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Abstract

Complex networks have been used widely to model a large number of relationships. The outbreak of COVID-19 has had
a huge impact on various complex networks in the real world, for example global trade networks, air transport networks,
and even social networks, known as racial equality issues caused by the spread of the epidemic. Link prediction plays an
important role in complex network analysis in that it can find missing links or predict the links which will arise in the future
in the network by analyzing the existing network structures. Therefore, it is extremely important to study the link prediction
problem on complex networks. There are a variety of techniques for link prediction based on the topology of the network and
the properties of entities. In this work, a new taxonomy is proposed to divide the link prediction methods into five catego-
ries and a comprehensive overview of these methods is provided. The network embedding-based methods, especially graph
neural network-based methods, which have attracted increasing attention in recent years, have been creatively investigated
as well. Moreover, we analyze thirty-six datasets and divide them into seven types of networks according to their topological
features shown in real networks and perform comprehensive experiments on these networks. We further analyze the results
of experiments in detail, aiming to discover the most suitable approach for each kind of network.
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1 Introduction

With the development of network analysis, many complex
systems can be described as networks [1]. Networks are a
natural and powerful tool for characterizing a large number
of social, biological, and information systems composed of
interacting elements, and network science is one of the most
active interdisciplinary fields of research today. A typical
network consists of nodes and edges, where nodes denote
various entities in real systems and edges represent the rela-
tionships between entities. Treating individuals as nodes for
example, and associations between corresponding persons
as edges, social relations could be abstracted as a network.
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Protein—protein interactions form a network where nodes
denote proteins and edges denote interactions among them.
In addition, the hyperlink structure of the Internet can be
modeled as a directed graph. These complex networks have
many significant statistical properties, such as the small-
world effects and the scale-free properties.

Related Works A number of problems related to complex
networks are being studied, including community detection
and structural network analysis. In recent years, link predic-
tion on complex networks attracts more and more concerns.
Link Prediction is a fundamental problem that attempts to
estimate the likelihood of the existence of a link between two
nodes [2], which makes it easier to understand the associa-
tion between two specific nodes and how the entire network
evolves.

The problem of link prediction over complex networks
can be categorized into two classes. One is to reveal the
missing links. The other is to predict the links that may exist
in the future as the network evolves [3]. Previous studies
[4—6] suggest that there may be mechanisms to guide the
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formation of networks; it is therefore important to investi-
gate the evolution of networks, as well as networks’ charac-
teristics and structures.

Link prediction has been widely applied to a variety of
fields. In biology, it is used to predict unobserved links in
PPI (protein—protein interaction) networks [7—10]. In terms
of social networks [11-13], link prediction algorithms help
to recommend friends with similar interests or goods that
one may purchase [14]. There have been several reviews on
link prediction analysis in social networks [15-17]. As for
the Internet, researchers use link prediction to realize web
page personalization [18].

There are a large number of link prediction methods.
Malhi et al [19] give a review on various link prediction
algorithms. It focuses on evaluating shortcomings of link
prediction methods. However, it does not provide any evalu-
ation results, and the information it provides is rather lim-
ited. Lii et al [2] present an excellent survey by summarizing
different approaches; introducing typical applications; and
outlining future challenges of link prediction algorithms.
However, the methods presented in this paper are somewhat
antiquated. Martinez et al [20] add to the review of some
more recent methods, as well as a more detailed experimen-
tal comparison of the similarity-based methods, while the
specific data used for the experiments are not analyzed or
categorized. As experimentally demonstrated in this survey,
it is difficult to give a method that has the best performance
in all complex networks, which strongly depends on the
structural properties of the network. Therefore, an empirical
study of discovering the most suitable link prediction meth-
ods for different kinds of networks is desirable. To the best
of our knowledge, we are the first to review link prediction
methods, including the state-of-the-art network embedding-
based methods, on top of a comprehensive evaluation result.

Contributions The evaluation comparison of the most
advanced network embedding-based link prediction methods
is included in this paper, as well as other popular traditional
methods. We also summarize and analyze the trade-offs
among different methods. This work has greatly compen-
sated for the shortcomings of previous research articles.
In this work, we divide the complex networks involved in
some common applications into seven categories and ana-
lyze their characteristics by calculating their attributes. The
structural features of different kinds of networks are also
extracted. On the basis of comprehensive experiments, we
recommend appropriate link prediction methods for each
type of networks.

In this study, we focus on the link prediction problem on
undirected networks which can be formulated as follows.
Consider an undirected network G(V, E), where V repre-
sents a set of nodes and E stands for a set of edges. Using
U to denote the set of all possible links, the target of link
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prediction is to infer the missing links or links that will arise
in the future in U — E. Our contributions are summarized
as follows:

e A rational categorizing for link prediction methods is
suggested, and a thorough study of the representative
link prediction approaches and methods, including the
state-of-the-art network embedding-based methods, is
performed. Due to the emergence of the large number of
the network embedding (graph representation learning)-
based methods in recent years, we are not able to make
a comprehensive summary of them all. Instead, we
selected several representative methods for investiga-
tion, reflecting the commonness of this kind of methods.
The characteristics of these methods are summarized and
compared (Sect. 2)

e We present the properties used to classify complex net-
works and introduce the characteristics of each type. A
new taxonomy of complex networks is then proposed
(Sect. 3)

e To the best of our knowledge, this survey is the first com-
prehensive evaluation of a broad spectrum of link predic-
tion methods and includes the evaluation comparison of
the state-of-the-art network embedding methods. A mass
of real datasets are comprehensively tested to compare
a large number of link prediction methods. A rounded
analysis is conducted according to the experimental
results for each type of networks, which is able to give
instructional selection advice for different link prediction
tasks (Sect. 4)

2 Methods for Link Prediction

Researchers have proposed a variety of link prediction
techniques, ranging from the simplest heuristic methods of
counting common neighbors between two nodes to the cur-
rent popular network embedding-based methods. Most of
them calculate the similarities or the probabilities of forming
links between nodes by capturing the structural features of
the network. In this section, we perform a comprehensive
overview of representative link prediction approaches and
propose a new taxonomy for link prediction methods (as
shown in Fig. 1), including common neighbor-based, path-
based, probabilistic and statistical models-based, classifier-
based, and network embedding-based methods. In Sect. 2.6,
a more detailed comparison among different methods are
given, including time complexity and scalability, etc. Table 1
explains the meaning of the common notations that will be
used in this survey.
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The timeline for the development of link prediction meth- ~ mainstream methods, such as common neighbor-based and

ods is organized in Fig. 2. As can be seen from the figure,  path-based methods, which were widely applied because of
before 2010, the traditional link prediction methods were the  their simplicity, interpretability, high efficiency, and high
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Table 1 A summary of common notations

G(V,E) Undirected network

14 Set of nodes

E Set of edges

n Number of nodes

m Number of edges

Syy Similarity score of node x and node y
d, Maximum degree of a network

d,in Minimal degree of a network

d®v) Number of edges connecting to node v
I, Set of neighbors of node x

l Number of random walk steps

L Laplacian matrix

N Similarity matrix

M Direct similarity

A Adjacent matrix

1 Identity matrix

a,e, .,y Parameters

P Transition probability matrix

Ty Probability of a walker starting from x

and locating at y

accuracy. However, these methods fail to make full use of
nodes and network structure information. With the rapid
development of Internet technology and big data, the scale of
the network continues to expand. The traditional adjacency
matrix A € RV representing graph structure information
presents high-dimensional and sparse characteristics, which
poses a challenge to the research on large-scale networks.
Probabilistic and statistical-based methods are time-consum-
ing and computationally expensive, making them unsuitable
for large-scale networks. Classifier-based methods [21] face
class imbalance due to the sparsity of real networks, that is,
the number of nonexistent links between nodes far exceeds
the number of existing links. The network embedding meth-
ods, also known as graph representation learning, effectively
address the deficiencies of the traditional methods. Using the
network embedding methods with powerful representation
ability, on the premise of retaining the network structure
information, the nodes are mapped into the low-dimensional
space, and the low-dimensional and dense continuous feature
vector representation of each node is obtained. DeepWalk
[22] is the first method to use deep learning for network
embedding. It obtains a linear sequence of network structure
through random walk and further uses the SkipGram model
in word representation learning to learn the representation of
nodes in the network. On the basis of DeepWalk, after 2015,
with the development of graph representation learning, more
and more network embedding methods have been applied to
link prediction tasks. As a representative class of methods,
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the graph neural network methods are extremely effective
methods to solve the problem of graph learning by adding
graph operations to the traditional deep learning model and
applying the structural information and attribute informa-
tion of the graph to deal with the complexity of graph data.

2.1 Methods Based on Common Neighbor

Common neighbor(CN)-based methods assign a score s,
for each pair of nodes x and y, which is proportional to
the probability that there exists an edge between x and y.
It is an apparent intuition that two nodes x and y are more
likely to form a link in the future, if their neighbors have
large overlap. The simplest technique of measuring com-
mon neighbor is counting the shared neighbors directly
which is called Common Neighbors (CN). As a basis of
research work presented later, it is also applied to the study
of graph streams [23] and dynamic social networks [24].
It can be computed as Equation (1). For a node x, let I'(x)
denote the neighbors of x in G(V, E).

Other representative methods of calculating s,, based on
common neighbor are Salton Index (Salton) [25], Jaccard
Index (J1) [26], Sprensen Index (Sgrensen) [27], Hub Pro-
moted Index (HPI) [28], Hub Depressed Index (HDI) [29],
Local Leicht—-Holme—Newman (LLHN) [30], Adar-Adamic
Index (AA) [13], Resource Allocation (RA) [29], Preferen-
tial Attachment (PA) [31]. In summary, these metrics are
variations based on the CN method, which are normalized
or take into account the importance of neighbors in order
to minimize biases due to node degree skewness. They are
calculated as follows.

sV =rnn| @) sl = —|F|_r”|rlr|| ©)
= @ sy = @
wohtre e hil o
sy = Lok ) S = e ®
A= Seror, 7 O = L] (10)

e Local Naive Bayes (LNB) [32] It is a method based on
the Bayesian theory, while combining the idea that different
shared neighbors play different roles. The formula of the
connection likelihood is

sHVB = 3 f(T,Dlog(aR,,), an

wel,nly

where f has three forms, which are f(|[',]|)=1,

fqr,h = log}l" L and f(|T",|) = IF_ll’ corresponding to the

CN, AA and RA measurements, respectively. In Equation
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(11), a is a constant for a given training set and R, is the role
function of the node w, which can be defined as in [20]:

R _|ex’y:weFXnFy,eX!yeE|+1 0
Y e cwel,nTe &E+1 (12)

X,y

« Transfer Similarity (TS) [33] Direct similarities are less
accurate when a network is sparse. Thus, transfer similarity
that properly integrates the high-order correlations is pro-
posed [34]. The self-consistent definition of this index is

S=eMS+ M, (13)

where M represents the direct similarity, such as common
neighbor (TSCN) or Pearson correlation coefficient, and € is
the rate of information aging when the information is further
transferred.

