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Abstract
Fuzz testing (fuzzing) allows developers to detect bugs and vul-

nerabilities in code by automatically generating defect-revealing
inputs. Most fuzzers operate by generating inputs for applications
and mutating the bytes of those inputs, guiding the fuzzing pro-
cess with branch coverage feedback via instrumentation. Whitebox
guidance (e.g., taint tracking or concolic execution) is sometimes in-
tegrated with coverage-guided fuzzing to help cover tricky-to-reach
branches that are guarded by complex conditions (so-called “magic
values”). This integration typically takes the form of a targeted in-
put mutation, e.g., placing particular byte values at a speci!c o"set
of some input in order to cover a branch. However, these dynamic
analysis techniques are not perfect in practice, which can result in
the loss of important relationships between input bytes and branch
predicates, thus reducing the e"ective power of the technique. We
introduce a new, surprisingly simple, but e"ective technique, global
hinting, which allows the fuzzer to insert these interesting bytes
not only at a targeted position, but in any position of any input.
We implemented this idea in Java, creating Confetti, which uses
both targeted and global hints for fuzzing. In an empirical com-
parison with two baseline approaches, a state-of-the-art greybox
Java fuzzer and a version of Confetti without global hinting, we
found that Confetti covers more branches and !nds 15 previously
unreported bugs, including 9 that neither baseline could !nd. By
conducting a post-mortem analysis of Confetti’s execution, we
determined that global hinting was at least as e"ective at revealing
new coverage as traditional, targeted hinting.
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1 Introduction
Software is at the core of critical electronic systems. To avoid

introducing faults, which can lead to signi!cant errors and security
vulnerabilities, developers test their applications before deploy-
ment by generating diverse inputs that exercise as many behaviors
as possible, attempting to catch bugs and vulnerabilities before
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they escape to the wild. Unfortunately, manual testing only goes
so far towards generating diverse (and unexpected) inputs. Many
recent advances in greybox fuzzing, such as the popular American
Fuzzy Lop (AFL) [81], AFL++[38], libFuzzer [55], and hongfuzz [44],
are based on coverage-guided fuzzing. Coverage-guided fuzzers use
branch coverage as feedback to guide mutation of a set of manu-
ally provided “seed” inputs towards new inputs that explore new
program paths. These fuzzers might execute thousands of inputs
per second, but are unlikely to generate inputs that satisfy highly
constrained branches which require some so called “magic bytes”.

A complementary approach, concolic execution, discovers those
magic values by recording exactly which input bytes are used in
which branches in the program’s execution). Then, with the aid of
an SMT solver, the concolic execution engine generates inputs that
force a di"erent branch choice [45, 72, 82]. Prior work has observed
that full-blown concolic execution is often unnecessary to handle
typical magic byte comparisons, turning instead to dynamic taint
tracking [33, 40, 69]. Dynamic taint tracking is an analysis that
associates taint tags with values, and then propagates those tags
during program execution such that when a new value is derived
(through data )ow) from a tainted value, that same taint tag is
associated with the new value.

While taint tracking-guided fuzzers like VUzzer [69], Angora [33]
and BuzzFuzz [40] have been shown to be more e"ective than a
typical greybox fuzzer, we believe that they have only begun to
leverage the power of taint tracking in fuzzing. In particular, taint
tracking can only guide the fuzzer to explore branches for which
there is a data!ow relationship between the branch predicate and
the input bytes. Consider the code snippet in Listing 1, in which
the input strings s1 and s2 are compared against some particular
string, with that comparison stored into a boolean variable.

1 p u b l i c vo id magic ( S t r i n g s1 , S t r i n g s2 ) {
2 boo lean v1 = s1 . e qu a l s ( " abc " ) ;
3 boo l ean v2 = s2 . e qu a l s ( s1 . c onca t ( " d e f " ) ) ;
4 i f ( v1 && v2 )
5 throw new I l l e g a l S t a t e E x c e p t i o n ( ) ; / / Bug
6 }

Listing 1: Example code in which taint tags from inputs s1
and s2 do not !ow to a branch that they indirectly control.

Ideally, the taint tracking tool could report to the fuzzer that to
cover the true side of the branch on line 4, the fuzzer must mutate
s1 and s2 (and even better, to generate the concrete values abc
and abcdef, respectively). However, the taint tracking tool will not
report any relationship between the input and the branch on line 4
because v1 is control-dependent on s1, but not data-dependent (and
similarly, between s2 and v2). Even worse: while in this example,
there is a data)ow relationship between the input strings s1 and
s2 and the magic strings abc and abcdef, in real code, the taint
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tags on s1 or s2 might also be lost through implicit )ows. For
example, one common pattern is to build a map from input strings
to a tokenized representation of each string — if the same input
string is encountered more than once, the parser returns the same
tokenized version of the string, e"ectively losing track of the input.

While some dynamic taint tracking tools do support “control )ow
propagation,” which would detect this relationship, these analyses
have too many false positives to be useful in practice [34, 47]. How
else can we help the fuzzer to explore this branch? One typical
approach is to simply scrape the application binary for all strings,
creating a dictionary of interesting strings to use when fuzzing
(in this case, abc and def). Unfortunately, this trick only works if
the magic values are statically de!ned in the codebase — values
generated dynamically will not be included in the dictionary. In
this case, because s2 must be the value abcdef, the dictionary will
not help the fuzzer explore this branch.

This paper presents Confetti, (CONcolic Fuzzer Employing
Taint Tracking Information), a system that combines fuzzing with
taint-tracking and concolic execution. Confetti ampli!es the reach
of concolic guidance, allowing the fuzzer to e"ectively generate in-
puts that explore branches like the one in Listing 1, and longer, more
complex examples where taint tags quickly become lost through
implicit )ows. Our key insight is that the precise targeting of past
taint tracking-guided greybox fuzzers unnecessarily restricts the
fuzzer’s ability to reveal tricky-to-reach branches. As with state-
of-the-art fuzzers, Confetti executes each input in its population
with taint tracking, collecting constraints on the input bytes. Con-
fetti can generate new coverage-revealing inputs through concolic
execution by negating and solving those constraints, in the style of
existing work [33, 35, 63, 72, 79, 80].

Confetti’s novel approach to guide the fuzzer, global hinting,
is based on the insight that although taint tags might be lost for
parts of an input, magic values derived for other parts of the input
can be re-targeted and applied elsewhere. When Confetti !nds
that a part of the input )ows into a comparison with a dynamically
computed value, Confetti records that value as a global hint. We
create and evaluate a new fuzzing mutation, which inserts global
hints anywhere in any input — not only at the targeted location of
the speci!c input from which the hint was derived.

