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ABSTRACT

Modern recommender systems have evolved rapidly along with
deep learning models that are well-optimized for overall perfor-
mance, especially those trained under Empirical Risk Minimization
(ERM). However, a recommendation algorithm that focuses solely
on the average performance may reinforce the exposure bias and
exacerbate the “rich-get-richer” effect, leading to unfair user experi-
ence. In a simulation study, we demonstrate that such performance
gap among various user groups is enlarged by an ERM-trained rec-
ommender in the long-term. To mitigate such amplification effects,
we propose to optimize for the worst-case performance under the
Distributionally Robust Optimization (DRO) framework, with the
goal of improving long-term fairness for disadvantaged subgroups.
In addition, we propose a simple-yet-effective streaming optimiza-
tion improvement called Streaming-DRO (S-DRO), which effectively
reduces loss variances for recommendation problems with sparse
and long-tailed data distributions. Our results on two large-scale
datasets suggest that (1) DRO is a flexible and effective technique
for improving worst-case performance, and (2) Streaming-DRO
outperforms vanilla DRO and other strong baselines by improving
the worst-case and overall performance at the same time.
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« Computing methodologies — Machine learning; « Informa-
tion systems — Recommender systems.
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1 INTRODUCTION

Recommender systems have been increasingly important for driv-
ing engagements in multiple user-facing products, including con-
tent personalizations [12, 33], social networks [20] and e-commerce [7,
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19]. A critical task for personalized recommendation is retrieval:
given a query (user), identify the most few relevant items from a
large item corpus. In many large-scale recommenders, queries and
items are embedded in the same latent space with Deep Neural
Networks (DNNs) as encoders, and trained under the Empirical
Risk Minimization (ERM) framework by minimizing a loss function
uniformly for all training samples. The retrieval task is then for-
mulated as the nearest neighbor search problem in the embedding
space. The item embeddings are indexed offline, making real-time
serving scalable for a corpus at the scale of millions to billions.

Although prior work has demonstrated success in developing
accurate recommendation models for the overall performance, it is
brought to the community’s attention that certain sub-populations
may suffer from worse performance [3, 4, 6, 18, 30, 32]. A classic
problem is popularity bias, where more prevalent demographic
user groups receive better performance [1]. Several work has been
proposed to tackle the sub-population imbalance problem. For ex-
ample, up-sampling minor subgroups or down-sampling majority
subgroups [11]. However these methods are error-prone to outliers
and susceptible to over-fitting when oversampling. It is still an open
research question regarding how to lift the worst-case performance
while keeping the overall performance unharmed.

Inspired by a optimization framework called Distributionally-
Robust Optimization (DRO) that aims to optimize the worst-case
performance [10, 21], in this paper, we study the effectiveness of
DRO to tackle the subgroup performance gap problem in recom-
mendations. Specifically:

e We empirically validate that a recommender trained with
ERM further enlarges the gap between different groups of
users through a simulation study. This motivates us to focus
on improving the worst-case performance.

o We show that the DRO framework proposed in [27] is sub-
optimal to achieve distributional robustness in recommen-
dations. We develop a simple-yet-effective optimization im-
provement (Streaming-DRO) to reduce large loss variances
during training.

o Extensive experiments on recommendation datasets demon-
strate the effectiveness of Streaming-DRO on improving the
worst-case performance while maintaining a better overall
performance compared to a set of strong baselines.

2 RELATED WORK

Long-term evaluations of recommender systems. Most evalua-
tions for recommender systems focus on the single-step setting [2,
26]. In a recent work, Yao et al. [30] propose a simulation framework
to analyze the sensitivity of recommenders to popularity bias. They
found non-trivial temporal dynamics of popularity bias and raised
concerns on what types of trajectories a recommender should create
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in the longer term. As a step further, we focus on user subgroups
with different preferences on item popularity, and demonstrate how
the performance gap across these user subgroups change over time
after multiple rounds of recommendations.