2.2 Methods Based on Path

The common neighbor-based approaches ignore the global
similarities between nodes and can only capture limited local
structural information. In contrast, the path-based methods
formulate similarity measurements according to the paths
between nodes and take care of more high-order informa-
tion, which greatly alleviate the previous problem. We let s,
measure the possibility of the appearance of a link between
x and y which has the same meaning as in Sect. 2.1. In this
subsection, A, I, and S represent the adjacent matrix, identity
matrix, and similarity matrix of G(V, E), respectively.
e Katz Index (KI) [35] Katz index is defined as

K= Y B Ipathsy”| = Y BlAD,,, (14)
=1 =1

where | paths)fy’> |is the number of the /-length paths between
nodes x and y, and f is a damping factor used to control the
attenuation pace (0 < f < 1). The Katz index for all pairs of
nodes can be computed by

=U—-pA) ' =-1I (15)

* Local Path Index (LPI) [3] This index takes local paths
into consideration [20]. It reduces the complexity of Katz
index at the cost of accuracy by only focusing on the paths
whose length are 2 or 3, which can be defined as

S =A%+ €A’, (16)

where ¢ is a free parameter like f.

* Global Leicht-Holme-Newman (GLHN) [30] The
definition of this index consists of two parts: the neighbor
term, and the self similarity. The initial guess is

GLHN
ZAM wi + Vo, (17)

where 5ij is the Korenecker’s function [36], while ¢ and y
are free parameters that control the balance of the two parts.

* Local Random Walk (LRW) [37] Random walk is a pro-
cess that a walker starts from a source and chooses one of the
neighbors randomly as his next step [11]. It can be described
by a Markov chain and its transition probability matrix. We
use P to denote the transition probability matrix, and (/)
to denote the probability that a walker starts from node x and
reaches the node y after [ steps [37]; thus We have

() =P E (- 1), (18)

where 7,(0) is a vector of length |Vl with the x-th element
equals to 1 and others to 0.
The similarity is calculated as

r
sV (D) = ) 7y (D) + a2l

2E] ™

T (19)
It reduces the computational cost by limiting the random
walk steps /. A shortcoming of this metric is its sensitivity
to the regions far away from the target [11].

« Superposed Random Walk (SRW) [37] To counteract
the dependency of local random walk, Liu et al proposed to
continuously release the walkers at the source. By superposing
the contribution of each walker, the similarity index is

t
SRW 1\ — LRW
SSRW(l) = ; SERV ), (20)
* Random Walk with Restart (RWR) [38] Staring from a
node in G, each step has two choices: return to the source
node with probability & or go to its neighbors randomly with
probability 1 — a. There is an iterative equation:

7 = aP T + (1 - a)e;, @1

where 7, is a vector whose term is the probability of the
walker locating at the corresponding node when the walking
process reaches a steady state, while e, is a vector of length
n with the x-th element equals to 1 and others to 0. Finally,
use r,, denotes the probability of a random walker starting
from x and locating at y in the steady state, and the random
walk with restart similarity is defined as

SRWR

xy = EXY + ”y)c' (22)

» Average Commute Time (ACT) [37] The average com-
mute time between x and y is the sum of the average steps
from x to y, and from y to x, which can be computed by the
pseudoinverse of the Laplacian matrix L. Therefore, the
average commute time can be expressed as
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cr _ 1
WL+ LY -2l 23)

» SimRank (SR) [39] Suppose two random walkers start
from x and y, respectively, this index reflects the time that
they are expected to meet. A recursive equation for s, is

I, In,|

C
S = T D s, 1,00, (24)
x Yu=1 w=1
where C is a constant between 0 and 1.

e Others Matrix Forest Index (MFI) [40]: This index is
also a method of calculating similarities and is proposed

based on matrix-forest theorem which can be written as

S=J+L)". (25)

2.3 Methods Based on Probabilistic and Statistical
Models

Probabilistic and statistical methods provide a way to extract
the underlying structure from a network. They build a model
and estimate the model parameters which can best fit the
data of the network, and then predict the formation prob-
ability of the missing links. These methods are highly time-
consuming for model training, so they are impractical for
large networks. Moreover, they only have mediocre predic-
tion results. On the other hand, they do provide valuable
insights into the network structure. Based on the above con-
siderations, we only conduct experiments on the stochastic
block model (SBM) as a representative.

Stochastic Block Model (SBM) [41]: In a stochastic block
model, nodes are divided into different groups and the
probability that two nodes are connected relies only on the
groups which they belong to. This model is based on three
properties: Nodes in real networks (1) are usually organized
in communities, (2) play distinct roles, and (3) connect to
each other based on these rules. The probability that a link
truly exists requires to calculate all possible partitions of
the network. Thus, Metropolis sampling algorithm [42] can
be used to correctly sample relevant partitions and obtain
an estimation of the link probability in practice. When the
number of possible partitions is very large, this approach is
computationally expensive.

Others Here is a brief introduction of other selective prob-
abilistic and statistical-based methods. Relational network
model (RNM) [17, 43] is originally designed for attribute
prediction over a database. Due to the difference of trained
models, RNM can be divided into Relational Bayesian Net-
works (RBN) [44], Relational Markov Networks (RMN) [45]
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and Relational Dependency Networks (RDN) [46]. Hierar-
chical structure model (HSM) [47] is suitable for networks
which exhibit hierarchical organizations such as metabolic
networks. In Stochastic Relational Model (SRM) [48], the
relationships between nodes are modeled by a tensor interac-
tion of multiple Gaussian processes. Huang [49] proposes
a framework of predicting links, cycle formation model
(CFM), based on the cycle formation which relates to the
generalized clustering coefficient measure. Local probabil-
istic model (LPM) [50] learns a local Markov random field
model constrained on non-derivable frequent itemsets from
the local neighborhood and forms the co-occurrence prob-
ability feature.

2.4 Methods Based on Classifier

Link prediction can be studied as a supervised or semi-
supervised learning task. A plethora of classification algo-
rithms are applicable for link prediction [21]. Choosing
appropriate features is the most critical part of a super-
vised learning algorithm. Due to the large number of clas-
sification methods, we choose six representative classifiers
for evaluation, including Support Vector Machine (SVM)
[51], K-Nearest Neighbors (KNN) [52], Decision Tree
(DT) [53], Naive Bayes (Bayes) [54], Logistic Regression
(LR) [55], and Multilayer Perceptron (MLP) [56], where
the training features include the indices mentioned in
Sects. 2.1 and 2.2 . The indices with a high time complex-
ity are not considered, such as TS, GLHN, SRW, RWR,
ACT, SR, and MFI. Other classifier based methods are
introduced as follows.

Hasan et al [21] choose proximity features, aggregated
features, and topological features. Lichtenwalter et al [57]
provide a general, high-performance supervised framework
for the prediction task, and try to overcome the imbalance
by oversampling and undersampling. De Sé et al [58] use
the metrics computed from the network structure, and the
weights of links are taken into consideration. In addition,
Doppa et al [59] propose a learning algorithm based on the
chance constrained programs which exhibit all the properties
needed for a good link predictor. The idea of Chen et al [60]
is to reduce the computation cost by combining multiple
classifiers while maintaining the accuracy of predictions.

Kashima et al [61] propose a semi-supervised link predic-
tion method called Link Propagation by applying the label
propagation technique, where the Kronecker sum similarity
is used as the similarity matrix. However, the time com-
plexity and the space complexity makes it unrealistic to
deal with large networks. Raymond et al [62] extend the
semi-supervised learning algorithm [61] to solve the link
prediction problem approximately on large-scale dynamic
graphs by using a non-trivial combination of techniques in
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the linear algebra. Moreover, Zeng et al [63] give a new
semi-supervised learning approach SLiPT. The entire algo-
rithm is based on the temporal features.

2.5 Methods Based on Network Embedding

The emergence of large-scale complex networks has led to
dimensionality explosion, so network embedding(NE)-based
methods are needed to reduce the dimensionality, and capture
the charactersitcis and attributes of the network at the same
time; therefore they can be applied to link prediction. Differ-
ent from the traditional adjacency matrix, network embedding
aims to effectively preserve rich topological and structural
information such as links, neighbors, and high-order prox-
imities [64, 65] by embedding nodes into a low-dimensional
space to predict the possible future links. The previous high-
dimensional sparse feature vectors can be represented by the
low-dimensional dense embedding vectors.

A good network embedding method should be able to cap-
ture the internal structure of the network well to predict the
possible future links. We divide network embedding methods
into shallow and deep network embedding techniques accord-
ing to their different encoding methods. It can also be sub-
divided into matrix factorization based, random walk based,
graph neural network based, and other methods.

2.5.1 Network Embedding with Matrix Factorization

The traditional algorithms of network embedding consider
the problem of network embedding as matrix decomposition
or matrix dimensionality reduction, and reduce the dimen-
sionality of the adjacency matrix of the graph by matrix
decomposition or singular value decomposition, so that the
original network structure can be easily restored by learning
the embedding vectors. Matrix factorization-based network
embedding is widely applied to recommender systems [66]. It
represents the attributes of the network (such as the similari-
ties of node pairs) in the form of a matrix, which is factored to
obtain node embeddings. Inspired by traditional dimensional-
ity reduction techniques, network embedding can be regarded
as a dimensionality reduction problem with retained structure.

* MF [67] Menon and Elkan propose a latent feature
learning method which extends matrix factorization to solve
structural link prediction problems in graphs. It extracts the
latent features of nodes and use them for prediction tasks.
The similarity matrix S is factorized to

S~ L(UAUT), (26)

where we have U € R™* A € R** and L(-) is a link func-
tion. Each node x will have a latent vector u, € R*, where
k is the number of latent features [67, 68]. The similarity is
calculated as

S, (U, A) = L(u! Auy). @7

* GraRep [69] It considers the k order (k>2) similarity.
Although GraRep can get the node representation with
stronger expression ability, it takes a lot of time to calculate
the power of a matrix and SVD. GraRep similarly exploits
node co-occurrence information at different scales by rais-
ing the graph adjacency matrix to different powers. Singular
value decomposition (SVD) is applied to the powers of the
adjacency matrix to obtain a low-dimensional representa-
tion of nodes.

* FSSDNMF [70] To address the network noise problem,
a novel link prediction model based on deep nonnegative
matrix factorization is proposed, which elegantly fuses topo-
logical and sparse constraints to perform the link prediction
task. The observed link information of each hidden layer is
fully exploited by deep nonnegative matrix factorization.
The similarity score is then calculated and mapped to a
multilayer low-dimensional latent space using the common
neighbor method to obtain topological information for each
hidden layer. At the same time, a norm-constrained factor
matrix is used at each hidden layer to remove random noise.

In practical applications, nonnegative matrix factorization
(NMF) and singular value decomposition (SVD) are usually
used to get the approximation of S, whose time complexity
is O(n). Duan et al [71] applied the structural bagging to
decompose the link prediction problem into smaller pieces,
and use NMF to factorize the adjacency matrix, which
addresses the top-k problem in link prediction.

