degree,
e can obtain the nature of the original graph and accurately
pproximate other features afterward.
In Table 1, we summarize the important notations that we use

n our discussions and the remainder of the paper.
Assume an undirected graph G = (V , E) and an edge preser-

ation ratio p, where V is the set of nodes, E ⊆ V × V is the
et of edges, and p ∈ (0, 1) is the specified edge preservation
atio. Let G′ =

(
V ′, E ′

)
, where V ′ is the node set, E ′ ⊆ V ′ × V ′
3

s the edge set, and G′ is a subgraph of G, be the reduced graph
roduced by our algorithms. Since the methods proposed in this
aper are based on vertex degrees, it is necessary to define the
ymbolic representation of the vertex degrees of a graph. For the
riginal graph G, ∀u ∈ V , degG (u) denotes the degree of a single
ode u. For a reduced graph G′, ∀u ∈ V ′, degG′ (u) represents the
ctual degree of a single node u in G′. Ideally, the algorithm should
enerate a perfect graph G with the same degree distribution as
. However, in fact, the reduced graph G′ can only be as close as
ossible to the standard of the perfect graph G but cannot meet
he requirements exactly. Thus, we define the expected degree of
single node u in G′ as E(degG′ (u)), which corresponds to degG (u),
he ideal vertex degree of u in the reduced graph. In the same
way, the average expected degree of the reduced graph G′ should
e E(degG′ ), which corresponds to degG, the average degree of G.
In the edge shedding process, the edge preservation ratio p is

controllable parameter. The smaller p is, the smaller the size of
he reduced graph. Therefore,

(degG′ (u)) = degG(u) = degG(u) · p (1)

According to Eq. (1), the average expected degree of the re-
uced graph can be expressed as:

(degG′ ) =degG =
1
|V |

∑
u∈V

E(degG′ (u)) =
1
|V |

∑
u∈V

(degG(u) · p)

=
p
|V |

∑
u∈V

degG(u) (2)

Let dis(u) denote the difference between the actual and ex-
pected degrees of vertex u in the reduced graph. It can be repre-
sented as:

dis(u) = degG′ (u)− E(degG′ (u)) (3)

The sum of the degree discrepancies of all nodes ∆ in the
educed graph is:

=

∑
u∈V

|dis(u)| (4)

As described above, the evaluation of edge shedding meth-
ods based on vertex degrees is in line with the degree differ-
ence ∆ between the reduced graph and the original graph. The
smaller the degree difference ∆ is, the closer the vertex degree
distributions between the reduced and perfect graphs.

Therefore, we give a formal definition of the problem. Given
an original graph G, we need to obtain a representative reduced
graph G′, where G′ = argminG∗⊑G ∆(G∗) and G is the collection of
ll possible reduced graphs of G. Based on the conclusion of [22],

the problem is NP-hard; thus, we intend to propose effective
approximate solutions. Two different methods in this paper are
proposed to judiciously control the edge shedding process based
on the ratio parameter p, which preserves not only the vertex-
degree distribution but also the key topological connectivity of
the graph.

2.2. Centrality

To preserve the key topological connectivity, we need to in-
troduce the notion of centrality. Centrality is a common con-
cept used in social network analysis to express the importance
of vertices or edges in graphs. Among the different centrality
computing methods, the betweenness centrality is the one most
frequently employed in network analysis [32].

The betweenness centrality of a node v is the sum of the
fraction of the shortest paths that pass through v of all pairs. The
betweenness centrality is computed as:

CB(v) =
∑ σ (s, t | v)

σ (s, t)

s,t∈V
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Fig. 1. The flow chart diagram of CRR.
here V is the set of nodes, σ (s, t) is the number of shortest (s, t)-
aths, and σ (s, t | v) is the number of paths passing through node

v other than s, t .
To measure the centrality of edges, the betweenness centrality

s still applicable. The formula is as follows:

B(e) =
∑
s,t∈V

σ (s, t | e)
σ (s, t)

where the symbols share similar meanings as CB(v).
The betweenness centrality focuses on the role of an edge

serving as a ‘‘bridge’’. Brandes [33] proposed a fast algorithm to
compute the betweenness centrality that requires O(|V | + |E|)
pace and runs in O(|V ||E|) time on unweighted networks.

. Centrality Ranking with Rewiring (CRR)

In order to preserve the degree distribution of the original
raph, we can start by maintaining the expected average vertex
egree. The proposed CRR algorithm has two phases, which are
hown in Fig. 1. First, according to the importance of all edges,
he CRR algorithm generates an initial reduced graph with the
ame expected average degree computed by fixing the edge-
reservation ratio p following Eq. (2). Since we only consider
he importance of edges at the beginning, the initial result may
iolate the goal of minimizing the degree differences to some
xtent. Therefore, in the second phase, we replace some edges
o reduce the node-degree discrepancy.

Algorithm 1 presents the pseudocode of CRR.

Algorithm 1: Centrality Ranking with Rewiring (CRR)
Input: undirected graph G = (V , E), edge preservation ratio p,

steps
Output: reduced graph G′ = (V ′, E ′)

1 initialize E ′ ← ∅, i← 0
2 P ← p · |E|
3 calculate the betweenness centrality of all edges, and sort E in

non-increasing order by their betweenness centrality
4 while

⏐⏐E ′⏐⏐ < [P] (nearest integer of P) do
5 e← E. next ()
6 E ′ ← E ′ ∪ e
7 for i← 1 . . . steps do
8 pick a random edge e1 = (u, v) from E ′
9 pick a random edge e2 = (x, y) from E\E ′

10 d1 ← |dis(u)− 1| + |dis(v)− 1| − (|dis(u)| + |dis(v)|)
11 d2 ← |dis(x)+ 1| + |dis(y)+ 1| − (|dis(x)| + |dis(y)|)
12 if d1 + d2 < 0 then
13 E ′ ←

(
E ′ − {e1}

)
∪ {e2}

14 return G′

The first stage (Lines 1–6) implements the edge shedding
trategy. According to the discussion in Section 2.1, the expected
verage degree of the reduced graph E(degG′ ) equals p times the

average degree of the original graph. That is, if the reduced graph
involves p · |E| = P edges, then the needed expected average
degree is met. Therefore, the reduced graph should include [P]
4

(the nearest integer of P) edges. Since each edge makes different
contributions in maintaining graph properties, intuitively, we
should retain the edges whose contributions are higher, and the
remaining edges are subject to edge shedding. In this way, the
underlying structure of the graph can be preserved. As mentioned
in Section 2.2, the betweenness centrality focuses on the role of
an edge in serving as a ‘‘bridge’’. The higher the betweenness
centrality of an edge is, the greater its contribution to the net-
work connectivity. Kumar et al. [8] proved that the betweenness
centrality is superior when estimating edge importance. Hence, in
the first stage, CRR begins by computing the betweenness central-
ity of all edges (Line 3) and continuously picks [P] edges with the
highest betweenness centrality to form the initial reduced graph
(Lines 4–6).

