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ABSTRACT. We study the action of the derived Hecke algebra in the
setting of dihedral weight one forms and prove a conjecture of the
second- and fourth- named authors relating this action to certain Stark
units associated to the symmetric square L-function. The proof ex-
ploits the theta correspondence between various Hecke modules as
well as the ideas of Merel and Lecouturier on higher Eisenstein ele-
ments.

1. Introduction

In the theory of modular forms, the case of weight one is exceptional in several
ways. The space of weight one forms, which can be interpreted as the global
sections of the Hodge line bundle @ on a modular curve X, does not admit a
simple dimension formula. This occurs precisely because the higher cohomology
group H' (X, w) can be nontrivial—that is to say, the space of weight one forms
manifests itself in two different cohomological degrees.

A conjecture proposed in [PV; ; ; ] asserts that, in situations
where spaces of automorphic forms occur across multiple cohomological degrees,
the different degrees are related by means of a hidden action of a motivic coho-
mology group. The last mentioned paper [H V], in particular, formulates this story
in the context of weight one forms for the modular curve and translates the gen-
eral conjectures into a numerically testable statement. This statement, which is
summarized in what follows, is the main topic of this paper.
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1.1. The Shimura Class

Although the general definition of derived Hecke operators shall not be recalled
here, one crucial ingredient in their construction is to take the cup product with a
certain distinguished class in coherent cohomology, the so-called Shimura class.

As explained in detail in [ §3.1], the Shimura class attached to a prime
N > 5 arises from the covering X{(N) — Xo(N) of classical modular curves,
which (at least away from elliptic points) is étale with deck group (Z/NZ)* and
thus furnishes an element

&> € Hy(Xo(N), (Z/NZ)* ® Z[1/6)).

(Here, and in what follows, modular curves will be regarded as schemes over the
ring Z = Z[ﬁ] to avoid any technical issues.)

Let p > 3 be a prime, let p’ be the highest power of p dividing N — 1, assume
t > 1, and fix a surjective discrete logarithm

log: (Z/NZ)* — Z/p'Z. (1)

This choice determines a class & := log(6>) € He][(XO(N), Z/p"). Restricting
to the fiber product of X((N) over Spec(Z) with Spec(Z/ p'Z), denoted by X =
Xo(N) 7,/ ptz., the resulting class can be pushed into Zariski cohomology using the
inclusion of Z/p'Z into the étale sheaf represented by G,: in this way & can be
viewed as a class in coherent cohomology. It is called the Shimura class, denoted
(by a slight abuse of notation)

S e H' (X, 0g) =Hom(S2(N), Z/p'Z),

where the last identification is provided by Serre duality, and S>(N) is the space
of weight N cusp forms (with g-expansions integral at p). Note that G depends
on N, on p, and on the choice of discrete logarithm.

1.2. The Main Result

Letge H 0(X 1(d), w) be a Hecke new cusp form of weight 1, level d, and Neben-
typus x, and let g* € H 0(X1(d), ) be the dual newform whose Fourier expan-
sion is related to that of g by complex conjugation and whose automorphic rep-
resentation is obtained from that of g by twisting by x ~!. Assume for simplicity
that the primes N and p do not divide 6d.

Let pg : G —> GL(L) =~ Aut(V,) be the odd two-dimensional Artin rep-
resentation attached by Deligne and Serre to g, acting on a two-dimensional L-
vector space V, for a suitable finite extension L of Q@ (containing the Fourier
coefficients of g and contained in a cyclotomic field). Let Ad(pg) denote the
three-dimensional subrepresentation of Endy (V,) consisting of L-linear endo-
morphisms of V,, of trace zero, equipped with the natural action of Gg by conju-
gation.

Let R be the ring of integers of L with 6N inverted. The product g(z)g*(Nz)
is a weight 2 cuspidal modular form of level Nd with trivial nebentypus character
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and coefficients in R, and can thus be viewed as an element of the space S>(Nd) =
H%(Xo(Nd), Q") of global regular differential forms. Let

G(z) :=TrN(g(2)g*(N2)) € S2(N; R) = H'(Xo(N)/r, ")

denote the trace of g(z)g*(Nz) to the space of modular forms of weight 2 and
level N.

The pairing between G and the Shimura class G arising from Serre duality
gives rise to a numerical invariant

(G.8)eR/p',

see Section for details. The conjecture of [HV] relates this quantity to the
discrete logarithm of a suitable Stark unit attached to g, which we now proceed
to describe.

The image of the integral group ring R[Gg] in Ad(p,) endows this space with
a Galois-stable R-sublattice, which is denoted by Ad(p,)°, and whose R-linear
dual is denoted by Ad*(pg)°.

Let H denote the finite extension of Q which is cut out by Ad(p,). Because
complex conjugation acts with eigenvalues 1, —1, and —1 on this representation,
Dirichlet’s unit theorem asserts that the R-module

Uy i= (O} ® Ad*(py)°)C0

is of rank one (cf. Lemma 2.7 of [HV]). The choice of a prime N of H above
N gives rise to a Frobenius element o, whose image under p, is a natural el-
ement of Ad(p,)° which is invariant under the conjugation action of oy. Eval-
uation at oy thus gives rise to a homomorphism from Ad*(p4)° to R which is
on-equivariant (for the trivial oy action on R). Combining this evaluation with
the reduction modulo A/ gives a “mod N reduction map”

redy : Ug := (O ® Ad*(0g)°)9¢ — (O /N)* ® R)V=' = (Z/NZ)* ® R.

A version of the main conjecture of [HV] (Conjecture 3.1 in loc. cit.) may be
phrased as follows.

CoNJECTURE 1.1. There exists an integer m =mg > 1 and ug € Uy such that, for
all primes N and p as before,

m - (G, G) =log(redy (ug)).

Note that both sides of this conjectured identity belong to R/p’ and that both
depend linearly on the choice of discrete logarithm made in (!). The validity of
Conjecture is thus independent of this choice. Similarly, both sides of the
conjecture are independent of the choice of N. (In loc. cit. the conjecture was
formulated differently and was slightly more precise about the primes dividing
m; the version is more explicit and is what we will prove in certain cases.)

This article presents a proof of Conjecture 1.1 when g is dihedral under certain
simplifying assumptions on ramification. Recall that g is said to be dihedral if the
Galois representation p, is induced from a ray class character 1 of the Galois
group of an (imaginary or real) quadratic extension K of Q. In that case g = 6y,
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is Hecke’s classical theta series associated to 11, that is, the modular form whose
L-series is given by L(K, vr1). We assume throughout that 1#12 # 1, as this implies
that 0y, is cuspidal.

Let D denote the discriminant of K and 8 = (+/D) its different.

THEOREM 1.2. If K is imaginary, then assume that D is an odd prime and that |
is unramified. If K is real, then assume that D is odd and that {1 has conductor
dividing 6. Then Conjecture is true for g = 0Oy, .

REMARK 1.3. The proof of Theorem described in Section 5 shows that the
integer m of Conjecture divides 24 in the real case and that it divides 6 in the
imaginary case unless the order of wlz is a power of a prime ¢, in which case m
divides 6£. No claim is made that these bounds for m are optimal; they are merely
what comes directly out of the proofs.

The key idea in the proof of Theorem is to express G as the theta lift of
an appropriate Heegner cycle, and to compute the image of G under the adjoint
of the theta lift as a combination of higher Eisenstein elements. Although the
latter computation is performed in full generality, the expression for G in terms
of Heegner cycles has only been worked out in a nontrivial simple scenario.

In particular, the ramification conditions force the following simplifying fea-
ture. Let /] denote the Gal(K /Q)-conjugate of ¥ and set ¥ = /1 /. Then

pg ® pgr =Indfj (1) ® Indfj (V) )

decomposes as the direct sum of the induced representations of two characters
of Gk, the trivial character 1, and an unramified character . R. Zhang’s forth-
coming Ph.D thesis [Zha] will contain a proof under less restrictive ramification
conditions for K imaginary. When K is real, we envisage a method for calculat-
ing G invoking Kudla—Millson theory, but in order to cover the general case, one
needs to solve some issues related to the regularization of the theta lift from the
split orthogonal group; see Section 1.4 for more details.

1.3. Trivial Cases

If K is imaginary quadratic and N = 91- 9 splits in K, then u, belongs to (O}, ®
Indg (w))GQ, whereas oy belongs to Indg (1).If K is real quadratic and N 1is inert
in K, then u, belongs to the unit group 0™ of K, on which o acts as —1. In both
cases the regulator redy (ug) of Conjecture 1.1 vanishes trivially.

This is consistent with the fact that the modular form G is identically zero

in these two scenarios. Indeed, the main theorem of | ] asserts that, for all
newforms f of weight two on I'g(N),
(G.f)*=C-L(f.g.8". 1. 3)

where C is a product of local automorphic terms and L(f, g, g*, s) is the triple
product L-series associated to f, g, and g*. The Artin formalism applied to (2)
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implies that

L(f,g,g*,S)ZL(f/K,S)'L(f/K,'(/f,S), (4)

where the two L-functions appearing on the right-hand side are the ones as-
sociated to the base change of f to K, twisted by suitable characters. Since
(d,N)=1,both L(f/K,s) and L(f/K, v, s) satisfy a functional equation with
s =1 as the center of symmetry and the global sign (%). This sign is —1, and
hence

L(f/K,1)=L(f/K,¥,1)=0.
It follows that (G, f) =0 for all f, and hence that G = 0.

1.4. Outline of the Paper

The interesting cases of Theorem occur when (%) =1, that is, when

e K is imaginary quadratic and N is inertin K;
e K isreal quadratic and N is splitin K.

The body of the article is devoted to the proof of Theorem in these nontrivial
cases referred to as the definite and indefinite cases respectively. The main idea
is to transfer the computation to a suitable (definite, resp. indefinite) quaternion
algebra B over Q by means of a theta lift ®:

® : modular forms on B — S>(N).

This allows the identity in Conjecture .1 to be recast on B. Indeed, G and S are
obtained via ® from objects arising (respectively) from
(i) CM points or real quadratic closed geodesics;
(ii) Siegel units.
Let us examine these two key ingredients in further detail.
Ingredient (i), in general, takes the form

G =¢ O(Zg y), ®

where Zk y is a suitable Heegner cycle and the symbol “=g” means equality
up to modular forms that pair to 0 with the Shimura class (see Section for
some details). More precisely, Zg y is a formal linear combination of supersin-
gular points in characteristic N, obtained as a weighted combination of the mod
N reductions of CM elliptic curves in the definite case (Theorem 2.2), and a linear
combination of real quadratic geodesics in the homology of X¢(N) in the indefi-
nite case (Theorem 3.1). Equality (5) can be interpreted as coming from a certain
see-saw (Remark 1.4) although we give a rather direct proof.

The content of (ii) is the computation of the image of the Shimura class under
the adjoint (dual, in other words) of the theta lift. The outcome is an expression

O*(6) = explicit higher Eisenstein element Uy . (6)

In the definite case, {y is obtained by restricting a suitable Siegel unit to the
supersingular locus in characteristic N. In the indefinite case, {y is built out of
the modular symbol arising from the (logarithmic derivative of the) same Siegel
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unit. In all cases, the basic idea of proof is that ®* (&) is uniquely characterized
by its behavior with respect to Hecke operators and so can be proved to equal Ly,
up to an irrelevant ambiguity, by a purely Hecke-theoretic computation. Most of
the work for the proof of (0) is given in Section 4, building on ideas of Mazur,
Merel, and Lecouturier on (higher) Eisenstein elements and the classical theory
of modular units and modular symbols.

Combining (5) and (6) leads to an identity of the form

(G,8)=(0(Zk y), 6) = (Zk,y, O (E)) = (Zk .y, Un). (N

In the definite setting, the right-hand quantity can be interpreted as the discrete
logarithm of an elliptic unit, obtained by evaluating the Siegel unit attached to
iy on the CM divisor attached to Zg y . In the indefinite setting, the regulator
involves only the logarithm of the fundamental unit of K, and this fundamental
unit emerges in (Zg v, {y) from the eigenvalues of certain hyperbolic matrices
in ['o(N). The details of these calculations, concluding with the proof of Theo-
rem |.2, are supplied in Section

It is worth insisting on a crucial feature of the dihedral case, namely, that the
desired units can be constructed explicitly as CM values of modular units in the
definite case or as eigenvalues of suitable matrices in SLy(Z) in the indefinite
case. This is what accounts for Stark’s conjecture being known for the adjoint L-
functions of dihedral forms. It remains open, however, for the adjoint L-functions
of so-called exotic weight one forms with nondihedral projective image. Although
the existence and essential uniqueness of the predicted unit is still guaranteed by
Dirichlet’s unit theorem, no analogue of the Kronecker limit formula relating it
to L-functions attached to g is available. The numerical experiments described in
[HV] test Conjecture |.! numerically, but only in CM dihedral cases that now fall
under the purview of Theorem 1.2. The article [Mar] provides numerical evidence
for Conjecture in several more interesting instances where g is exotic.

REMARK 1.4. It may be helpful to indicate the see-saw that underlies the crucial
computation (5). We emphasize, however, that the proofs in Sections 2 and 3 do
not use this in any explicit way." Here we will proceed purely formally.

Set

G(L(2) x L(2)) ={(g1, 82) € GL(2) x GL(2), det(g1) = det(g2)}.

We examine the following see-saw:

0;”_)1 R0, € [G(L@) x LQ)] [GO(B)] ~ (B x BX)/GL(L) 5 0(6)
o T ><
j
Se [GL@)] [GOW]) x O(Wy))] S91p X ¥y

The arrow ©* from lower-left to upper-right is a realization of the Jacquet—
Langlands correspondence, and we denote its formal adjoint simply by ®. Of

'However, the representation-theoretic perspective appears to be indispensable to treat cases in which
the Hecke characters have more general ramification.
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course, G is not in fact a characteristic zero modular form, but let us proceed as if
it were; in the end the proof uses integral normalizations of the 6-correspondence
to get around this. The see-saw principle and adjointness respectively give

(0,510y;1,8) = (Zk.y, ©7(®)) = (O(Zk ), &),

where Zg y arises from pushing forward 12 x 112 under j. In the special case
Yo=Y ! this recovers (5) from the point of view of the see-saw formalism.

1.5. Notation

We will fix here some notation that is used throughout the paper. This notation
will also be introduced where we use it; we have gathered some of it here as a
convenient reference.

Throughout the paper, K denotes a quadratic field with ring of integers o and
discriminant D. In Section 2 this field is imaginary, and in Section 3 it is real.
The symbol x > x” denotes the nontrivial automorphism of K, and we will allow
ourselves to apply it to various associated constructions (elements of K, ideals,
characters, etc.)

The narrow class group of K (i.e., the usual class group in the imaginary case)
is denoted by C. In Section 3, Cp will denote the ray class group of K allowing
level §, the different ideal of K. The symbols | and ¥, denote characters of Cp
with inverse central characters, and we put

V12 =Yy, Yy = Y1, (®)
which in all cases descend to characters of C. In the special case ¥2 = | ! which
is germane to the proof of Theorem 1.2, the definitions simplify to

Yio=1, Viy =y1/y =1, say. 9

We will use L for a coefficient field for characters ¥ as before, that is, L is
a number field containing the values of v : C or Cp — L*. In this context, R
will denote a suitable ring of integers of L (possibly with denominators at some
primes).

We will often denote by g (respectively /) the dihedral forms associated to ¥
(respectively ) with associated Galois representation p, : Gg — GL(V,). In
this situation, we will often denote

G :=trace to level I'g(N) of 91//1_1 (NZ)GIII{' (2),

which in particular becomes the trace of 6y, (2)6 ! (Nz) in the case Yo = ¥ I
1

The integer N > 3 always denotes a prime, and Z denotes the ring Z[éiN]. The
modular curves Xo(/N) and X{(N) are understood” to be schemes over Z. We
write Helt(X o(N)) and Hé(X o(N)) to denote, respectively, the étale cohomology

ZNote that the distinction between “stack” or the associated coarse moduli scheme will make very
little difference for our purposes; the cover X1(N) — Xo(N) is étale only when considering the
stacks, but in any case we are interested only in the (Z/ p’)-subcover which is also étale over the
scheme.
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of Xo(N) as a scheme over Z, and the Betti cohomology of the Riemann surface
Xo(N)(C).

We define the space of cusp forms S>(N) and the space of modular forms
M>(N) as (free) Z-modules accordingly and define

S>(N)Y =Hom(S>(N), Z)

as their Z-linear duals. For R, a Z-algebra S>2(N; R) := S2(N) ®z R is simi-
larly defined as the space of cusp forms with coefficients in R, and likewise for
M>(N; R). For an element f € M>(N; R), we will denote by f(d) € My(Nd; R)
the modular form with g-expansion f(g%).