We evaluate the e+cacy of this new mutation strategy, consid-
ering both system-level metrics (i.e., branches covered and bugs
found) and unit-level metrics (i.e., mutation success rate). Our re-
sults clearly demonstrate that global hinting is roughly as e"ective
in revealing new coverage as traditional, targeted hinting, and most
importantly, that this strategy reveals di"erent coverage and bugs
that could not be reported by using targeted hinting alone. In our
evaluation, the baseline JQF-Zest fuzzer detected 11 bugs, whereas
Confetti with only targeted hints detected 16, and Confetti
with both global and targeted hints detected 25 bugs. Our open-
source implementation of Confetti represents a signi!cant im-
provement in fuzzer technology for JVM-based software, providing
bene!ts to software engineering researchers inventing new fuzzing
approaches and to professional software engineers searching for
bugs in their software. While our implementation is limited to a
single language (Java) and a single greybox fuzzer (Zest), we be-
lieve that our results are compelling enough to have a signi!cant

impact on the !eld of software engineering, warranting future work
exploring global hinting in other fuzzing domains.
The key contributions of this paper include:
• Anew approach to combine concolic execution and taint tracking
with fuzzing: global hinting.

• An open source implementation of Confetti for Java, which
combines traditional, targeted hinting with our novel global
hinting strategy [51, 52].

• An evaluation of Confetti, demonstrating the e+cacy of its
novel global-hinting-based guidance over a baseline state-of-the-
art greybox Java fuzzer (Zest), and against a baseline version of
Confetti without global hinting.

2 Background
Before describing how Confetti e"ectively guides a greybox

fuzzer using whitebox information, we !rst brie)y summarize grey-
box fuzzing, and in particular, parametric greybox fuzzing. Consider
fuzzing an application that takes XML !les as input. Figure 1 shows
two fuzzing loops: one that represents the behavior of a traditional
coverage-guided fuzzer like AFL [81] or libFuzzer [55] (blue line),
and one that represents the behavior of a parametric fuzzer like
Crowbar [37], FuzzChick [53] or JQF-Zest [66] (orange line). The
traditional fuzzer (blue) executes a loop, where it starts with some
(well-formed) seed input, selected from a pool of seeds. The fuzzer
then uses a mutator to transform that input (typically using an evo-
lutionary algorithm). Then, the fuzzer executes the new input and
captures branch coverage that may bias the evolutionary algorithm
(mutator) on future executions of the fuzzing loop. If the new input
is deemed interesting — typically de!ned as revealing coverage of a
new branch, or greatly increasing the hit counts of those already
covered — then the input is saved into the fuzzer’s population, to
be selected again later for further fuzzing.

However, in the case of the traditional coverage-guided fuzzer
(blue line), the mutator is unaware of the input syntax expected by
the system under test, so most of the generated inputs are likely to
have a shallow reach in the code. That is, most of these inputs either
fail some early stage syntactic parsing (e.g., the XML fragment <
xml><^xml>), or at best, !nd a bug in that syntactic parser (perhaps
<xml><^xml> causes a crash).

System Under Test
Semantic Logic

Syntactic Parser
Mutator

Parametric 
Generator

Guidance

X !

Coverage

Biases

<xml>
  <name>value</name>
</xml>

name=value

<xml>
</xml> 0001Seeds

Concrete 
input:

Parametric
input:

Concrete input:
<xml><^xml>

0011

Figure 1: Comparing a fuzzing loop for a traditional
coverage-guided fuzzer (blue) and parametric fuzzer (or-
ange). The traditional fuzzer uses an evolutionary algorithm to
mutate concrete program inputs directly. The parametric fuzzer
mutates the parametric input — the sequence of decisions made by
a generator function that ultimately creates concrete inputs.
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In contrast, the parametric fuzzer (orange and green lines in Fig-
ure 1) has a seed pool that consists of parametric inputs, which are
the sequences of decisions made by the parametric generator that
result in some input. Whereas property-based testing tools employ
random generation, parametric fuzzers guide the generation of new
inputs by controlling each “random” decision made by the genera-
tor. The parametric input 0001, in this example, represents the set
of decisions made by the generator function to create the concrete
input <xml></xml>. The parametric fuzzer also uses a mutator to
transform a seed input, but operates on this parametric input (or-
ange line). Bymutating parametric inputs, correspondingmutations
occur at the object level and not at the input byte level. A one-bit
mutation to 0011 might result in a more semantically interesting
change to the concrete input, creating <xml><name>value</name
></xml> in the example. Hence, the key insight behind parametric
fuzzing is that the structure of inputs is often more constraining
than the set of values inserted into that structure. Prior experiments
show that parametric fuzzing is more e"ective when compared to
traditional property testing [53] and to traditional coverage-guided
fuzzing of Java programs [66]. Since we target Java applications,
we chose to integrate Confetti with a parametric fuzzer.

3 Confetti
Confetti generates complex inputs that can expose hidden bugs

in a program’s logic by using concolic execution and taint track-
ing as forms of guidance for parametric fuzzing. The traditional
approach to integrate whitebox guidance with fuzzing is to provide
targeted guidance, instructing the fuzzer to place particular bytes at
a particular location in a particular input. We refer to each such sug-
gestion as a “targeted hint.” Confetti employs targeted hints, but
also introduces the notion of global hints, which allow Confetti to
overcome the inadequacies of dynamic taint tracking. Although our
approach is language-agnostic, we implement Confetti in Java
and target applications written in languages that target the JVM
such as Java, Scala, Kotlin, Groovy, and Clojure.
3.1 Example

Before examining Confetti’s architecture in detail, shown in
Figure 3, we provide a brief example to demonstrate how Con-
fetti works in tandem with the fuzzer to generate concrete inputs
that explore otherwise hard-to-reach code. Figure 2 shows Con-
fetti’s hinting process to bias an example XML generator — in
this example, it is the generateXML() function called in line 1. As
stated previously, a parametric input can be thought of as a series of
choices that are made — we have color-coded distinct choice points
with the XML generator, along with their associated parametric
input and resulting, concrete values. Function generateString is a
black box that consumes a parametric input and generates a string.