2.5.2 Network Embedding with Random Walk

Only decomposing the adjacency matrix can only take into
account the influence of the direct neighbor on the current
node, which is very limited. Random walk is used to gener-
ate the context of nodes which makes up for the deficiency of
matrix factorization. Then the node sequences can be treated
as sentences to take advantage of natural language process-
ing methods to get node embeddings. Under this circum-
stance, the more times two nodes appear in the same random
walk, the more similar their embeddings will be.

e DeepWalk [22] This method is the pioneering work
to learn nodes’ vector representations using random walks
which obtains local information by truncated random walks
to generate the context of nodes and thereby learns latent
representations by treating node sequences as sentences.
It provides a new idea for network embedding algorithms,
which is often used as a benchmark model for this kind of
method. By performing random walks on the network, the
node sequence is obtained, and the vector representation of
the node is learned by using the skip-gram model in natural
language processing.
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» Node2vec [72] Grover et al proposed Node2vec, which
learns continuous feature representations of nodes. It fur-
ther utilizes a biased random walk strategy that combines
breadth-first search(BFS) and depth-first search(DFS) neigh-
borhood exploration to capture a more flexible contextual
structure on the basis of DeepWalk. Nodes that are “close”
in the network will tend to be “close” in the latent represen-
tation space.

* Struc2vec [73] Struc2vec pays attention to the struc-
tural identity and uses a hierarchical metric to measure node
similarity at different scales by constructing a weighted mul-
tilayer graph to generate context. It defines vertex similarity
from the perspective of spatial structural similarity.

 UniNet [74] The existing network embedding models
based on random walk are unified into an optimized frame-
work which can be effectively used for large-scale network.
The Metropolis-Hastings sampling is adopted for edge sam-
pling, which greatly improves the efficiency of random walk
generation in network representation learning model.

However, the above approaches merely provide the
embedding vectors for subsequent analysis tasks, and we
still need to apply similarity calculation and so on for link
prediction. For example, Euclidean distance, standardized
Euclidean distance, Chebyshev distance, and cosine distance
can be used to compute the similarities. In a previous set of
experiments, we have evaluated the results of using different
distance metrics in different network embedding methods for
link prediction. The results did not reflect a significant influ-
ence among different distance metrics. Since cosine similar-
ity is the most commonly used metric in network embedding
literature, we apply cosine distance between two nodes to
quantify their similarities in this work as well.

2.5.3 Network Embedding with Graph Neural Networks

Graph neural networks (GNNs) are proposed based on con-
volutional neural networks (CNNs) and graph embedding.
Firstly, traditional CNNs can only operate on regular Euclid-
ean space-based data such as images and text, while com-
plex networks are non-Euclidean data structures. Secondly,
although shallow encoding methods such as DeepWalk and
Struc2vec have achieved breakthroughs in graph embed-
ding, many of them still suffer from their shallow learn-
ing mechanisms, the network embedding quality can hardly
be further improved. Thus GNNs are brought forward to
solve the above problems [75]. There are three most popular
downstream graph analysis tasks, namely node classifica-
tion, graph classification, and link prediction. While there is
abundant literature on the first two, GNNss for link prediction
is relatively less studied and less understood. The following
lists some representative methods of them.

e Graph Convolutional Networks(GCN) [76] This
model is based on an efficient variant of CNNs for
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semi-superivised learning on graph data. It learns hidden
layer representations that encode both local graph structure
and features of nodes, so that we can use these characteris-
tics to complete the tasks such as node classification, graph
classification, and link prediction.

¢ GraphSAGE [77] It is an inductive learning framework
that can efficiently generate the unknown vertex embedding
vectors by learning a function that aggregates the neighbor
vertices.

« WLNM [78] This is a new link prediction framework
proposed to automatically learn network topology features.
The framework first extracts a enclosing subgraph for each
target link, and then encodes the subgraph into an adjacency
matrix. Finally, the neural network is trained on these adja-
cency matrices and the prediction model is learned. A fast
hashing-based Weisfeiler-Lehman (WL) algorithm is pro-
posed to mark vertices according to their structural roles
in subgraph while preserving the inherent directionality of
the subgraph.

* DGCNN [79] Zhang et al proposed a novel end-to-end
deep learning architecture for graph classification, called
Deep Graph Convolutional Neural Network. Since features
can be extracted using a novel spatial graph convolution
layer, it also can be used for link prediction. It learns from
the topology of the global graph by sorting vertex features
rather than adding them together, which is supported by the
new SortPooling layer.

* SEAL [80] SEAL extracts local subgraphs that preserve
rich information and learns heuristics suitable for the current
graph by a GNN. It will obtain a function that takes local
enclosing subgraphs as input and outputs the possibility that
the links exist. SEAL is flexible with which GNN or node
embeddings to use. We follow the default setting of original
paper, that is, choose DGCNN as the default GNN and select
Node2vec as the default embeddings.

¢ Cluster-GCN [81] It is an efficient algorithm for train-
ing deep and large GCN. Cluster-GCN works as the follow-
ing: at each step, it samples a block of nodes that associ-
ate with a dense subgraph identified by a graph clustering
algorithm, and restricts the neighborhood search within this
subgraph. This simple but effective strategy has made sig-
nificantly improvement on memory and computational effi-
ciency, while being able to achieve comparable test accuracy
with previous algorithms.

¢ Others [82] introduces Attention Mechanisms into
Graph Neural Networks which is called GAT. Each layer
learns the contribution of each neighbor of the node to its
new feature generation, and aggregates the neighbor features
according to the contribution degree to generate new aggre-
gated features for downstream tasks. Cai et al [83] intro-
duce a new method for node aggregation, mLink, which can
transform the enclosing subgraph to different scales while
preserving the network structure information, thus providing
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supplementary information for link prediction. In order to
solve low accuracy on some networks, [84] proposed a
method of extracting subgraph for target link based on com-
mon neighbors on the basis of WLNM and SEAL, which
is called PLACN. After labeling the extracted subgraphs
based on the average hop number and average weight, the
feature matrix is constructed and finally the convolutional
neural network is trained. Guo et al [85] proposes a novel
graph embedding framework, called Multiscale Variational
Graph Autoencoder (MSVGAE), which learns multiple
sets of low-dimensional vectors of different dimensions to
represent the mixed probability distribution of the original
graph data by the graph encoder. Perform multiple sampling
on each dimension. In addition, a self-supervised learning
strategy (ie, graph feature reconstruction-assisted learning)
is introduced to make full use of graph attribute information
to help graph structure learning.

GNNs have become powerful tools for learning over
graph-structured data since they showed up, and have been
successfully used in link prediction as well. A large number
of experiments show that GNN-based methods can learn
more effective link representations than previous methods.

2.5.4 Other Methods

We present other representative network embedding-based
methods which can hardly be divided into any of the previ-
ous categories in the last subsection.

* LINE [86] This method learns a d-dimensional feature
representations in two separate phases. In the first phase, it
learns d/2 dimensions by BFS-style simulations over imme-
diate neighbors of nodes. In the second phase, it learns the
next d/2 dimensions by sampling nodes strictly at a 2-hop
distance from the source nodes. Additionally, it adopts nega-
tive sampling [87] to optimize the skip-gram model, com-
pared with the hierarchical softmax [88] used in DeepWalk.

« SDNE [89] This algorithm extends the traditional
deep autoencoder to preserve the proximity between 2-hop
neighbors. It is the first method to introduce the deep learn-
ing model into the network representation learning which
optimizes first-order and second-order similarity simultane-
ously. It learns node representations using semi-supervised
learning. On the one hand, supervised learning is used to
get the local structure from the adjacency matrix to achieve
the first-order similarity. On the other hand, unsupervised
learning is used to obtain the global structure to meet the
second-order similarity. In this way, SDNE can preserve the
highly-nonlinear local-global network structure well and
address sparsity problems.

* NESND [90] It compares the structural similarity algo-
rithm and the network embedding algorithm. On this basis,
Cao et al present a new method to supplement local structure
information with network embedding algorithm. While this

method is only a combinatorial optimization of the existing
methods, its characteristics are not listed separately.

* VERSE [91] Tsitsulin et al propose a scalable algorithm
for graph embeddings, which is extremely efficient and can
reach linear time complexity. It falls in between deep learn-
ing approaches and the direct decomposition of the similar-
ity matrix. It explicitly learns the distribution of any chosen
vertex similarity measure for each graph vertex by training
an expressive single-layer neural network.

« ICP [93] A novel link prediction method ICP based on
inductive matrix completion is proposed, which recovers the
node connection probability matrix by applying node fea-
tures to a low-rank matrix. The method first explores com-
prehensive node feature representations by combining dif-
ferent structural topology information with node importance
attributes through feature construction and selection. The
selected node features are then used as input for a supervised
learning task of solving low-rank matrices. The node con-
nection probability matrix is finally recovered by a bilinear
function that predicts the connection probability between
two nodes and its features and a low-rank matrix.

2.6 Summary

In this section, a new taxonomy is proposed to scientifically
divide link prediction methods into five categories. As far as
we know, there has been no experimental survey of network
embedding-based link prediction methods, especially GNN
based, which have currently widely been used for a variety
of tasks. In order to address this problem, we have carried
out an extensive experimental study on network embed-
ding methods, which are refined to matrix decomposition
based, random walk based, graph neural network based, etc.
Table 2 provides a clear comparison among the methods
from multiple perspectives and offers instructive suggestions
for method selection by summarizing the common charac-
teristics of different methods. It can be learned whether the
method captures local or global topology information from
the aspect of preserved proximity. The time complexities of
the link prediction methods mentioned in this section are
shown in the fourth column, where “-” indicates that there is
no clear time complexity to refer to. The S column stands for
the scalability of a method, which is limited by the memory
requirements and time costs needed for training. The last
column represents the learning models of the methods.

3 Complex Networks

Complex networks have been used widely to model a large
number of relationships. A typical network consists of nodes
and edges, where nodes denote various entities in real sys-
tems and edges represent the relationships between entities.
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Table2 A summary of methods

Category Method

Preserved proximity =~ Time complexity S  Learning model

Common neighbor based CN [92], Salton [25], JI [26], Sorens 1, order O(din) ~ O(dfn n) v Unsupervised

[27], HPI [28], HDI [29], LLHN [30], PA [31],
LNBCN [32]

AA [13], RA [29], LNBAA [32], LNBRA [32] 2,,order O(dfnn) v Unsupervised
TSCN [33] k,, order on?) X Unsupervised

Path Based LPI [3] 2,4~ 3,4 order o(d,n?) v Unsupervised
KI [35], GLHN [30], ACT [37], RWR k,, order o) X Unsupervised
[38], SR [39], MFI [40]
LRW [37], SRW [37] 1,, order o(ld,.n?) v Unsupervised

Probabilistic and statistical SBM [41] k,, order - X Supervised

models based

Classifier based SVM [51], KNN [52], DT [53], Bayes 1, ~2,, order O(dfnn) ~0n?) v Supervised
[54], LR [55], MLP [56]

Network embedding based MF [67] 1,~2,, order on?) v Supervised
GraRep [69] 2,4~ kg, order O(mn + d;n?) v/ Supervised
DeepWalk [22] 2,4~ ky, order O(d;nlogn) v Unsupervised
Node2vec [72] 2,4~ ky, order O(d;rn) v Semi-supervised
Struc2vec [73] Structural Identity own?) v Unsupervised
UniNet [74] 1, ~ k,, order - v Semi-supervised
GCN [76] 1, ~ k,;, order o(d;m + dizn) X Semi-supervised
GraphSAGE [77] 1, ~ k,, order O(di2 rlin) v Unsupervised
WLNM [78] 1,,~ k,, order - v Supervised
DGCNN [79] 1, ~ k,, order - v Semi-supervised
SEAL [80] 1,~2,, order - v Semi-supervised
Cluster-GCN [81] 1, ~ k,, order o(d,m + dizn) v Semi-supervised
LINE [86] 1,,~2,, order O(d;m) v Supervised
SDNE [89] 1,,~2,, order O(mn) v/ Semi-supervised
VERSE [91] 1,~2,, order 0(d;rn) v Semi-supervised