Let p be an odd prime > 5 and let p’ be the largest power of p dividing N — 1.
Fix a surjective “discrete logarithm”

log: (Z/NZ)* —> 7/ p'Z,

where p is the largest power of p dividing N — 1. Note that this logarithm factors
through the quotient G y of (10)

Gn:=(Z/NZY* J{£]1), (10)

since p is assumed to be odd. This logarithm also extends uniquely to the mul-
tiplicative group of the quadratic extension IFy> and this extension will also be
denoted by log. All formulas will be independent of the choice of logarithm: both
sides will scale the same way if one alters it.

REMARK 1.5. In the indefinite case the prime N splits in K and the correct defi-
nition of the discrete logarithm entails the choice of one of the two prime divisors
of N. This choice is denoted by 91 and the need to pin down a choice introduces
a “breaking of symmetry” in the final formula Proposition as well as in the
intermediate calculations. The choice intervenes at the beginning of Section

Given two modular forms F and G of level NV, the notation
F=gG

means that “F and G have the same pairing with the Shimura class.” (Strictly,

the prime p should have been included in the notation, but the choice of p is

understood to be fixed.) More precisely, F =g G means that:

(1) F, G lieinside M>(N; R) for R the ring of p-integers in some algebraic num-
ber field, and

(2) the reductions F,G € M>(N; R/p'R) = H*(Xo(N)g, Q') have the same
pairing with & under the Serre duality pairing

HY(Xo(N)g)pr, @Y ® H (Xo(N)g/pt, ©O) = R/ p' (11)

obtained by taking the cup product to H'(Xo(N)g Ipts Q') and using the
“trace” map on the latter.

3In the current setting, if # > 1, this can be defined using Grothendieck duality for the structural mor-
phism Xo(N)g /pt = SpecR/p!, after for example adding auxiliary level structure to remove

any “stacky” structure. This identifies H! (Ql) with Hom(R7, O, R/p"), homomorphisms in
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This notion is readily seen to be independent of R, that is, compatible with exten-
sion of scalars in the obvious sense.

2. A Trace Identity for Definite Theta Series

In|[ ]Jand [ ], Gross and Zagier proved a formula for the central critical
value (resp. derivative) of the L-function attached to the convolution of a cusp
form f of weight 2 and a theta series g of weight 1 associated to a character of
an imaginary quadratic field K. A substantial step in the proof of both formulas
is the computation, for a given prime N, of the trace of the product g(z) E(Nz) of
g and a suitable Eisenstein series E to the space of modular forms of level N.

In this note we need to carry the computation of the trace of the product
g(z2)h(Nz) of two cuspidal theta series attached to ray class characters of K. We
did not attempt to adapt the computations of [ §7,8,9] to the present setting,
but rather follow a different method invoking the Weil representation of SL> (A r)
(where A ¢ denotes the ring of finite adeles) on the space of Schwartz functions
on the adélic points of the underlying quadratic spaces.

2.1. Setup on Heegner Points

The computation will be carried out in slightly greater generality than in Theo-
rem 1.2 of the . Let K be an imaginary quadratic field of odd discrim-
inant D with maximal order o, and let C = Pic(o) denote the class group. For /
an ideal, note that the image I’ by conjugation defines the same class in C as 7.
Denote by a the number of distinct prime factors of D.

Let N be an odd prime with the property that —N is a square modulo D.
When D is prime, as assumed in the , this condition is equivalent to
N being inert in K; in general it always implies that N remains inert but is a
stricter condition.

Fix an algebraic closure ﬂ, and let IF 2> be the subfield of size N 2

Choose an auxiliary odd prime g such that ¢ = —N (modD). An elementary
computation of quadratic symbols shows that ¢ is split in K. Assume throughout
that g is such that the ideals q, q in K above ¢ are principal. The existence of
such ¢ is guaranteed by Cebotarev density theorem.

A calculation with Hilbert symbols (cf. [ §2.1]) shows that

B~K+Kj with j?=—gN and zj=j7 forallze K (12

is the definite quaternion algebra over Q of discriminant N. Let b — b’ denote
the canonical anti-involution on B; it coincides with complex conjugation when
restricted to K. Let n(b) = bb’ denote the reduced norm on B.

An orientation on a maximal order M in B is a choice of homomorphism

0:M— Fpp

the derived category of R/p’ modules. In particular, each element of H 1@y induces (by pas-
sage to H%) amap R/p' — R/p', that is, an element of R/ p".
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onto 2. Note that M admits exactly two possible orientations. Two oriented
maximal orders ./\_/11 = (M, 01), ./\;lz = (M3, 0p) are equivalent if there exists
an isomorphism i : M| — M satisfying 0 =05 0.

Write Pic(B) for the set of equivalence classes of oriented maximal orders. By
a classical result of Deuring (cf. [ §42.3]), Pic(B) is in bijection with the set
& of isomorphism classes of supersingular elliptic curves over Fy as follows: we
associate to an elliptic curve E the order End(E), which acquires an orientation
by considering its action on the tangent space.

Fix a basepoint Me Pic(B) containing 0 @ oj. Define the map

¢ : Pic(o) — Pic(B) (13)

that takes an ideal class I to the oriented maximal order ((/) = I _1./\;11 .

2.2. Statement of the Trace Identity

Define Div(€) to be the module of Z-valued functions on Pic(B), equipped with
its natural action of the Hecke algebra T as described for example in [

§41.1f M € Pic(B), then let M denote the underlying unoriented order and set
Wy = %l./\/lX |. Denote by e, € Div(€) the characteristic function of x € Pic(B)

and set as in the So=>, 5}—; € Div(€) ® Q. The space Div(E) is
endowed with a natural symmetric bilinear form
(,):Div(€) x Div(€) — Z, (ex, ey) i= Wybyy, (14)

relative to which the Hecke operators 7, are self-adjoint for all £, including for
¢{=N.

The Jacquet-Langlands correspondence identifies Div(€) and M, (Ig(N)) as
Hecke modules. This identification can be described explicitly by means of the
®-correspondence, which is the Hecke-equivariant map

® : Div(€) @1 Div(E) = M2 (T'o(N)) (15)
given by (cf. e.g. [ ]and [ Prop. 5.6])
1
O(¢1 ® $2) = {1, Xo) {2, Xo) + Z:l(fbl, Tng2)q". (16)

REMARK 2.1. Formula (16) makes it clear that

O(¢1 @ ¢2) =O(h2 ® ¢1),

because each T), is self-adjoint, including for m = N.

Given a character v : Pic(0) — L* with values in some finite field extension
L/Q, define

[W]=u@)= Y yul)eDivE)QL. a7

1 €Pic(o)



Derived Hecke Algebras for Dihedral Weight One Forms 11

The main result of this section is the following. Let 8, denote the theta series
associated to ¥ as recalled in (22). Note also that 6y = Oy-1, because the char-
acters of Pic(0) are anticyclotomic in the sense that ¥ = 1//_1; this accounts for
the discrepancy in phrasing between the following statement and the analogous
Theorem in the RM scenario.

THEOREM 2.2. Let yri and rp be characters of C, and let 6y, be the newforms

associated to ; (equivalently: to 1//i_1). Put Y12 = Y12, Yo = Y1y, Then
there exists pg such that, for any N and any p > po with p | N — 1,

TN P Oy, (N2)By, (2)) =a 4- O([¥12] @ [Y12]), (18)

where, as in (5), the notation “f =g g” means that both modular forms have
the same pairing with the Shimura class of level N. If D is prime, (18) is a strict
identity (not just up to S) for all primes p.

We expect a similar trace identity to hold for general ray class characters 1, ¥»
of K with opposite central character, which amounts to allowing the ring class
characters {12, ¥12 to have arbitrary conductor ¢ > 1. In such generality, how-
ever, we do not expect the constant to be as simple as C =4 and (18) should hold
up to a suitable constant C = C (Y1, ¥») that depends on V1, ¥» but not on N.
The reader is referred to R. Zhang’s forthcoming Ph.D thesis [Zha] for the proof
in greater generality in the adelic language.

Theorem and Theorem cover the simplest nontrivial settings in both
definite and indefinite cases. The proofs are different because we chose to be as
direct as possible in each case and avoid repetition, but the approaches in Sec-
tions 2 and 3 are in some ways complementary.

2.3. Summary of the Proof

Theorem will be proved subject to three propositions given in what follows;
these will be proved in the remaining subsections.
Define O C B via

O0=0(q):=0doj. (19)
An elementary computation using [ 1.4.7] shows that O = O(q) has
square-free discriminant DNg, and therefore (cf. [ 3.5.3]) O is an Eich-

ler order, that is to say, the intersection of two maximal orders. Let us fix now and
for the rest of this section a maximal order M D O as well as an orientation on it.
All other orders containing O can be obtained from M as

My =02 "Mp, (20)

where d ranges over positive divisors d | Dg and 0 is an ideal in o of norm d.
This is because locally at every prime ¢ dividing Dgq there are exactly two local
maximal orders containing O ® Z: one is obtained from the other by conjugating
by any element of norm ¢ normalizing O ® Z; (cf. e.g. [ §3.5)).
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If I, I, are ideal classes for o, then we can form
LOL=hLL®I115jCB.

By definition, the left-hand side means the additive subgroup of B generated by
all threefold products i - 0 - i5.

We regard K and B as quadratic spaces by means of the norm and reduced
norm respectively. For every ideal [ in either V = K or B, let

br=6)=Y ¢ @1
ael
denote the theta series associated to I; here n(I) stands for the single positive
generator of the ideal of Q spanned by the norms of all elements in /. The theta
series 05 is a modular form of weight [V : Q]/2. With this normalization, 8; only
depends, in the case V = K, on the class of I up to principal ideals, since 6; = 01
for any x € K. Moreover, for any character of C,

Oy =Y v o (22)
I1eC
is the new theta series associated to i, a classical modular newform of weight 1,
level D, and nebentype character x g, the quadratic Dirichlet character associated
to K/Q. (As mentioned previously, in the current situation one could omit the
inverse on the right-hand side, but the formulas with this convention are valid
under less restrictive hypotheses, and this facilitates comparison with the RM
case.)
For any d > 1, recall that 0D (g) :=0(g?). We will include forward references
to propositions in the RM case that play a similar role, although because of the
slightly different setups the statements are not entirely parallel.

PROPOSITION 2.3 (See Section 2.4, cf. also Prop. ). For any pair of classes
I, I of C, we have
1
TN e N () = 2 6 Mab). (23)
d|Dq

where, on the left, Tr is the trace from level To(DN) to level To(N), and Mg is
as in (20).
PROPOSITION 2.4 (See Section 2.5, cf. also Prop. 3.4). For any pair of ideal classes
1, J, we have
O(J' MI)=2-0O(e; @ey). 24)
Here ey, ey are as in Section 2.2, where we use t of (13) to identify 1, J with

elements of Pic(B).

For every quadratic character x of C, set

N .
GDN(X)—Qwrlx Oy;1, @and Gpy:= > GonGo. (29
x€(C/C*
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In the case when D is prime, the only quadratic character is trivial, so Gpy(x) =
G pn, and the following proposition is vacuous.

PrOPOSITION 2.5 (See Section 2.6.). With the notation of (5),
oM (Gon (X)) ~e Ty (Gpn (X))

for all quadratic characters x, x' of C, so long as the prime p is sufficiently large
relative to D.

Let us see how these three results imply the theorem. For every choice of a qua-
dratic character y, we have

Gon GO = Y xUDyDya()e;6;. (26)
1,JeC
But Zx x (1J) is zero unless I J is a square inside C; in that case, it equals #C[2].

Moreover, any pair (I, J) with IJ € C2 is of the form (I 12’, 11 1) for precisely
#C[2] pairs (11, I) and then ¢ (I) Y2 (J) = W]z(]])l//lz/(lé). It follows that

Gon =Y Vi)Y INOUL )™ (1 13). @7
I1,LeC
Using Proposition 2.3 we get
1
TG =5 ) 1//12(11)1#12’(15)<Z 9(0_111/\/1120))- (28)
I,,hLeC d|Dq

Note, however, that all terms for every fixed d in (28) are equal: this follows
after reindexing (11, I) < (01, o) and recalling that the class of the ideal
has order 2 in C when d | D, whereas the class of q is trivial. The number of such
terms is equal to 2! with a the number of prime factors of D. Hence

TV (Gpn) =2 Y)Y (13)0 (LM )

1
=2 YDy UNOUIMD). (29)
1
Proposition 2.4, as well as the symmetry of ® in its arguments, can be invoked to

transform the right-hand side to get

TN (Gpn) =21 Yy Dy, ()8 (er, @ ery)
=2"o(y'1® [¥y ).

This directly yields Theorem 2.2 when D is prime, as in that case the order of
C is odd and hence G pny = G. When D is composite, Proposition 2.5 shows that
we can replace Gpy on the left with 241G pn (1) if we are only interested in
pairing with the Shimura class, since C[2] has rank a — 1 by genus theory (cf. e.g.
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[ §13]). Unwinding the notation
TN (0,1 (N2)0y-1(2) ~e 4- O, 1@ [y ).
This proves Theorem 2.2 after recalling that 6y, =6 ol

2.4. Proof of Proposition

We must show that

1
TwoNo (L L) (Ih 1) = 5 > 0(hiMah). (30)
d|Dg

Let T, denote the Hecke operator at ¢ and Trxf the trace map from modular
forms of level N; to level Ny for any N | N>. Then
DNq ,(Nq) _ (N) _ p(N) (N) _ Hp(N)
Trpy 0 0 =140, =0;, +9]q’_291 ,
where the second equality follows from, for example, [ §2] and the third
since we are supposing that q is principal. Hence
DN N DNq (N N
Ty 0,600 =N e, (TS D) = 21N e, 00V

Taking J1 =111, o =11 Ié and switching sides, we get

1
N DN
Tr]lgzve,],zel(I 122 =Ty 10,01, 31

where we noted that 6,0, = 91112@1112/]- = 91]129(Nq) since j2 = —gN. So

n
Proposition 2.3 reduces to the following.

PROPOSITION 2.6. For any pair of classes Iy, I, of Pic(0),

DN
Ty 1 Onon) =Y 0(hMal). (32)
d|Dgq
In order to prove Proposition 2.6, note that—with V = B or K as before—the

rule that associates to every lattice L a modular form 8, of weight dim(V') /2 may
be extended to the space of Schwartz functions on V ® A where A s denotes
the ring of finite adeles of Q (cf. e.g. [ ] for background). Namely, such a
function may be identified with a function ® supported on some lattice L C V
and constant on the cosets of a sublattice of L. We can form the 6-function

O =) ®(2)q° (33)
zeV
with O the norm form (or, as we will actually use, a rescaling of it). This is
compatible with the previous definition in the sense that 6z = 6, where [L] is
the characteristic function of the closure of a lattice L inside V ® A ¢.

The function ® +— g is equivariant for the action of SL>(A ) on Schwartz
functions arising from the Weil representation on one side, and the natural action
on the space of modular forms on the other; this is a straightforward consequence
of the adelic interpretation of 6-series; we will give a more detailed sketch of
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a similar equivariance in the more complicated RM setting in Section 3.5. This
equivariance implies that the trace, from level DNg to N, of 67,01, can be com-
puted by first computing the corresponding trace

Trll\),Nq of the Schwartz function [I; O1>]. 34)

Proposition thus follows after computing the trace of [1;O1;] with reference
to the SL (A r)-action on Schwartz functions, taking into account that we have an
equality of rescaling factors n(I{My1,) = n(1;O1,) (this can be readily deduced
from the fact that 77, I» are locally principal).

This Weil representation is a tensor product of representations of SL>(Q¢) on
Schwartz functions on V ® Q;. We review the formulas in Section and will
summarize them here. Given a prime £, let i : Q; — C* be the restriction of the
standard character of A/Q which is given by x — ¢>™* on R and is trivial on
each Z . In particular y is trivial on Z; but not on ¢=17,. For any ¢t € Qy, denote
m(t)=(}!) and set w= (% ). Given a Schwartz function ®; on V ® Q:

m(t) - @p(x) = u(t{x,x))Pe(x) foranytr e Qy,

w- De(y) = n/v O () ((y. x)) dx.

®Q¢

(35)

where, in particular, y; = 1 for £ not dividing N. Here dx is taken to be the self-
dual Haar measure.

The desired trace from (34) can be calculated piecewise at every prime £ | Dg
and then packaging together the local outputs.

LEMMA 2.7. Let £ be a prime divisor of Dq. Let (W, (,)) be the quadratic space
over Qg given by K ® Qg equipped with the norm form divided by N(I11,),
and let L C W be a maximal integral lattice. Let (W', L', (,)") be obtained from
(W, L,{,)) by multiplying the form (,) by —qN.