Re-weighting losses for sub-distributions. A line of work
attempt to deal with imbalanced datasets with importance sam-
pling [16], where training sample weights are the inverse of the
propensities of class frequency. However, directly applying such
methods yield poor performance on real-world datasets with high
class imbalance due to the large variance of sparse classes [5]. In-
spired by the diminishing benefits of additional data points, Cui
et al. [8] propose a framework by replacing class frequency with
effective number of samples. A class-balanced term is used to re-
balance the loss and show improved performance on long-tailed
datasets. These two methods are closest to ours in terms of re-
weighting costs for different sub-classes from the data.

Group fairness. It’s worth mentioning that many recent works
explore addressing the group fairness problems in the spirit of
“Equal of Opportunity” [13] for a variety of machine learning tasks,
e.g. image classification [28], language modeling [23], and rank-
ing [3]. A key measure of success is to achieve equality for inter-
group performance. We are inspired by a philosophical framework
called “Rawlsian Fairness” [24], where we focus on the worst-case
optimization problem and do not explicitly tackle the fairness prob-
lem, though empirically they could be achieved at the same time.

3 WORST-CASE OPTIMIZATION FOR
RECOMMENDATION

3.1 Simulation study

In this simulation study, to empirically check the performance gap
across user subgroups when training recommenders with ERM,
we (1) use MovieLens-1M dataset [14] to train the recommender
and generate top-k recommendations (k=100); (2) simulate user
feedback on recommendations; and (3) re-train our recommender
with new data. Such a process is repeated 10 rounds to examine the
“long-term” effect of a recommender system.

3.1.1  User subgroups. On the MovieLens-1M dataset, users with
extensive interaction history tend to consume more long-tailed
items (pearson r = —.824,p < .0001). Therefore, inspired by Ab-
dollahpouri et al.[2], we identify user subgroups according to their
preferences on popular items. That is, grouping users according to
the ratio of popular items (i.e., top 20%) in their profiles: (1) Niche
users, who seek to watch long-tail movies (20% of total users), (2)
Diverse users, who have a broad taste on both popular and long-
tail movies (27% of total users), and (3) Blockbuster users, who
watch popular movies most of time (54% of all users).

3.1.2  Model setups. Following previous works [31, 33], we used a
two-tower model trained with softmax cross-entropy loss as the
backbone model architecture. In detail, let q;, ¢; be the embeddings
of queries and items after being encoded by two MLPs. For a batch
of positive training pairs {(qj, ¢ j)}jj\i 1> assume a batch of M negative

items {(ci)}?ﬁ ; is sampled uniformly from the candidate corpus.
Let 7 denote the temperature, the softmax cross-entropy loss is

_ 1 exp (q.TCj/T)
defined as L(0) = —5 Xje[n]log exp(qucj/r)JrZ;[M] @l erlD)’
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Figure 1: (a) Worst-case performance consistently drops in
ERM. However, such a trend would not be observed by mon-
itoring Average-over-all performance alone. (b) DRO shows
the promise to mitigate such amplification effects.

A recommender trained under the ERM framework seeks to find
the minimizer of the above loss, namely ggay = arg mingcg £(0).
The underlying assumption is that each training sample takes equal
weight of ﬁ in evaluating the hardness of the learning task. Intu-
itively, ERM assigns more weights to the majority subgroups and
less weights on the minority subgroups, which potentially leads to

then uneven recommendation performance across sub-populations.

3.1.3  Evaluation. After training the two-tower recommender with
ERM, we select the top-100 recommendations from full corpus. To
simulate users’ preferences, we used the f-preference feedback
model proposed in [30]. This model assumes binary feedback from
users, and we use top 20% interacted item as the threshold to dif-
ferentiate between popular and non-popular items. Specifically,
blockbuster users favors popular items while niche users favors
non-popular items. For diverse user, they have a probability of 0.75
finding popular items as relevant. To evaluate recommendation
performance, we use the averaged relevance of top-100 recommen-
dations over all users (AOA) and group-wise performance that is
calculated on each subgroup.