We present the minimal set of program executions that reaches
line 6 — but in practice, Confetti applies a variety of mutators to
support both targeted and non-targeted hints (described further in
Section 3.5). Initially, the generator creates a random seed input ( 1©
in Figure 3) — Input #1, which randomly selects the string “groupID”
(perhaps from a dictionary), and the random boolean false. Being
the !rst input of the fuzzing run, this is guaranteed to obtain new
coverage — namely lines 2 and 3. This input is deemed “interesting”
by the fuzzer, as it leads to increased branch coverage, and is sent
to the Confetti Coordinator for whitebox analysis ( 2© in Figure 3).

1 XMLDocument doc = parse(generateXML());
2 if(!"expected".equals(doc.element(0).name()))
3    throw new Error();
4 if(!"version".equals(doc.element(0).attr(0).name()))
5    throw new Error();
6 // interesting logic we want to fuzz follows bellow

(b) Simple parametric XML tag generator that uses 4 random choices

String generateXML(){
  String tagName = generateString();
  if(generateBoolean())
    return "<"+tagName+ " "+
      generateString() +"='"+
      generateString() +"'></"+tagName+">";
  return "<"+tagName+"></"+tagName+">";
}

(a) Example code to fuzz; the immediate goal is to pass both branches 

(c) Visualization of Fuzzer Execution with hints. The first input is generated 
randomly, later inputs are mutated by the fuzzer, or hinted by CONFETTI (hint 
underlined). CONFETTI generates hints from coverage-revealing inputs only.

5

“expected”true“version”“A”

“groupID”false
“package”false
“expected”false
“expected”true“groupID”“A”

seed

mutation

hint

mutation

hint

# Source Generator Choices
New

Coverage
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7, 8

9

1
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5

Parametric Input
01011010
01011110
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1001011101101001101
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Figure 2: Example Fuzzer Execution. A parametric fuzzer can
easily create an input that is parsable by the black-box function on
line 1, but may struggle to reach line 6 due to lines 2 and 4. As the
parametric fuzzer records the sequence of random choices made
in the generator (a), and mutates those choices to generate new
inputs, Confetti proposes values for some of those choices, thus
guiding fuzzer through these branches with ease.

The Confetti Coordinator dispatches the input to a whitebox
analysis process 3© to perform taint-tracking and collect constraints,
which are 4© returned to the Confetti Coordinator, which 5©
negates and solves them, 6© possibly resulting in new parametric
inputs. Meanwhile, 1© the fuzzer mutates inputs independently,
changing “groupID” to “package” in Input #2.

Once the fuzzer decides to mutate a new input, it contacts the
Confetti Coordinator for hints, which the 7© Confetti Coordi-
nator returns in the form of the modi!ed parametric input derived
from Input #1, hinting the !rst generated string should be “ex-
pected” (derived from taint tracking between the input string and
the String.equals call). With the hint, Input #3 results in new
coverage on line 4 (an exception is thrown immediately upon hit-
ting line 4 due to the absence of attributes) — Input #3 is then sent
to the Confetti Coordinator for whitebox analysis. Meanwhile,
the fuzzer mutates Input #3 into #4 by changing the boolean choice
to true, followed by a random string for an attribute name and
value. Input #4 results in new coverage on line 5, and is also sent
to the Confetti Coordinator. Input #5 is generated in a similar
manner to Input #3, using Confetti’s hint mechanism for strings
by instrumenting as the call to attr to obtain the hint “version.”
While the parametric fuzzer could create these inputs by chance, it
becomes a certainty with Confetti.
3.2 Architecture

Figure 3 shows a high-level overview of Confetti’s architecture.
Confetti consists of three key processes that run in coordination:
(1) the fuzzer — responsible for input generation and execution of
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CONFETTI 
Coordinator

Whitebox Analysis
(Knarr) Greybox Fuzzer

SMT Solver

2 Interesting input3 Analyze new input

4 Constraints + taint flows

5 Solve negated 
constraints

6 New
inputs

7 New input(s) & hints for
original input

1 Generate and 
Execute Inputs

Figure 3: Overview of Confetti’s approach to provide whitebox hinting to a greybox fuzzer. The fuzzer repeatedly generates and
executes inputs, considering any hints that hit has received so far to guide its generation 1©. For each input that the fuzzer creates that
is deemed interesting for generating new coverage, it 2© sends that newly generated input to the Confetti coordinator, which in turn
3© sends the newly generated input to the Knarr client in order to 4© perform a whitebox analysis and collect constraints. If there are
constraints, the Confetti coordinator 5© negates constraints and sends them to the SMT solver to 6© generate new inputs. Regardless of the
SMT result, the Confetti coordinator also extracts taint tracking-derived hints from string comparisons in the constraints. The coordinator
7© returns the hints, and any new SMT-derived input(s) to the fuzzer, and the cycle continues.

the target program, (2) the Knarr Process — responsible for dynamic
taint tracking and constraint collection on interesting inputs, and
(3) the Confetti Coordinator — responsible for transmitting inputs
between the two aforementioned processes and for using an SMT
solver to feed concolic execution. This design has two main bene-
!ts. First, it uses separate processes for components that execute
the program under test with di"erent (incompatible) instrumen-
tations: collect taint and constraints (Knarr), or simple branch
coverage (fuzzer). Second, it allows the whitebox analysis to take
placewithout delaying the fuzzer, which continues to mutate inputs
unimpeded by constraint collection and analysis. The Confetti
Coordinator thus acts as a broker for inputs being passed between
Knarr and the fuzzer, receiving interesting inputs from the fuzzer
and forwarding them to Knarr for further analysis. Similarly, the
Confetti Coordinator manages constraints that are computed by
Knarr, negating and solving them in the SMT solver.

Similar to prior work such as Angora [33], the Confetti Coor-
dinator is not noti!ed of each mutation/execution that the fuzzer
performs, but instead only of each input that the fuzzer !nds in-
teresting (e.g., each input that reaches new coverage). Focusing on
interesting inputs has two important consequences. First, Knarr
executes a small number of inputs and does not lag behind the
fuzzer. Second, this mitigates the path explosion problem since
Knarr executes (concretely) paths known to reach new coverage,
and the fuzzer ultimately selects which hints to take. In this way,
Confetti leverages the speed of the fuzzer at generating inputs
and the power of the whitebox analysis.

Our implementation of Confetti extends the JQF+Zest para-
metric fuzzer [64–66] and extends our Phosphor dynamic taint
tracking engine [27, 28] for constraint collection. Our prototype
interfaces uses the Green library [75] as a bridge to constraint
solvers, allowing it to be agnostic of the solver used. In practice, we
use the mature Z3 theorem prover [36], which worked well in our
experiments. Future work might consider other constraint solvers,
perhaps using newer Java APIs like JavaSMT3 [23].