Then—for the Weil representation action of SLa(Qy) on Schwartz functions on
W @ W’'—the characteristic function 1pgp of L @ L' is invariant by To(£) C
SLy(Zy), and

SLy(Z
L VR VRS VI (36)

where M are the two self-dual integral lattices containing (L @ L').

Before we prove Lemma 2.7, we explain why it implies Proposition 2.6. There
is no loss of generality in choosing 11, I relatively prime to Dgq. It follows from
(12) that W @ W' is isometric to B ® Q, with its reduced norm form, and this
identification carries L @ L’ to the closure of I;OI,. Thus, combining together
(37) at all primes £ | Dg, Proposition 2.6 follows after noticing that if we take the
self-dual lattice M to be the localization at £ of the global maximal order My
for some d with €1d, then M_ = My, ® Z;.
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Proof of Lemma 2.7. Write e for the characteristic function of L & L’ and e* for
the characteristic function of the dual lattice (L @ L’)*. Note that we have inclu-
sions

(LeLYyc My, M_c(LaL)*,

with both inclusions of index ¢, and indeed the quotient (LL%LL,)* is isomor-

phic to (Z/ ¢7)? where the induced Qy /Z¢-valued quadratic form takes the form
(x1,x2) > ¢! ()cl2 — x%); in these coordinates M corresponds to x; = £x;. In-
variance of e by ['g(£) follows readily from the definitions. Now a set of coset
representatives for ['g(£) in SLo(Zy) is

{wyU{wm@®)w :t € Z/LZ)}.

Note that we = £~ le*:

— for y ¢ (L ® L)*, we(y) is the integral on L & L’ of the character w({y, x)),
which vanishes since that character is not trivial;

— for y € (L ® L')*, we have we(y) = vol(L)vol(L’) = ¢~! (the self-dual Haar
measure on W @ W’ assigns mass £~ to L @ L').

It thus follows that
< Z m(t))we: ls,

teZ/tL

where S ={x € (L® L)*: (x, x) € Z¢}. But S is just the union of M and M _,
and also My NM_ =L@ L. Thus 1s =1, + 1r_ — e, and we deduce that

Tre=we+wlp, +wlpy —we=1pr + 1. 37
(]

2.5. Proof of Proposition

Let E; denote the supersingular elliptic curve associated to ¢(/) and e; for the
corresponding element in Div(£). Set w; = w,(r).

In order to prove (24), it suffices to show that both sides have the same Fourier
coefficients for all m > 1. The mth Fourier coefficient of the r.h.s. of (24) is

2a,, (O(e; @ ey)) =2(Tiwer, eg) =2wy By y(m). (38)

Here B(m) is the mth Brandt matrix and By _j(m) is the entry in B(m) associated
to E;y and Ej (cf. [ §1, §2]). The equalities in (38) follow from the defi-
nition of ® in (16) and [ 4.4,4.5, 4.6]. Since 2wy = |Aut(E )|, it follows
from [ Prop. 2.3] that 2w B,y (m) is also equal to the number of isogenies
of degree m from the supersingular elliptic curve E to E; see also the proof of
[ Prop. 2.7 (6)] on p. 128 of loc. cit. The Z-module of such isogenies is
identified with J~' M1, where the degree is identified with z — n(z)n(J)/n(I)
(cf. [ 2.1] combined with the definition of M;; on p. 118 of loc. cit.). Con-
sequently,

24, (O(e1 ®ey)) ={z € I MI :n(@n(J)/n(I) =m}|.
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This in turn is the mth Fourier coefficient of the Lh.s. of (24), as J 1 MI is
homothetic to J' M1 .

2.6. Proof of Proposition

Recall that this proposition is used only for the case of D composite, and thus is
not strictly necessary, for example, for the statement of Theorem

Each quadratic character x cuts out an extension H, /K which is the compo-
sition of K and a quadratic extension Q, /Q of discriminant dividing D. Hence
x may be regarded as the restriction to G g of the Dirichlet character of conduc-
tor dividing D attached to Q, /Q that we still denote by the same symbol. As it
is readily seen by comparing the associated Galois representations, 6 vl x is the
twist of g = 911/171 by x, and 9]//271)( is the twist of h = 91/[;1 by x.

Let w1, > be the automorphic representations for GL; associated to g, k. Let
Ko(D) C GL2(A r) be the standard compact open subgroup, and let K1 (D) be the
kernel of the natural “diagonal” maps Ko(D) — ((Z)DZ)*)?. Note that K (D)
in the GL; context is sometimes defined to only impose one constraint, but here
we understand that both the diagonal entries are congruent to 1 modulo D.

Set

X1(D) =GL2(Q\H" x GL2(Af)/K1(D),
whose set of connected components identified with
Q*\A%/det(K (D)) = (Z/DZ)*.

There are embeddings

K1 (D)
L.

K (D)
T f .

and 7, ' — HY(X(D), wx,(p))
carrying the new vectors to g and A respectively.

The new vectors are characterized, uniquely up to scalar, by the fact that they
transform under

k = (i 2) C Ko(D)

by the character k — y g (a). For each y as before, we can consider the “pseudo-
new” vector
gXorh* e nf}(D) or nzlf}(D)

uniquely characterized up to scalar by similarly transforming by the character
k +— xk(a)x(ad). (The uniqueness of such a vector follows by applying the usual
new vector theory to the representation 7y, s ® x, which has the same conductor
as my, ;. Explicitly, we may construct a pseudo-new vector from a new vector by
multiplying the associated function in the Kirillov model by the character x; this
statement is the representation-theoretic manifestation of the fact that twisting by
x multiplies coefficients of the g-expansion by x. A nice short reference for basic
properties of the Kirillov model and new vectors is the paper [ ], and a more
encyclopaedic treatment is [ ], in particular Theorem 2.13.)
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With this construction, we have the following properties:

(a) The standard newforms g, and &, in the twisted automorphic representation
correspond to the cup products:

gy =8 X hy=h" ¥,
where we pull back x to a complex-valued function on X (D) by means of
the map X1(D) — (Z/DZ)* to the group of connected components.
(b) (gX,hX) = (g, h) with reference to any nontrivial GL; (A y)-invariant pairing
T, f X7T2’f—>(c.
Let X10(D, N) be obtained from X (D) by imposing a further Ko(N)-level
structure. Let Gpy € H (X 10(D, N), w) ® Z/p'Z denote the pull-back of the

Shimura class. Let 77, 75 : X19(D, N) —> X (D) denote the two forgetful maps
intertwined by the Atkin—-Lehner involution at N. It follows that

(NG (x), &) = (Gpn(x), Spn) =fn]*<gx> Uns(hy) UGpy

=/7T1*(gX)U7T2*(hX)U60N,

where f : Hl(Xl(D)Z/prZ, w) — 7Z/p'Z is the trace map. It remains to verify
that

/nl*(gx)Unf(hX)UGDN=/7Tik(g)U7T§(h)UGDN. (39)

Now (b) implies that gX¥ ® h* and g ® h have the same image in the diagonal
coinvariants on 71, ® 7, . That is to say, considered inside 71,y ® 2, ,

gx®hx—g®h=ZCi[51v1®SiU2—(U1®v2)], (40)

iel
where ¢; € C and s; € Hvl p GL2(Qy). Moreover, a straightforward argument
with rational structures shows that we may even take c; to belong to the field
L =Q(y1, ¥2), and similarly vy and v, to be L-rational modular forms; and for

sufficiently large p, we can suppose c;, vy, v, and D(D — 1) to be p-integral.
Then

/(sivl)u(s,-vz)u6=/v1UUQUC‘S,

where G is a Shimura class at a sufficiently deep level N - D"; this follows from
the invariance of the Shimura class under the adele group away from N after
pullback to a further cover. Therefore (40) implies the desired (39).

3. A Trace Identity for Indefinite Theta Series

The goal of this section is to prove the counterpart of Theorem in the case
where (g, h) = (91/,]71 , 9‘61) is a pair of new weight one 6-series associated to ray
class characters y; and ¥, of a common real quadratic field K, whose central
characters, denoted by x; and x> respectively, satisfy x; = x, ! Let D denote
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the discriminant of K, and let § = (x/ﬁ) be its different. We will assume that the
discriminant D is odd.

Since g and & are holomorphic, the characters i1 and yr», whose induced
representations are odd two-dimensional Artin representations, are necessarily of
mixed signature at co. This means that the hypotheses of Section 2, in which
Y1 and Y, were assumed to be unramified, are restrictive to the point of being
vacuous: indeed, the presence of the unit —1 precludes the existence of unramified
idele class characters of K of mixed signature. It will therefore only be assumed
that the conductors of ¥ and ¥ divide the different § := (v/D) of K, which
means that the levels of

§=0y1.  h=6,

divide D2. In particular, these forms belong to the spaces M1 (I (D?), X’l) and
M (T'1(D?), x) respectively.

Because the 6-series for ¥, and its Galois conjugate ¥} coincide, it is harmless
to suppose that /1 and 1, both have the same signature at co, namely the one for
which i1 and ¥, are trivial relative to the standard real embedding of K.

Because the restrictions of ¥ and ¥, (viewed as characters of the ide¢les AIX(
of K) to the group Aa of ideles of QQ are inverses of each other, it follows that,
for all primes v of K dividing D where ¥ and v are possibly ramified,

-1
I»/fl,u|(91>,< = WQ’U |(’)L>,< .

But the Galois conjugation map x > x’ induces the identity on the residue fields
of K, for such v, and hence the characters

Y12 = Y1, Viy = Y1¥, (41)

appearing in Theorem are trivial on O for all primes v, including those
dividing D. It follows that 1 and vy are everywhere unramified. The character
Y12 is furthermore totally even, and ¥y is totally odd.

The existence of the odd unramified character v implies that the narrow
class number of K is twice its class number, and hence that all the units of K
have positive norm. The fundamental unit ¢ is chosen so that ¢ > 1 relative to the
fixed standard real embedding K < R of K evoked in the

In fact, it will be shown in what follows that any pair of unramified characters
of K with trivial restrictions to A and opposite pure signatures can be obtained
from a pair (Y1, ¥») as previously, in an essentially unique way; this fact plays
a crucial role in the proof of Theorem 3.1, because it eliminates the need for an
analogue of Proposition 2.5 and thus leads to a more precise result.

3.1. Setup on Heegner Cycles

As before, K is a real quadratic field of odd discriminant D, all of whose units
have norm 1. Let o be the maximal order of K. Let N 1 D be an odd prime that
splits in K.
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Choose §y € Z satisfying
83 =D (mod N).

This choice determines an ideal 91 = (N, §y — \/5) of o of norm N. Also, let
a b .
My(N) := {(Nc d) with a, b, c,deZ} C M (Z)

be the standard Eichler order of level N in the matrix ring M>(Z). This Eichler
order is equipped with the standard orientation

0: My(N) > Fy=(Z/NZ)

onto the field of N elements, sending a matrix to the mod N residue class of its
upper left-hand entry.
Let I C o be an ideal. Writing I N Z = (a) with a > 0, we can write

(o)

with b uniquely determined modulo a. The action of o on I with respect to the
basis (a, (—b + ~/D)/2) gives a homomorphism

w0 My@). VD |2 T (42)
2a  —b
where c is defined by stipulating that the binary quadratic form ax? + bxy + cy>
has discriminant D.
An eigenvector v € K2 for the action of «(K) is given by

. <(b+¢5>/2> ,
a

Write 7 := b"’z“a/ﬁ, and let v" and t’ denote the algebraic conjugates of v and T

respectively over K.

Suppose that I is divisible by 91 but not by 9. Then a is divisible by N, b is
congruent to §y modulo N, and « is an embedding of o into My(N). Indeed, the
basis vector a € I belongs to 91 [ since it is divisible by N, and its image in I /N[
generates the index N subgroup 91 /N I, which is preserved under multiplication
by o. Hence multiplication by any element of o is represented by a matrix in
My (N) relative to the basis (a, (b + «/5) /2). Moreover the composition 0 o « :
0 — Fy of a with the orientation o : My(N) — [y is reduction modulo 1.

Replacing the basis (a, (b++/D)/2) of I with another positively oriented” ba-
sis of the same form conjugates the resulting embedding by an element of I'g(N),
hence the embedding « attached to [ is independent of this choice of basis up to
conjugation in I'g(N).

“4Here, a basis (e1ep) is said to be positively oriented if it is in the SLj (Z)-orbit of the specified one,
or, said more intrinsically, e; A e, equals the norm of / multiplied by 1 A /D/2.
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The standard real embedding K < R that was fixed previously yields a geo-
desic (z, 7') C H in the upper half-plane. Recall the fundamental unit & € o] of
K of norm one, and let

yi = a(e)P\(t, ') (43)

denote the closed geodesics on I'g(N)\H attached to 7. We regard it as oriented
from T to t’. This depends only on the class of I in

C := the narrow ideal class group of K, 44)

and correspondingly we will freely write y; for I € C.

Note that t/ <  and moreover the derivative of the fractional linear transfor-
mation of R induced by «(s) at t/ (resp. ) is given by (&’ y—2 (resp. ¢~2). Since
¢ > 1> ¢, we conclude that the action of a(g) on (z, t") moves along the direc-
tion opposite to the orientation of the geodesic.

3.2. Statement of the Trace Identity

Given two narrow ideal classes, choose representatives /1 and I, that are divisible
by 91 but not by 9. Let «; for i € {1, 2} denote the two embeddings attached to
Iy and I as in Section 3.1, and let v;, v} € K? and 1, 7/ € K be the associated
eigenvectors and fixed points, respectively.
Write (yy, - Tnyi,) v for the topological intersection pairing of the homology
cycles yy, and T, yr, on the Riemann surface Xo(N)(C). The generating series
o
O(n ®yn) =Y (v, Tn¥n)ng" (45)
m=1
is a cusp form of weight two and level N. This definition can be extended by
linearity to arbitrary linear combinations of RM geodesics, notably the paths

Vi@ =Y vy, v, @ =Y YDy (46)
I1eC I1eC

associated to the unramified characters ¥/1> and 5 respectively.

The following theorem, which is the main result of this section, relates the trace
of products of binary theta series to modular generating series of real quadratic
geodesic cycles as in (45).

THEOREM 3.1. For all theta series g = 91[[—1 and h = 91[,71 of K as before,
1 2

2
TI’%D (wal (NZ)QI/JQI (@) =C-Y1(N) - O(yy, ® Viriy)s
where

C=D Y w®D)-DrYi2vir(p)=D[[(p — ¥i2viz(p). @)

D=D;D, pID

and jp, is the order two element represented by the ideal (D, \/5) in the narrow
class group of K .
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The reader should compare this theorem to Theorem 2.2, which is less precise. It
turns out that allowing the ray class characters v; to be ramified at primes dividing
the discriminant simplifies rather than complicates the situation. Transposing the
proof of Theorem to the setting of Section 2 would presumably lead to a
refined and slightly more general variant of Theorem

REMARK 3.2. In the extension of the generating series (45) to linear combinations
of geodesics we are always taking representatives of I € C that are divisible by
21 but not by V. This choice introduces an asymmetry that reappears throughout
this section and explains the appearance of the factor ¥; () on the right-hand
side of the identity in the theorem. Since the right-hand side is invariant under
exchange of 91 and 9V, the second factor ©(yy,, ® yy,, ) must also depend on
the choice of 1.

The proof of Theorem is summarized in Section , and the details of this
sketch are fleshed out in the remainder of the section.

3.3. Summary of the Proof
Let
C:=.7(0)/P4(0), Cp := F5(0)/Ps,+(0)
be the narrow class group and generalized class group of conductor §, defined by

letting

e 7 (0), resp. #s(0), be the semi-group of ideals of o, resp. the ideals that are
prime to §;

e P, (0) be the semi-group of principal ideals with a totally positive generator;

e P;  (0) be the semi-group of principal ideals with a totally positive generator
that is congruent to 1 modulo §.

Given ideals /1 and I, let
A:={(x,y) € M)+ x (Io)_ satisfyingx =y (mod 8)}, (48)
and the + and — subscripts mean, respectively, positive and negative norm. The
group
U= {£(c?, &%) satisfyinga =b (mod 2)} (49)

operates naturally on A. Let

q

_xx
O (I, h) := Z sign(x) - sign(y) - g PNUD ~ DNT)
(x,y)eA/(e2L x g2L)
!y
=4 Z sign(x) - sign(y) - g PNUD DN (50)
(x,y)eAU

The function ©F(I}, I)(e*™%) is a finite sum of suitable pairs of indefinite
binary theta series attached to certain cosets in I @ I», and is a modular form of
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weight two. It is readily verified that it depends only on the classes of /1 and I, in
Cp.