3.1.4  Results. As shown in Figure 1(a), we found a recommender
trained with ERM leads to performance gap among the target sub-
groups, where niche users receive the worst performance. After 10
rounds, the relevance of recommendations drops from 0.3 to 0.09,
while the overall performance keeps on the same level. Such ob-
servations raise concerns on the robustness of ERM-trained recom-
menders: certain user groups may receive decreasing performance
consistently in long-term and get marginalized if we do not focus
on the worst-case performance. It’s worth mentioning that the cur-
rent subgroups leads to rather balanced data splits (34%/34%/32%
of total ratings). In other words, predicting the preferences of niche
users is more difficult than blockbluster users, not simply due to less
training data in the niche user group. We also experimented with
unbalanced data splits and found even larger performance gaps. In
contrast, in Figure 1(b), we demonstrate that DRO is a promising
optimization framework to mitigate this issue, as it keeps the worst-
case performance at a consistent level in the long run. In the next
section, we elaborate how we leverage DRO for recommendation,
with highlights on specific challenges and our proposed techniques
that realize its full potentials.
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3.2 Distributionally-robust Recommendations

In this section, we start by introducing the “Min-Max” objective of
DRO as an alternative to the conventional objective of ERM. We
highlight a specific challenge when attempting DRO for recommen-
dations, namely, the loss variance issue due to extremely sparse
data. To address the problem, we propose an extension to DRO and
show the ease of implementation and flexibility of our method.

3.2.1 Distributional robust optimization. Consider the retrieval
problem with a labeled dataset (x,y) ~ D and a surrogate loss
function £(0; (x,y)), the ERM framework minimizes the expected
loss over the empirical data distribution:

rgneig{E(x,y)ND[L(e; (e, y)1} ¢Y)

Robustness to skewed sub-distributions is critical for recom-
menders, as in real-world systems the distributions of users and
items are consistently shifting [31]. Distributional Robustness Op-
timization [15] offers an appealing angle of tackling the robust
learning problem by optimizing the worst-case performance over
any subset of the dataset from a probability distribution #:

min{sup B, p[L0: ()]} @)
DeP

In theory, the worst-case optimization objective leads to a model
that has robustness guarantees around the uncertain set #, which
is referred to as distributional robustness. The choice of £ has a
trade-off between the richness of the uncertainty set for robust-
ness guarantees and the tractability of optimization problem (e.g.
for deep models). Empirical study has shown that on a real-world
applications, overly focusing on any specific subset is too conser-
vative as it subjects to outliers/noisy data and leads to pessimistic
performance [27]. Instead, a more applicable approach is to op-
timize for the uncertain set defined on mixtures of m subgroups
with distributions D1, Dy, ..., Dy, ie., P := {Z;"zl wgDg, w € A},
where A, is the m — 1-dimensional probability simplex. DRO with
group-aware training data (Group-DRO) minimize the worst-group
loss:

m
Opro = argin{ max Zl WoE (oD, [LO: )]} (3)
g=

For recommendations, the group setting is desirable, as it has
the potential to pose certain robustness guarantees on subgroups
with important product or societal implications, such as user demo-
graphics, item genre, etc. To solve the minimax problem in Eq. 3, an
online algorithm is proposed by Sagawa et al. [27]. On a high-level,
a weight distribution w is updated through exponentiated gradient
ascent with step size 1, where higher masses are assigned to sub-
groups with higher losses. Model parameters 6 are then updated
with stochastic gradient descent with learning rate y for each batch.

3.2.2  Reduce uncertainty in loss estimations. In practice, DRO is
appealing to our problem as it can be easily applied to training deep
models [15]. However, there are a few challenges specific to recom-
mendation: (1) the output space in recommendation is much larger,
making certain subgroups or sub-distributions even sparser. For
example, recommending items from a corpus of millions comparing
to selecting the next word from a fixed vocabulary of thousands
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Algorithm 1 Optimization algorithm for Streaming-DRO.

1: Input: Training iteration T, m subgroups, initial of model pa-
rameters 6%, subgroup weights w(©, initial subgroup losses
.£<0), step size 7, learning rate y, streaming learning rate a.