3.3 Knarr: Collecting Whitebox Guidance
Knarr uses dynamic taint tracking to trace how each byte of the

parametric input )ows through the generator into a generated con-
crete input, and then through the application under test. Dynamic

taint tracking is an automated analysis that allows tools to taint
some variable(s), and then, at any point in the program execution,
identify if a variable is derived through data)ow from that original,
tainted input. Knarr instruments the system under test (including
the generator that drives the application) to perform this analysis.

Recall from Section 2 that a parametric fuzzer represents each in-
put as a series of random choices consumed by a generator program.
To taint the generated input, we modify the fuzzer to taint each byte
of the parametric input that is consumed by the generator. By doing
this, we are able to propagate taint tags through the parametric
input to the concrete generated input and beyond. Most generators
require no changes, the only modi!cations that Confetti may
require to the generator are for string generators that selecting a
random item from a pre-de!ned dictionary. For example, such a gen-
erator might have logic along the lines of result = dict[choice
% dict.length], where choice is a random integer and dict is

a pre-de!ned list of strings. Confetti requires these generators to
be rewritten to call a helper function, along the lines of result =
ConfettiHelper.stringFromList(choice, dict). This helper
function will propagate the taint tag from choice to result (since
array-indexing is an implicit )ow), and will allow Confetti to
decide to use a hint (which may not be de!ned in the dictionary)
or to choose an item from the dictionary.

Knarr tracks taint tags for each variable, and for strings, tracks
taint tags at a per-character level. Knarr tracks common string
operations like equals and startsWith so that it can represent
these operations to the solver. When executing the generator and
the concrete input, Knarr records the taint tag of values used in
branch predicates. Knarr sends this data to the Confetti Coordi-
nator, that can then connect individual bytes in a given parametric
input to conditions guarding branch edges not yet covered.

Instead of using a simple, traditional taint tag (of ‘tainted’ or
‘not tainted’), Knarr enhances the taint tracking engine to build an
abstract expression for each variable to use as the taint tag (again,
a technique inspired by Angora [33]). For instance, given the code
int x = y + z and assuming that y and z were tainted inputs, an
o"-the-shelf taint tracking tool would typically set x’s taint tag to
be the union of y and z’s tags. Instead, Knarr tracks the abstract
expression that generated the value (in this case, that ! = " + #).
In this way, x’s taint tag becomes the symbolic expression " + #.

441



CONFETTI: Amplifying Concolic Guidance for Fuzzers ICSE ’22, May 21–29, 2022, Pi!sburgh, PA, USA

When a tainted input reaches a branch, the taint tag of the branch
condition is then the complete symbolic expression that relates the
parametric input byte to the branch condition.

When Knarr detects tainted data being used in a branch, it adds
the constraints in the tainted data to the current path condition. The
path condition is thus the conjunction of all the constraints observed
to control branches while executing one input. After executing each
input, Knarr collects all constraints in the current path condition
and sends them to the Confetti Coordinator, which uses those
constraints to generate new inputs and hints for the fuzzer.

3.4 Confetti Coordinator and Hints
Using the constraints collected by Knarr, Confetti Coordi-

nator derives three kinds of targeted hints: SMT solver-derived
hints, string comparison-derived hints and character comparison-
derived hints. Confetti Coordinator provides these to the fuzzer
as targeted hints, and as explained in the following section, the
fuzzer will derive a set of global hints from these targeted hints.
Confetti Coordinator leverages an SMT solver in the style of con-
colic execution [42, 71] in order to generate new inputs that are
likely to reveal new branch coverage. While in principle, Confetti
Coordinator could attempt to negate and solve all unique branch
conditions in order to attempt to explore all paths, in practice we
found that concolic execution was most useful to target branches
that could not be covered by the fuzzer. As Knarr executes inputs
and collects path constraints, Confetti Coordinator keeps track
of which branches have not been fully explored.

Confetti’s concolic execution thread works by !rst selecting a
branch to target — one that is not fully covered and whose predicate
includes at least one value from the input. Then, Confetti selects
one of the inputs that reaches the branch and negates the constraints
applied by that branch’s predicate. Confetti drops constraints
from the input that occurred after this branch execution, since it
might be unsatis!able to retain them while also negating the target
branch’s constraints. Then, Confetti uses an SMT solver (Z3 [36])
to generate a new parametric input that takes the other side of
the branch. If satis!able, the solution is then translated into a new,
hinted input that can be immediately executed by the fuzzer. If
the solver deems the constraints to be unsatis!able, or times-out,
Confetti marks that combination of input and branch as “already
tried” and moves on to the next target branch.

After attempting to generate inputs for all uncovered branches
once, Confetti loops around to try each uncovered branch again,
this time picking a new input. Confetti records solver-related
statistics: how often a branch was targeted for solving how often
each input was tried to solve for that branch, and the result of that
solver call. Some branches may never be satis!able, due to limita-
tions in constraint tracking or solving (e.g., usage of )oating point
operations), and perhaps become a waste of solver time. We found
that most branches that could be solved for were often solved on
one of the !rst few inputs attempted, and added a user-con!gurable
threshold to blacklist particular branches that repeatedly were not
satis!able, defaulting to 50 attempts.

Since Confetti’s goal is to provide guidance to a fuzzer (and not
necessarily perform complete concolic execution), it also provides
very lightweight, taint tracking derived hints to the fuzzer. Con-
fetti extracts comparisons between input values and various string

values, regardless of whether those comparisons control branches
are covered. For each of these string comparisons, Confetti pro-
vides the fuzzer with a targeted hint to set the relevant bytes of the
input to the value that was compared to.

Since Knarr tracks taint tags on each character of each string,
it is also possible for Confetti to derive hints from comparisons
between individual characters of strings. To mitigate the explosion
of hints resulting from suggesting every possible character that a
given input is compared against, Confetti limits the total number
of character hints suggested for each targeted branch to 10.

3.5 Parametric Fuzzer Guidance
Confetti’s core novelty over prior work is in how it inte-

grates those results with the fuzzer. State-of-the-art fuzzers that
integrate guidance from dynamic taint tracking and/or path con-
straint solving — like Angora [33], Driller [72], VUzzer [69] and
others [35, 63, 79, 80] — provide targeted guidance to the fuzzer. For
instance, taint tracking might be used to determine which bytes of
the input control branches that are not yet covered, and then the
fuzzer might be guided to generate a particular input to cover that
branch. Confetti uses several targeted hinting strategies based on
prior work in addition to its novel, global hinting strategy.