The proof of Theorem 3.1 follows from two key propositions. The first will be
proved in Section and the second in Section

ProPOSITION 3.3 (See Section 3.6, also cf. (29)). There is an equality of modular
forms on T'o(N):

TN 0y1(@™) 0,1 @)

C
=y (N)- 7 Z (N (h) - O (I I, I 1}),
CxC
where C is as in (47).

PROPOSITION 3.4 (See Section 3.7, also cf. Prop. 2.4). The generating series of
(45) is equal to

1 /
On ®yn)@) =7 O (I I, 11 1,)(q).

Taken together, these two propositions imply that the trace appearing in Proposi-
tion is equal to

YIN) - C - Y Yy () - O vy, @ vi,),
CxC
and the sum appearing here, by definition, equals © (yy,, ® ¥y, ). That s precisely
the statement of Theorem

3.4. Setup on Class Groups

The running assumption that all units of K have norm one implies that equiva-
lence of ideals in the narrow sense is strictly finer than equivalence in the wide
sense, that is, that the narrow class number of K is twice its class number. It also
implies, by genus theory, that the odd discriminant D is a product of two negative
fundamental discriminants, and hence is not prime. Let a > 2 be the number of
prime divisors of D.

Although K possesses no unramified idele class characters of mixed signature,
such characters always appear in conductor dividing the different § of K, since
the units of o which are 1 modulo § are all totally positive.

Let

t := the class of ¢ modulo §.

Itis one of the 2¢ —2 possible nontrivial (# %1) square roots of 1 in 0/8 = Z/ DZ.
For if t = +£1, the fundamental unit ¢ gives rise to a solution (x, y) € 72 of Pell’s
equation

X2 — Dy2 =1, x=1 (mod D), x odd, yeven or (&2))
x? — Dy* =4, x=2 (mod D), x, y odd. (52)
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In the second case, the factorization of Dy? = (x —2)(x +2) into relatively prime
integers implies that

x+2=24u?* and x—2=+Dv?

for some (u, v) € Z2, and hence (u, v) is a solution of the equation u?— Dv? =
44 of height strictly smaller than that of (x, y). Likewise, a solution to (51) leads
to a pair (u, v) satisfying

x+1==42u? and x-—1 =:|:2Dv2,

and hence to a unit of o of smaller height, contradicting in both cases the assump-
tion that ¢ is a fundamental unit.
There is a natural exact sequence

0— (1) — (Z/DZ)* — Cp — C —> 0,

where the first inclusion sends ¢t € (Z/DZ)* to the principal ideal generated by
any totally positive integer congruent to ¢ modulo §. Let

Z :=ker(Cp — C) >~ (Z/DZ)* 1

be the kernel of the natural projection. Next, let W C (Z/DZ)* be the index 2
subgroup which is the kernel of the quadratic Dirichlet character associated to K,
and

N:Cp — W C (Z/DZ)* (53)

be the norm map sending the class of an ideal to the mod D residue class of
its norm. The triviality of the Herbrand quotient of the finite group Cp as a
Gal(K /Q)-module implies that

Cp, :=kernel of N = {g/¢" with g € Cp},

where g > g’ is induced by the Galois automorphism of K over Q; thus W is
now identified with Cp/C,.

The groups Z and W have the same cardinality ¢(D)/2, but the natural ho-
momorphism Z —> W obtained by composing the inclusion Z <> Cp with the
surjection Cp — W is not an isomorphism; its kernel is the two-torsion subgroup
of Z, of cardinality 2a-1,

Global class field theory identifies C with the Galois group of the Hilbert class
field H over K, and Cp with the Galois group of Hp over K, where Hp is the
ray class field of K of conductor §, an extension of H of degree ¢(D)/2. The
subgroup C}, is identified with the Galois group of Hp over the maximal subfield
of Hp which is Galois and abelian over Q, namely, the cyclotomic field Q(¢p).
The group W is identified with the Galois group of Q(¢{p) over K, an index two
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subgroup of (Z/DZ)*. The situation is summarized in the field diagram.

Cp

We can now state and prove the crucial lemma.

LEMMA 3.5. There is an isomorphism
£:CC— CpxwCp)/Z, (L, (L 11, (54)

where the target is defined after choosing lifts 11 and I> of the eponymous ideal
classes I, I € C to the ray class group Cp.

The validity of this lemma is the main reason that the current (RM) section obtains
a more precise result than the CM section.

Proof. Observe, first, that the map is well defined, since the kernel of Cp — C is
the image of (Z/DZ)*, represented by principal ideals (¢) for ¢ € Z, and multiply-
ing I1 or I by such a principal ideal of norm prime to D only changes (I 12, I11})
by an element of the diagonally embedded Z. The two groups have the same car-
dinality by the previous discussion; so it is enough to prove that £ is surjective.
But clearly a pair (Ji, J2) lies in the image if and only if JoJ, ! has the form
I/ 1, that is, belongs to C,. U

3.5. Setup on Binary 0 Series

For the lack of a reference, let us briefly sketch the general situation before spe-
cializing to the case of a quadratic space arising from the quadratic field K .

Consider a 2n-dimensional anisotropic quadratic space (V,q) over Q. The
space of Schwartz functions on V ® A r is endowed with an action of SL(A r)
via the Weil representation which at any finite prime of Q is given by the following
formulas:

(o §) re0=ntaacon s,
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i (‘O’ aﬁ) @) =lalo@) f (@), (55)

(S o) =y,

Here u is a chosen additive character, w is the quadratic discriminant character
corresponding to the space V, the function fis Fourier transform of f relative to
w and a self-dual Haar measure on V, and y is an eighth root of unity. We apply
this only in the case when V ® Qy is a split 4-dimensional quadratic space; in this
case w = 1 and also y = 1 (for the latter, see [ p. 176]).

Now suppose dim V =2, that (V, ¢g) has signature (1, 1), and suppose that W ¢
is a Schwartz function on V ® A y with stabilizer I' < SO, (Q).

PROPOSITION 3.6. Let

Ou ()= Y sign)e”™ VW (v), (56)

vel'\V,
q(v)>0

where sign(v) is positive on one connected component of q(v) > 0 and negative
on the other. Then Oy ; (2) is a modular form on SL;, and the association W y >
Oy, is equivariant for the action of SL» (A y) via the Weil representation. The same

conclusion applies replacing the condition q(v) > 0 with q(v) < 0 and e*714)2
with e 2714 )z,

Sketch of Proof. To check this, we use the dual pair SO; x SL,. Fix an iso-
morphism (V ® R, g) ~ (R2, xy), let Woo(x, y) = (x + y)e 7@+ and let
W = Wy, ® Wy be the associated Schwartz function on V ® A. The function
W, is chosen so that its average W, over the connected component of SO, (R)
is explicitly computable:

dxr

Eoo(x’ y) 2/ ()\'x + )\'—ly)e—ﬂ(kzxz-‘,-)L’ZyZ) S
AeR®

eRY

_|sign(x)e™ ™Y ifxy >0,
0 otherwise.

In particular, fixing 4 € SO4(A), the rule
g 0u(g. )= (g h) - W),

xeV
where (g, h) - W refers to the actions of g € SL>(A) on W via the Weil representa-
tion, and of & € SO, (A) via translation on the arguments, defines an automorphic
form on SLy(A). The rule ¥ > 6y is equivariant for the SL; (A)-actions on both
sides. We now integrate over i € '\SO, (R) to check that

xel\V

is again a modular form for SL;(A). This gives the claimed statement. ]
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Now, we will explicitly take V to be K together with a suitable rescaling of the
norm as quadratic form and explicate the above construction when W is given
by suitable characteristic functions.

Given any fractional ideal I of o of norm N(/) € Q>°, which is relatively
prime to 8, the group 2% preserves the intersection 1T (resp. I7) of I with the
cone of elements of positive (resp. negative) norm in K ® R, as well as the subsets

IF:={xeltwithx=1 (mod )},
I/ :={xel” withx=1 (mod §)}.

Taking W ¢ to be the characteristic function of {x € I ® Z:x= 1(8)}, we recover
Hecke’s partial theta series

It = Y sign) g /PND,
xelft /et

9T()(g) = Y sign(x) - g /PND),
xel] [e

These theta series depend only on the image of / in the ray class group Cp and are
modular forms of weight one on a suitable congruence subgroup. More precisely,
by (55) or [ §1] we have the following:

LEMMA 3.7. Forall (¢%) € To(D),

z9+(1)<‘” + b) - (2>el)2+<i’“>b(cr +d) -9 @al)(@).

ct+d |d|
ﬁ(l)(i: Is) = (%)e%(cr +d) -9 (al)(@).
LEMMA 3.8. We have
20,1= ), i F (P, (57)
1eCp
26, 1 = I; (9~ (D(g"). (58)

Here, by convention, yr1 (J) simply means the value of Y1 applied to the image of
J in the ray class group Cp.

Proof. Rewrite the right-hand side of (57) as

6= ) YD) sign() - g™ N, (59)
! 1<Cp,
xelr/szz

where we have made the slight abuse of notation of choosing a representative / for
each class in Cp, and / 1+ consists of elements in / of positive norm and congruent
to 1 modulo §. The set 1 ]+ is the union of its totally positive and totally negative
elements. Sending a pair (/, x) in the range of summation of the right-hand side
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of (59), where x is totally positive (resp. totally negative), to the integral ideal
I~'x determines two bijections:

(I, x € I} totally positive) - I~ 'x, (60)

I,xe Il+ totally negative) I 'x, 61)
to the set of integral prime-to-§ ideals. These two bijections are interchanged by
precomposing with the involution (/, x) — ((z)I, z - x), where z is any totally
negative element congruent to 1 modulo §. Therefore, for a given integral prime-
to-8 ideal J, the preimages (I, x) and (I’, x") under these two bijections do not
coincide; rather, the classes of I and I’ in Cp differ by the image of (—1) €
(Z/DZ)* in Cp. Being of mixed signature, the character 1 sends this element to

—1, and reindexing via J = I~ 1x allows us to rewrite (59)as2 Z] 1p1_1 (J)qN(J),
which is (up to the factor of 2) the standard expression for the 6-series 6 ! @)
1

attached to ¥ ! This proves (57), and the proof of (58) is essentially the same.
O

3.6. Proof of Proposition

With preliminaries on 6-series in hand, we proceed the proof of the first key step,
Proposition

Recall that N is a prime that splits in K as a product 99V of two prime ideals
of norm N. If I} and I, are (representatives of) elements of Cp, thus, fractional
ideals of K, the modular form

O, L) =T INEG") -9~ (h)(q) (62)
is of weight two on I'(D) N T'o(NN). Define
O (1, I) =trace of O(I1, I») to level To(N) NT'1(D),
001y, I) = trace of (14, I») to level To(N) N To(D),
0D (11, ) = trace of O(I}, I) to level To(N).

The superscripts here are intended to remind the reader of the level structure at D.
LEMMA 3.9. For all ideals Iy and I of Cp,

D -0t I)(gY) -9~ (1) (), NI =N(h),

oW, )=
(I, ) 0 otherwise.

(63)

Here, N is the norm of (53). Moreover 0O (1, ), which therefore vanishes
unless (11, I) belongs to the fiber product
CD Xw CD = {(11, 12) € CD X CD Satisfying N(Il) =N(12)},

depends only on the image of (11, I) in the quotient (Cp xw Cp)/Z.
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Proof. The nonzero terms in the Fourier expansion of (1) (V) -9~ (12)(q)
are concentrated at powers of the form ¢”/?, where

m=1/N(I}) — 1/N(I,) (mod D),

and the result follows, since the trace from I'(D) to I'{ (D) annihilates any term
of the form ¢”/P with D not dividing m and multiplies the others by a factor of
D. The final assertion follows from the explicit formula

00, ny="Y eWah,ab), (64)
ae(Z/DL)*
which is an immediate consequence of Lemma 3.7. O

Note that if (11, I5) belongs to (Cp Xw Cp), then the same is true of (I, el>),
where e is any element of K™ whose associated fractional ideal is prime to § and
satisfies ¢2 = 1 (mod §).

ProposITION 3.10 (cf. Prop. 2.3). Forall (I, ;) € (Cp xw Cp)/Z, we have

0PI, )=D- Y wDi)-Dy-O (I, ep, 1), (65)
D=D|D;

where |4 is the Mobius function, and

(1) ©Iy, Ib) is the modular form defined in (50);

(2) The sum on the right is taken over all factorizations of D into (relatively
prime) fundamental discriminants D1, Dy;

(3) ep, is atotally positive element which is congruent to —1 (resp 1) modulo the
primes dividing D1 (resp. D3).

Proof. By Lemma 3.9, it may be assumed that /; and I, have the same norm and
are represented by ideals that are relatively prime to §. We must prove an equality
of the form

Trace of © (I, I,) from I'(D) N To(N) to T'g(N) = sum of ®'s.

We will do this in a fashion very similar to the proof of Proposition 2.6, that is,
by reducing it to a local question about Weil representations. Both ® (11, I>) and
©4(1;, I) have the general form

Oulg):= Y W(x,y)sign(x)-sign(y) -q2™Y, (66)
(x,y)eVe
where:
e V=K & K is considered as a quadratic space over Q: we consider it as a
Q-vector space and endow it with the quadratic form

/ /!

XX yy

DN(I}) ~ DN(I)’

e V. are elements (x, y) with xx’ > 0 and yy’ < 0.

e W is a Schwartz function on V ® A ¢ (with A r the ring of finite adeles), invari-
ant by the action of the subgroup ¢ of the unit group o{ o}

Ox,y) =
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In the situation of (66) the map W +— @y is equivariant for the Weil representation
action of SL>(A ) on Schwartz functions on V ® A f; this action preserves the
invariance condition on W. Indeed this is a product of two copies of the situation
already discussed in Section 3.5, and the Weil representation for a direct sum of
quadratic spaces is simply the tensor product of the individual factors.

The action of SL>(A y) on Schwartz functions just mentioned factors as a (re-
stricted) tensor product of actions of SL,(Q)) on the space of Schwartz functions
on V ®Q,. The factor at p is the Weil representation of SL>(Q),) on the Schwartz
functions on the quadratic space (V,, Q ), where

/ /

XX yy
DN(I) DN(h)

In this way, we are reduced to a problem in explicitly computing with this
Weil representation: the question of computing the trace of oI, I,) from
T'o(N) NT'(D) to T'p(N) reduces, thereby, to a product of local computations
over p dividing D, which we will spell out in what follows. (]

V,=(K®K)®Q,, Op(x,y)=

LEMMA 3.11 (cf. Lemma 2.7). Let £ divide D.

Let (W, L,{,)) be the quadratic space over Qg given by K @ Q; equipped
with the norm form, multiplied by (DN (1)) " and L be the ring of integers. Let
(W', L', (,)) be similarly defined but multiplying the form by —(DN (I2))~" and
taking L’ to be the ring of integers.

Call e; the characteristic function of

(xeLx el):x=x'=1¢e(Z/0),

considered as a Schwartz function on W & W'. (Here the map from L to 7/ is
given by reduction at the maximal ideal.)

Then, for the Weil representation action of SLy(Q¢) on Schwartz functions on
W @ W', the trace

SLy(Z
o Ver = £(C1ag, — Lag),
where My are the two self-dual integral lattices contained in (L ® L), is defined

in (68).

Proposition follows readily from this lemma. Indeed, from (62) we can write
® (I, I7) in the notation of (60) as the series Oy with ¥ = @V, and W, simply
the characteristic function of 9V I; @ I, for £ not dividing D, and W, = e; for
£ dividing D. We must only observe that, given a factorization D = D D>, the
value of the corresponding ® series where we replace the role of e; with M
for £|Dy and with M_ for £|D; is exactly ®F(Iy, I,) but replacing x = y(8)
with x = gp, y(8), and this in turn coincides with oF ({1, ep, I2) by means of the
substitution y <—&p, y.

Proof of Lemma . First we define M. Let (L @ L)* be the dual lattice with
respect to the quadratic form Q on W @ W’ and similarly define L*, (L)*. Then
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L* corresponds simply to the maximal ideal inside L, and similarly for L', so
there are canonical identifications

wiy=@o=ryy, L2 L gy ©7)
= B0 = C Cer)y WY
We let
My = preimages of the lines x| = £x; in (Z/EZ)z. (68)

The function e is readily verified, using the formulas in (55), to be invariant by
the principal congruence subgroup I'(£) of level £ inside SL,(Z;). Indeed, using
the Iwahori factorization of I'(£), it suffices to prove this for upper triangular
unipotent elements, diagonal elements, and lower triangular unipotent elements
congruent to the identity modulo £. For the first two, this is obvious from the first
two lines of (55); to conclude, we write the lower triangular unipotent subgroup
with the conjugate of the upper triangular subgroup by the element

»=(40)

that appears on the last line of (55). Since the Weil constant y = 1, it suffices to
observe that w~! acts as the inverse of the Fourier transform.