Let d,, denotes the maximum degree of a network, 1 denotes the number of the random walk steps. For embedding approaches, d; denotes the
dimensionality of embedding vector, L, is number of layers, r is the number of sampled neighbors per node

In this study, we focus on the link prediction problem on
undirected homogeneous networks. That is, there is no dif-
ference between the edge from u to v and the edge from v to
u; both are the edge u, v. Consider a simple network G(V, E),
where V and E are collections of nodes and links, respec-
tively, the directionality and weight of links are ignored,
and multiple links and self-connections are not allowed. By
observing many properties of actual networks and combin-
ing them with link prediction application areas, we roughly
categorize the well-known applications into seven kinds
of complex networks according to their natural meanings:
coauthorship networks, computer networks, infrastruc-
ture networks, interaction networks involving people, pro-
tein—protein interaction networks, offline social networks,
and online social networks.
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3.1 Properties

As stated by Newman [94], many studies have proposed
some topological features where different types of networks
may share a different set of common features. We describe
six properties in this paper to distinguish different types of
networks. We are mainly concerned with representative fea-
tures and examine their relationship with link prediction.
Common notations are listed in Table 1. We next describe
the six properties as following:

« Average Degree (AD) Node degree is a basic feature
which reflects local information of a node by counting the
number of links connected to the node. Average degree is the
average of all nodes’ degrees , which measures the overall
connectivity of a network and characterizes the intensiveness
of connections between nodes. It is defined as
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1
AD =~ Z do). (28)

vev

Networks with higher AD usually have higher cohesion and
therefore algorithms that can capture local information are
more advantageous in such networks.

¢ Clustering Coefficient (CC) Clustering coefficient is
a main index to measure clustering numerically, which can
only be applied to unipartite networks. The local clustering
coefficient is defined as the probability that two randomly
chosen neighbors of a node v are connected. Global cluster-
ing coefficient is defined as the probability that two incident
edges are completed by a third edge to form a triangle [95].
It can be expressed as [96]

_Hu,v,weViu~v~w~u}

CcC= ,
{u,v,w € Viu ~ v#w ~ u}|

(29)

where ~ means there is a connection between two nodes, and
# means node v and w are not the same one. The value of
CC is between 0 and 1. A larger CC indicates that there are
more triangles in the network and the greater the aggregation
degree of nodes.

« Assortativity Coefficient (AC') Assortativity is used to
observe whether nodes with similar degrees tend to connect
to each other. Assortativity coefficient is a Pearson correla-
tion coefficient based on degree. Newman et al [97] propose
the correlation function as

Zj,kjk(ejk - Qﬂk)

0-2
q

AC' = , (30)

where g, is the normalized distribution of the remaining
degree, and is computed as

L= & D
kT T o~ .
2,ip;

and 63 is a variance of the distribution of g;, computed as
2 _ 2 2

Choosing an edge randomly, e, is the joint probability that
the degrees of the two endpoints are j and &, respectively. In
general, AD!is between -1 and 1. A positive AD' indicates
that the network has good assortativity, and a negative AD!
reveals that the network is negatively correlated.

* Power Law Exponent (PLE) A network follows power
law if its degree distribution follows

3D

(32)

px) = Cx™*, (33)

where the constant « is the power law exponent [98]. If a is
fixed, C is determined by the requirement that the sum of

p(x) is 1. Complex networks obeyed power law distribution
are referred as scale-free networks. A greater o implies a
weaker scale-free network. Given a network, there are multi-
ple ways to estimate a. A robust method [99] calculates « as

a=1 +n(21n;@)—1.

vev min

(34

 Edge Distribution Entropy (EDE) Entropy is used to

measure the randomness of a system. Particularly, for a net-

work, edge distribution entropy is computed as
1 dw), d)
2

EDE = — .
2m

Inn 2m (33)
ve

v
It equals to one if all nodes have the same degree and is close
to zero when all edges connect to a single node [126].

« Algebraic Connectivity (AC?) The algebraic connectiv-
ity is the second-smallest eigenvalue of the Laplacian matrix
of a graph [127]. This measurement is greater than zero if
and only if the graph is connected. Since the real networks
do not always meet this condition, we consider the Largest
Connected Component (LCC) instead of the entire network.
It is used to analyze the robustness and the synchronizability
of a network [128]. A higher algebraic connectivity suggests
a better network connectivity.

3.2 Datasets

In this section, we introduce the thirty-six datasets we used
in experiments and divide them into seven types of complex
networks according to their natural meaning. We also show
the features of each type of networks we find from mining
the datasets. Based on the statistical information in Table 3,
the key characteristics of each type of complex networks
are extracted, which lays an important foundation for the
analysis of experimental results in Sect. 4.

* Coauthorship Networks In coauthorship networks
[100, 129], nodes stand for a set of authors who have writ-
ten papers together, and edges represent their collaboration
relationships. AstroPh (APH) [100] is in the field of Astro
Physics. CondMat(CM) [100] describes the collaborations
of papers submitted to Condense Matter. GrQc (GQ) [100]
is a coauthorship network of General Relativity and Quan-
tum Cosmology. HepPh (HPH) [100] and HepTh (HTH)
[100] show the collaborations between authors related to
High Energy Physics and its theory category, respectively.

Higher clustering coefficients than most of the other
networks imply that the small-world effect is significant in
coauthorship networks. They have the highest and positive
assortativity coefficient which shows their strong assorta-
tive. In other words, well-known authors tend to associate
with each other.
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Table 3 Properties of complex networks (datasets used in experiments)

Category Datasets Vi |EI AD CC AC! PLE EDE AC?
Coauthorship APH [100] 18,771 198,050 22.0044  0.6328  0.2013 1.4245 0.9340  0.0272
CM [100] 23,133 93,439 8.5462 0.6417  0.1253 1.5908 0.9525  0.0459
GQ [100] 5241 14,484 6.4560 0.5569  0.6392 1.7423 0.9341 0.0353
HPH [100] 12,006 118,489 20.9959  0.6216  0.6295 1.5142 0.8788  0.0355
HTH [100] 9875 25,973 5.7435 0.4816  0.2389 1.7642 09512  0.0244
Computer CAD [100] 26,475 53,381 4.0326 0.2082  -0.1946  2.5086 0.8381 0.0204
GNT [101] 62,586 147,892 4.7275 0.0055  -0.0927  2.0625 09485 -
RT [100] 6474 12,572 3.8838 02522  -0.1818  2.4616 0.8396  0.0880
Infrastructure CHO [102] 1467 1298 1.9976 0.0000  -0.7248  4.7986 09124  0.0031
EUR [103] 1174 1417 2.5120 0.0189  0.0900 2.2170 0.9854  0.0012
OFS [104] 2939 15,677 10.7711 0.4555  0.0489 1.7168 0.8719  0.0408
PG [95] 4941 6594 2.6691 0.0801 0.0035 2.2468 0.9783  0.0008
USA [105] 1574 17,215 21.9008 05048  -0.1134 1.5462 0.8486  0.2180
Interaction Involving People CHS [106] 7301 55,899 15.6793 0.1794 0.3705 1.4959 0.9248 0.0696
CRE [107] 829 1473 3.5537 0.0058  -0.1645  2.0134 0.9584  0.2364
UCI [108] 899 7019 15.6151 0.0705  -0.0945 1.4763 0.9256  0.3739
Protein—Protein Interaction FGS [109] 2239 6432 5.7898 0.0403 03318  2.0840 0.8550  0.1025
STL [110] 1702 3155 3.8464 00063  =02020  2.2983 0.9007  0.0257
VDL [111] 3023 6149 4.3169 00715  =0.1366  2.0531 0.9235  0.0698
YST [112] 1846 2203 2.6722 00708  =0.2095  2.6030 0.9398  0.0213
Offline Social ADE [113] 2539 10,455 8.2355 0.1467  0.2513 1.5141 0.9824  0.2997
IFT [114] 410 2765 13.4878  0.4558  0.2258 14241 0.9677  0.1945
JAZ [115] 198 2742 27.6970  0.6175  0.0202 1.3293 0.9615  0.5720
PHY [116] 217 1839 16.9493 03628  0.0960 1.4928 0.9815 1.7137
RSD [117] 241 923 7.9487 02192  -0.0842  1.7995 09748  1.4240
Online Social AVG [118] 5155 39,285 15.5601 02527  —0.0957 1.5627 0.8926  0.1206
BK [119] 58,228 214,078 7.5061 0.1734  0.0096 1.8880 09027 -
DNC [120] 906 10,429 244617 05072 -0.1331 1.5529 0.8549  0.1405
DB [121] 154,908 327,162 4.2240 0.0161 -0.1803 2.9706 0.8897 -
EPN [122] 75,879 405,740 10.6947  0.1378  -0.0406  2.0258 0.8471 -
FB [123] 2888 2981 2.0644 0.0272  -0.6682  25.5893  0.7087  0.0024
G+ [123] 23628 39,194 3.3187 0.1742  -0.3887  3.9819 07677  0.0114
GWL [119] 196,591 950,327 9.6681 02367  -0.0293 1.7307 09043 -
HSS [124] 2426 16,630 16.0970  0.5401 0.0227 1.4541 09281  0.1029
LMC [121] 104,103 2,193,083  42.1329  0.0544  -0.1468 1.3828 09003 -
PRT [125] 10,680 24,316 4.5536 0.2659  0.2382 2.1092 09219  0.0112

The first column of the table is the network category, and the second one is a more specific classification. The properties measured from left
to right are: number of nodes, number of edges, Average Degree, Clustering Coefficent, Assortativity Coefficient, Power Law Exponent, Edge
Distribution Entropy, and Algebraic Connectivity. In each column, high values are highlighted in bold and low values are indicated by an under-
score. High and low values are compared for categories by taking their mean values

¢ Computer Networks Due to the huge scales of com-
puter networks, we conduct experiments on datasets named
CAIDA (CAD) [100]: comes from a project that has the
same name as the dataset; Route (RT) [100]: a communica-
tion network of autonomous systems collected from Route
Views Project; and Gnutella (GNT) [101]. Nodes in com-
puter networks are hosts or autonomous systems of the Inter-
net. They exchange information through connections and
form routing mechanisms.

@ Springer

According to the low power law exponent and the edge
distribution entropy of computer networks, the edge distri-
bution is skewed. In addition, negative assortativity coef-
ficient shows that low-degree nodes prefer to connect with
high-degree nodes.

* Infrastructure Networks An infrastructure network
consists of physical engineering facilities that provide public
services. Chicago (CHO) [102] shows the road transporta-
tion in the Chicago region, and Euroroad (EUD) [130] is
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an international E-road network. OpenFlights (OFS) [104]
contains the information of flights collected by the Open-
Flight project. PowerGrid (PG) [95] is an undirected network
about the electrical grid of the Western US. USAir (USA)
[105] shows a network of flights between US airports. These
datasets compose the infrastructure networks used in the
experiments.