When mutating an input, Confetti extends the fuzzer with
the following new mutations: 1) Apply a single targeted hint, 2)
Apply multiple targeted hints, simultaneously, or 3) Perform normal
mutation, which might apply global hints

Targeted hints represent the state-of-the-art approach to inte-
grate taint tracking and constraint solving with fuzzing: if Knarr
determines that there is a particular value that should be tried at
a particular position in an input, then that value is applied to that
o"set. Targeted hints are always applied without further mutation
of the input, since the hints were collected on the original input
being mutated, an arbitrary change to the input might invalidate
the usefulness of those hints. When the fuzzer selects an input
for mutation, and there are targeted hints that have not yet been
applied, with a coin )ip, one of those targeted hints is applied. After
an input is selected for mutation repeatedly, eventually all targeted
hints will be tried, and then this mutation will no longer be avail-
able for this input. If a single hint isn’t applied, then the fuzzer
might apply multiple targeted hints simultaneously. In either case,
Confetti inserts instructions in the input to use the hinted value,
rather than whatever value would have otherwise been chosen by
the generator at that targeted position.

Each time that a targeted hint is applied to an input, that hint
value is saved in a global hint set, enabling Confetti’s powerful
global hinting mechanism. This global hint set tracks all strings that
any input string was compared to during the fuzzing campaign. At
any call in the generator that could consume a targeted hint, we add
a coin )ip to determine whether the global hint set should be used,
or the generator’s normal logic should be used. By mutating the bits
that control this decision, the fuzzer can control the application of
global hints at each position. In our evaluation, we found that this
seemingly simple strategy was very e"ective at generating new,
coverage-revealing inputs and in revealing new bugs.

A key aspect of Confetti’s hinting implementation is that it
ensures that hints are inheritable: if an input with targeted or global
hints is deemed useful, saved, and fuzzed later, assuming that the
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choices to generate those hinted values aren’t mutated, then the
same hints will be applied in the same position. This allows the
fuzzer to make progress towards generating increasingly more
complex inputs by stacking multiple hints together. We did not
perform any hyper-parameter tuning to optimize the probabilities
of applying hints based on their overall performance, although in
Section 4.3 we report on the success rate of each mutation strategy.

4 Evaluation
In order to empirically evaluate Confetti and, in particular, its

novel global hinting strategy, we measured its e"ectiveness across
a suite of benchmark programs. Our evaluation is primarily focused
on answering the following research questions:
RQ1: How does Confetti compare to the baseline fuzzers in

terms of branches explored?
RQ2: Does Confetti !nd bugs that the baseline fuzzers cannot?
RQ3: How useful is each of Confetti’s hint strategies for discov-

ering new coverage-revealing inputs?
RQ4: Can inputs with Confetti’s global hints be replaced with

statically derived values, and still yield the same coverage?
We evaluate Confetti in comparison to the state-of-the-art para-

metric fuzzer JQF-Zest [66] and use the same suite of benchmark
programs, given that we built Confetti on top of JQF-Zest. Where
possible, we used the latest version of the target software that still
contained the bugs detected by JQF-Zest in the original work. Fol-
lowing best practices, we study both Confetti’s ability to explore
program branches (e.g., coverage) in comparison to JQF-Zest, and
its ability to !nd new and previously-known bugs [50].

In order to precisely evaluate the e+cacy of Confetti’s global
hinting strategy, we also evaluate Confetti’s coverage and fault
!nding ability in comparison to a baseline Confetti!"! , which
is exactly the same version of Confetti, but with global hints
disabled. However, there may be a variety of confounding factors
that also impact Confetti!"! ’s overall performance in this head-
to-head evaluation. For instance, the fuzzer’s scheduling algorithm
(that allocates mutation time to and chooses the mutations to apply
on inputs) likely interacts with factors that in)uence the coverage
of each input — like hints. To isolate the impact of global hints, we
also analyzed each of the coverage-revealing inputs that Confetti
generated, looking to determine whether or not those inputs could
have been generated without global hints.

We conducted all of our experiments on Amazon’s EC2 infras-
tructure, using “r5.xlarge” instances with 4 3.1Ghz Intel Xeon Plat-
inum 8000 CPUs and 32 GB of RAM, running Ubuntu 16.04 “xenial”
and JDK 1.8.0_241. Following best practices, we conducted each
experiment for 24 hours and repeated this 20 times averaging the
results [50]. The input generators used in our evaluation are exten-
sions of the open source input generators that were published by
the JQF-Zest authors within JQF itself [64]. The modi!cations made
to the generators for constraint tracking and hinting are minimal,
amounting to approximately two lines of code in the XML docu-
ment generator, approximately four lines of code in the JavaScript
code generator, and approximately ten lines of code in the Java
class !le generator. We also modi!ed the Maven pom.xml genera-
tor — the code provided by the JQF-Zest authors was miscon!gured,
and hence unable to generate high-coverage pom.xml !les. Our
modi!cation to the Maven pom.xml generator was merged into

the upstream codebase [26]. Otherwise, we used the generators as
provided by the JQF-Zest authors without modi!cation.
4.1 RQ1: Evaluating Fuzzer Coverage

Most fuzzers (including JQF-Zest and AFL) consider coverage of
all code, in both the application’s code and its libraries, to determine
which inputs to save, since an input that covers new library code
might be “closer” to covering new application code. Following the
methodology of Padhye et al. ’s JQF-Zest [66], we analyze and
report coverage overall, and also for application code speci!cally.

Figure 4 visualizes the branch coverage of all code (not only
the system under test) of each of the 20 executions of each of the
benchmark programs for each fuzzer during the duration of each
24-hour campaign. The solid line represents the average coverage
across each of the 20 executions, and the shaded area represents
the complete range of coverage. We also calculated the total branch
coverage for each fuzzer over all of its 20 runs, this time using
the standard code coverage tool JaCoCo [59], and reporting only
branches in the program under test covered by any input from any
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Figure 4: Rate of new branch discovery for each fuzzer,
JQF-Zest shown in red, Confetti in blue and Confetti-
NoGlobalHints in black. The solid line shows the average cov-
erage across all 20 runs, and the shaded area shows the entire range.
All charts have the same axis labels as BCEL.
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Table 1: Summary of results for RQ1 and RQ2: branch coverage and bugs found. Coverage in this table includes only coverage of
application code (no library coverage). Total branches shows the number of branches considered; branch coverage is shown aggregated
across all 20 runs for Confetti, the baseline Java fuzzer JQF-Zest, and Confetti!"! (Confetti with targeted hints but without global hints).