We must compute its trace to SL;(Z;)-invariants. Clearly, this projection is the
same as if we first average over the diagonal subgroup, which has the effect of
replacing e; with % where e; is the Schwartz function defined similarly to
e; but now considering x; = x, = j modulo £. Now 1r¢, =} e;, and so

Z €; = 1M+ — €p.
J#0
Now this is in fact invariant by Ko(£) C SLa(Z¢). Indeed 14, is already in-
variant by SL;(Zy) since it is self-dual and integral for the quadratic form, and ey
is the characteristic function of (L @ L")*, on which the quadratic form is integral.
We will prove that (cf. (36))

trace%}%%”eo =1Ip, +1a. (69)
From this it follows that the corresponding trace of jo€jequals €1 aq, —Iaq
and the lemma follows from this, taking into account the index [Ko(¢) : K (£)] =
-1
The proof of (69) is very similar to the computation carried out in Proposi-
tion of the previous section and, more specifically, to (37). The role of M4
arises from the fact that

xeL®L:Qx)eZ=MyUM-_,

and indeed the function induced by the quadratic form upon the right-hand group
of (67) is proportional to (x1,x2) € (Z/LZ)* + £~ (x} — x3) € €7'Z/Z. Let
notation be as in (35); as discussed there, a system of coset representatives for



32 H. DARMON, M. HARRIS, V. ROTGER, & A. VENKATESH

SLy(Z¢)/Ko(£) is given by w together with wm(¢#)w, where 1 <t < £. We get
weg = £~} lrg1’, and thus
> myweo =1, + 1pq. —
t
Therefore, (w)_, m(t)w)ey = Iam, + 1p — wep, and so the trace of ey is
Ia, + 1aq_ as desired. O

We will now parlay Proposition into an expression for the trace of the prod-
uct 6 ! (g™Me y! (g) of weight one theta series. The following result immedi-
1 2

ately implies the desired Proposition after performing a change of variables
via the isomorphism C?> —> (Cp xw Cp)/Z of Lemma 3.5, given explicitly by
(I, ) = (I I, 1 I).

PROPOSITION 3.12. Let
Grp2(9) =0,-1(q") 0,1 (q),

which belongs to the space M(To(N D?)) of modular forms of level N D?* with
trivial nebentypus character. Then

Try b’ (GNDz)—wlm’)Z > wiUnyah) -89, I,
(CpxwCp)/Z

2 C
TN Gyp) =) - - Y Ynlhya(l) - O b,
(CpxwCp)/Z
where

C:=D Y w(Dp)-Dy-yi(ep)=D[]—vi(ep)

D=D; D, pID
is a constant that depends on (Y1, Y¥2) and D but not on N.

Proof. By Lemma 3.8,
Gyp(@) =~ Y OV O1)@G"P) -y ()9~ (L)(gP).
(11 12)€C

where we re-indexed the sum for 9 - vial <~ N1I.

Because the restrictions to Z of the characters 1 and ¥, are inverses of each
other, the right-hand side can be rewritten as

1 . .
7 2 OUIYa(h) Y TGN INE")9(h)(e"),
C/z jez
where Z C C% is embedded diagonally. It follows from (64) and (63) that

1
Gnp2(@) =75 D iV IYa(h) -0V, b)(g?). (70)
c/z
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Both the left- and right-hand sides in this identity are modular forms on ['g(N D?).
Let Up be the Hecke operator which on g-expansions is given by

Up <Zanq”> = Zanl)q".
nez

The trace from level D? to level D amounts to an application of D - Up, and by
the same reasoning as in Lemma 3.9, we have

09y, h)(g) ifN(I)=N(D),

Up©O1, b)(gP)) =
p(© (11, 12)(@"™)) 0 otherwise.

Applying the trace to level N D to both sides of (70) therefore gives

1
TN Gyp) =)+ Y. a0 U b)),

CpxwCp)/Z
and the first equation in Proposition follows directly. The second follows
from this and (65), taking into account that v, and 1 agree on &,. U

3.7. Proof of Proposition

Recall now the setup of Section 3.2. We choose narrow ideal classes /1 and I and,
by choosing representatives by ideals that are divisible by 9% but not 9, obtain
a pair of real quadratic geodesics y; := yy; and y, := y, in I'o(N)\'H with the
same discriminant D. We also obtain embeddings «; for i € {1, 2} attached to I;
and I; similarly, we get eigenvectors v;, vlf € K? and fixed points t;, ti’ € K for
the action of o; (K ™).

Proposition asserts that the generating series of (45) is equal to

1
O ®r)@) =7 (I I, L 15)(q).

The proof proceeds, much as in the proof of the Gross—Zagier formula, by the
most powerful technique known to number theory—compute and compare.
Examining the definition of ®%(I}, I5) from (50), we see that

mth Fourier coefficient of ®F = 4 Z sign(xy), (71)
(x,y)eAn/U
where A, consists of the pairs (x, y) € W11 I x 111, satisfying
xx'—yy'

ayaz

xx'>0,yy <0, Dm, (72)

where a; = N(I1), a2 = N(I2) and U is the subgroup of o[ xo0{* introduced in

(49).
Now we turn to the left-hand side, which is more involved, and will take up the
remainder of the subsection. We must compute the mth Fourier coefficient

am = (yY1-Tuy2)N.
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Letting My(N),, be the set of elements of My(N) of determinant m, and letting

Iy =ai(o)), [ :=a(0)),
this intersection number can be rewritten as
am= Y. (1.1 (Arz, AT))). (73)

AeT1\Mo(N)m/ T2

(Note that in (73) the intersection numbers are now being computed on the upper
half-plane and not on the modular curve.) The calculation proceeds by rewriting
the coefficient a,, of (73) as a sum over certain ideals of K, by exploiting the map

n:My(Q — K&K, n(A) := (det(vy, Avy), det(vy, Av))).

The map 7 sets up a K ® K-module isomorphism from M>(Q) to K & K, the
module structures being given by

(@®@b)M :=a1(@YMar(b) and (a ®b)(x,y) = (abx,ab'y) (74)

respectively.
It is also an isomorphism of quadratic spaces, after equipping K & K with the
quadratic form Q(x, y) = xg;;g )

LemmMmA 3.13. If n(A) = (x, ), then
[N
det(A) = 22—
Daiar

Proof. The source and the target of  are both cyclic (K ® K)-modules, as in
(74), and both sides transform the same way, which reduces us to verifying the
assertion for a single generator; taking A to be the identity and using Daja; =
det(vy, v}) det(vz, v}) this follows from the identity

det(vy, v}) det(vz, v5) — det(vy, v2) det(v], v5) + det(vy, v5) det(v], v2) =0,
which can be derived by considering the determinant of the 4 x 4 matrix whose
rows are two copies of [vy, v}, v2, v}]. O
PrROPOSITION 3.14. The image of Mo(N) under n is equal to
n(Mo(N)) ={(x,y) e Wl x [} I, withx =y (mod 8)},
and n induces a bijection between I'\\My(N),/ T2 and A, JU.
Proof. Note that K ® K is naturally identified with K & K via the map ¢ sending
a®bto
o(a ®b) = (ab, ab’).

For 1 <i, j <2, let E;; be the elementary matrix having a 1 in the ij entry and
Os elsewhere, and set 8; = (—b; + VD) /2. By the definition of 7,

n(En) =o(—a1 ® B2) n(E) =o0(—a1 ® az),
n(E2) =o0(B1 ® B2), n(Ex) =0(B1 ®az).
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It follows that n(M3(Z)) is contained in the index D subgroup of 1l x I Iﬁ
consisting of pairs that are congruent modulo 8. The fact that this containment is
an equality follows by comparing the determinants of the pairing matrices for the
two lattices relative to the quadratic forms det(A) and % respectively. Fur-
thermore, the lattice n(Mo(NNV)) is obtained by replacing the Z-module generator

n(E>1) with Nn(E>1). A local analysis at N shows that
n(Mo(N)) CWIiIh x 11 1.
Since it is of index at most N in n(M>(Z)), it must be equal to
{(x,y) eWILh x 11, withx =y (mod §)},

as claimed. In particular, the map n identifies My(N),, with A,,, and the last
assertion follows from the fact that n transforms the left action of ¢ € I'y (resp. the
right action of & € I';) into multiplication by (e, &) (resp. by (e,e~!)), which
together generate /. O

It is also crucial to interpret the intersection pairing (y; - Ayz) € {—1,0, 1} in
terms of n(A).

LeEmMA 3.15. If det(A) = m > 0, then the intersection (y| - Ay») is nonzero if and
only if xx' > 0 and yy' <0, where n(A) = (x, y). In that case, it is given (after
suitable choice of orientation conventions for the intersection) by sign(xy).

Proof. Given any four distinct elements tl,t{,tz,té of P;(R), the hyperbolic
geodesics (11, ti) and (1o, té) intersect nontrivially if and only if the cross-ratios
[t1.1): 12, t] and [t1, 12; 2, 1]] belong to the open interval (0, 1) C R. This can be
seen by exploiting the invariance of the cross ratio under Mobius transformations
to reduce this statement to the special case in which (t1, 1], 1, ) = (0, 00, 1, 1),
where it can be verified directly. In particular, the geodesics (y;, Ay») intersect
precisely when the following cross ratios belong to (0, 1) C R:

/ det(vy, Avp) det(v!, Av)
e detlon - 2) det(v; 3) =[t1, Aty; Atp, 711, (75)
mDayay  det(vy, v)) det(Avy, Avy)
—yy/ det(ty, At))det(z], At
IV _ dey(a) S AR AN, AT) o ayiey, A ATyl (76)
Dayay det(ty, 7)) det(At,, At2)

The first assertion follows. As to the second, the sign of
xy = det(vi, Avp) det(v], Ava)

determines whether or not t; lands inside or outside of the geodesic from At; to
Atj, and hence determines the sign of the nonzero intersection, given a suitable
choice of orientation on H. O

Recall that U/ acts naturally on the set .4, from (72). By combining Lemmas ,
, and , we obtain the following.
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ProPOSITION 3.16. Forallm > 1,

ay = Z sign(xy).
(va)E-Am/u

Comparing this proposition with (71) shows that

1
O, Yn) = Z®ﬁ(1112, L1},

and Proposition 3.4 follows.

4. Higher Eisenstein Elements

This section is devoted to a review of “higher Fisenstein elements” in the sense
of Merel and Lecouturier [ ; ], that is, elements in suitable spaces of
modular forms that are not killed by the Eisenstein ideal but by its square, see
Definition 4.6. We will provide explicit formulas for Eisenstein and higher Eisen-
stein elements in

e the space M of modular forms (Proposition 4.1);

the dual space M* to modular forms (Theorem 4.9);

the positive part of cohomology H* of the modular curve (Theorem 4.8);

the negative part of cohomology H™ of the modular curve (Section 4.4; here
we do not need higher elements), and finally

e the supersingular module D (Theorem ).

Each of these spaces M, H, H~, D is the completion of a suitable Hecke module
at Mazur’s Eisenstein ideal in the Hecke algebra.

4.1. Higher Eisenstein Series

As in Section 1.5, let N > 3 be a prime, let M, (N) be the module of weight two
modular forms with Fourier coefficients in Z = Z[%] for the Hecke congruence
group ['o(N), and let So(N) C M>(N) denote the submodule of cusp forms. De-
note by T(N) the ring generated by the Hecke operators 7,, (with N { n) together
with Ty := Uy, acting faithfully on M>(N).

The vector space M>(N) ® Q is generated by S>(N) ® Q along with the weight
two Eisenstein series whose g-expansion is given by

N-1 &
EM(g) = — > oMmg" whereo™Mmy=Y"d. (77
n=1 d|n,
Nid

The homomorphism

gris T(N) — Z, ¢mis(T) i= 0" (n)

by which T(N) acts on ESN) is called the Eisenstein homomorphism, and its ker-
nel Ig;s is called the Eisenstein ideal.

For any maximal ideal m of T(N) and any T(N)-module M, let My, de-
note the completion of M at m. The maximal ideal m is said to be Gorenstein if
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T :=T(N)n is a Gorenstein ring. It is known that all maximal ideals of T(N) con-
taining a prime p > 3 are Gorenstein by a result of Mazur [ cor. I1.16.3].

Let p > 3 be a prime divisor of N — 1. The maximal ideal m := (p, Ig;s) of
T(N) is called the p-Eisenstein ideal. Let

T:=T(N)m, M :=M2(N)m

denote the completions of T(N) and M>(N) relative to this ideal. The ring T is a
complete local ring which is free of finite rank as a Z ,-module. The module M is
canonically dual to T via the pairing M x T — Z, given by (f, T) = a1(T f),
and hence M is free of rank one as a T-module, since T is Gorenstein. The Z -
rank of T is strictly greater than one because p divides N — 1. We fix a discrete
log (Z/NZ)* — Z/ p'Z as in Section

The following proposition is due to Lecouturier [[ec], but the details of the
proof have been provided for the sake of being self-contained.

PRrOPOSITION 4.1. There is a modular form E' € My(N) ® (Z/p'Z) having
Fourier expansion of the form

oo
E'=M-— Z(Zlog(dz /n’)d> q"
n=1 “d|n’
for some M € Z/p'Z, where n’ denotes the prime-to-N part of n. It satisfies
(Uy — DE' =0 and, for all primes £ # N,

(Ty — (€ +1)E = (£ — 1) log(O) ESN.

The modular form E’ mod p’ is called the higher Eisenstein series of weight 2
and level N. We will discuss abstractly such elements in other Hecke modules in
Section

Proof. Recall that Z :=Z[1/6N] and let I denote the augmentation ideal in the
group ring Z[G y], where G is as in (10). For d an integer prime to N, we shall
denote by o4 the corresponding element of Gy, arising from d by means of the
homomorphism Z — (Z/N)* — Gy. Let E and F be the formal g-expansions
with coefficients in Z[G y] given by

]E::Dﬁ—i(Z dad)q”, F::—i(Z da,,/d)q", (78)

n=1 ‘d|n, n=1 " djn,
Ntd Nin/d
where
1A N
M= > ]X_} 0j-0; with6;:= EBz(j/N), By(x):=x>—x+ 1/6.

These formal g-expansions satisfy, for every Dirichlet character x of modulus N,

EéN)zEz(l,lN) lf)(:l, E2(1N’1) lfle’

x(E) = . .
E>(1, x) otherwise, Ey(x,1)  otherwise,

X(F)={
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where 1y denotes the trivial character, but viewed as having modulus N, and
E>(1, x) and E>(x, 1) are the usual Eisenstein series associated to the Galois
representations xw @ 1 and w @ x respectively with  the cyclotomic character,
whose Fourier expansions are given by

Ex(1, x)(q)=—L(-1,%)/2 - Z(Zx(d)d)q",

n=1 “d|n

Ex(x, D(q) =— Z(Zx(n/d)d)q".

n=1 “dn

These Eisenstein series are classical modular forms of weight two on the congru-
ence group 1 (NV), with the exception of E3(1y, 1). The latter is (the holomorphic
part of) a nearly holomorphic form in the sense of Shimura, as we see via

const

Ey(In, 1) = E2(q) — E2(Ng) +

y
: -1 1 n
with Ey = 8ry)™ — o + Z(Zd)q .
n din
Denote by M;h ("1 (N); Z) the abelian group of g-expansions of such nearly holo-
morphic forms, so that E»(1y, 1) € M;h.

It follows that [E is a classical modular form with coefficients in Z[G y]. As for
F:= ZUEGN Fy - o, although the individual coefficients Fj; € Mgh(l"l(N); Z)
are merely nearly holomorphic, their pairwise differences F,;, — Fy, are in fact
holomorphic, since they lie in the linear span of the E3(x, 1) with x nontrivial. It
follows that one can write

F=Fo+n-N,
where
. nh . —
Foe May(T1(N); ZIGND,  neM"(Ti(N);Z2), N= ) o
O‘EGN

Since the g-series Ex(1, 1x) and Ex(1y, 1) agree modulo p’, and the image of
the norm element N in Z/p'Z[G y] belongs to 12, the mod p’ reduction of the
difference E — IF belongs to M>(I'1(N); Z/p'Z) ® I. Tt follows that its natural
image, denoted by E — I, in My (I'1(N); Z/p'Z) ® (1/12) gives rise to an element

E—TFe MyT((N);Z/p'Z)® (I/1*) = Ma(T1(N); Z/p'Z) @ Gy,

which is invariant under the diamond operators. At the last stage we have used the
isomorphism (1/1?) ~ G y ® Z uniquely characterized by the fact that 3" a o>
[1/% ® 1 when a; € Z. Consequently, E — F arises from a unique element of
My(To(N); Z/p'Z) ® Gy, to be denoted by the same letter. One then readily
checks that the modular form E’ given by

E':=log(E —TF)
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has all the properties claimed in the proposition. For instance, since [E and I are
eigenvectors for 7, with eigenvalue (1 + £o¢) and (o¢ + £) respectively,

(Ty — (L + 1))(E —F) = (ko — OF — (o — DF
= (=)o —DES  (mod I*[[g]]),

and therefore, after reducing modulo 72 and taking the discrete logarithms on both
sides,

(T; — (€ + 1)E = (¢ — Dlog()ESY,
as claimed. O

REMARK 4.2. The proof of Proposition 4.1 yields an explicit formula for the con-
stant term M of E’. Tt is attached to the Mazur-Tate, or Stickelberger element 9i,
which is characterized as the unique element of Z[G y] satisfying

(1-N)/24  ifx=1;

] forall x : Gy —> C*.
—L(—1, x)/2 otherwise,

x(fm)={

This Mazur—Tate element belongs to the augmentation ideal / of the group ring
(Z/ p'Z)[G n], and its natural image in /1> = Gy ® (Z/p'Z), denoted by I,
is called the “Mazur-Tate derivative” of 90t. The constant term M is the discrete
logarithm of this Mazur—Tate derivative

M =log(M). (79)

This explicit formula for M, which was first obtained (under a slightly different
guise) by Loic Merel [ ], will play no role in the argument.