Electric networks are similar to road networks. Their
average degree is pretty low. The power law exponent and
the edge distribution entropy are obviously higher than any
other categories of networks, which indicates the edge dis-
tribution of this kind of network is more uniform. The con-
nection between nodes only passes through a small number
of local neighbors, resulting in a relatively small algebraic
connectivity. Airline networks show different properties
from them. Their average degrees are higher, and the edge
distributions are more nonuniform which can be reflected by
the power law exponents.

« Interaction Networks Involving People Most of the
interaction networks involving people are bipartite networks
that consist of people and items, where each edge represents
an interaction [96]. For interaction networks, we use the fol-
lowing datasets : Chess (CHS) [106], Crime (CRE) [107]
and UC Irvine (UCI) [108]. Chess is an anonymous dataset
that represents the gaming relationships of chess players.
Crime is a bipartite network, where nodes denote people or
crimes. UC Irvine shows the forum messages posted by the
students in the University of California, Irvine.

The degree distributions and the average degrees of inter-
action networks do not show a distinctive feature as the three
networks mentioned earlier. There is no particularly distinc-
tive features about this type of network.

* Protein—Protein Interaction Networks This kind of
networks can be represented by a graph, where nodes and
edges represent proteins and the interactions between them,
respectively [131]. Figeys (FGS) [109], Stelzl (STL) [110],
and Vidal (VDL) [111] are three PPI networks focusing on
homo sapiens. Yeast (YST) [112] is a network of protein
interactions in yeast.

We can draw a conclusion from Table 3 that the relation-
ships between the proteins are sparse, and the probability
that two proteins have no interaction even though they both
interact with a third protein, is high. The assortativity coef-
ficients are negative for four PPI networks, which implies
that the molecules with high degrees tend to associate with
low degrees.

« Offline Social Networks Offline social networks reflect
the actual contacts between people, such as talking to each
other, participating in activities together, or being physically
close. The face-to-face interactions of people participating
in big events, and the collaborations of musicians are typi-
cal offline social networks. Adole (ADE) [113] captures the
connections between students in 1994/1995, and Infectious

(IFT) [114] describes the face-to-face behaviors of visitors
in the Infectious exhibition. Jazz (JAZ) [115] is a network
that shows the collaborations between the Jazz musicians
who have played in a band. Physicians (PHY) [116] is a
directed network of physicians who are friends or interested
in a discussion. Residence (RSD) [117] is a friendship net-
work between the residents living in a residence hall located
at an Australian university campus.

Statistics show that most of offline social networks are
highly assortative which means people are more likely to
associate with people of their own rank in real life. In addi-
tion, it is worth noting that the offline social networks have
extremely strong scale-free characteristics and high edge dis-
tribution entropy which indicates a uniform degree distribu-
tion. The high average degrees and clustering coefficients
indicate that the central network has obvious hierarchical
characteristics. High algebraic connectivities means that all
networks are well connected.

« Online Social Networks Online social networks consist
of individuals and their connections in online social net-
working platforms and email systems. Plenty of platforms
have become increasingly popular, such as Facebook, Twit-
ter and YouTube [16]. Advogato (AVG) [118] is the trust
network of an online community platform for the software
developers. Brightkite (BK) [119] contains the friendship
relations from a location-based social network. The network
of Douban(DB) [121] comes from a Chinese online recom-
mendation site. The data of DNC (DNC) [120] are gener-
ated from the Democratic National Committee email leak.
Epinions (EPN) [122] is the trust network from the online
social network Epinions. Facebook(FB) [123] consists of
the friend lists. Each list comes from the survey partici-
pants using Facebook app. Google+ (G+) [123] is a net-
work of Google+ user-user links. Gowalla (GWL) [119] is
the friendship network of a namesake website. Hamsterster
(HSS) [124] contains the contacts between users of the web-
site Hamsterster. Livemocha (LMC) [121] is the network of
an online language learning community. Pretty (PRT) [125]
represents the interactions of people who use the Pretty
Good Privacy algorithm.

Different from offline social networks, the assortativity
coefficients of most networks are negative. It means that
online networks break down invisible barriers between
social classes, and the virtual relationships formed in social
networks make it easier for ordinary people to connect with
celebrities.

3.3 Resources
This subsection summarizes valuable resources for inves-

tigating complex networks, including network datasets and
network visualization tools.
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Fig.3 EUR network visualiza-
tion using GraphVis

3.3.1 Collections of Network Data

SNAP [132]. A collection of more than 50 large network
datasets from tens of thousands of nodes and edges to tens of
millions of nodes and edges, including social networks, web
graphs, road networks, internet networks, citation networks,
collaboration networks, and communication networks.
KONECT [133]. The KONECT project has 1,326 network
datasets in 24 categories. They have computed 56,300 graph
statistics and generated 92,074 plots. AMiner Dateset [134].
The site offers datasets on COVID-19, scientific collabora-
tion networks, multi-relationship networks, dynamic social
networks, and many more related to machine learning and
knowledge graph. Datasets Released for Reproducibility
[135]. The website organized by the comunelab group pro-
vides a large number of multi-relational networks of vary-
ing degrees of complexity, including social networks and
biological networks. Pajek datasets [136]. Many datasets in
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the early research of complex networks are derived from
this collection. Network Repository [137]. The first interac-
tive data and network data repository with real-time visual
analytics. Network repository is not only the first interac-
tive repository, but also the largest network repository with
thousands of donations in 304+ domains (from biological to
social network data). The Internet Topology Zoo [138]. This
is an ongoing project to collect data network topologies from
around the world. It currently has over two hundred and fifty
networks in the Zoo, in a variety of graph formats for statisti-
cal analysis, plotting, or other network research.

3.3.2 Tools of Network Data

The research of complex network is inseparable from the sta-
tistics, calculation and drawing of various real or simulated
networks. For general work, it can be done with software
such as Pajek, Netdraw and Ucinet. Figure 3 is an exam-
ple of visualizing the EUR network using GraphVis [137].
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However, in some special scenarios, such as new models
developed by oneself, corresponding modeling or calcula-
tion needs to be performed through programming. These two
types of tools are summarized below.

NetworkX [139]. This is a Python package for the crea-
tion, manipulation, and study of the structure, dynamics,
and functions of complex networks. igraph [140].1tis a
collection of network analysis tools with the emphasis on
efficiency, portability and ease of use. It can be programmed
in R, Python, Mathematica and C/C++. statnet [141]. stat-
net is a suite of R packages for the management, exploration,
statistical analysis, simulation and vizualization of network
data.

Gephi [142]. Gephi is a tool for data analysts and scientists
keen to explore and understand all kinds of graphs and net-
works. GraphVis [137]. GraphVis is a platform for inter-
active visual graph mining and relational learning. MuxViz
[143]. The platform for visualization and analysis of inter-
connected multilayer networks. It can be used as a library
for the implementation of custom analysis or through an
interactive browser-based graphical user interface to pro-
vide access to many customizable graphic options to render
multilayer networks.

4 Experiments and Analysis

In this section, we evaluate the methods mentioned in Sect. 2
on datasets of seven types of complex networks described
in Sect. 3.2. The evaluation results! will then be presented
along with analysis which combine the properties of com-
plex networks in a groundbreaking way.

4.1 Evaluation Metrics

There are many evaluation methods of link prediction tech-
nology. In this paper, AUC [144], MRR [145] and HR@K
are considered to evaluate the link prediction methods which
measure results from different perspectives. AUC meas-
ures the quality of the method from the overall level. MRR
focuses on the ranking of the edges which . HR@K consid-
ers the probability of existence of the edges in the first K
position.

Area Under the ROC Curve (AUC) [144] AUC is the most
suitable and commonly used metric to assess link prediction
methods. This is owing to the imbalance distribution of link

' All datasets, codes and complete results are publicly available at
https://github.com/whxhx/Link-Prediction-Methods.

prediction datasets whose existing edges are notably less
than absent edges, while AUC is unaffected by the distribu-
tion of the classes. It is tested as following: select one edge
randomly from the test set, and select a non-existent edge
randomly. Then we compare the scores of the two edges. If
the former is greater than the latter, we add 1 to ¢;; If the two
are equal, we add 1 to ¢,. Finally, the number of comparison
time is ¢, and AUC can be computed as:

AUC = ———= (36)

Mean Reciprocal Rank (MRR) [145] It is usually used to
measure searching algorithms. If the content to be searched
matches the first result, the score adds 1. If the content to be
searched matches the second result, the score adds 0.5. If the
content to be searched matches the nth result, the score adds
1/n. if there is no matching result, the score adds 0.

Hit Ratio@K (HR) [146] HR is often used to calculate the
recall rate of the recommendation system. In general, the
larger the index, the better the recommendation system. It
can be computed as:

HR@K = Mresull (37)
N,

neighbors

The denominator M, is the total number of neighbors of a
given node in the verification set, and the molecular N, /b0,
is the number of neighbors belonging to a given node in the
verification set in the first K prediction results.

4.2 System Setup

To construct a training set and a testing set, all existing links
are randomly divided in a 9:1 ratio. We use AUC, MRR and
HR@K(K= 1, 5, 10) to evaluate the performance of different
approaches. Each experiment is repeated five times, and we
use the average as the final result.

Most hyperparameters are inherited from the original
paper of each method. Considering the time complexity and
the settings of previous works, we reasonably hand-picked
different parameters as follows. The parameter § in Kl is set
to 0.01 and 0.001. In LPI, 6 is fixed to 0.001. The value of
¢ in GLHN is tested for 0.9, 0.95 and 0.99. For RWR, the
damping factor « is set to 0.85 and 0.95. LRW and SRW
with a set to 0.85 are tested for the step length in 3, 4 and
5. The distance r is set to 5 in SR. MF is implemented by
1ibFM, where the number of latent factors is fixed to k = 5.
For DeepWalk, Node2vec, LINE and other network embed-
ding methods, we end up with 128-dimensional embeddings
and calculate the cosine distance of two nodes’ embedding
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Table 4 Statistics of methods

L Methods/rank Ist 2nd 3rd Top5 Topl10 AvgRank

appearing in the top ten of the

results Common neighbor based 0 0.1 0 0.3 2.1 24
Path based 0 04 0.4 3.1 10.2 17.8
SBM 0 0 2 4 12 12.9
Classifier based 0 0 0.4 1 33 26.7
MF 1 6 3 17 22 6.8
DeepWalk 0 0 0 0 2 30.8
Node2vec 1 7 4 15 21 10.7
Struc2vec 1 4 5 18 25 7.1
GCN 0 0 0 0 0 35.8
GraphSAGE 0 0 1 1 2 26.1
WLNM 0 1 0 1 20.8
DGCNN 0 1 1 5 14 14.6
SEAL 0 6 3 17 25 59
LINE 0 0 1 2 4 259
SDNE 0 0 6 10 15 16.3
VERSE 28 1 1 30 31 1.3

as a link’s embedding. Paremeter tuning itself is a complex
process. Since we would like to provide a quick and easy
method which works for different types of networks, we
only provide preliminary results where the parameters are
set according to their original papers. Further adjustment
may needed during one’s actual practice. All methods are
implemented in Matlab and Python.