Total Branch Coverage Bugs Found
Benchmark Program (Version) Total Branches Confetti JQF-Zest Confetti!"! Confetti JQF-Zest Confetti!"!
Apache Ant [6] (1.10.2) 23,361 872 859 871 1 1 1
Apache Maven [11] (3.5.2) 5,858 857 821 853 0 0 0
Apache BCEL [10] (6.2) 6,220 1,421 1,361 1,423 5 2 3
Google Closure [12] (20190415) 49,602 11,458 10,545 10,640 15 4 8
Mozilla Rhino [19] (1.7.8) 25,035 3,744 3,757 3,534 4 4 4

of the 20 runs. Table 1 shows the total branch coverage of each
fuzzer, along with the number of branches considered for coverage.

For all fuzzing targets, Confetti’s average branch coverage
surpassed that of Confetti!"! , which surpassed that of JQF-Zest.
Rhino’s comparison graph is much tighter than the other graphs,
with a great deal of variance for both Confetti and Confetti!"!
when compared with that of JQF-Zest— and the maximum coverage
of JQF-Zest was greater than Confetti. Digging deeper into Rhino,
we can see from Table 1 that, in total, JQF-Zest explored 13 more
application branches than Confetti. This variance is likely due to
the additional choices that Confetti introduces in the generators —
namely by increasing the size of the global dictionary, or by having
several hints to choose from at targeted byte positions. With further
(and longer) trials, we suspect that this variation (and diversity) may
help Confetti to ultimately achieve higher coverage than JQF-Zest.
We also believe that future work could improve the e+cacy of the
generator for Rhino. For Maven, BCEL and Closure, Confetti’s
improvement in branch coverage over JQF-Zest was quite notable.

It is interesting to note that in the case of coverage BCEL, our
baseline without global hints (Confetti!"! ) slightly outperformed
Confetti. However, Confetti outperformed Confetti!"! both
in terms of total coverage (Figure 4) and bugs found — supporting
our hypothesis that global hints are a useful strategy for combining
concolic guidance with greybox fuzzing. We believe the limited vari-
ability in BCEL is due to JQF-Zest’s Java class !le generator, which
we deliberately did not modify. In particular, it generates method
bodies with very few instructions, greatly limiting the chances of
exercising complex behavior in the target. Nonetheless, Confetti
still outperforms JQF-Zest on this target, which shows that even
with restrictive generators, Confetti still improves performance.
4.2 RQ2: Bugs Found

We analyzed each failure detected in all twenty, 24-hour runs,
and reported each unique program crash as a bug in Table 2. In
order to de-duplicate bugs, we utilize a heuristic of examining the
!rst 5 lines in a stack trace to identify a unique bug, as well as
manual analysis after applying this heuristic. This methodology
clusters more bugs together than prior work of stack hashing [50],
as the higher levels of the stack tend to isolate the locality of a
particular bug. Using this methodology, we replicated the same
10 bugs that Padhye et al. reported in JQF-Zest (with even greater
frequency in some cases), plus one additional bug in Closure, likely
found due to performance improvements that we made to JQF-Zest
(described in Section 5).

Of those 11 bugs that JQF-Zest found, Confetti found all but one
in its twenty 24-hour runs (Issue B1 in the table). Again, we attribute

this to additional choices that Confetti introduces in the generator,
which clearly can result in a diversity of paths explored. This is
evident in BCEL particularly, as Confetti !nds four additional
bugs that JQF-Zest does not. The addition of these choices makes
bugs that are repeatable with low frequency even less likely to be
triggered within a single run. We suspect that tuning the rate at
which hints are selected could increase the likelihood that Confetti
detects bugs like this, but leave such investigation for future work.

Of those 25 bugs that Confetti found, 16 (64%) were previously
unknown, the rest had been found previously by JQF-Zest or others.
Table 2 shows that, of the bugs that Confetti detects, there is
a clear range of detectability, with some bugs detected on most
fuzzing runs, and four detected at the 5% (i.e., 1/20) level. This
distribution supports our hypothesis that supplying global hints

Table 2: Bug detectability rate, from 20 executions of each
fuzzer. If multiple unique bugs had the same repeatability rates,
they are included in the same row (C14, C15, and R1, R2, R3, R4).
Unreferenced issues were not reproducible in latest version of soft-
ware. Issues referencing JQF-Zest [66] were previously found and
reported by the authors of JQF-Zest.

Program Issue # JQF-Zest Confetti Confetti!"!
ant A1 [66] 100 % 100% 100%
bcel B1 [66] 100 % 0% 0%
bcel B2 [66] 100 % 100% 100%
bcel B3 [8] 0 % 40% 0%
bcel B4 0 % 80% 0%
bcel B5 [7] 0 % 100% 5%
bcel B6 [9] 0 % 100% 20%
closure C1 [66] 100% 100% 100%
closure C2 [66] 90% 5% 85%
closure C3 [66] 80% 45% 70%
closure C4 [1, 2] 0% 95% 45%
closure C5 [3] 0% 90% 15%
closure C6 0% 5% 0%
closure C7 [4] 0% 100% 20%
closure C8 [17] 0% 100% 0%
closure C9 [5] 15% 20% 15%
closure C10 0% 100% 5%
closure C11 [14–16] 0% 100% 0%
closure C12 [13] 0% 35% 0%
closure C13 0% 20% 0%
closure C14,C15 0% 5% 0%
rhino R(1-4) [66] 100% 100% 100%
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to the fuzzer can pay o": even though many of the hints tried at
each position of each input may be irrelevant for detecting a bug,
some of them do. Given that the design of the fuzzer is to execute
as many inputs as quickly as possible, a diversity of hints can lead
to a greater diversity in coverage, and a diversity in bugs found.

We found that 6 of the 16 newly discovered bugs had already been
found and patched in the most recent development version of the
respective fuzzing targets — an encouraging sign that developers
care about the kinds of bugs that Confetti can !nd. We reported
the remaining 10 bugs to the developers, and at time of writing 4
bugs in Closure have been !xed by developers and 3 have been
acknowledged, 3 bugs in BCEL are awaiting acknowledgment. The
Closure developers found the bugs discovered by Confetti to be
quite interesting, and in their investigation of Issue C11, found a
separate (but related) bug that they have already !xed [18]. This is a
testament to Confetti’s ability to !nd truly unexpected behaviors,
thereby revealing latent software errors, and contributing to the
betterment of software quality. We describe several of the newly
found bugs here to provide some more intuition into Confetti’s
performance.