4.2. General Higher Eisenstein Elements

From now on, the symbol Ig;js shall also be used to denote the Eisenstein ideal in
the completed Hecke algebra T, whose associated quotient T/ Ig;s is isomorphic
0 Zyp.

Mazur has proved that T is generated by a single element as a Z,-algebra, that
is, T = Zp[x] for suitable x € T. Indeed, one may take x = T¢ — £ — 1 for suitable
£, and x may be taken to generate [gjs. See [ $11I, Prop. 18.10], as well
as the discussion at the start of Section 19 therein. The following result is also
proved by Mazur (loc. cit. Proposition 18.8); we sketch a direct proof.

COROLLARY 4.3. There is an isomorphism
0 Imis/ I =Zp ® (Z/ND)* = (2 p'D)

sending the element (Ty — (£+1)) to (£ — 1) ® L for all primes £ # N, and sending
Uy to 1.
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Sketch of proof. The modular form E;N) + ¢E’ with coefficients in the ring
7/ p'Z[¢e] of dual numbers is a Hecke eigenform on I'g(N) and gives rise to a
surjective homomorphism with kernel I]%is

@ris : T —> Z/ p'Zlel, ¢UN) =1,

¢(Te) = (£ + 1) + (£ — Dlog(E)e. ®0

The quantity ¢(Ty — (£ + 1)) is equal to logon(Ty — (£ + 1)), and the corollary
follows. O

Let X be a free T-module of rank one.
LEMMA 4.4. The module X[Igis] of elements m € X satisfying

(Ty — €+ 1))m=0 forall primes £ # N, Uvm =m,
is free of rank one over Z,.

Proof. Since the localization of T at Ig;s is Gorenstein, the Igjs-torsion submodule
of X is isomorphic to X/ Ig;sX, and the result therefore follows from the fact that
T/ Ig;s is isomorphic to Z. O

A generator of the Z,-module X[/g;s] is called an Eisenstein element in X. Al-
though such generators are only well defined up to scaling by Z;, the concrete
Hecke modules that arise in practice are frequently equipped with a distinguished
choice of Eisenstein element mq. Corollary 4.3 implies the following lemma.

LEMMA 4.5. There is an element m| € X/ p'X satisfying Uym| = m| and

(Te — (L + 1)my = (£ — 1) log(€)mo  (mod p)
for every prime £ # N, (81)

and the choice of mq uniquely specifies m1 up to the addition of a multiple of mg.

The element m; depends linearly on the choice of discrete logarithm, namely,
replacing log with a - log with a € (Z/p'Z)* has the effect of replacing m| with
amy.

DEFINITION 4.6. The element m is called the higher Eisenstein element in X/ p’
(associated to mg and to the choice of discrete logarithm).

For example, (the Eisenstein completion) M = M»(N )y, of the module of mod-
ular forms has a distinguished Eisenstein element mgy = EéN). Proposition
supplies an explicit description of the higher Eisenstein element m; = E’ in
M ® (Z/p'Z). The proof of Conjecture for dihedral forms rests crucially
on similar explicit expressions of the higher Eisenstein element in various other
Hecke modules, which will be described in the forthcoming sections.
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REMARK 4.7. When M =0 (mod p*) with u < ¢, there is also a second higher
Eisenstein element my € X ® (Z/ p"7Z) satisfying, for all primes £ # N,

Ty — (+1))my =« —1)log0)m; (mod mpX).

In fact, in X ® (Z/ pZ) there is an entire sequence mg, my, ..., M, € XQ (Z/pZ)
of higher Eisenstein elements obeying similar inductive relations, where r 4 1 is
the Zp-rank of T. These higher Eisenstein elements have been studied system-
atically in [Lec], but only the first higher Eisenstein elements will play a role
in this work. Henceforth, the terminology “higher Eisenstein series” or “higher
Eisenstein element” shall always refer to what might be called the “first higher
Eisenstein element” in [Lec].

4.3. The Betti Cohomology Relative to the Cusps

One of the settings which turns out to be relevant to the proof of Conjecture

for RM dihedral forms occurs when X := H™ is the p-Eisenstein completion
of the relative cohomology Hé (Xo(N); {0, 00}; Z)* with coefficients in the ring
Z :=7Z[1/6N], where the superscript + denotes the subspace which is fixed by
complex conjugation. As discussed in Section 1.5, the subscript B means that we
take the singular cohomology of the complex points of Xo(N). This relative coho-
mology is dual to Hé(Yo(N ), Z)~, which is isomorphic, after tensoring with C,
to the space of weight two modular forms on I'g(N) via integration. In particular,
the ring generated by the Hecke operators acting on Hé(Xo(N ); {0, 00}; Z)7T is
naturally identified with T(N).

The module Hé (Xo(N); {0, co}; Z)™ fits into the short exact sequence

0—z-5 Hy(Xo(N); {0, 00}; 2)* N Hg(Xo(N), )" —0  (82)
of T(N)-modules, where 9* is dual to the boundary homomorphism
0: Hig(Xo(N); {0,001, Z) — Z - (0—00) = Z. (83)

The relative cohomology group Hé(Xo(N ); {0, 00}; Z) can be described con-
cretely in terms of Z-valued modular symbols: I'g(N)-invariant functions m from
P1(Q) x P1(Q) to Z which are additive in the sense that they satisfy

mfa, b} +mi{b,c} =mfa,c} foralla,b,cecP(Q).

The image of the class 3*(1) in HT, denoted by Ké" , is a distinguished Eisen-
stein element in H™, which corresponds to the boundary symbol sending (a, b)
t0 foo(b) — foo(a), where f is the unique I'g(N)-invariant function on P (Q)
which sends oo to 1 and O to 0. Let

kit To(N) — (Z/p'Z), (‘CI Z) > log(a).

Since it is trivial on parabolic elements, it can be viewed as an element of
Hi(Xo(N),Z/p'Z)". Letk;" € H" ® (Z/p'Z) be the class obtained by choosing
a preimage of Efr under i* in the exact sequence obtained from (82) by replac-
ing Z with (Z/p'Z) and projecting it to H*. This class depends on the choice
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of preimage, but only up to the addition of a multiple of Kar . Furthermore, it is

annihilated by 72, since k" is annihilated by Igis, and therefore, for all rational

primes £ # N, the class (T — (£ + 1))K1+ is a multiple of the boundary symbol
+

Kq -

THEOREM 4.8. The class Kf'_ is the higher Eisenstein element in HT ® (Z/p'Z)

attached to K(-)’_ .

Proof. The modular symbol attached to /c1+ admits an explicit description when
restricted to T'o(N)0 x T'g(N)0. Namely, if /s and t/u (viewed as fractions in
lowest terms, with the convention that oo = 1/0, so that, in particular, s and u
belong to (Z/NZ)*) are elements of this I'g(N)-orbit, we have

i ({r/s, 1/u}) =log(s/u).
This fact is proved by observing that the matrix

/ R
y = <u t) (i s/r)eFO(N), u'=ss’=1 (mod N)

* U

sends r/s to t/u, and hence Kf'({r/s, t/u}) = /Zf'(y) =log(su’). To calculate the
constant of proportionality relating (T — (£ + 1))K1+ and Kg_ , we exploit the usual

formula for the action of the Hecke operators on modular symbols (cf. [
Prop 18.9]):
-1
(Ty — (€ + D)k, ({0, 00}) =k ({0, oo} + Z{i/@, oo} — (£ + 1){0, oo}>
i=0
-1

=D ki ({i/e,0h) = (€ —1)log()

i=1
= (¢ — D1log(0) -k ({0, 00}).
The result follows. (]

4.4. The Betti Cohomology of the Open Modular Curve
Consider now the case where
X=H" = Hp(Yo(N), Z).
The exact sequence
0 — Hi(Xo(N), Z)"—> HE (Yo(N),Z)” — Z — 0

produces an explicit rank one quotient of Hé(Yo(N ), Z)~ which is Eisenstein.
The Eisenstein element «, in H™ is described by the Dedekind—Rademacher ho-
momorphism on 'g(N) described in [ §11.2]:

1
ko (v) = E(IOg(AN)(VZ) —log(An)(2)), AN (2) := A(N2)/A(2),
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which encodes the periods of the modular unit Ay € (’);0 (N)* It is given by the
formula

_<a b) (N—-Db/d if c =0;
K == _ . .
0 \Nc d W + 1251gn(c)DN(ﬁ) ifc#£0,
where DV (x) = D(x) — D(Nx) and D is the Dedekind sum

m—1

D(a/m):ZBl(j/m)Bl(aj/m) form > 0, ged(a,m) =1.
j=1

The homomorphism k" can also be written as

_(a b a b a Nb
Ko <Nc d>=(p<Nc d>_¢<c d >’ (84
where ¢ : SL(Z) — Z is the Rademacher ¢-function given by

\e d)~ =) 1 12sign(e)D() if ¢ £0,

In [Lec], a formula for the higher Eisenstein element attached to «, is given,
which we omit because it shall not be needed in this work.

4.5. The Dual of the Modular Forms
This section considers the case where X := M* is the completion of
M>(N)" =hom(M>(N), Z)

at the p-Eisenstein ideal. It is a free T-module of rank one, and is also equipped
with an Eisenstein element & defined by

So(f) =ao(f),

where ao(f) denotes the constant term of the modular form f at the cusp co €
Xo(N). Let &; denote the higher Eisenstein element in M* := M* ® (Z/p'Z)
attached to Gy. It turns out to be related to the Shimura class G described in the

More precisely, the inclusion S> (N) < M3 (N) induces a surjection M[* — S*.
Fix any lift of & to M* = M* ® (Z/ p'7Z) via this surjection denoted by &. Note
that & is not completely well defined, but that any two choices of lift differ by a
multiple of &g (mod p’).

THEOREM 4.9. The class S is the higher Eisenstein element in M* ® (Z/ p'7Z)
attached to the Eisenstein class Sy.

Proof. The class & arises from the /21+ described in the discussion preceed-

194

ing Theorem by means of the “étale to coherent” morphism Helt(Xo(N ),
Z/p'Z) — H'(Xo(N)/z,p'z Ga)-
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For reasons that will become clear in what follows, instead of working with
Xo(N) over the spectrum of Z,, we will use an unramified extension W of Z,
containing the Nth roots of unity. Clearly, it is enough to prove the claimed state-
ment in M* ® (W/p' W) instead of M* ® Z/ p' since Z/p' — W/p'W.

Let ¢ : cusps < X((NV) be the inclusion of the cuspidal divisor, a relative di-
visor over Z. Let j : Yo(N) — Xo(N) be the complementary open immersion.
Now, there are compatible short exact sequences of étale sheaves on Xo(N)w/p,
the base change of Xo(N) along Z — W/p':

J(Z]p") —— O(—cusps) (86)
(Z/p" (I
Ix (Z/Pt) Ocusps

Note that we are dealing here with étale sheaves whose order is not prime to the
residual degrees, but all we are using is the existence of this diagram. Taking
cohomology now gives the following commutative diagram which is compatible
with Hecke operators:

Hg(cuspsw: z/pln) ————————> Ho(cuspsw/pr ,0O) (87)

| |

HL(XoN)yy . cuspsyy: Z/p' Z) ——>= HI(XO(N)W/p,,O(—cusps)) ——> Hom(M,(N), W/p')

| |

HY KoM 2/p' ) Q) ———— H Xg)yy 1. O) ————> Hom(Sy(N). W/p").

Here, the groups in the middle column are Zariski cohomology groups; the
map from left to middle column arises from, first of all, restricting to W/ p’, then
using (86) and the fact that coherent sheaves have the same cohomology in Zariski
and étale topology. The zero superscript in the bottom left of (87) refers to classes
that are trivial when pulled back to the cusps. The maps from middle to right are
induced by the Serre duality pairings as in (1 1).

The Shimura class © € Helt(Xo(N)Zp, 7,/ p") gives rise to a class in the group
HL(Xo(N)w,Z/p")© in the lower left of (87) (which we also denote by &),
that is, & becomes trivial when pulled back to the cusps—because the cusps are
defined over W. Fix a lift

S € HY(Xo(N)w, cuspsy; Z/p'Z)

to the middle left group in (87). Now this left-hand term can be compared with
(82) via restriction to the geometric generic fiber, that is, the fiber over Q P and it
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follows from Theorem that
(Tr —€— 1S = (¢ — 1) log(0)S

holds after restriction to this geometric generic fiber.

We claim that “restriction to the geometric generic fiber” is injective on the
group Helt(Xo(N)W, cuspsy; Z/p'). To see this, let E = W ® Q,, be the quotient
field of W. In view of diagram (87), it is enough to check that the kernel of the
map

q: Hy(Xo(N)w. Z/p") — Hy(Xo(N)g, . Z/p")

is precisely the image of HJ(Spec W, Z/p") on the left.

A class in the kernel of ¢ amounts to an étale Z/ p’-cover of Xo(N)w which
becomes trivial on the geometric generic fiber. This cover is uniquely determined
by its restriction to Xo(N)g (see [ Théoreme 3.8, Exposé X]) where it
becomes trivial on passage to a finite field extension of E, that is, the cover
on Xo(N)g necessarily arises from a character Gal(@p /E) — Z/p'. For such
a cover to extend over Xo(N)w, the character x must be unramified. (For in-
stance, this can be seen by restricting to the cuspidal sections.) This implies the
claim regarding ker(g) and concludes the proof. (]

REMARK 4.10. Theorem implies Merel’s theorem that (Sy, EéN)) =M,
where M is the Merel constant of (79), since, letting E’ be the mod p’ modu-
lar form defined in Proposition 4.1, (&1, EEN)) = {8y, E'Y =ag(E") = M.

4.6. Supersingular Divisors and Modular Units

Recall from Section the module Div(£) of Z-linear combinations of isomor-
phism classes of supersingular elliptic curves over Fy.

The Jacquet-Langlands correspondence shows that Div(€) ® C is abstractly
isomorphic to M>(N; C) as a module over the ring of Hecke operators, and in
particular the Hecke ring for Div(€) can be identified with T (). In this section
we consider the case where X := D is the p-Eisenstein completion of Div(£).

The vector (in the notation of Section 2.2)

n

o
o= Z w—’l eD (88)
i=1

satisfies Ty X9 = (£ + 1) X for all £ # N, and is thus an Eisenstein element in D.

Let 1 € D® (Z/p'7Z) denote the higher Eisenstein element associated to 3o,
as specified in Definition 4.6. The main goal of this section is to give an explicit
construction of ¥ in terms of the restrictions of certain modular units to the
supersingular locus. This construction is inspired from [Lec] and involves the
Eisenstein series Ey4;1 of weight N + 1, and the cusp form A of weight 12,
viewed as modular forms mod N of level 1.

Let Oy denote the ring of (meromorphic) modular functions on the modular
curve of level one over Spec(Z/NZ) that are regular at its supersingular points.
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Since p is odd and p 1 N + 1, the discrete logarithm log extends uniquely to the

multiplicative group IF;,Z, and can therefore be used to define a homomorphism

Log: O} — Div(§) ® (Z/p'Z),  Log(U):= Y log(U(e:)) - Z— (89)

i=1

It shall be useful to introduce multiplicative Hecke operators acting on the
multiplicative monoid in the graded ring of modular forms mod N. To describe
these operators, we shall adopt Katz’s point of view to describe modular forms
over a ring. Recall that a Katz test object over Fy = Z/NZ is a pair (A, )R,
where

(i) A is an elliptic curve over an Fy-algebra R;
(i) w in an R-module generator of HO(A, 9}4).