4.3 Results and Analysis

For the methods with multiple tested parameters, the best
results are selected to report. Due to the limitations of space
and time, we only evaluate a portion of the methods over
large datasets of online social networks. The AUC values
and the best methods are reported for each category of com-
plex networks in all datasets. Some methods ran longer than
24 hours on some datasets, thus we terminate those methods,
and represent the results as “-”. Surprisingly, some ground-
breaking conclusions could be drawn from the empirical
results. Due to space constraints, we show the AUC results
of all methods on all kinds of networks, and combine the
analysis of the attributes of the datasets in Sect. 3 to analyze
the results in detail. MRR and HR are omitted for clarity
and the complete results are publicly available at [147] for
reference. We first analyze various methods and show their
efficiency from an overall perspective, and then analyze par-
ticular performances of link prediction methods on different
types of networks.

4.3.1 Overall Effects

Table 4 shows the number of times each approach ranks first,
second, third, top five and top ten on all networks except for
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big datasets of online social networks. As we concentrate on
network embedding-based methods, we show the average
rank of other types of methods as a comparison.

It can be clearly seen from the Table 4 that the methods
based on network embedding have the best performance,
and their performance are less affected by network attrib-
utes which is due to its excellent ability to preserve net-
work information. Examples of these excellent methods
are VERSE, SEAL and Struc2vec, which capture network
topology information very well and were developed specifi-
cally for link prediction task. It is worth noting that VERSE
has outstanding performance and ranks first on almost every
dataset. It rebuilds the similarity distribution between nodes
by training a simple but expressive single-layer neural net-
work, which is very effective in terms of accuracy and time
efficiency. MF and Node2vec rely less on network proper-
ties and therefore perform well as well. Degree distribution
does not affect the efficiency of the method based on matrix
factorization. Since shallow encoders optimize an unique
embedding vector for each node individually, the shortcom-
ing of shallow network embedding methods comes from that
no parameters are shared between nodes, and this will cause
a sharp increase in parameter numbers and low computa-
tional efficiency. Different from shallow embedding meth-
ods, graph neural network-based methods use node features
or local graph structures around each node as input to gen-
erate embeddings. Different graph neural network methods
have different node representation capabilities, resulting in
different performances.

As a summary, methods based on common neighbors are
quite effective link prediction methods and are suitable for
large-scale networks. When compared with advanced net-
work embedding-based methods, they still have competitive
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Table 5 Runtime results(s)

GQ RT OFS USA CHS CRE UcCI ADE IFT JAZ AVG DNC
CN 124.21 194.54 67.28 39.34 821.95 1.95 9.22 33.79 1.29 0.52 389.44  9.65
Salton 124.79 195.04 83.55 35.99 825.22 1.98 7.47 37.28 1.34 0.48 399.78  9.50
JI 12446  223.07 71.88 35.83 829.50 2.00 7.56 35.08 1.37 0.48 418.16  9.73
Sorens 126.25  208.23 70.62 35.96 829.19 1.99 7.65 35.43 1.37 0.48 39220  9.83
HPI 128.06  229.47 62.81 37.14 828.63 2.01 7.33 34.99 1.40 0.49 400.10 998
HDI 125.88 198.49 62.94 34.43 829.92 2.00 7.29 35.00 1.37 0.48 381.07  9.90
LLHN 121.78 197.09 61.23 33.92 822.72 1.95 7.46 34.38 1.41 0.48 383.64  9.88
AA 12143 202.08 62.69 34.06 822.55 1.96 7.18 34.71 1.40 0.48 42755  9.83
RA 120.72 191.37 67.22 33.58 824.08 1.95 721 34.56 1.36 0.48 398.08  9.62
PA 152.58  229.16 86.64 35.71 1021.88  2.08 7.82 40.14 1.41 0.48 44587  9.67
LNBCN 121.05 194.31 83.59 33.62 822.94 1.95 7.53 33.93 1.36 0.48 386.68  9.58
LNBAA 120.47 190.72 69.02 33.75 822.87 1.95 7.58 34.32 1.35 0.47 38593  9.82
LNBRA 241.59  381.55 13423  67.81 1648.95 3.89 1491 68.65 271 0.95 778.96 19.38
TSCN 195.59  797.75 105.83  55.25 2508.02  2.17 12.21 85.97 1.60 0.52 1084.99 15.21
LPI 122.66  210.41 67.20 35.51 938.39 1.95 7.45 35.58 1.41 0.47 42935  9.66
KI 147.31 228.50 76.01 38.98 1031.91 2.08 8.15 42.09 1.39 0.66 462.51 10.29
GLHN 157.12 25991 73.36 36.36 1050.12 2.14 9.39 42.71 1.43 0.78 484.94 10.59
ACT 195.35 359.22 83.06 37.59 1209.19 1.75 9.01 47.57 1.37 0.52 560.75 10.28
RWR 154.52  233.36 73.64 46.23 1122.68 1.67 8.38 46.38 1.35 0.51 509.63 10.08
SR 173.20  408.23 82.65 38.71 1141.32 1.85 8.03 43.54 1.36 0.51 528.61 10.77
LRW 124.27  210.68 65.92 35.47 941.17 1.61 7.93 34.94 1.20 0.49 438.03 10.81
SRW 123.86  208.96 68.22 38.00 944.38 1.95 7.53 35.07 1.20 0.49 430.63 10.11
MFI 148.67  224.34 70.02 48.72 1063.05 2.07 7.68 40.62 1.21 0.48 548.67  9.74
SBM 2164.01 25672.40 362833 1670.13 6707.33 240.09 656.54 1229.14 15572 93.99 442039 922.64
Struc2Vec 153.72 164.48 93.44 55.54 838.63 333 12.89  54.34 2.33 1.13 409.51 19.24
GraphSAGE  1079.19 847.21 1236.27 1319.22  4379.00 112.35 358.64 614.30 145.14 153.84 3647.11 527.61
WLNM 816.10  7789.45 2349.60 5858.12 - 72.06 54447 51747  210.10 264.18 9500.13 2907.10
DGCNN 694.41 525.44 787.62 79145  26738.46 64.67  289.21 489.54 113.08 10523 2197.41 413.38
LINE 151.33 160.43 91.98 53.96 824.54 3.02 12.95 53.76 2.29 1.11 407.72 18.93
VERSE 129.67 152.72 73.78 43.69 194.27 2229 2233 57.92 10.94 497 127.39  25.27

performances on networks with high aggregation coeffi-
cients. However, due to the limited amount of information
such methods preserve, the prediction accuracy of common
neighbor-based methods is slightly lower than those of
global indicators. Path-based methods also have mediocre
performance, while ACT is not affected since it is based
on the multiple-route distance diminishment. Path-based
approaches take more information into consideration than
common neighbor-based approaches, and the former can
capture more global structures. The prediction results of
probabilistic and statistical models are quite good, due to
the reason that some additional information about network
structures can be obtained by sampling the fitting and con-
figuration of parameters. On the other hand, a key disad-
vantage is that the computation is extremely complex, thus
it cannot be used to handle large-scale networks at present.
Networks with higher aggregation coefficients are found to
have a modular structure, so SBM performs better on this

type of network. The performance of the methods based on
classifier are generally poor, possibly owing to the imbal-
ance of categories. Unlike similarity or probabilistic and
statistical models-based methods which rank possible links
based on the similarity between nodes or probability of link
formation, the predicted number of links in each category
cannot be well controlled.

4.3.2 Efficiency Evaluation

Table 5 lists the run time results of representative methods
on datasets with comparative significance. We can analyze
the scalability of each method through this set of experi-
ments. SBM is extremely sensitive to the number of edges,
so it is not suitable for datasets with large number of edges.
On the contrary, for DGCNN, the increase of the edge
amount does not affect the running time much. WLNM is
not sensitive to the number of vertices but is sensitive to
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Table 6 AUC results of coauthorship networks, computer networks and infrastructure networks

Coauthorship Networks

Computer Networks

Infrastructure Networks

Methods
CN
Salton

I
Sorens
HPI
HDI
LLHN
AA

RA

PA
LNBCN
LNBAA
LNBRA
TSCN
LPI

KI
GLHN
ACT
RWR

SR

LRW
SRW
MFI
SBM
SVM
KNN
DT
Bayes
LR
MLP
MF
DeepWalk
Node2vec
Struc2vec
GCN
GraphSAGE
WLNM
DGCNN
SEAL
LINE
SDNE
VERSE

APH

0.9854
0.9863
0.9856
0.9855
0.9861
0.9861
0.9858
0.9863
0.9857
0.9463
0.9862
0.9863
0.9865
0.5438
0.9893
0.9905
0.9907
0.9485
0.9914
0.9912
0.9913
0.9915
0.9902
0.7324
0.8391
0.5972
0.9667
0.7584
0.7233

0.6935
0.9925
0.9931
0.6372
0.8002
0.8563
0.9169
0.9925
0.9261
0.8814
0.9992

CM

0.9647
0.9651
0.9646
0.9652
0.9649
0.9651
0.9648
0.9653
0.9654
0.9126
0.9651
0.9653
0.9650
0.7392
0.9716
0.9757
0.9793
0.9384
0.9761
0.9759
0.9757
0.9755
0.9748
0.8346
0.8980
0.5998
0.9611
0.6853
0.7659

0.7250
0.9701
0.9832
0.5730
0.7508
0.8819
0.9161
0.9913
0.9691
0.8625
0.9994

GQ

0.9145
0.9165
0.9161
0.9164
0.9181
0.9184
0.9166
0.9215
0.9161
0.7428
0.9194
0.9167
0.9178
0.6369
0.9329
0.9166
0.8914
0.8103
0.9161
0.9188
0.9318
0.9302
0.9103
0.8939
0.8619
0.9043
0.5883
0.9394
0.6879
0.7768
0.9188
0.7753
0.9349
0.9458
0.5685
0.7730
0.9269
0.9100
0.9793
0.9615
0.7518
0.9979

HPH

0.9799
0.9796
0.9797
0.9796
0.9795
0.9796
0.9793
0.9794
0.9798
0.9561
0.9782
0.9800
0.9808
0.5138
0.9841
0.9849
0.9862
0.9711
0.9853
0.9851
0.9857
0.9859
0.9842

0.7726
0.7818
0.6053
0.9268
0.8791
0.6305
0.9628
0.6829
0.9407
0.9497
0.5587
0.8939

0.9168
0.9902
0.9598
0.8325
0.9992

HTH

0.9000
0.9013
0.9025
0.9002
0.8993
0.9042
0.9023
0.9055
0.9017
0.7273
0.9025
0.9023
0.9062
0.7562
0.9233
0.8972
0.8748
0.7764
0.8966
0.8945
0.9215
0.9229
0.8977
0.8517
0.8845
0.9027
0.5869
0.9277
0.5618
0.7308
0.9206
0.6718
0.9264
0.9399
0.5960
0.7323
0.8821
0.8404
0.9659
0.9366
0.8172
0.9978