2 fort=1,..,T do

3 forg=1,...mdo

4: X,y ~ Dqg

s LY — LU (xy)

6 LY - fi TV vaLld

7: w(gt) — wét_l) exp(ﬂ[l(gt))

8: end for

9 forg=1,...mdo

0 wp w5 wy

1 o)  p(t-1) _ yw;t)VLN;t)
122 end for

13: end for

for language modeling; (2) user feedback data is more skewed and
long-tailed than the data used for image classification or language
modeling. These unique challenges make it uncertain whether the
success of DRO in other domains can be directly transferred to rec-
ommendation. For certain sparse subgroups, we suspect the weight
update according to surrogate loss will be unstable due to large
batch-to-batch loss variance (Algorithm 1, line 5). Empirically, we
found when training with DRO, the loss variance for worst-case
subgroups are indeed higher. Instead of re-sampling redundant
data from the sparse subgroups, we propose a streaming algorithm
to reduce uncertainty in loss estimations. The key idea is to keep
streaming estimations of the empirical loss at iteration ¢ for each
subgroup ¢, in a way that is similar to SGD with learning rate a.
We use £ instead of the raw surrogate losses £ to update w (Al-
gorithm 1, line 6-7). A small « would result in more conservative
updates as it is less affected by batches where sparse subgroups
do not exist. Empirically, we also found small learning rates (e.g,
a = 0.1) result in better performance.

4 EXPERIMENTAL RESULTS

We conducted offline experiments on MovieLens-20M and Amazon
Book Review [14, 22] to evaluated the effectiveness of optimizing
worst-case performance with DRO and the proposed Streaming-
DRO algorithm. After basic pre-processings of removing outliers
and noisy data, we partition the users into three user groups sim-
ilarly in Section 3.1.1. The resulting statistics of the datasets are
shown in Table 2. For each user, we sort their rating history chrono-
logically and split the rating history by ratios of 80%/10%/10% to
form the train, validation and test sets.

We use the two-tower DNN model introduced in Section 3.1.2
as the backbone model. For the query and item DNNs, each DNN
is a Multi-Layer Perceptrons (MLP) with ReLu activation except
the last hidden layer. The query and item embeddings are obtained
from L2-normalizing the last hidden layers’ activations. We grid-
searched the backbone model’s hyper-parameters (the learning
rate, softmax temperature (r) and MLP architecture) on validation
dataset based on Recall@100. For both datasets, we use MLPs with
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ML20M Amazon
Model | Blockbuster | Diverse | Niche | AOA | WORST | GAP | Blockbuster | Diverse | Niche | AOA | WORST | GAP
ERM 0.457 0.261 0.193 0.356 0.193 0.264 0.129 0.123 0.153 0.130 0.123 0.030
IPW 0.460 0.260 0.192 | 0.357 0.192 0.269 0.119 0.124 0.194 | 0.130 0.118 0.075
CB 0.460 0.266 0.199 0.360 0.199 0.261 0.131 0.130 0.175 0.136 0.128 0.047
DRO 0.443 0.282 0.218 | 0.358 0.218 0.225 0.132 0.151 0.160 | 0.142 0.132 0.028
S-DRO 0.451 0.288 0.222 | 0.365 0.222 0.229 0.139 0.152 0.161 | 0.146 0.139 0.022

Table 1: WORST, AOA (higher is better) and GAP (lower is better) performance measured by Recall@100.

Dataset ‘ Users ‘ Items ‘ Ratings ‘ User Splits ‘ Data Splits

ML20M | 138K | 15K 20.0M | (54%,29%,17%)
Amazon | 137K | 44K 5.6M | (52%,35%,13%)

(31%,36%,35%)
(48%,41%,11%)

— DRO
— S-DRO

Table 2: An overview of the datasets. ML20M and Amazon
refers to MovieLens-20M and Amazon Book respectively.
User Splits and Data Split correspond to the order of (Block-
buster, Diverse, Niche).

hidden layers of [128, 64], temperature z = 0.07, and a batch size of
1024. We trained the model using Adagrad [9] with learning rate
of 0.1. For each positive pair in a mini-batch, we uniformly sample
1024 items from the corpus as negatives in the softmax loss [29].
We compare with following learning frameworks for training the
backbone recommender:

o Empirical Risk Minimization (ERM): the objective is to opti-
mize for the overall performance (Eq. 1).