A weakly holomorphic modular form of weight k and level 1 over Fy is arule f
which to any such test object associates an invariant f (A, ) € R, satisfying

(1) f(A, w) depends only on the R-isomorphism class of (A, w);

(2) f commutes with base change with respect to any homomorphism R — R’
of [Fy-algebras, in the obvious sense;

(3) f(A,uw)=u"*f(A,w) forany u € R*.

Let (A4, wcan) denote the “Tate test object” over Fy ((g)), whose points over this
local field are identified with Fy ((¢))*/q%, equipped with its canonical differen-
tial wean = dt/t. If f(Ay, wcan) lies in Fy[[g]] (resp. gFn[[g]]), then f is called
a modular form (resp. a cusp form). The space of modular forms and cusp forms
of weight k and level 1 over Fy shall simply be denoted by M and Si respec-
tively.

Let £ # N be a prime. The multiplicative Hecke operator

T : My — Myt
is defined by setting

(T A ) =]] (A, o), (90)
4

where the product is taken over the distinct isogenies ¢ : A — A’ of degree ¢,
with o’ determined by w := ¢*@’. Up to language this is already in [ ]. One
readily checks that T[< maps My to Mg41)k, as claimed. Of course, T/ZX is not
additive but it is compatible with multiplication on the graded ring of modular
forms over Fy:

Tgx(fg) = Tgx(f)TgX (8)-
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In particular, it induces homomorphisms 7, : O —> Oy, for which the diagram

TX

oy ‘ o5 1)

\LLog \LLOg

Div(€) ® (Z/p'Z) — = Div(€) ® (Z/ p' )

commutes.
Consider the meromorphic modular function
Ey,
X .__ +
X0 = AN+ 92)
of level one. By a result of Katz ([ Theorem 3.1]), En+1 has no common

zero with the Hasse invariant. Since the Hasse invariant has simple zeroes at the
supersingular points, it follows that X* belongs to O;, and therefore that the
vector
1
3= I Log(2*) € (Z/p'Z) ® Div(£) 93)
is well defined. Note that the class of ¥ mod Z/p'Z - £¢ does not depend on the
way one normalizes the constant term of En1.

THEOREM 4.11. For all primes £ # N,

(Te — (L + 1) X1 = (£ — 1) log(€) Zo,
and X1 is therefore equal to the higher Eisenstein element attached to ¥y € D.
Proof. While the Eisenstein series Ey .1 presumably exhibits a complicated be-
havior under the multiplicative Hecke operators, a result of G. Robert ([

Théoreme B]) asserts that if (A, @) and (A’, ) are marked supersingular elliptic
curves and ¢ : A —> A’ is an isogeny of degree ¢ satisfying ¢*(0') = w, then

Eni1(A,o)=LEN,1(A,0) forall Acé. 94)
It follows that
T} Ens1=01EGH. (95)

In addition, for every prime £ # N,
T A =eR2A (96)
This follows by noting that
T/ (A)(Eq, wcan) = A(Ege, € can) x [ [ AE 176, 0ean) = L2 A(g)" .
Cenyg
Combining (95) and (96), we obtain
T(X (E X) — 512(2—1) (2 X)Z-Fl .
It follows that
Ty(Log(T™)) =12(¢ — 1) log(¥)Zo + (£ + 1) Log(=X),

as claimed. O
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EXAMPLE 4.12. Take N =23 and p = 11. The supersingular j-invariants mod N
are {1,728, 19, 0}, and we have X = (6, 1, 4) with respect to this basis. Normal-
ize log: (Z/NZ)* —> 7/ pZ by setting log(5) = 1. Vector X = % Log(X*) =
Log(E24) eFpe1, 728 @Fpe10 ®F e is then computed to be

o =(—1,—1,-3).

This can readily be checked for instance by means of the identity

S = (@ (2 - 1,728)) + c(j — 1.728)2)/d,
where
a=49,679,091, b = 176,400,000,
¢ = 10,285,000, d =236,364,091,

which follows by comparing the g-expansions of E4, E¢, and E»4. A computation
with Brandt matrices allows to verify numerically the identity of Theorem

The description of ¥ given in Theorem makes it possible to relate some of
its pullbacks to modular units. More precisely, let ¢ # N be an auxiliary prime,
let £@ denote the set of supersingular points of the modular curve Xo(g) in
characteristic N (i.e. over Fy), and let Div(£4) and D@ denote (respectively)
the space of Z- and (Z/ p'Z)-linear combinations of elements of £, Note that
in carrying over constructions from £ to £ we must take account of the fact that
the weights w, for x € £@ take into account the level structure and thus will not
in general coincide with the weight w; of the image x € £.
The two degeneracy maps

1, 12 Xolg) — X (1), m1(A,C)=A, m(A)=A/C o7
induce maps 71, 73 : £ — £ and correspondingly push-forward maps
Tlx, 25 : DIV(E@) —> Div(€).
The dual of these maps are pullback maps 7", 75, defined so as to satisfy
(mfa,b)y = (a,mjb) foralla € Div(€), b € Div(ED),
where (—, —), and (—, —) are the natural pairings (cf. (14)). In particular we get
i,y D— D@,

which is, now, compatible with the corresponding pullback of functions on the
ambient modular curves by means of map (89).
Just as in (89) we have a homomorphism

Log: 0}y — Div(E?) & (Z/p'D), (98)

where now O N denotes the multiplicative group of (meromorphic) modular

functions on Xo(g)r, regular at the supersingular points. This applies to the case
where f=m(A)/m}(A) = A(z)/A(gz), which is a modular unit of level .



Derived Hecke Algebras for Dihedral Weight One Forms 49

THEOREM 4.13. For any auxiliary prime q # N, denote by
ug :=A(2)/A(gz) 99)

the modular unit of level q, considered as an element of (’)qx’ N (see (98)). Then
1

where 2(():;) =71 (X0) =} (Xo) is an Eisenstein eigenvector on D@,

The use of the auxiliary prime g simplifies the situation: the map (7| — 75) kills
>o; thus (nl* — 712*) ¥ is independent of the choice of X and is strictly Eisenstein,
rather than higher Eisenstein. In fact, in the case ¢ = 2, this general idea appears
in the work of Lecouturier; the role of the modular unit (99) is replaced in his
work with the A-invariant, see [ Prop 3.25].

Proof. Equation (94) shows that 7' (En41)/m) (En+1) is constant on ED and
hence

Log({ (En+1)/75 (En+1)) ~ 55,

where ~ indicates that the two vectors are proportional to each other. It follows
from definition (92) of £* and N = 1 modulo p’ that

Log(} (£%)/3 (£7)) = 2Log(A(g2)/A() (mod T,

and the claim follows from definition (93) of X. U

4.7. Tensor Products

Let M and N be any two free modules of rank one over T. The tensor product
M ®T N is still free of rank one. If m and m (resp. ng and n1) are Eisenstein and
higher Eisenstein elements in M (resp. N), there seems to be no simple expression
for the higher Eisenstein element in M &t N in terms of these elements. (For
instance, the vector mo ® ng fails to generate the Eisenstein subspace in M QT N
in general.)

Since T is Gorenstein, the Z,-dual M* = Hom(M, Z,) is again a free T-
module of rank 1, and hence it makes sense to consider (higher) Eisenstein el-
ements on it.

PROPOSITION 4.14. If m{j and mY (resp. nj; and nY) are the Eisenstein and higher

Eisenstein elements of M* and N* respectively, then

(1) The element m§ ® n is an Eisenstein element of (M @ N)*.

(2) The element m ® n} + m7 @ ng; is the higher Eisenstein element of (M ®T
N)*/p" associated to m§ @ ng.

Note that there is a natural module homomorphism M* ®z, N s (M ®y , N )*
sending m* ® n* to the functional defined by (m™* ® n*)(a ® b) = m™*(a)n*(b).
The meaning of the first statement is, then, that the displayed expressions in fact
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belong to (M T N)* C (M ®z, N )* and, moreover, are Eisenstein/higher Eisen-
stein considered in the former group. Similarly for the second statement (see what
follows for details).

Proof. As for (1), we first check that m§ ® n(j belongs to the submodule (M ®r
N)* of (M ®z, N)*. The kernel of the surjection M ®z, N — M @t N is
generated by (T ® 1 —1® T)(M ® N) for T € T. Hence it suffices to verify that
(T®1-1Q®T)mi®nj) =0 forall T €T, and this follows because T is a
simple algebra over Z, generated by an element of /g;s. Now (1) follows, as it is
obvious that mg ® ng is a generator of the Z,-module (M ®t N)*[/gis].

As for (2), write M :== M/p'M and N := N/p'N. Note that M*/p' ~ M*
where, on the right, x denotes Hom(—, Z/p"). The expression m§ @ n} +m} ®n
lies in

(M* ®z, N*)/p' =M* ®z;, N*.
We argue as before that m§ ® n} + m} ® ng lies in (M @ N)*. The T-module
structure is given by applying T € T to either the first or second argument. Ap-
plying Ty — £ — 1 to the first argument gives

(Ty — £ — D[mi @n] +m] ®ngl
=Ty —€—Dmyni+ (Ty — € — Dm] @ ny
= (¢ — 1) log(O)m}; ® n.

as desired. O

5. Proof of the Main Theorem

This section proves Conjecture 1.1 for dihedral modular forms.

5.1. Elliptic Units

We put ourselves in the situation of Sections and with Yo = | ! and
Yo # ¥1. In particular: K is an imaginary quadratic field of odd discriminant
D < 0 and a ring of integers o; the level N is prime, p > 3 is a prime dividing
N —1,and | : C —> L* is a class group character into some cyclotomic field
L. Let R be the ring of integers of L.

Finally, put

v =y1/Y =y C— L*. (100)
When N splits in K, Conjecture 1.1 reduces to the equality 0 = 0, as explained
in Section 1.3 of the . Hence it shall be assumed throughout that N is

inertin K.

Let Fp2 be the quotient o/N, a finite field of size N 2 and fix an algebraic
closure Fy of Fya.

In the current section only ¥ will be relevant (and the discussion would be
valid for an arbitrary character v, not just one of the form (100)). We will con-
struct an elliptic unit uy, associated to ¥ and explain how its discrete logarithm at
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various primes is related to the geometry of supersingular points. We will use the
setup of Section 2.1 regarding double coset spaces attached to definite quaternion
algebras, but will now use the incarnation of these spaces in terms of supersingular
elliptic curves.

More precisely, global class field theory identifies C with the Galois group of
an abelian extension H of K: the Hilbert class field of K, generated over K by
the j-invariants of elliptic curves over K with endomorphism ring equal to o. The
set of all such elliptic curves up to K -isomorphism, denoted by &,, is a principal
transitive C-set and the choice of a base point A € &, identifies the two sets

aceCr— Aqeé&,

via tensoring with the inverse of a.
The prime N, which is inert in K /Q, splits completely in H/K , and the choice
of a prime 91 of H above N determines the reduction maps

1:E — &, ¢ : Pic(o) — €,

where & is the set of isomorphism classes of supersingular curves over Fy. Since
the end result we are proving is independent of the choice of 91, we can and
will choose 91 in such a way that the reduction ((A) € £ matches one of the
basepoints for £ chosen before (13), that is, to reprise, the endomorphism ring of
the reduction of A at 91 should contain an order of the form o @ 0.

The map ¢ coincides with the map (13) after identifying £ with maximal orders
in the associated quaternion algebras, as specified prior to (13). As in (17), the
image of ¥ under the pushforward map ¢, : R[Pic(0)] — Div(€) ® R is denoted
by [¥] := () € Div(€) @ R.

Let ¢ be an auxiliary rational prime which does not divide DN. A Heegner
point on X o(q)(k ) attached to o is a pair (A, C) where A is an elliptic curve over
K equipped with a cyclic subgroup C C A of order g, for which both A and A/C
belong to &,. The set Eéq) of Heegner points on Xo(g)(K) is nonempty precisely
when the prime ¢ 1 D is split in K /Q, that is, when ¢ = qq. It is then contained in
Xo(g)(H). Just as before, the choice of a prime 9t of O induces reduction maps
£D L, £@,

The set 55‘“ is equipped with the two degeneracy maps

T Y — & m(A,C)=A, m(A,C)=A/C,

obtained by restricting the corresponding degeneracy maps Xo(g) — X (1). The
choice of a prime divisor q of g determines a section 14 : £, —> é'éq) of w1 by
setting

nq(A) = A := (A, Alq)).
Observe that the action of Pic(o) on &, satisfies

Agq =m2(ng(Ag)). (101)
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DEFINITION 5.1. The elliptic unit attached to ¥ and q is the element

pg= . ug(nq(Aa) ®¥(a) € H* @R, (102)

aePic(o)

with u, the modular unit defined in (99).

If ¥ is nontrivial, then uy 4 belongs to O} ® R and more precisely to its /-
isotypical component; that is to say:

g lUyg= wil(g)ul/,,q for all g € Gal(H/K). (103)

(Ct. [ §11, Thms. 1.1. and 1.2].) Note that on the left-hand side of (103),
g acts on H in the natural way. On the right-hand side, v is understood as a
character of Gal(H/K) through the isomorphism Gal(H /K) ~ C through which
this Galois group acts on &,, and ¥ ~!(g) € R* acts by multiplication on the
second factor in the tensor product O} ® R. If ¢ =1 then uy, 4, may fail to be a
unit at the primes above ¢, but this case will not arise.

The following proposition plays a key role in the proof of Conjecture for
CM forms described in the next section, since it is via this result that the relevant
Stark unit makes its appearance.

PROPOSITION 5.2. For all characters v : C — R and all split primes q = qq as
given previously, we have an equality in R/ p':

1
A=y @) x(Z,[¥]) = 5 log(uy,q),

where £ € Div(€) @ Z/p'Z is the higher Eisenstein element of Theorem ,
and we wrote log : Of; ® R — R/ p' for the composition of the reduction map
Oy — (O /M* ~ F;z with discrete logarithm fixed at the outset.

Proof. Recall that A is a fixed basepoint for £, and [¢] = Z,ec W(I)A;. We
may write

A=y @)L= Y @) —yUD)N(T1, Ar)

1€Pic(o)

> WIS AL — Apg).

1 €Pic(o)
Letting AI :=1nq(Ar), we have, by (101),
Ap—Apg = (m1 — 1) (AD),
and hence, by invoking Theorem ,

A=y @) (ZL[v]) = Z Y (D((rf —73) %1, Ap)

I1€Pic(o)

SThis discrete logarithm was defined on (Z/NZ)* but uniquely extends to IF;Z
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| .
=—c Z ¥ (I)(Log(uy), Ar)

1€Pic(o)

with the pairings the natural ones on Div(£@). The latter expression is equal to
—%(Log(uq), [v]) = —% log (i, q), the equality taking place in R/p':

(Log(ug). [¥1) =Y loguug (o ng(Ap)y (1)
IeC

=10g<Zuq(L onq(A1) ® w(n)
IeC
=logredy Zuq (nq(AD) @ ¥ (I) =log(uy,q).
IeC

REMARK 5.3. One can replace the algebra M>(Q) with a nonsplit, indefinite
quaternion algebra Dys over QQ, of discriminant M > 1 say, which is associated
to a Shimura curve X arising from a co-compact subgroup of SL,(R). Given a
prime N { M, the module £y y of supersingular points of X in characteristic
N is identified with the space of functions on a finite double coset space attached
to the definite quaternion algebra Dy of discriminant M N. If ¢ is a charac-
ter of the class group of a quadratic imaginary field K in which all the primes
dividing M N are inert, one can define an associated vector [{] € X, y much
as in the case where M = 1. The space Xy y contains an Eisenstein eigenvector
3, whose value on a double coset is equal to the cardinality of its stabilizer sub-
group. Theorems 1.2 and 1.3 of [Yoo] show that the Hecke algebra T,y acting
on Xy n is equipped with an Eisenstein homomorphism ¢g;s as in (80) with T
replaced with Ty, and suggest that, if p > 3 is a prime with p’||N — 1, then
the module Xy y ® (Z/p'7Z) contains a generalized Eisenstein eigenvector X
attached to a choice of discrete logarithm log : Fy, —> Z/ p'Z, satisfying

(Ty — (€ + 1) X1 = (£ — D log(£) Zo.

Does such X1, when it exists, satisfy an analogue of Proposition relating
(21, [¥]) to the discrete logarithm of the elliptic unit uy, which does not de-
pend on N? Such a relationship would be intriguing in light of the fact that the
arithmetic subgroup of SL,(R) defining X s has no parabolic elements and hence
there are no modular units on X s that could be parlayed into a direct construction
of Xj.

5.2. Proof of Conjecture 1.1 for Definite Theta Series

We now restrict to the case D prime; however, as we comment in the statements,
the proofs verbatim give results for D odd under further restrictions on N.