CAD

0.9599
0.9602
0.9699
0.9601
0.9603
0.9598
0.9596
0.9602
0.9604
0.9124
0.9602
0.9604
0.9601
0.5129
0.9694
0.9731
0.9757
0.9362
0.8481
0.7816
0.8466
0.8427
0.8286
0.7295
0.6302
0.5588
0.9110
0.9191
0.6857
0.9782
0.5919
0.9722
0.9835
0.6410
0.8356
0.7268
0.8632
0.5659
0.9609
0.9977

GNT

0.6887
0.6702
0.6715
0.6719
0.6846
0.6728
0.6683
0.6923
0.6920
0.8316
0.6927
0.6921
0.6923
0.5102
0.7879
0.7988
0.7147
0.9359
0.8396
0.7481
0.8338
0.8310
0.8022
0.9375
0.8197
0.6244
0.5708
0.9056
0.8602
0.8034
0.9745
0.5784
0.9518
0.9597
0.5900
0.7923
0.7441
0.9232
0.9587
0.5484
0.9498
0.9853

RT

0.7040
0.6827
0.6821
0.6835
0.6923
0.6836
0.6805
0.7072
0.7019
0.7467
0.7011
0.7030
0.7084
0.5291
0.7624
0.6939
0.4394
0.8279
0.7798
0.5942
0.7833
0.7813
0.7054
0.9391
0.7864
0.5549
0.5233
0.7967
0.7861
0.7655

0.6702
0.9617
0.9739
0.6896
0.7988
0.8802
0.9108

0.5285
0.9503
0.9965

CHO

0.4980
0.4980
0.4980
0.4981
0.4976
0.4977
0.4980
0.4975
0.4980
0.2205
0.4979
0.4979
0.4980
0.4720
0.4945
0.4565
0.7130
0.9847
0.4551
0.4716
0.4950
0.4932
0.4536
0.8835
0.8097
0.5846
0.5386
0.5248
0.4157
0.4209
0.9699
0.8873
0.9889
0.8671
0.4970
0.6743
0.9149
0.9789
0.9705
0.4253
0.9655
0.9655

EUR

0.5137
0.5134
0.5132
0.5153
0.5134
0.5141
0.5134
0.5121
0.5141
0.3036
0.5138
0.5135
0.5139
0.6459
0.5371
0.6451
0.6128
0.9075
0.6594
0.7021
0.5401
0.5392
0.6472
0.6823
0.6111
0.5485
0.5812
0.5030
0.3385
0.3426
0.8416
0.7848
0.9805
0.8973
0.5338
0.6515
0.7042
0.9667
0.7796
0.5957
0.9695
0.9863

OFS

0.9364
0.9364
0.9346
0.9383
0.9346
0.9339
0.9275
0.9407
0.9462
0.8640
0.9418
0.9431
0.9415
0.4944
0.9465
0.9308
0.8584
0.8896
0.9334
0.9159
0.9545
0.9504
0.9237
0.9373
0.8063
0.7847
0.5135
0.8761
0.6842
0.6807
0.9619
0.6896
0.9588
0.9598
0.5962
0.8536
0.9319
0.9406
0.9730
0.8275
0.9253
0.9956

PG

0.5951
0.5893
0.5968
0.5956
0.5954
0.5914
0.5949
0.5895
0.5966
0.4540
0.5954
0.5934
0.5911
0.6452
0.6482
0.6602
0.6492
0.9540
0.6697
0.7689
0.6522
0.6521
0.6650
0.6534
0.5002
0.5970
0.5494
0.7629
0.4572
0.4634
0.8942
0.7251
0.9904
0.8257
0.5144
0.6851
0.7701
0.9259
0.7864
0.7311
0.9648
0.9948

USA

0.9534
0.9404
0.9377
0.9359
0.9079
0.9367
0.8449
0.9570
0.9615
0.9298
0.9547
0.9568
0.9617
0.4390
0.9545
0.1754
0.6913
0.9304
0.9514
0.8507
0.9616
0.9604
0.9236
0.9688
0.7152
0.7153
0.5917
0.7966
0.7430
0.7451
0.9702
0.6021
0.8544
0.9235
0.5356
0.8758
0.9088
0.9311
0.9600
0.4646
0.9054
0.9928

the number of edges, while VERSE is completely opposite
to WLNM. GraphSAGE is not sensitive to vertex number
increasing, and thus is suitable for datasets with a large num-
ber of vertices. From the perspective of time consumption,
the average run time of common neighbor-based methods
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is the shortest, among which TSCN is the longest. When
there is a need to get an initial result very quickly and
does not have a strict restriction on accuracy, a common
neighbor-based approach is a good choice. The methods
based on probabilistic and statistical models can extract the
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Table 7 AUC results of interaction networks involving people, protein—protein interaction networks and offline social networks

Interaction networks involving  Protein—protein interaction networks Offline social networks
people

Methods CHS CRE ucI FGS STL VDL YST ADE IFT JAZ PHY RSD

CN 0.8783  0.5043  0.7262  0.5526  0.5238  0.6162 0.5917 0.7652  0.9362 09576  0.9085  0.8407
Salton 0.8784  0.5051  0.6923  0.5474  0.5229  0.6169  0.5894  0.7695  0.9367 09659  0.9208  0.8394
JI 0.8779  0.5045 0.6998 0.5486  0.5253  0.6153 0.5881 0.7700 0.9401 0.9580 09212  0.8365
Sorens 0.8828  0.5043  0.6905 0.5485 0.5249 0.6146 0.5897 0.7678 09369 09615 09156 0.8376
HPI 0.8747  0.5036  0.6924  0.5506  0.5248  0.6179 0.5904 0.7647 09321 09484 09166  0.8389
HDI 0.8796  0.5057  0.6945 05479 0.5242  0.6179 0.5899  0.7712 09358 0.9487 09135 0.8333
LLHN 0.8740  0.5052  0.6643  0.5473  0.5252  0.6157 0.5894 0.7710 09246 09031 0.8955  0.8357
AA 0.8814 0.5054 0.7316 0.5561  0.5272 0.6176  0.5878  0.7726 09352 0.9611 09179  0.8399
RA 0.8787  0.5061  0.7269  0.5537 0.5246  0.6176  0.5920 0.7661  0.9368 0.9694  0.9207  0.8437
PA 09316 0.6189  0.8369 0.8080 0.6890  0.7463  0.4885 0.6147 0.7134  0.7671  0.6212  0.5200
LNBCN 0.8787  0.5056  0.7345 05783  0.5278 0.6138  0.5890  0.7699  0.9327 0.9594 09125  0.8407
LNBAA 0.8828  0.5060  0.7294  0.5742  0.5268 0.6170 0.5873  0.7701 09386 09636  0.9194  0.8470
LNBRA 0.8788  0.5040  0.7282  0.5765 0.5256  0.6148 05894  0.7748 09356 09726 09113  0.8368
TSCN 0.5362  0.5507 05231 04760 0.5737 05144 0.5747 0.6996 0.5365 0.5141 0.6266  0.8891
LPI 09391 05876  0.8016 0.8016  0.7156  0.7667 0.6178  0.8430  0.9526  0.9509  0.9055  0.9062
KI 09311 05770  0.8087 0.7550  0.6546  0.7507  0.5742  0.8844 09525 0.9425 0.9039 09164
GLHN 09099  0.5022  0.5586 0.4939 0.5635 0.6513 0.5031 0.8786 0.9362 0.8082 0.8379  0.9062
ACT 0.8555 0.7001  0.8349 0.8982 0.8421 0.8162 0.7681  0.6570  0.8088  0.7773  0.6581  0.5290
RWR 09468  0.5870  0.8037 0.8031 0.6777  0.7727  0.5803  0.9047  0.9606 09500 09118  0.9194
SR 09398 04834 0.6586 0.3261  0.5220 0.7006  0.5845  0.9022 09510 0.8991  0.9057 0.9193
LRW 0.9444  0.5881  0.8151 0.8494  0.7220 0.7684 0.6184  0.8471 09613  0.9529  0.9221  0.9149
SRW 09440 0.5893  0.7863  0.8353  0.7089  0.7665 0.6134  0.8433  0.9647 09663  0.9246 09163
MFI 09417  0.5538  0.7774  0.7453  0.6419  0.7347  0.5755 0.9041 09534 09222 09129 09121
SBM 09015  0.6562  0.8370 09532 0.8557 0.8206 0.7966  0.8360  0.9423 09172  0.8599  0.8891
SVM 0.7586  0.6429  0.7157 0.8864  0.7568  0.8125 0.6518  0.7316  0.7175 0.7023  0.7359  0.7618
KNN 0.7315 0.5824  0.6038 0.7316  0.5873  0.7519  0.5940  0.6657 0.7191  0.7524  0.7742  0.7369
DT 0.5200  0.5109  0.5347 05021 0.6195 05472  0.5268  0.5268  0.5481 0.5816  0.5364  0.5660
Bayes 0.8126  0.6318  0.6234  0.7964  0.7122  0.8195 0.7616  0.7586  0.7499  0.8978  0.9005  0.8993
LR 0.7557 0.6291  0.6809  0.8149  0.7233  0.7157 05763  0.6584  0.6815 09038  0.7125  0.7067
MLP 0.7250  0.6314  0.6922  0.8075 0.7354 0.7341  0.6008  0.6596  0.6971  0.7833  0.7654  0.8050
MF 09368 0.8925 0.8953 09657 0.8904 09026 09269 0.8925 09431 09784  0.9529 09211

DeepWalk 0.6259  0.6152  0.5264  0.5639  0.5967
Node2vec 09436 09643  0.6366  0.8700  0.9416
Struc2vec 09466 09713  0.8533 09488  0.8815

GCN 0.6901  0.5475 0.6481  0.6140  0.5795
GraphSAGE ~ 0.7904  0.6012  0.7261  0.7339  0.6898
WLNM 0.5406  0.5984  0.6994  0.8230  0.7369
DGCNN 09139 0.8714 09361 09382  0.8399
SEAL 09651 0.8127  0.8597 0.9593  0.9128
LINE 0.8119  0.5690  0.5169  0.5214  0.5599
SDNE 09312 09576 0.6153  0.8975  0.9217
VERSE 09930 09687  0.9686 09915  0.9815