Fig. 2(a) shows an original graph, which includes 11 nodes and
12 edges, to be reduced. We set the edge preservation ratio p
to 0.3, and the expected degrees are shown next to each node.
First, CRR computes [P] = [p · |E|] = [0.3 · 12] = 4. Then,
it selects the top-4 edges as the initial edge set based on the
betweenness centrality. The result of Phase 1 is shown in Fig. 2(b),
where yellow edges represent the initial reduced graph and the
number next to each node indicates the degree difference dis(u).

The second stage (Lines 7–13) is responsible for edge rewiring
based on the initial results. In the first stage, taking [P] edges
with the highest centrality does not guarantee that the degree of
each node is close to its expected value. Additionally, taking the
edge importance as the basis for initial selection may compromise
the goal of minimizing the total degree difference ∆ to a certain
extent. Therefore, in the second stage, CRR conducts several iter-
ations of edge substitution to better decrease the overall degree
difference. During each iterative step, edge replacement ensures
that the number of edges in the reduced graph is always [P],
thereby maintaining the expected average degree.

The parameter steps, which is the number of iterations, is
determined by users’ preference for efficiency versus accuracy.
Based on the results of extensive experiments, it is commonly
recommended that users set steps as [10 · P] (the nearest integer
of 10 · P). At each iteration, E ′ is used to denote the current
edge set. CRR randomly selects two edges e1 = (u, v) ∈ E ′
and e2 = (x, y) ∈ E\E ′ (Lines 8–9). Thus, d1 = |dis(u)− 1| +
|dis(v)− 1| − (|dis(u)| + |dis(v)|) denotes the change in the over-
all degree difference caused by the removal of e1, and d2 =
|dis(x)+ 1|+|dis(y)+ 1|−(|dis(x)|+|dis(y)|) denotes the change in
the overall degree difference caused by the addition of e2 (Lines
10–11). If d1 + d2 < 0, the proceeding edge replacement will
lead to a decrease in the overall degree difference, so we should
adopt this change. Otherwise, we do nothing (Lines 12–13). The
final edge set is returned as the reduced graph (Line 14).

Fig. 3 is an example iteration of CRR, where the number next
to each node represents the current degree difference and the
yellow edges are the current set of selected edges. According to
Fig. 3, at the ith iteration, CRR randomly chooses e1 = (u4, u9) ∈
E ′, e2 = (u3, u5) ∈ E\E ′ to attempt edge replacement. Since
d1 = |1.5− 1| + | − 0.2− 1| − (|1.5| + | − 0.2|) = 0, d2 =
| − 0.3+ 1| + |0.5+ 1| − (| − 0.3| + |0.5|) = 1.4, and d + d >
1 2
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Fig. 3. An illustration of the ith iteration of CRR.

0, this edge replacement would not improve the overall degree
difference, so we do not perform edge swapping at this time. After
this iteration, E ′ remains {(u2, u4) , (u2, u5) , (u4, u5) , (u4, u9)}.

Example 1 (Running Example of CRR). Fig. 4(a) shows an original
graph before edge shedding, where the number next to each node
represents the expected degree for the reduced graph with the
edge preservation ratio p = 0.4. First, CRR computes [P] =
p · |E|] = [0.4 · 11] = 4, and then it calculates the impor-
ance of each edge using the betweenness centrality formula
B(e) =

∑
s,t∈V

σ (s,t|e)
σ (s,t) . The importance of edges is shown in

ed, and the importance of unmarked edges is 0.182 in Fig. 4(b).
ccording to the above calculation, the four most important edges
re selected as the initial chosen edge set, where edges of the
ame importance are selected randomly. The result is shown in
ig. 4(b), where the number next to each node indicates the
egree difference disu, and the yellow edges form the initially
elected edge set.
Next, CRR starts the second phase. First, we compute steps =

10 · P] = 44, which is the number of iterations. At the ith
teration, CRR randomly chooses e1 = (u5, u7) and e2 = (u8, u10)
o attempt edge replacement, which is shown in Fig. 4(c). Then
e compute d1 = |0.6− 1| + |1.2− 1| − (|0.6| + |1.2|) = −1.2
nd d2 = | − 0.8+ 1|+| − 0.8+ 1|−(| − 0.8|+| − 0.8|) = −1.2.
ecause d1 + d2 < 0, the edges are swapped. The overall degree
ifference is reduced by 2.4, and the current E ′ is composed of
(u1, u7) , (u2, u7) , (u7, u9) , (u8, u10)}. The subsequent iteration
steps are similar, and the final selected edge set returned by
CRR is E ′ = {(u1, u7) , (u2, u7) , (u7, u9) , (u8, u10)}, as shown in
Fig. 4(d). The black nodes correspond to the reduced graph’s node
set V ′, and the yellow edges form the final selected edge set E ′.

Theorem 1. The average absolute difference between the degree of
a node in the graph produced by CRR and its expectation is in the
range (0, 4p(1− p) |E|

|V | ).

Proof. We first prove the claim that an upper bound of ∆ (i.e., the
total absolute difference between the node degrees in the reduced
graph and their expectations) is achieved when a subset U of
odes all have degree 0 and the remaining nodes V \ U all retain

their original degrees (except possibly one node, which may have
a smaller degree), subject to the constraint that the total number
of edges is p|E|.
5

To prove this claim, suppose in the reduced graph G′ with the
aximum ∆, there is a subset U of nodes whose degrees are
elow their expectations (i.e., p·degG(u)) and the remaining nodes

V \U have degrees above or equal to their expectations. Suppose
we can retain the node degree statistics but can arbitrarily rewire
the edges while retaining the same number of edges. That is,
each node has the same number of ‘‘half edges’’ or ‘‘spokes’’ as
its degree, and we are allowed to arbitrarily reconnect two half
edges into one edge. Thus, in the above reduced graph G′ with the
aximum ∆, as long as there is a node in V \ U with a degree

n G′ less than that in G, we can keep moving edges in G′ to be
onnecting two nodes in V \ U only. This could only increase ∆

oward the upper bound. In particular, for every two ‘‘bridge’’
dges crossing U and V \ U , we can rewire them and have one
dge connecting the same 2 nodes in U and one edge connecting
he same 2 nodes in V \ U .