In many cases, Confetti found these bugs thanks to taint track-
ing, !nding special strings like arguments, jscomp.reflectProp-
erty and goog.reflect.objectProperty. It is likely that these
strings would trigger these bugs in both the Confetti and Con-
fetti!"! runs. This is shown in the results in Table 2, in which there
are a subset of bugs that Confetti and Confetti!"! do !nd with
similar frequency that JQF-Zest was not able to !nd (Issues C4, C5,
C8).

Bugs C4 and C5 are interesting, but technically could have also
been detected at the same frequency if the strings arguments and
goog.reflect.objectProperty were in the fuzzer’s dictionary.
Issue C7 presents an example that could not be detected with a
dictionary. $jscomp$ is used as an internal constant that Closure
Compiler uses to construct internal aliases for arguments to func-
tions. By supplying both inner$jscomp$1 and inner as arguments
to a function, the compiler throws an exception because it tries to
construct a map of argument names and if inner$jscomp$1 is sup-
plied as the !rst argument, it will fail to insert the second argument
name, leading to a RuntimeException. Note that, in this case, no
dictionary-based approach could detect this bug, as the bug is only
triggered if two arguments are speci!ed, with the !rst argument
matching the second argument, plus the su+x $jscomp$.

Several bugs were detected only by Confetti’s global hint-
ing strategy (C6, C8, C11-C15). For example, consider Issue C11,
which Confetti was able to !nd in 100% of runs, while Con-
fetti!"! and JQF-Zest were unable to !nd it. A simpli!ed input ex-
ercising this bug is (((goog$dom$TagName$$_88a).length) +=
(this)))). The string goog$dom$TagName$$_88a was extracted
via taint tracking and added to the global dictionary. Later in
the fuzzing run, the generator decided to use it as the left-hand
expression of an addition assignment operator. During an opti-
mization pass, the compiler is unable to satisfy the precondition
that (((goog$dom$TagName$$_88a) .length) matches the type
of this and throws an exception. Exercising this bug would not be
possible without the decoupling of string hints to their respective
parametric byte input positions. In Closure, this proves to be very
successful in !nding new bugs.

In BCEL, global hints led to the discovery of two bugs that only
Confetti was able to !nd (Issues B3 and B4). Of the bugs that only
Confetti and Confetti!"! found (B5 and B6), Confetti was able
to !nd them with 100% repeatability across the 20 experimental
runs. This suggests that global hinting is a powerful technique for
revealing bugs with a high rate of repeatability within BCEL.

4.3 RQ3: E(cacy of Hint Strategies
While Confetti runs, it also collects basic statistics on the inputs

generated: which strategies were used when generating each input,
and which inputs were saved to the fuzzing population. Recall
that JQF-Zest, like many other greybox fuzzers, saves an input to
its population for later fuzzing if the input reveals new branch
coverage, or if it increases the hit count of a previously covered
branch by an order of magnitude. Since inputs are derived from
existing inputs, it’s possible that a single input has bene!ted from
multiple hints, and multiple kinds of hints.

The left side of Table 3 shows the total number of inputs gener-
ated (across all 20 runs), along with the success rate for the targeted
hint strategies (SMT, Char, String), for the global hint strategy, and
overall, for random mutation. Some observations from this portion
of the table are that SMT and Char mutations are relatively e"ective,
that is, they are several orders of magnitude greater in their success.
However, despite this, these strategies are rarely employed com-
pared to the other mutation strategies due to SMT solving being
expensive and/or !nding certain paths to be unsatis!able, or in
the case of Char hints, simply being encountered in fewer places
than string comparisons. The other mutation strategies — String,
Global and Random, generate several orders of magnitude more
inputs, as they leverage the throughput of the underlying greybox
fuzzing framework upon which Confetti is built. String mutation
strategies are particularly e"ective in Google Closure, and Global
mutation strategies are an order of magnitude more successful in
Closure than in any other target application.

However, simply considering the success rate of each hint strat-
egy does not adequately capture its overall e+cacy. For example, if
coverage is quickly saturated during the fuzzing run (as we found
in the case of Maven), no mutation strategy will be successful, since
there is no new coverage to !nd. Success rates can also be mislead-
ing because they do not capture how frequently a kind of hint is
available to be tried (again, particularly notable for SMT inputs),
nor how often a hint is inherited by multiple derived inputs.

The right side of Table 3 presents an analysis of each of the inputs
that were saved by Confetti. This metric captures both how often
a hint is available, and also how often a hint is inherited by a child
input. Note that since a single input might have multiple hints (and
multiple kinds of hints), the sum of the number of saved inputs with
each form of hint may be greater than the total number of saved
inputs (or fewer, in the case of Rhino, where some saved inputs
had no hints). Of the targeted hint strategies, we can see that while
SMT and Char targeted hints had the highest success rates, they
are represented by only a relatively small proportion of the saved
inputs. Since the fuzzer can generate and test inputs extremely
quickly, running up to several thousand inputs per second, it’s
possible that inputs that could have been generated by the SMT
solver were instead, !rst generated by chance, perhaps thanks to a
di"erent hint. There is an interesting exception to this in the case
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Table 3: Hint information for each new saved (coverage-revealing or hit-count increasing) input, aggregated across 20 runs.
The left side shows the success rate of each mutation strategy in creating inputs that reveal new coverage. Each saved input might have
multiple hints; the right side reports on the number of saved inputs with each kind of hint (including inherited hints).

Total # Inputs
Generated

Success Rate of Mutation Strategy Total # Inputs
Saved

With Targeted Hints With Global
HintsProgram SMT Char String Global Random SMT Char String

ant 948,781,594 0.56% 5.32% 0.0099% 0.0011% 0.0013% 12,808 36 354 6,713 8,703
bcel 9,756,905,877 4.92% 7.47% 0.0107% 0.0003% 0.0003% 32,807 796 139 825 31,885
closure 249,762,647 5.61% 4.99% 0.1482% 0.0565% 0.0492% 144,857 828 2,506 43,167 117,601
maven 6,572,328,873 0.85% 3.22% 0.0015% 0.0004% 0.0004% 26,397 155 722 10,689 18,358
rhino 1,838,661,632 1.03% 10.07% 0.0093% 0.0017% 0.0019% 38,119 480 2,112 5,072 24,375

of BCEL, as the number of saved inputs for SMT targeted hints
and String targeted hints are the same magnitude. BCEL is unique
among the applications that we studied in that its input (Java class
!les) is a format that contains both strings and binary data. SMT-
targeted hints particularly excel at covering new branches that rely
on speci!c “magic” bytes, as opposed to strings.