0.6654  0.6872  0.6562  0.7254  0.6533  0.6194  0.8582
09497 09765 09623 09378 0.9046  0.9297  0.9658
09108 0.9340 09737 09604 0.9325 0.9308  0.9655
0.6054  0.5043 05153  0.5505  0.5967  0.5359  0.6056
0.6624  0.6819  0.7066  0.8083  0.7958  0.7478  0.6740
0.7823  0.7506  0.7940  0.8457  0.8459  0.7677  0.7634
0.8199 09114 0.8873 09406 0.9190 09108  0.9067
09017  0.9051 0.8961  0.9528  0.9539  0.8898  0.9124
0.6960 0.7596  0.8274 09514  0.8838  0.8696  0.9023
09366 09518 09549 09421 09133 09152  0.9267
0.9897  0.9938  0.9909 09925 0.9701 09698 0.9714

underlying structure and obtain additional information of
the networks by fitting the parameters, while they are time-
consuming and are not applicable to deal with large-scale
networks. Network embedding-based methods can achieve

superior results, while the time consumption is acceptable
meanwhile. Methods based on graph neural network run a
little longer than other network embedding methods, while
it could capture more abundant network information.
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Table 8 AUC results of small

datasets of online social Methods/datasets AVG DNC FB G+ HSS PTY

networks CN 0.9008 0.9667 0.5033 0.9549 0.9616 0.8466
Salton 0.8834 0.9319 0.5249 0.9628 0.9703 0.8462
) 0.8812 0.9309 0.4837 0.9626 0.9694 0.8468
Sorens 0.8803 0.9317 0.5061 0.9627 0.9691 0.8471
HPI 0.8798 0.8256 0.4969 0.9625 0.9675 0.8470
HDI 0.8827 0.9267 0.5276 0.9626 0.9712 0.8466
LLHN 0.8707 0.8074 0.4739 0.9625 0.9627 0.8468
AA 0.9009 0.9717 0.4965 0.9627 0.9709 0.8472
RA 0.9076 0.9714 0.5142 0.9624 0.9746 0.8474
PA 0.8946 0.9325 0.4590 09112 0.9447 0.8453
LNBCN 0.9033 0.9681 0.4879 0.9629 0.9704 0.8471
LNBAA 0.9036 0.9695 0.5384 0.9627 0.9705 0.8471
LNBRA 0.9063 0.9716 0.5168 0.9628 0.9736 0.8472
TSCN 0.5061 0.5077 0.5485 0.5137 0.5394 0.5925
LPI 0.9296 0.9629 0.4861 0.9705 0.9827 0.8579
KI 0.9262 0.9515 0.4327 0.9754 0.9835 0.8503
GLHN 0.6796 0.6327 0.4692 0.9792 0.9826 0.8618
ACT 0.8969 0.9532 0.9875 0.9829 0.9466 0.9622
RWR 0.9290 0.9617 0.4526 0.7304 0.9843 0.8505
SR 0.8637 0.8190 0.4368 0.6765 0.9802 0.8534
LRW 0.9302 0.9668 0.4457 0.7658 0.9855 0.8641
SRW 0.9292 0.9660 0.5135 0.7653 0.9807 0.8638
MFI 09115 0.9519 0.4983 0.7222 0.9814 0.8507
SBM 0.9105 0.9810 0.9856 - - -
SVM 0.6523 0.8546 0.8367 09116 0.8382 0.7878
KNN 0.6849 0.8367 0.5543 0.6946 0.9017 0.7896
DT 0.5694 0.6318 0.5230 0.6353 0.6006 0.6253
Bayes 0.8368 0.8416 0.6644 0.9651 0.9485 0.9003
LR 0.6316 0.8564 0.5891 0.9799 0.8847 0.5842
MLP 0.5849 0.8648 0.4492 0.8836 0.7934 0.7197
MF 0.9628 0.9837 0.9918 - 0.9572 0.9156
DeepWalk 0.5533 0.6352 0.8029 0.5697 0.6984 0.7932
Node2vec 0.8869 0.7138 0.9821 0.9602 0.9526 0.9859
Struc2vec 0.9044 0.9703 0.9762 0.9674 0.9701 0.9537
GCN 0.5831 0.7647 0.5694 0.5981 0.5630 0.6079
GraphSAGE 0.7591 0.9162 0.9954 0.8835 0.7794 0.7988
WLNM 0.8823 0.9497 0.9987 0.7756 0.9269 0.9537
DGCNN 0.9439 0.9420 0.9066 0.9131 0.9605 0.9226
SEAL 0.9486 0.9763 0.9898 - 0.9833 0.9684
LINE 0.7040 0.6775 0.5861 0.4669 0.8998 0.9218
SDNE 0.8725 0.7076 0.9309 0.9536 0.9475 0.9802
VERSE 0.9910 0.9970 0.9997 0.9998 0.9978 0.9916

4.3.3 Particular Performances on Different Types
of Networks

The AUC results of coauthorship networks, computer net-
works and infrastructure networks are reported in Table 6.
Table 7 shows the results on interaction networks involv-
ing people, protein—protein interaction networks and offline

@ Springer

social networks. Tables 8 and 9 show the outcomes of small
and large datasets of online social networks, respectively. We
will analyze particular performances of some methods on
different types of networks, where the inconsistency comes
from different characteristics of different kinds of networks.
Methods that are not affected by network attributes are
mentioned in Sect. 4.3.1 and will not be repeated here. For
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Table 9 AUC results of big datasets of online social networks

Methods/datasets BK DB EPN GWL LMC
CN 0.8194 0.5978 0.8685 0.8837 0.7826
Salton 0.8565 0.6059 09131 0.8972 0.7634
J1 0.8216  0.5999 0.8607 0.8775 0.7781
Sorens 0.8217 0.5797 0.8609 0.8773  0.7795
HPI 0.8542 0.6214 09012 0.8901 0.7783
HDI 0.8186 0.5830 0.8620 0.8775 0.7774
LLHN 0.8569 0.6163 0.9088 0.8907 0.7653
AA 0.8205 0.5886 0.8709 0.8801  0.7829
RA 0.8197 0.5879 0.8716 0.8806 0.7812
PA 0.8312 0.6691 0.8901 0.8674 0.9215
LNBCN 0.8201 0.5877 0.8725 0.8761  0.7903
LNBAA 0.8193 0.5874 0.8707 0.8757 0.7899
LNBRA 0.6400 0.5876 0.8724 0.8760 0.7886
DeepWalk 0.6426  0.5437 0.6028 0.6514 0.5386
Node2vec 09731 09714 09269 09794 0.8239
Struc2vec 0.9783 09796 0.9298 0.9852 0.8315
GCN 0.6563  0.6047 0.7937 - -
DGCNN 0.9276 09444 09520 0.9419 0.9298
LINE 0.8383 0.6234 0.6454 0.8098 0.6875
SDNE 0.9705 09685 09193 09718 0.8197
VERSE 0.9969 09970 0.9964 0.9980 0.9865

example, VERSE performs well on any kind of networks and
will not be discussed in this section.

Coauthorship Networks SEAL performs well on all tested
datasets. LINE, Node2vec and Struc2vec follow closely
behind, which reveals that network embedding methods are
suitable for coauthorship networks. High clustering coef-
ficients and average node degrees ensure that subgraphs of
coauthorship networks preserve sufficient local informa-
tion. Therefore, methods based on local information such
as common neighbor-based methods perform well. For
coauthorship networks, authors who belong to the same
organization have a high probability of publishing papers
together. However, there is a considerable portion of links
between different organizations. Hence, path-based meth-
ods are also competitive. In a word, when meets time and
space consumptions, SEAL is recommended for coauthor-
ship networks with high clustering coefficients, assortativity
coefficients, and strong scale-free features.

Computer Networks Computer networks present the
properties of low average degree, weak connectivity and
skewed degree distribution, resulting in the difficulty to
predict links by obvious topology information. In view of
this situation, Struc2vec performs surprisingly well on CAD,
RT and shows competitive performance on GNT. Skewed
degree distributions lead to apparent community structure

properties, which contributes to the good performance
of Struc2vec. In addition, MF, Node2vec and SDNE also
achieve good performances. According to above analysis,
network embedding methods with matrix factorization and
random walk are recommended for computer networks.

Infrastructure Networks According to the network
attributes shown in Table 3, the airlines network has a
high average degree and a low power law exponent with a
high clustering coefficient. In terms of the overall effects,
DGCNN has the most competitive performance on this
kind of networks. Node2vec and SDNE work well in elec-
trical networks and roads networks, while have an average
performance on airlines datasets. Because of the uniform
degree distribution, low clustering coefficient and numerous
low-degree nodes which make it difficult to capture local
information well, common neighbor-based methods and
most path-based methods show bad results in infrastructure
networks. However, ACT is based on the multiple-route dis-
tance diminishment, which makes ACT will not be affected
by those properties of infrastructure networks.

Interaction Networks Involving People Except for VERSE,
there is no single method that performs well on all three
datasets. This may be caused by inconsistent statistical prop-
erties. Methods based on network embedding with random
walk are worth of attentions, especially Struc2vec, which
performs better than other methods on the CRE dataset and
shows competitive performance on other datasets as well. On
the whole, DGCNN performs best among all the methods.
Thus Struc2vec and DGCNN can be considered as a quick-
pick method for this kind of networks. For bipartite datasets,
there is no common neighbor between different roles, which
makes it difficult to predict these links for the methods based
on common neighbors.

Protein—protein Interaction Networks Although Node-
2vec obtains the most impressive results on three datasets,
it has a mediocre performance on the FGS dataset. Con-
sidering the results of protein—protein interaction networks
and infrastructure networks jointly, MF is also an excellent
method when a network shows less connectivity and low
cluster coefficient. LINE performs poor on the PPI networks
because of the low cluster coefficient, while Struc2vec,
SEAL, and SDNE have a better performance. To sum up,
methods based on matrix factorization and random walk
tend to be more suitable for link prediction tasks on PPI
networks.

Offline Social Networks Methods for each dataset in Table 7
do not show a consistent trend. Uniform degree distribution,
high assortativity and good connectivity indicate that the
information of offline social networks are evenly distributed.
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Methods based on network embedding, especially random
walk-based approaches generally work well on offline social
networks. The reason may be that the coverage of random
walk is wider and more comprehensive.

Online Social Networks Table 8 shows the AUC results of
small online social networks. High average degree and clus-
ter coefficient provide enough information for link predic-
tion on online social networks. However, some path-based
methods involve too much noise. Unbalanced degree distri-
bution and strong scale-free lead to the fact that there is no
single method performs well on all datasets. Although MF
and SEAL do not obtain the best results in all datasets, their
performance are generally very close to the best methods. As
can be seen from the table, network embedding-based link
prediction methods performs well on this kind of networks
and are excellent methods to choose from.

For big online social networks, we show the results in
Table 9. We only show a portion of the methods over large
datasets of online social networks, while the rests cannot
complete the task with time and space limitations. VERSE
kept its usual dominant position. Other than that, DGCNN
performs best among these networks since it can learn
more expressive representations than others. Node2vec and
Struc2vec perform better than other methods on all datasets.
This is reasonable because Node2vec and Struc2vec capture
more information than common neighbor-based methods,
which is achieved at the cost of more time consumption. For
common neighbor-based methods, PA, which only considers
the degree of nodes, has surprisingly good performance in
LMC. When PA appears as the best method, it is signifi-
cantly better than other methods. It can be found that LMC
has extremely high average degree, which compromises the
performance of other common neighbor-based methods.

5 Conclusions

In this survey, we have conducted, as far as we know, the
most comprehensive experimental overview of the link pre-
diction methods that have been proposed till now on com-
plex networks. We propose a scientific taxonomy, which rea-
sonably classifies the representative link prediction methods
according to their internal principles. We then divide thirty-
six datasets into seven different types of networks accord-
ing to their natural meaning, and extract network property
features for each type of the networks. Next, we analyze the
properties of different type of networks in detail. Full-scale
experiments have been performed for forty-two link predic-
tion methods on above mentioned thirty-six datasets. On the
basis of statistical analysis of the experimental results, we
further analyze them in detail in order to reveal the methods

@ Springer

with good performance and recommend appropriate link
prediction methods for each type of networks. In addition,
observing that the methods based on network embedding
provide new solutions for the tasks of link prediction, while
the complete investigation of such methods has been miss-
ing. One of the important contributions of this paper is to fill
in the gap of the research of link prediction methods based
on network embedding.
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