At the end of this moving process, one of the following two
ases will occur: (1) All nodes in V \ U have full degrees, and U
ay have some internal edges; or (2) All nodes in U have degree
. In case (1), within the node set U , we can keep moving all
emaining internal edges toward any particular node u or several
odes as self-edges until they reach their maximum degree in G.
his does not change ∆ initially when the degree of u in G′ is
elow its expectation and will increase ∆ once the degree of u is
reater than the expectation. Therefore, in the end, we will reach
he scenario described in the claim, i.e., a rewired graph G′ with a
ubset of nodes having full degrees, possibly another node with a
ositive degree, and all remaining nodes with degree 0 will give
n upper bound of ∆. In the same vein, for case (2), we can move
he internal edges in V \ U to saturate the degrees of a subset of
odes without decreasing ∆. Thus, the claim above is proven.
Let U ′ be the set of nodes with degree 0 and V \ U ′ have all

he p|E| edges at the end of the proof constructed above. Based
n the result of the claim, we have ∆ ≤

∑
u∈U ′ degG(u) · p +

u∈V\U ′ degG(u) · (1 − p)=p · (1 − p) · 2|E| + (1 − p) · 2p|E| =
p(1−p)|E|, and we obtain the result for the range of the average
bsolute difference as in the theorem. □

For CRR, we analyze the time complexity as follows. The first
tage is the generation of the initial edge set, which mainly
ncludes calculating and sorting the betweenness centralities of
ach edge. The time complexity of these two parts is O(|V ||E|) and
(|E|log2|E|), respectively. In addition, the initial edge selection
as a cost of O(|E|). The second phase is a linear process of
dge replacement. Therefore, the overall time complexity of CRR
s O(|V ||E| + |E|log2|E| + |E| + steps), which is simplified to
(|V ||E| + |E|log2|E| + steps). As for the space complexity, CRR
equires O(|V | + |E|) space when computing the betweenness
entralities of all edges [33]. In addition, the spaces required for
he graph construction and storage of node degree differences
hroughout the algorithm are O(|V |+|E|) and O(|V |), respectively.
herefore, the overall space complexity of CRR is O(|V | + |E|).
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Fig. 4. An illustration of running CRR.
Fig. 5. A B-matching example.
4. B-Matching with Bipartite Matching (BM2)

In this section, we first introduce the maximum b-matching
problem [34], which is another type of edge shedding problem.
Next, we introduce the BM2 algorithm based on the associa-
tion between the maximum b-matching problem and the graph
reduction problem.

4.1. B-matching

Let us consider an undirected graph G = (V , E) and a set of
capacity constraints b(u) : V → N. For subgraph S = (V , ES) of
G, if the degree of any vertex u ∈ V in S is at most b(u), then
S is a b-matching of G. If the addition of any edge violates at
least one capacity constraint, the current b-matching is maximal.
A maximum b-matching is a maximal b-matching with the largest
number of edges. Fig. 5 shows a b-matching instance, where the
number next to each node indicates its capacity constraint, and
the matched edges are shown in yellow.

In [22], Parchas et al. analyzed the relationship between the
maximum b-matching problem and the problem of summariz-
ing representative samples from uncertain graphs. It has been
demonstrated that the solution of the maximum b-matching
problem can be well applied in our situation only if we treat
E(degG′ (u)) as b(u) in a b-matching problem.

4.2. B-Matching with Bipartite Matching (BM2)

The flow-chart of BM2 is shown in Fig. 6. Since the edge
preservation ratio p is in (0, 1), E(deg ′ (u)) is possibly a fraction.
G

6

Algorithm 2: B-Matching with Bipartite Matching (BM2)
Input: undirected graph G = (V , E), edge preservation ratio p
Output: reduced graph G′ = (V ′, E ′)

1 calculate the expected degree E(degG′ (i)) for all vertices in V
2 initialize Em ← 0, degG′ (i)← 0
3 bi ← round(E(degG′ (i))) for each vertex i
4 for each (u, v) ∈ E do
5 if degG′ (u) < bu and degG′ (v) < bv then
6 Em ← Em ∪ {e}
7 degG′ (u)← degG′ (u)+ 1, degG′ (v)← degG′ (v)+ 1
8 A← ∅, B← ∅, C ← ∅
9 for each u ∈ V do

10 dis(u) = degG′ (u)− E(degG′ (u))
11 if dis(u) ≤ −0.5 then
12 A← A ∪ {u}
13 else if −0.5 < dis(u) < 0 then
14 B← B ∪ {u}
15 else
16 C ← C ∪ {u}
17 E∗ ← E − Em
18 for each e = (u, v) ∈ E∗ do
19 gain = |dis(u)| + 2 |dis(v)| − |1+ dis(u)| − 1
20 if u ∈ A and v ∈ B and gain ≥ 0 then
21 w(e)← gain
22 else
23 discard e from E∗

24 let G∗ be ((A ∪ B), E∗,W ) where W is the set {w(e)}
25 EBP = bipartite (G∗)
26 E ′ = Em ∪ EBP
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Fig. 6. The flow-chart diagram of BM2.
Fig. 7. BM2 Phase 1 illustration.
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Thus, the b-matching model described in Section 4.1 cannot be
applied directly to the graph reduction problem, and we need to
round the expected vertex degrees to integers. Therefore, BM2
involves two phases. First, BM2 performs b-matching on a trans-
formed graph to obtain an initial edge set. Next, BM2 picks
additional edges that can improve the total degree difference ∆

by performing bipartite matching.
Algorithm 2 presents the pseudocode of BM2.
The initially selected edge set is generated in the first stage

(Lines 1–7) of BM2. First, we compute the expected vertex degree
of each node for the reduced graph using Eq. (1) (Line 1). In order
o solve our problem with real-value constraints, BM2 treats the
ounded integer of the expected vertex degree as the capacity
onstraint of each node and runs approximate b-matching to
btain a maximum b-matching (Lines 3–7). Although there may
e more than one maximum b-matching, our algorithm only finds
ne of them and proceeds to the second phase using that one.
Fig. 7 shows the procedure, where the capacity constraints

(ui) are shown next to ui. Fig. 7(a) is the transformed graph
f Fig. 2(a) with the same compression ratio p = 0.3. The
aximum b-matching of Fig. 7(a) is shown in Fig. 7(b), where the
umber next to each node indicates the current degree difference
ompared to the expected vertex degree (before rounding), and
he yellow edges represent the initial selected edge set.