Inverse Propensity Weighting (IPW) [16]: training example
are weighted by the inverse of propensities.

Class Balanced Loss (CB) [8]: proposed for long-tailed im-
age classification task, adjusted to recommendation task by
adding the class-balanced term to the softmax loss.
Group-DRO (DRO) [27]: Distributionally-robust Optimiza-
tion framework with the training objective in Eq. 3.
Streaming-DRO (S-DRO): Group-DRO with streaming loss
estimations (Algorithm 1).

To make a fair comparison, we fix the backbone model archi-
tecture with the set of hyper-parameters best optimized on the
empirical validation distribution, i.e., favoring ERM. On top of the
backbone model, we further tune hyper-parameters for DRO, e.g.
step size 1. As indicated in Algorithm 1, the step size  controls the
updates of group weights. A larger n would result in faster accu-
mulations of weights on subgroups with higher losses. However,
we notice that if 7 is set too large (e.g., n = 0.1), the weight for
the worst-case subgroup is over-allocated and leads to insufficient
learning for other groups. We tune 5 tuned to the optimal range for
each dataset. For evaluations, we focus on the worst-case perfor-
mance over any subgroup measured by retrieval metric Recall@k
(WORST). As auxiliary metrics, we show the averaged-over-all per-
formance (AOA) and the gap between the best-case and worst-case
performance (GAP). We report evaluation metrics based on the full
item corpus to avoid potential bias using sampled metrics [17] and

results are averaged across 5 runs!.

10ur code is available at: https://github.com/google- research/google-research/tree/
master/robust_retrieval

Worst-case training loss

100 150 200 250

Training steps

300 350 400

Figure 2: S-DRO significantly reduce loss variances and
achieve improved worst-case loss than vanilla DRO.

Main findings. We found that DRO and S-DRO improve the
worst-case performance on both datasets (Table 1). For example,
comparing S-DRO to ERM, Recall@100 is improved by 14% on
ML20M and 13% on the Amazon. Baselines such as IPW and CB
do not consistently improve the worst-case metrics, and the per-
formance gap is even larger on Amazon. We suspect that this is
because IPW and CB weight training samples proportional to their
group density during loss optimization, such a re-weighting strat-
egy might fail when the task difficulty is not correlated with group
density (for example, on Amazon Blockbuster users account for
most of data splits, but they receive the worst performance). In
contrast, DRO and S-DRO mitigate the gap between best-case and
worst-case subgroups, while not harming or sometimes even im-
proving the overall performance. To get insights on how S-DRO
achieve better performance than vanilla DRO, Figure 2 illustrates
worst-case loss of the subgroup under DRO and S-DRO. As ex-
pected, the batch-to-batch loss variance for DRO is large. S-DRO
effectively reduces the loss variance for such sparse subgroup and
outperforms DRO in improving the worst-case performance.

5 CONCLUSION

In this work, we propose to address the problem of group fairness in
recommendations from the prospective of maximizing worst-case
performance. We propose a streaming optimization for DRO which
reduces the variance in loss estimations due to data sparsity in
recommendations. Through experiments on large-scale datasets,
we demonstrate the effectiveness of our proposed technique in
achieving improved worst-case and overall performance at the
same time. A future direction is to study alternative proxies for
group hardness during loss optimization, especially when surrogate
loss and end-to-end retrieval performance is not well-aligned [26].
Another direction is to develop adaptive weight-updating strategy,
in the similar spirit of meta-learning [25]. We expect these new
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directions to achieve better sweet spots by improving the worst-
case and overall performance for a wide range of applications.
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