We let g = 0y, be the associated 6 series. It is a cusp form by virtue of the
assumption that | # v ', The Galois representation p, is the induction to Gg
of the finite order character 1. Let

G € Ma(To(N)) =TriPg(2)g*(N2)
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denote the modular form defined as the trace to the space of modular forms of
weight 2 and level N of the product g(z)g*(Nz) = 0y, (z)@wq (Nz).
1
Recall from (15) the ®-correspondence

® :Div(£) QT(N) Div(€) — Mr(To(N)).

In particular, this induces a map on localizations at the Eisenstein ideal m, and it
follows from [ Theorem 0.5] that the resulting map is an isomorphism of
free T = T(N)ny-modules of rank one. Write

T=T/p'. D=Div(E)m/p’.  M=MTo(N)n/p",
S = S2(To(N)m/p'".
Then, reducing ® modulo p’, we obtain an isomorphism
©:DerD~M (104)
with associated adjoint
0* :M* ~ (D @ D)*. (105)

Here * denotes Hom(—, Z/ p").

The strategy of the proof of Conjecture 1.1, as outlined in Section .4, is to
express the inner product (G, &) as an inner product on D ® D via ©. It follows
from Theorem 2.2 that

(G.6)=4-(6(1][y]D. ) =4(1]® V], 0(&)). (106)

Here we regard the equality as occurring inside R/ p', and we regard & € M* and
[11® [¢¥] € D @7 D. We now need the following:

THEOREM 5.4. Let Sg and G € M* denote the Eisenstein and higher classe_s
described in Section , and let o and ¥ denote the analogous classes in D
described in Section 4.6. Then

(1) ©*(&p) = 3T ® o;
(2) ©*(8)) = 1(Z1 ® To + Zo ® T1) modulo T ® .

Here we used t_he pai_ring (, )_ given in f ) to identify D~ (ID))*; we also used
the inclusion (D @7 D)* c (D* ®z /pt D*) to describe elements of the left-hand
group, just as was done in Proposition

Proof. The first part of the theorem follows directly from the definition of ® given
in (15). The second follows from the Hecke equivariance of ®*, in light of the fact
that 1 ® o + X1 ® X is the higher Eisenstein element in (]I_D QT ID))* attached
to o ® g, by Proposition . O

We now choose an auxiliary prime ideal q so that v (q) is a primitive root of unity
of order equal to the order of .
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PROPOSITION 5.5. There is an equality inside R/ p'
—h(0)

A =v@)(G,6) = log(uy,q), (107)

where uy 4 is the elliptic unit defined in (5.1), and h(o) is the order of the class
group C.

Note that, for D odd but not assumed prime, the same conclusion holds true with
the following caveats: we suppose not merely that N is inert in Q(v/— D), but that
—N is a square modulo D; and, owing to the denominators potentially introduced
in Section 2.6, it is only valid for p sufficiently large in the sense of Theorem

Proof. By (106) and part (2) of Theorem 5.4,
(G,6)=2([11®[V¥], Zo® X1 + X1 ® Zo) =2(Zo, [11)(Z1, [¥]),

where we have used the fact that (2o, [/]) = O since ¥ is nontrivial. Since
(20, [1]) = k(o) by definition, the theorem now follows from Proposition 5.2. [

To prove Theorem of the for CM weight one forms, it remains
to relate the right-hand side of (107) to the expression redy (#g) occurring in this
theorem; this is done by the following lemma.

LEMMA 5.6. Let Uy := ((9;(1 ® Ad* (,og)o)G@. There exists ug € Ug with the prop-
erty that, for all N as before,

log(redy (ug)) = 2log(uy, q)-

This lemma concludes the proof of Theorem 1.2 after multiplying equality (107)

by % € R with n the norm of 1 — v (q):

—h
(=6m)(G, 6) =logluy),  uy:= % e

where, in the last equality, we are implicitly using the R-module structure on Uy
to form the product.

Proof. For typographical simplicity, we write just uy, instead of uy .

Let e; be an eigenvector in V, for the action of Gk, on which G acts via the
character 11. Since N is inert in K, the associated Frobenius automorphism oy €
G sends e; to a complementary vector e, = oy (e1), on which Gk acts via the
character W{- Since oy has determinant —1, it then sends e> to e;. Representing
the elements of Ad(V,) as matrices relative to the basis (e1, e2), so that

0 1
pg(x) = (1//1(§x) " (x)_1> forx e Gx and pg(oy) = <(1) 0) ,

and using the trace form to identify Ad(V,) with its dual Ad*(V,), we define
ug € Ug via

Ug :=Uy @ (8 (1)) +on(uy) ® ((1) 8) . (108)
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Note that the matrices do indeed define functionals on Ad(Vy) that send the im-
age of R[Gq] to R. We readily see that u, is in fact Gg-invariant, for example,
p¢(Gk) acts on the uy through ¥ ~! and on the upper nilpotent matrix through
v = wlz. We then compute an equality inside O, ® R:

redy (itg) = (g, pg(on)) = Trace (”01/’ UN?MWQ =uy + oy (uy).

(The reader is cautioned that additive notation for the group law in O, ® R/ p' has
been used in this last equation.) Since the discrete logarithm mod N is equivariant
for the action of oy, which acts trivially on (Z/NZ)*, we obtain the desired
equality

log(redy (ug)) =log(uy +onuy) =2log(uy).

5.3. Proof of Conjecture 1.1 for Indefinite Theta Series

We now turn to proving Conjecture .| when g is an RM form. We will be in the
situation of Section 3 with ¥, = ¥~ ! More precisely, let ¥ : Gk —> R* be
the finite order character of mixed signature as in the beginning of Section 3, with
values in the ring of integers of a finite extension L of Q, such that g = 0y, is
the theta series associated to | as described in (22). Let N be an odd prime, and
define G € S2(I'9(N)) as the trace to the space of modular forms of level N of
Oy, (2)0 ! (Nz). As explained in the , the conjecture we address in

this note becomes trivial when N remains inert, and hence we assume throughout
that it splits in K as N =9 - .

The proof of Conjecture , which computes the pairing of G with the
Shimura class, again relies crucially on the ®-correspondence, namely the Hecke-

equivariant map

@ : Hi g(Xo(N), cusps; Z)" @1y Hi.s(Yo(N), Z)~ — Ma(N)

given by
-1
+ -\ — + Y e (y— + -
Ot @y )=k (¥ kg )+ Y Ty Ty )" (109)
m>1
Here KSE are as defined in Sections 4.3 and 4.4. Note that the sign of g—i depends

on orientation conventions implicit in the definition of the intersection pairing.
For the lack of a suitable reference, we sketch a proof. We identify the
relative homology group Hj g(Xo(N), cusps; Z)™ with H];(YO(N), Z)~, a free
T(N)-module of rank one, and thus with T(N) itself. We can similarly iden-
tify H1 s(Yo(N), Z)~ with its dual M2(N; Z). Adjusting these identifications if
necessary, we can suppose that the Poincaré pairing (—, —) corresponds to the
pairing on T(N) x My(N; Z) given by (T, f) +— a1(Tf), and ® corresponds to
(T, f)+— Tf.Formula (109) follows from this up to the identification of the con-
stant g—i. To compute the constant, we take ¥+ the element represented by the
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geodesic from 0 to oo, and ¥y~ a small loop around oo, and we fix orientations so
that (y T, y~) = 1. In particular,

Toytoy) = Y. d. kfoH=1 k) =N-1
dlm,(d,N)=1

The expansion on the right-hand side of (109) must represent EEN), and therefore
this fixes the constant as 5—;.

We note in particular that K(;" vanishes on the image of H; g(Xo(N)), and so
the formula above in fact matches with (45) used in an earlier section.

As in the CM setting, we can observe that—with m the Eisenstein ideal as

before—

e the modules H; := H; g(Xo(N), cusps; Z){ and H_ = H, g(Yo(N), Z), ob-
tained from completing the singular homology of the complex modular curves,
are again free T-modules of rank 1.

e the map Oy, is an isomorphism: (H; ® H_) — M, and so (cf. (104), (105))
we have adjoint maps

0 :H; @pH_ ~M, 0* 1 M* ~ (H; @7 H_)*. (110)
Here bars denote tensoring with Z/p’ and * denotes Hom(—, Z/ p").

The strategy of the proof of Conjecture is, much as in the case of CM theta
series, to express the inner product (G, G) as an inner product on H; @ H_ via
0.

We will follow the notation of Section 3.2; in particular C is the narrow class
group of K, and we have introduced Heegner cycles y; attached to / € C as well
as weighted combinations yy in (46). The following proposition plays a key role
in the proof of Conjecture for RM forms, since it is via this result that the
relevant Stark unit—in this case, a fundamental unit of the real quadratic field—
makes its appearance.

PROPOSITION 5.7. For all even characters v of the narrow Picard group C,

—hlog(ug) ify =1,

KJ()/,;,):O and Kf(yw)z 0 i1

where KJ and K1+ € Hﬁ (Xo(N), cusps; Z)T are the Eisenstein and higher Eisen-
stein elements described in Section 4.3, h is the order of the narrow class group C,
and log(ug) refers to the logarithm of the reduction of ux at the chosen divisor
MNof N.

6Note that we get, by duality, an isomorphism of these with the (sign-altered) cohomological ana-
logues: Hy ~ H~ and H_ ~ HT, so this result follows from its cohomological analogue.

TThe definition of vy also depends on the choice of divisor of N, although this is not indicated in the
notation. One checks that the identity remains valid upon replacing 91 with 91’ on both sides.
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Proof. The assertion about KJ follows from the fact that the Heegner cycles yy,
viewed as cycles in the integral homology of Xo (/) relative to the cusps, are in
the kernel of the boundary map 9 of (83) and hence are orthogonal to «g.

To show the second assertion, recall that the class K1+ was defined modulo p’
by choosing a discrete logarithm log : (Z/NZ)* —> Z/p'Z and setting

K1+ (ﬁ Z) =log(a).

i (yr) = —log(uk), (111)

where ug is a fundamental unit of norm 1 of the real quadratic field K, log(ux)
refers to the logarithm of the reduction of ux at 1. This is because (notation
of Section 3.2) the cycle y; arises from an embedding o — My(N) with respect
to which the ring homomorphism sending a matrix in My(N) to the mod N re-
duction of upper left-hand entry restricts to reduction modulo 9T on o (see the
discussion before (43)); the sign arises for the orientation reason noted after (44).
Equation (111) therefore implies that /c1+ (vy) = —(Zu ¥ (a))log(uk), and the
result follows. O

With this choice we have

PrOPOSITION 5.8. For all totally odd ring class characters r,
ko (ry) =1 =¥ OD)) Lag(¥),

where k; € Hé(Yo(N), Z)~ is as defined in Section 4.4, and Lag () € R will be
defined in (112) and is in particular independent of N.

Recall that «, arises from the Dedekind-Rademacher function ¢ of (85) which
encodes the periods of the (complex!) logarithm of the modular unit A(Nz)/A(z).
The proposition shows that «, (yy ) exhibits a mild dependence on N through the
factor (1 — ¥ ().

Proof. The issue to be dealt with here is, essentially, passage from level 1 to level
N.Let I € C.Choose arepresentative that is relatively prime to N and an oriented
basis (e, e2). The element

a b
ny= (c d) € SLy(Z) where

uge| =aei + cey,

ugery =bey +des,

has conjugacy class in SL,(Z) that does not depend on the choice of oriented
basis, and in particular ¢ (1) is well defined. Choose (eq, e2) so that e; belongs
to 7 NN, and observe then that (e}, €}) := (Ney, €2) is an oriented basis for /91
and that ug acts on this basis according to the rule uge| = ae} + (cN)e, and
urey = (b/N)e| + de}. By (84) as well as definition (42) of cycles y,, we get
ko (Vi) = @(mim) — @(n1), and it follows that

kg (vy) =Y _ UM (@) — ¢(1))
==y ) ¥ (Dew),
1



Derived Hecke Algebras for Dihedral Weight One Forms 59

and we obtain the result upon defining

Lag(¥) := Y ¥ (D) ™ p(n1). (112)
I O

REMARK 5.9. As is implicit in the notation, Lyg(v/) is closely related to the “al-
gebraic part” of the L-series L(y,s) =), dox V(@ (N a)~* attached to ¢ at
s = 1. The justification for this is given by Meyer’s analogue of the Kronecker
limit formula for real quadratic fields (cf. [ §4]) which asserts that, at least
for all unramified, totally odd characters ¢ of the narrow Hilbert class field of K,

Lag() ="2L Ly, 1),

Note that if x2 —an (g) + xx (N) = (x —an)(x — By) is the Nth Hecke polyno-
mial attached to g, then we may order oy and Sy in such a way that

an =y1(N), By =v1(M) andso YO =1 (/Y (O) =an/By.

where we use definition (9). Proposition can then be rewritten as
ko (vy) =1 —an/Bn) X Lag(¥). (113)

Let &g and & = & € M* denote the Eisenstein and higher classes described
in Section 4.5. It follows from Theorem 3.1 applied to the pair (31, ¥ H—so by
(41) Y12 =1 and ¥y = V1 /| = y—that there exists C, € R independent of N
such that

(G,6) =pnCe(O(n]®[yy ). 6)
=BnCe - (1 ®[yyl, ©%(&)), (114)

where we understand [y1] ® [yy ] as an element of (H:]I+ b H_) and O*(6) as
an element of the Z/p'-dual, see (110). Here we regard ® as normalized as in
(109); the C,, that appears in the equation only agrees with that constant appearing
in Theorem up to sign, arising from the fact that the choice of orientation
convention for (109) was not compared with the choice of orientation convention
used in Theorem 3.1. This sign may be computed by the enthusiastic reader.

The next theorem, which determines the image of & under ®*, plays exactly
the same role in the RM proof as Theorem 5.4 in the CM setting.

THEOREM 5.10. We have
(1) ©*(S0) = 53k; @Ky ;
2) OF(6)= E—J(K?— ® Ky +KJ ® k) modulo KJ‘ ®Kg »

where kT are the Eisenstein classes of Section 4.3, or rather their image in (H_)*

or (H,)*, and similarly k= are similarly defined from the Eisenstein classes of
Section
The statements should be interpreted just as in Theorem 5.4: we use

(Hy @5 H-)* C ([l @7/ HO)* = (Hy)* @7/ H-),

where * means Hom(—, Z/ p").
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Proof. The first part of the theorem follows directly from the definition of ® given
in (109). The second follows from the Hecke equivariance of ®*, in light of the
fact that K]+ ®K, + K1+ ® K, is the higher Eisenstein element in H* @ H™)V
attached to KO+ ® K , by Proposition . U

We can now prove Conjecture 1.1 in the RM setting.
ProPOSITION 5.11. We have
1
(G,6)= ﬂh(o)cg “Lag(¥) - (BN —an) -log(uk). (115)

Proof. Applying (114) and part (2) of Theorem ,

_ _:BNCg
(G.6)= 24

_ _IBNCg
Y

where we have used the fact that KS_ (y1) = 0 to ignore the term arising from
(V1 ® vy, K(;“ ® «; ). The theorem now follows from Proposition and (113),
which imply that

ki (y) = —hlogug), &y (ry)=(1—an/Bn) - Lag(¥). O

V1 ®yy. kg @Ky +if ®Ky)

k() kg (),

To prove Theorem 1.2 of the when K is a real quadratic field, it re-
mains, as before, to relate the right-hand side of (115) to the expression redy (u4)
occurring in this theorem.

LEMMA 5.12 (cf. Lemma 5.6). Let U, := ((’);; ® Ad*(pg)")G@. There exists ug €
U, with the property that, for all N as before,

log(redy (ug)) = (ay — Bn) log(uk).
As before, Theorem will follow from this: we have
24(G, B) = log(redN(ug,))
with u; = —h(0)Lag(¥)Cyq - ug.

Proof. Let e1 and e; be eigenvectors in V, for the action of G, on which Gk
acts via the characters y| and | respectively. Since N is splitin K, the associated
Frobenius automorphism oy € G is a diagonal matrix with entries oy and By .
Representing the elements of Ad(V,) as matrices relative to the basis (e1, e2), so

that pg(on) = (0‘6" ﬂ?\] ), and using the trace form to identify Ad(V,) with its dual

Ad*(Vy), we define
1 0
”g :uK®<O _1>7

which is clearly Gg-invariant: it is fixed by G, and the nontrivial automorphism
of K negates both factors. As after (108) this indeed defines an element of U,.
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One then finds

redy (ug) = (ug, pg(on)) = Trace (uk %QN ug ®(()—ﬂ/v)>

=ug ® (ay — Bn).

Therefore,

log(redy (ug)) = (an — Bn) log(uk).

The lemma follows. O
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