In Phase 2 (Lines 8–25), a supplementary edge set is selected
o further reduce the overall degree difference. The rounding
trategy in Phase 1 leads to some differences between the actual
nd expected degrees of the reduced graph. This requires cor-
ecting the deviation of the initial selected edge set to obtain the
losest vertex degree distribution. BM2 first classifies nodes into
hree groups A, B, and C according to each node’s degree such
hat ∀u ∈ A, dis(u) ≤ −0.5, ∀u ∈ B,−0.5 < dis(u) < 0, and
u ∈ C, dis(u) ≥ 0 (Lines 8–16). If an edge connecting vertex u is
dded to the reduced graph G′, the real-time vertex degree of u
n G′ will increase by 1. According to Eq. (3), its degree difference
is(u) will increase by 1 with a fixed expected degree. Due to
he different initial values of the degree differences of the three
roups, the change in the absolute degree differences for vertices
f different groups varies after adding a connected edge. For a

ode in group A, adding a connected edge to the reduced graph

7

ill decrease its absolute degree difference. For a node in group
, adding a connected edge to the reduced graph will increase
ts absolute degree difference by less than 1. For a node u in
roup C , its absolute degree difference will increase by 1 since it
as already reached or exceeded its expected degree. Specifically,
egG′ (u) is directly increased by 1, and dis(u) is also increased
y 1. Since dis(u) is positive before and after the increase, the
bsolute value of its change is 1.
Next, let us discuss different situations for all possible edges.

ltogether, there are nine possible combinations where the two
ndpoints of an edge may belong to any of the three groups. Let
s start by listing the first six combinations.
(1) e = (u, v) ∈ E, u ∈ B and v ∈ B
(2) e = (u, v) ∈ E, u ∈ A and v ∈ C
(3) e = (u, v) ∈ E, u ∈ C and v ∈ A
(4) e = (u, v) ∈ E, u ∈ B and v ∈ C
(5) e = (u, v) ∈ E, u ∈ C and v ∈ B
(6) e = (u, v) ∈ E, u ∈ C and v ∈ C
In the above 6 cases, the addition of an edge will definitely

lead to an increase in the overall degree difference. Except for
these, edges e = (u, v) ∈ E, where u ∈ A and v ∈ A have all been
added to Em, so we do not need to discuss them here. Therefore,
we only focus on edges e = (u, v) ∈ E, where u ∈ A and v ∈ B or
vice versa.

Lemma 1. Let e = (u, v) where u ∈ A and v ∈ B. The addition
of e to the reduced graph changes the overall degree difference ∆ by
gain = |dis(u)| + 2|dis(v)| − |dis(u)+ 1| − 1.

Proof. For e = (u, v) ∈ E, where u ∈ A and v ∈ B, let us calculate
the degree differences caused by its addition. Before adding this
edge to the selected edge set, the total degree difference of
vertices u and v is d1 = |dis(u)| + |dis(v)|. After its addition,
the total degree difference is d2 = |dis(u)+ 1| + |dis(v)+ 1| =
|dis(u)+ 1| + (1 − |dis(v)|). Define gain as the change by adding
e, i.e., gain = d1 − d2 = (|dis(u)| + |dis(v)|)− (|dis(u)+ 1| + (1−
|dis(v)|)) = |dis(u)| + 2|dis(v)| − |dis(u)+ 1| − 1. If gain > 0, the
degree difference between the reduced graph and the original is
reduced. This concludes the proof. □
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In Phase 2, we select all edges connecting nodes between
groups A and B with positive gains calculated by Lemma 1. We
then generate a weighted bipartite graph G∗, whose edges are
those selected items (Lines 17–23). Then, approximate maximum
weight bipartite matching is performed on G∗, which can pick the
dges minimizing the global degree difference (Lines 24–25). The
ltimate selected edge set of BM2 consists of Em and EBP (Line 26).
Algorithm 3 shows the corresponding bipartite algorithm (Line

5) of Algorithm 2.

Algorithm 3: bipartite
Input: bipartite graph G∗ = (A ∪ B, E∗,W )
Output: edge set EBP ⊆ E∗

1 initialize EBP ← ∅
2 sort edges e ∈ E∗ in non-increasing order of their weights w(e)

and add them into a priority queue Q
3 while Q ̸= ∅ do
4 e = (a, b)← Q .next()
5 EBP ← EBP ∪ {e}
6 discard all edges in Q incident to b
7 dis(a)← dis(a)+ 1
8 if −1 < dis(a) ≤ −0.5 then
9 for each e′ = (a, x) ∈ E∗ do

10 w(e′)← |dis(a)| + 2|dis(x)| − |1+ dis(a)| − 1
11 if w(e′) > 0 then
12 update order of e′ in Q
13 else
14 discard edge e′ from Q

15 else if dis(a) > −0.5 then
16 for each e′ = (a, x) ∈ E∗ do
17 discard edge e′ from Q

First, edges are sorted in nonincreasing order of their weights
nd then added to a priority queue Q (Line 2). In each iteration,
e add the head e = (a, b) of Q to the bipartite set EBP (Lines 4–
). Due to the addition of edge e, we need to modify the degree
ifferences of the relevant vertices and update the bipartite graph
nd Q (Lines 6–17). Algorithm 3 terminates when Q is empty.
Due to the addition to the selected edge set, the degree dif-

ference dynamically changes. The algorithm needs to maintain
the correctness of vertex classification and the order of Q . The
discussion is as follows.

Taking the head e = (a, b) of Q and adding it to EBP , BM2
updates the classification of relevant vertices. The new degree
difference of b is disnew(b) = dis(b) + 1 > 0, which does not
eet the requirement of group B; thus, b and the edges adjacent

o b are removed from the bipartite graph (Line 6). For a, there
re different situations.

emma 2. Let e = (a, b) ∈ Q , where dis(a) ≤ −2. The change in
is(a) does not influence the gains of the edges adjacent to a.

roof. The gain of e is |dis(a)| + 2|dis(b)| − |dis(a)+ 1| − 1. Since
is(a) ≤ −2, it can be computed as |dis(a)|+2|dis(b)|− (|dis(a)|−
)−1 = 2|dis(b)|. Therefore, it depends only on |dis(b)| and cannot
e influenced by dis(a). □

According to Lemma 2, if dis(a) ≤ −2, the gains of the edges
djacent to a do not change, and we do nothing. If −2 < dis(a) ≤
1.5, vertex a still belongs to group A, and we update the gains
f edges adjacent to a using the formula in Lemma 1. If the new
ain of an edge becomes negative, we remove it from Q (Lines
–14). If dis(a) > −1.5 and dis(a) + 1 > −0.5, the new degree
ifference of vertex a does not meet the requirement of group A;
hus, a and the edges adjacent to a are removed from the bipartite
raph (Lines 15–17).
8

Let us use Fig. 8 as an example to illustrate how Algorithm 3
orks. First, according to Fig. 7(b), we obtain the vertex classifica-
ion: A = {u9}, B = {u1, u3, u6, u7, u10, u11}, C = {u2, u4, u5, u8}.
hen, Algorithm 3 selects the edges whose gains are positive to
orm a bipartite graph, as shown in Fig. 8(a). In the first iteration,
= (u9, u10) is added to EBP , and then the degree differences are
pdated. u9 no longer belongs to Group A; therefore, we delete
u9, u11). The result is shown in Fig. 8(b). The priority queue Q is
mpty, and Algorithm 3 ends.

xample 2 (Running Example of BM2). Fig. 4(a) shows an original
raph to be reduced. For the compression ratio p = 0.4, the
umber next to each node represents the expected degree for
he reduced graph. First, the original graph is rounded and trans-
ormed to Fig. 9(a). Fig. 9(b) shows the maximum b-matching of
he transformed graph, where the number next to each node indi-
ates the degree difference between the currently selected result
nd the expected reduced vertex degree. The initial selected edge
et is Em = {(u7, u9), (u8, u10)}.
According to Fig. 9(b), the vertices are classified as A =

u7, u9}, B = {u1, u2, u3, u4, u5, u6, u11}, C = {u8, u10}. Fig. 9(c)
hows the weighted bipartite graph, including the degree differ-
nces and the gains of each edge.
In the first iteration, the bipartite algorithm first selects the

dge e = (u7, u1) with the largest gain to join EBP . Then, it updates
he degree difference of u7 to −0.8, deletes u1, and updates the
ains of all edges connected to u7. The result is shown in Fig. 9(d).
n the second iteration, edge e = (u7, u2) is selected to be added
o EBP . Additionally, the bipartite algorithm updates u7’s degree
ifference to 0.2 and deletes u2. Because u7 no longer belongs to
roup A, u7 and all edges connected to it are removed. Since the
ain of e = (u9, u11) is 0, as shown in Fig. 9(e), it can be selected
r discarded according to users’ preferences. If it is discarded, the
ipartite algorithm ends, and EBP = {(u7, u1), (u7, u2)}. The final
dge set of BM2 is E ′ = {(u7, u9), (u8, u10), (u7, u1), (u7, u2)}. The
inal reduced graph is shown in Fig. 9(f), where the yellow edges
nd the black nodes are selected.

heorem 2. For p ∈ (0, 1), the average absolute difference
etween the degree of a node in the graph produced by BM2 and
he expectation is in (0, 1

2 + (1− p) |E|
|V | ).

Proof. During Phase 1 of BM2, we first perform the rounding op-
eration, which would cause a 0.5 degree difference for each node
at most. Then, we give a linear time approximation algorithm for
the Cardinality b-Matching Problem [34], and the ∆ after Phase
1 should be at most

∑
u∈V

1
2 +

1
2

∑
u∈V | − degG(u) · p| = 1

2 |V | +
1
2 · p

∑
u∈V degG(u) = 1

2 |V | +
1
2p · 2|E| =

1
2 |V | + p|E|.

Considering the BM2 process, it starts to add edges from 0 and
ill not cause edge overload except for the 0.5 degree rounding.
herefore, the maximum degree difference before Phase 1 starts
s

∑
u∈V | − degG(u) · p| = 2p|E| for BM2. We define

1
2 |V |+p|E|

2p|E| =
|V |
4p|E|+

1
2 to indicate the optimization ratio of the degree difference

from BM2 under different values of p. It shows that a larger p
results in a smaller degree difference. Thus, the ∆ for p > 0.5
should be less than that of p ≤ 0.5.

When p ≤ 0.5, we have p|E| ≤ (1 − p)|E|, so ∆ ≤ 1
2 |V | +

(1 − p)|E|. Thus, overall, we have ∆ ≤ 1
2 |V | + (1 − p)|E|, which

gives the range of the average absolute difference as stated in the
theorem. □

The first stage of BM2 includes the linear-time processing of
nodes and edges. In the second stage, the vertex classification
and edge selection are also in linear time, so the time complexity
of these two parts is O(|V | + |E|). The rest of BM2 involves
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Fig. 8. BM2 Phase 2 illustration.
Fig. 9. An illustration of running BM2.
bipartite edge sorting and selection in which each edge of E∗
can be processed at most |B| times. Therefore, the overall time
complexity of BM2 is O(|V | + |E| + |E∗|log2|E∗| + |B||E∗|).

The time complexity of CRR is O(|V ||E|+|E|log2|E|+|E|+steps),
where steps is set to x·P and P = p·|E|. Since x and p are constants,
steps depends only on |E|. In addition, |B| is smaller than |V |
and |E∗| is smaller than |E|; thus, |B||E∗| is smaller than |V ||E|
and |E∗|log2|E∗| is smaller than |E|log2|E|. This analysis shows
that the time complexity of CRR is greater than that of BM2,
which is consistent with our experimental results in Section 5.2.
Next, we analyze the space complexity of BM2. In the first stage,
BM2 needs to construct the initial graph and maintain the degree
differences and capacity constraints for each node, which requires
O(|V |+ |E|+2|V |) space. In the second stage, BM2 uses a priority
queue to store the candidate vertices and edges and thus requires
at most O(|A| + |B| + |E|) space. In summary, the upper bound on
the space complexity of BM2 is O(|V | + |E|).

5. Experimental evaluation

5.1. Experimental settings

Setup. We implement all our algorithms and the competitive
method in Python. All the experiments were performed on a
9

Table 2
Real-world network datasets.
Dataset # of nodes # of edges Description

ca-GrQc 5242 14,496 Collaboration network
ca-HepPh 12,008 118,521 Collaboration network
email-Enron 36,692 183,831 Email communication network
com-LiveJournal 3,997,962 34,681,189 Online social network

machine with an Intel Core i7 3.40 GHz processor and 16 GB
memory. We create graphs using the snap library provided by
the Stanford Network Analysis Project [35]. All our codes and
experimental results are provided in GitHub [36].

Datasets. We use four real-world datasets for the experiments.
The detailed information is shown in Table 2. Among the datasets,
ca-GrQc and ca-HepPh are author collaboration networks in dif-
ferent domains, email-Enron is an email communication net-
work from Enron, and com-LiveJournal is an online blogging and
gaming network. All of these datasets were downloaded from
SNAP [37].
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Fig. 10. Performances of steps.
s

ompetitive method. We compare our proposed methods with
he SOTA work, UDS (Utility-Driven Graph Summarization) pro-
osed by Kumar et al. [8]. UDS provides a novel iterative so-
ution for grouping-based greedy graph summarization and has
chieved the best experimental results thus far. To overcome the
calability challenge, Kumar et al. [8] introduced a memorization
echnique as a scalable approach to UDS. However, the perfor-
ance of UDS in terms of storage costs and time complexity is
till poor, and there is great potential for improvement. On a
erver with 16 vCPUs, 64 GB memory, and 300 GB SSD storage,
t takes approximately 106 seconds to process a dataset with 1
illion edges.

teration steps. For CRR, the number of iterations will affect its
eduction quality and operating efficiency. In order to determine
he values of steps in subsequent experiments, a preliminary
xperiment is first conducted. According to the nature of the
terative process, we set steps to be [x · P], where x is a con-
rollable variable. The graph reduction quality is measured by the
verage delta between the reduced graph G′ and the initial graph
(average delta= ∆

|V ′| ). A lower average delta indicates a higher
graph reduction quality. In addition, the operating efficiency is
measured by the running time. For the two smaller datasets ca-
GrQc and ca-HepPh, the experimental results are shown in Fig. 10,
here the red curve represents the graph reduction quality and
he green histograms represent the running time. According to
he charts, on these two datasets, the graph reduction quality of
RR has significantly improved when x > 4 and tends to be flat

when x > 10. In addition, for ca-GrQc, the rising trend of time
slowed down when x > 10. For ca-HepPh, the time increase is
relatively stable. Based on the above experiments, we observe
that x should be set to greater than 4, and there is no need for
x to be a very large number. Therefore, steps is set to [10 · P] in
the subsequent experiments.

Parameter Settings. For UDS, the vertex importance nodeIS and
dge importance edgeIS are set as the betweenness centrality.

Additionally, the utility threshold τU = p. For all methods, p ∈
0.1, 0.9], with a step size of 0.1.

valuation Tasks. We evaluate our techniques using five com-
on characteristics of graphs and two popular graph analysis
pplications compared against the baseline method. For each
pplication, the utility is defined to show the usefulness with
espect to the initial graph. A higher utility means a better graph
eduction quality.

• Vertex degree refers to the percentage of nodes with a certain
degree value. Our proposed methods, CRR and BM2, are
closely related to this property since they aim to preserve
vertex degrees.
10
• Shortest-path distance is the percentage of node pairs at a
certain distance over all pairs of reachable vertices. For any
graph analysis task involving shortest path computation,
this property is decisive.
• Betweenness centrality represents the importance of the node

in the network. It corresponds to the ratio of the shortest
paths that pass through the node over all pairs of shortest
paths.
• Clustering coefficient is used to measure how close neighbors

of the average k-degree vertex form a clique. In particu-
lar, the clustering coefficient is a crucial property in social
networks.
• Hop-plot represents the percentage of the number of reach-

able node pairs at a selected distance or less over all reach-
able pairs.
• Top-k Query: The Top-k or Top-t% Query is one of the most

common applications. The Top-k query ranks the nodes
using the PageRank algorithm and selects the top k nodes in
descending order given the ranking. Given the value of t , we
can compute k = |V |·t% for the initial graph and k = |V ′|·t%
for the reduced graph. When running PageRank on graphs G
and G′, we let Vt% be the set of the top k nodes in G and V ′t%
be the set of the top k nodes in G′ based on the PageRank
values. Hence, the utility of the Top-k Query is expressed as
follows:
Utility of Top-k Query = |Vt%∩V

′
t%|

k
For UDS, we adopt its own processing method of supernodes
to obtain the Top-k utility.
• Link prediction: Another application is known as Link predic-

tion within the community. Link prediction detects whether
a given node pair is part of the same community. In our ex-
periments, Link prediction is performed on all 2-hop vertex
pairs in G and G′. Suppose L is the prediction result for G and
Ls is the result for G′. The link prediction utility is expressed
as follows:
Utility of Link Prediction = |Ls∩L|L

5.2. Experimental results

The experiments are divided into two parts: the time effi-
ciency of graph reduction and the graph reduction quality. We
implement all the experiments on the first 3 datasets: ca-GrQc,
ca-HepPh, and email-Enron. It is worth noting that UDS cannot
complete graph reduction using 10 times more than our proposed
methods’ reduction time. Due to the huge costs of UDS, on the
com-LiveJournal dataset, we only perform graph reduction using
CRR and BM2 and perform the Top-k queries.

Running time. The total running time includes the graph reduc-
tion time on the initial graph and the graph analysis time on
the reduced graph. The graph reduction times of all datasets are
shown in Table 3, where the value of p varies from 0.9 to 0.1.
We can observe a significant difference in the performances of
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Table 3
Graph reduction time (s).

p
ca-GrQc ca-HepPh email-Enron com-LiveJournal

UDS CRR BM2 UDS CRR BM2 UDS CRR BM2 CRR BM2

0.9 15.212 14.861 0.257 268.972 275.619 1.084 6879.807 1885.879 2.645 3626.847 357.569
0.8 15.207 14.925 0.250 271.939 294.612 1.250 55965.467 1829.306 2.537 3312.434 397.061
0.7 15.426 14.965 0.258 302.764 315.623 1.423 160353.568 1956.268 2.889 3223.822 365.409
0.6 16.599 14.789 0.279 890.657 318.554 1.543 231575.210 1956.607 3.101 2631.308 459.907
0.5 19.217 14.934 0.257 3054.891 292.064 1.642 296826.905 1822.863 3.674 2426.456 293.872
0.4 27.516 14.510 0.297 5269.170 307.329 1.758 422570.755 1873.002 3.639 2043.653 323.950
0.3 66.699 14.510 0.283 8057.549 300.614 1.880 497718.257 1832.783 3.837 1776.021 314.252
0.2 179.200 13.895 0.359 11284.950 274.653 2.039 562725.773 1819.197 4.058 1419.634 343.632
0.1 365.766 13.246 0.349 15773.001 241.629 2.399 604679.461 1857.304 4.161 1096.614 330.989
Table 4
Total processing time on ca-GrQc I (s).

Link prediction SP distance Betweenness centrality Hop-plot
T 321.68 74.182 110.466 141.429

p UDS CRR BM2 UDS CRR BM2 UDS CRR BM2 UDS CRR BM2

0.9 326.706 316.573 201.951 71.094 80.760 61.623 76.372 92.765 76.167 124.388 117.438 135.114
0.5 130.072 106.264 71.391 38.245 54.798 24.530 40.779 65.520 32.388 47.340 81.070 50.492
0.1 385.975 23.507 5.552 366.462 13.575 0.522 366.588 14.851 1.014 367.006 14.326 0.836
Table 5
Total processing time on ca-GrQc II (s).

Top-k Vertex degree Clustering coefficient
T 1.016 0.075 0.202
p UDS CRR BM2 UDS CRR BM2 UDS CRR BM2
0.9 16.165 15.822 1.127 15.312 14.907 0.290 15.415 15.049 0.435
0.5 19.693 15.763 0.956 19.293 14.955 0.276 19.550 15.046 0.345
0.1 365.873 13.483 0.526 365.801 13.252 0.353 365.805 13.271 0.365
the three methods as p decreases gradually. BM2 can complete
graph reduction in almost constant time. The performance of CRR
is slightly worse, but the increase in the time is nearly linear.
In contrast, the time costs of UDS are too high such that UDS
cannot complete the graph reduction task on the com-LiveJournal
dataset running even ten times more than CRR’s reduction time;
therefore, we have to abandon running UDS on com-LiveJournal.
There are two reasons for the rapidly growing graph reduction
time of UDS. First, UDS needs to calculate the betweenness cen-
trality of both nodes and edges. Second, as mentioned in [8],
node merging and superedge decision-making are exhaustive in
nature and perform redundant computations. Although a mem-
orization technique is introduced, the high complexity of the
algorithm still cannot be optimized much. In practical scenarios,
when the large-scale email-Enron dataset is reduced significantly,
the reduction time of CRR is only 0.3% (0.00307 = 1857.304/
604679.461) of UDS while the reduction time of BM2 is even
shorter and can be further reduced by 3 orders of magnitude.
For the larger com-LiveJournal dataset, BM2 performs very well,
taking only approximately 500 s. The above experimental results
fully prove the advantage of CRR and BM2 in their edge shedding
abilities, indicating that these two techniques can achieve fast
graph reduction under resource constraints.

Next, let us evaluate the total processing time (graph re-
duction time plus graph analysis time on reduced graphs) for
different graph analysis tasks. We only show the results on ca-
GrQc with p = 0.9, 0.5, and 0.1 for clarity. The experimental
results of different p values on all datasets can be found in [36].
Since all the results show similar trends, they are omitted here.

The results are displayed in Tables 4–5, where the ‘‘T’’ lines
show the processing times on the initial graphs. For Table 5, since
11
the time complexities of these three graph analysis tasks, the
Top-k query, Vertex degree, and Clustering coefficient, are low
and the size of ca-GrQc is small, the entire processing time using
edge shedding methods does not present significant advantages
compared to performing the graph analysis tasks directly on the
initial graph. However, the results still show that CRR and BM2
greatly surpass UDS, especially when we need a small compres-
sion ratio. Moreover, in practical scenarios, the reduced graph can
be reused after being generated, and the time-savings are greater.
In conclusion, CRR and BM2 can further reduce the processing
time for graph analysis tasks with low time complexities.

Table 4 shows the results for the remaining four graph analysis
tasks with relatively high time complexities. Again, the results
show that CRR and BM2 perform much better than UDS. More-
over, CRR and BM2 exhibit great efficiency compared to per-
forming the graph analysis tasks directly on the original graphs,
especially when the compression ratio is small.

Next, we briefly show the graph analysis times of all graph
analysis tasks on reduced graphs in Tables 6–7, using the email-
Enron dataset as an illustration. The ‘‘T’’ lines represent the pro-
cessing times on the initial graph. The three graph reduction
methods can directly reduce the evaluation time of graph analysis
tasks in most cases, but the performances of the three methods
are not consistent on different graph analysis tasks since they
mainly depend on the size of the reduced graph.

In general, both CRR and BM2 can greatly improve the time
performance compared to UDS, especially when the dataset is
large and under resource constraints.

Graph reduction quality. In the following section, we concen-
trate on another evaluation part of the graph reduction methods,

namely, the graph reduction quality on different graph analysis
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Table 6
Graph analysis time on reduced graphs on email-Enron I (s).

Link prediction SP distance Betweenness centrality Hop-plot
T 3302.558 13716.537 20290.111 16568.052

p UDS CRR BM2 UDS CRR BM2 UDS CRR BM2 UDS CRR BM2

0.9 2643.240 3533.481 2804.757 11828.763 14585.398 11652.593 13299.943 22405.572 14688.822 12015.097 16560.067 12049.356
0.5 682.331 2657.078 1688.226 1212.559 7811.894 3158.780 1030.596 11397.758 3816.374 1300.628 10465.631 3729.803
0.1 122.399 801.788 499.911 34.253 637.284 196.764 36.333 890.703 274.340 33.591 1003.209 344.473
Table 7
Graph analysis time on reduced graphs on email-Enron II (s).

Top-k Vertex degree Clustering coefficient
T 10.407 1.152 10.489

p UDS CRR BM2 UDS CRR BM2 UDS CRR BM2

0.9 10.216 8.299 7.146 1.171 0.655 0.547 15.012 14.749 8.206
0.5 4.402 5.406 4.818 0.857 0.373 0.279 7.507 4.635 2.999
0.1 3.211 1.501 1.318 0.865 0.088 0.063 2.350 0.574 0.416
Fig. 11. Error bounds on ca-GrOc.
Fig. 12. Vertex degree.
W
t
d
i
n

c
a
b
m
g
m
a

c
t
B
s
d

f
t

asks. Given that the performance of each of the three methods
s great when p is large, we mainly show the experimental results
hen p is small for clarity.
First, we calculate the degree discrepancies of the proposed

ethods to verify the theoretical error bounds given in Sections 3
nd 4. The results on caGrQc are displayed in Fig. 11. Although the

error bounds defined in Sections 3 and 4 are not tight, it should
e noted that both CRR and BM2 have completed the graph
eduction well with small errors (no more than 1 for all values
f p). In other words, our methods are feasible and effective in
enerating reduced graphs with low errors.
(1) Vertex degree. Fig. 12 illustrates the vertex degree distri-

utions on different datasets. Since ca-GrOc has a wide degree
ange, vertex degrees larger than 300 are aggregated as 300.
ig. 12 shows that the vertex degree distribution curves of CRR
nd BM2 approach much more than the original graph, far better
han UDS. To better illustrate the results, we zoom in on the most
ikely vertex degrees (1 to 18). The results are shown in Fig. 13.
e can see that the CRR and BM2 curves fit the original graph
recisely, which shows the high accuracy of our reduced graphs.
(2) Shortest-path distance. Fig. 14 shows the shortest-path dis-

ance distributions. For all datasets, the distributions of the three

ethods are almost the same as the initial graph when p is larger. e

12
hen p is smaller, the results of CRR and BM2 still conform
o the trend of the benchmark curve while UDS has an obvious
eviation. As the results show, CRR and BM2 perform much better
n the shortest path distribution while UDS loses most of the
etwork connections.
(3) Betweenness centrality. Fig. 15 illustrates the betweenness

entrality versus the vertex degree. It should be noted that on
ll datasets, CRR and BM2 are more accurate in measuring the
etweenness centrality of nodes with lower degrees while the
easure of nodes with higher degrees is relatively unstable. In
eneral, the nature of the node aggregation operation in UDS
akes it unable to accurately measure the attribute; thus, our
lgorithms have more advantages.
(4) Clustering coefficient. Fig. 16 shows the clustering coeffi-

ient versus the vertex degree. The outcomes are in line with
hose of the shortest-path distance. When p is larger, CRR and
M2 are accurate in estimating the original graph. When p is
maller, CRR performs the best on the ca-GrQc and email-Enron
atasets while BM2 performs the best on the ca-HepPh dataset.
(5) Hop-plot. Fig. 17 shows the hop-plot distribution. The per-

ormances of all methods on the three datasets are similar, and
hey can restore the attributes of the original graph properly.

(6) Top-k Query. Tables 8–9 show the utility results of our

xperiments, in which we compare our methods and UDS with
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r

Fig. 13. Vertex degree (zoom-in).
Fig. 14. Shortest-path distance.
Fig. 15. Betweenness centrality.
Fig. 16. Clustering coefficient.
Fig. 17. Hop-plot.
espect to top-k queries, and set t to 10. The table shows that even
if the graph has been greatly reduced, CRR can achieve at least
68% utility on all datasets when p is 0.3. The results fully demon-
strate the advantages of CRR. BM2 performs great as well, ranking
second only to CRR. When p is 0.1, the utility of UDS is below 0.2,
which means that it is not able to retain effective information. It is
worth mentioning that on large datasets such as com-LiveJournal,
CRR and BM2 both perform very well with utilities greater than
75% even though p is only 0.1, again demonstrating the proposed
methods’ power again on large datasets. In contrast, due to the
13
huge cost of UDS (UDS cannot complete the graph reduction task
on com-LiveJournal dataset running even ten times more than
CRR’s reduction time), there are no accuracy results for UDS on
the com-LiveJournal dataset.

(7) Link prediction. Table 10 presents the link prediction util-
ities on the first three datasets. In order to reduce the influence
of link prediction methods, we select Node2vec [38] to generate
models using graph embedding and then use K-means to classify
the nodes on the models. The classification result is the basis of
link prediction. Here, we set the parameter p to 1 and q to 1
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Table 8
Utility of Top-10% I .

p
ca-GrQc ca-HepPh

UDS CRR BM2 UDS CRR BM2

0.9 0.876 0.966 0.935 0.947 0.978 0.943
0.8 0.735 0.937 0.908 0.927 0.963 0.917
0.7 0.611 0.916 0.870 0.867 0.941 0.887
0.6 0.571 0.863 0.828 0.609 0.917 0.851
0.5 0.498 0.809 0.702 0.419 0.865 0.756
0.4 0.443 0.731 0.693 0.320 0.838 0.733
0.3 0.370 0.681 0.586 0.230 0.772 0.684
0.2 0.269 0.500 0.460 0.151 0.685 0.604
0.1 0.174 0.313 0.254 0.092 0.514 0.439

Table 9
Utility of Top-10% II .

p
email-Enron com-LiveJournal

UDS CRR BM2 UDS CRR BM2

0.9 0.775 0.966 0.885 – 0.963 0.984
0.8 0.537 0.939 0.798 – 0.900 0.986
0.7 0.357 0.898 0.750 – 0.856 0.976
0.6 0.283 0.859 0.696 – 0.823 0.957
0.5 0.226 0.812 0.595 – 0.797 0.938
0.4 0.180 0.761 0.572 – 0.776 0.913
0.3 0.141 0.698 0.543 – 0.725 0.870
0.2 0.105 0.586 0.454 – 0.642 0.850
0.1 0.075 0.394 0.292 – 0.787 0.893

for Node2vec, and n_clusters to 5 for K-means. We can observe
that for link prediction, each of the three methods has its own
merits. On ca-GrQc, the utility differences of the three methods
are not considerable, and they are all effective. However, for the
remaining two datasets, UDS performs poorly. With a gradual
decrease in p, the utility of UDS drops rapidly, and thus UDS
cannot be compared with CRR and BM2.

Summary. First, we aim to propose effective graph reduction
techniques under resource constraints. CRR and BM2 run on a
machine with 16 GB of memory while UDS is poorly adapted to
large-scale datasets in this case. In terms of time efficiency, CRR
and BM2 take less than half of the time of UDS to finish the graph
reduction. Moreover, when the size of datasets increases expo-
nentially, CRR and BM2 can maintain a linear increase in time,
demonstrating much stronger scalability than UDS. Regarding the
graph reduction quality, our proposed methods are comparable
with UDS or even better on different graph analysis tasks, again
demonstrating their powerful graph reduction abilities. In gen-
eral, BM2 is more efficient than CRR while CRR shows a better
graph reduction quality in most cases. Therefore, users could
choose different methods according to their needs. In summary,
CRR and BM2, the methods proposed in this paper, have real-
ized significantly better graph reduction performance than UDS,
and satisfy the demand for processing large-scale graphs under
resource constraints.

6. Conclusions

In this paper, we introduce two novel methods for graph
reduction. Considering the key role of the vertex degree in net-
work topology, we generate the reduced graph by retaining the
expected vertex degree distribution, which can preserve the ba-
sic network topology and is therefore beneficial to the subse-
quent network mining tasks. Compared to the state-of-the-art
14
Table 10
Utility of link prediction.

p
ca-GrQc ca-HepPh email-Enron

UDS CRR BM2 UDS CRR BM2 UDS CRR BM2

0.9 0.772 0.748 0.797 0.865 0.865 0.897 0.748 0.888 0.888
0.8 0.701 0.732 0.750 0.898 0.853 0.845 0.566 0.872 0.778
0.7 0.700 0.664 0.682 0.805 0.824 0.828 0.556 0.838 0.664
0.6 0.631 0.626 0.659 0.665 0.807 0.772 0.494 0.816 0.600
0.5 0.617 0.634 0.597 0.516 0.755 0.717 0.460 0.784 0.602
0.4 0.559 0.570 0.541 0.447 0.694 0.647 0.472 0.742 0.538
0.3 0.529 0.485 0.463 0.423 0.648 0.602 0.448 0.690 0.506
0.2 0.452 0.483 0.426 0.401 0.570 0.545 0.444 0.634 0.486
0.1 0.445 0.419 0.434 0.329 0.531 0.495 0.442 0.560 0.484

UDS technique, our techniques have greatly reduced the graph
reduction time, thus making it a reality to process large-scale
graph datasets under resource constraints. For instance, CRR takes
up to 25% and BM2 takes 1% at most of the graph reduction
time of UDS on ca-GrQc . In terms of the reduction accuracy, a
comprehensive experimental evaluation on real-world datasets
confirms that CRR and BM2 indeed maintain plenty of vital graph
features, which means that the generated reduction graphs can
be effectively applied in downstream analysis tasks. In addition,
with the continuous improvement of graph reduction techniques,
users’ various needs in different scenarios make autonomous
control development trend. Another outstanding contribution of
our methods is the controllability of the size of the generated
reduced graph, which can meet the actual needs of users in dif-
ferent scenarios. Although this paper focuses on how to complete
efficient graph reduction under resource constraints, we intend
to subsequently implement and deploy this work in a parallelized
environment to support a wider range of applications and achieve
higher efficiency.
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