Perhaps the most interesting takeaway from these statistics is the
enormous proportion of saved inputs that contain global hints. This
is encouraging evidence that supports our hypothesis that global
hints are a useful form of guidance for fuzzers. However, simply
because an input was saved with a global hint doesn’t mean that
this input needed that hint in order to produce the same coverage
(and be saved) — it is possible that the hint is coincidental to the
coverage, and that another string could have also resulted in the
same coverage. We investigate this idea in greater depth in RQ4.

4.4 RQ4: Analysis of Inputs with Global Hints
RQ1 and RQ2 show that using global hints covers more branches

and !nds more bugs. RQ3 shows the kinds of hints in inputs that
are saved (i.e., are coverage-revealing), showing that most of those
saved inputs include global hints. However, it is hard to conclude
that the global hints are necessary: maybe a randomly generated
input could have revealed that same coverage — how do we know
that the global hint was relevant to revealing this coverage? With
RQ4, we RQ4 examine this concern directly, studying the likelihood
that a random fuzzer (that also bene!ts from targeted hints) could
generate an input that reveals the same coverage as the input that
CONFETTI generated using global hints.

For each input $ across all of CONFETTI’s runs that revealed new
coverage and had global hints, we took the parent input % (that was
mutated by CONFETTI into $ ) and fuzzed it 1,000 times using both
random generation and targeted hints, observing the coverage of
those inputs. 1,000 iterations is an order of magnitude more fuzzing
iterations than Zest would apply in a single cycle, which we believe
provides a reasonable upper-bound of the likelihood of the fuzzer
without global hints generating an input that revealed that same
coverage. If the fuzzed input never produces the same coverage,
then we may have some con!dence in the hypothesis that, for that
input, global hints were necessary to achieve the same coverage.
This allows us to distinguish between global hints that are clearly
unnecessary and those that might have been useful for revealing
new behaviors during the fuzzing campaign.

Table 4 shows the number and percentage of saved inputs that
have global hints that could be replicated without those global hints
trivially (on the !rst try), eventually within the 1,000 runs, and never

within the 1,000 runs. On Ant, BCEL, Maven and Rhino, the major-
ity of saved inputs can be replicated without global hints, trivially.
This indicates that, in these applications, for most of the global-hint-
containing inputs that revealed new coverage, the global hint(s)
were de!nitely not necessary to produce that same coverage. How-
ever, we note that the surviving inputs in the “Never" column are
still roughly comparable to the number of targeted hints shown in
Table 3. This is perhaps evidence that global hints are at least as
e"ective of a strategy as targeted hints in revealing new coverage.

Closure is the one exception to this trend, in which over 98%
of saved inputs cannot be replicated without global hints. This is
likely due to the high rate of implicit )ows within Closure itself. A
common pattern that we found in Closure is that all occurrences of
the same identi!er name in an input are mapped to the same object
inside of the compiler — losing the precise mappings from each
occurrence of that identi!er in the input. Many of the bugs that
only Confetti was able to !nd in Closure have similar properties.
Our overall conclusion from this analysis is that Confetti’s novel
combination of both global and targeted hints is more e"ective than
using only targeted or only global hints.
4.5 Data Availability

Our artifact contains the source code and dependencies for Con-
fetti, our scripts to run experiments, our modi!cations to JQF
and JaCoCo, and all data produced by our experiments [52]. To
encourage re-use, Confetti is released under the BSD 2-clause
license and our GitHub repository has a continuous integration
work)ow to run performance evaluations of pull requests [51].

Table 4: Post-mortemanalysis of all saved inputswith global
hints. For each input, we remove all global hints and attempt to
replicate the same coverage by replacing the global hints with
random strings from the fuzzer’s dictionary. We show the number
of those inputs with coverage replicable trivially (on the !rst try),
eventually (within 1,000 tries), and never within those 1,000 tries.

Saved Inputs Replicated Without Global Hints
Program Trivially Eventually Never

ant 6,664(76.57%) 125(1.44%) 1,914 (21.99%)
bcel 16,714(52.42%) 1,440 (4.52%) 13,731 (43.06%)
closure 839 (0.71%) 668(0.57%) 116,094 (98.72%)
maven 14,229(77.51%) 173(0.94%) 3,956 (21.55%)
rhino 19,980(81.97%) 454(1.86%) 3,941 (16.17%)
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5 Discussion and Threats to Validity
Reliably evaluating fuzzers is di+cult, since the process is non-

deterministic. We mitigated this risk by following best practices:
we ran our experiment 20 times, and reported in Table 1 only bugs
found at least once in those 20 runs [50]. Confetti might have
di"erent performance on other programs: we used a benchmark
of fuzzing targets used by prior work [66]. Our tools and data are
available for others to replicate and expand on.

While our approach should be language-agnostic, we have only
implemented it targeting programs that run in the JVM. We believe
that the Confetti’s approach could even be used for programs
written in C, as shown by recent source code instrumentation-based
approaches to concolic execution [68]. While we are hopeful that
global hinting will be as signi!cant of a hint strategy for other
fuzzers (like AFL or libFuzzer), it is possible that there is hidden
coupling between the success of global hinting and the design of
the particular fuzzer that we extended (JQF-Zest). Like most other
fuzzers, it will be di+cult to apply Confetti to stateful applications
in which separate inputs are related. Pairing Confetti with a
checkpoint-rollback system [29] could ensure high-!delity fuzzing.

It is interesting to consider why prior greybox fuzzers that lever-
aged taint tracking or concolic execution used it only for targeted
guidance. One hypothesis is that, in other languages, it is di+cult
to identify bytes that are used to represent strings, versus binary
data. However, popular fuzzers AFL and libFuzzer both already
leverage statically-derived dictionaries [20, 54]. Hence, perhaps it is
more likely that our approach of global hinting simply hasn’t been
tried yet, due to the concern that the global hint set would grow
to such a large size to become unmanageable. Our experimental
results seem to support the idea that including more strings in the
global hint set (including those that may not be useful) is more
bene!cial than only considering targeted hints. Even if our results
do not generalize to other languages, we note that Confetti is the
only concolic-guided JVM-based fuzzer, and hence our !ndings still
have a signi!cant impact for any software engineers or researchers
interested in fuzzing JVM-based code.

We did not carefully explore the con!guration space for Con-
fetti, and it is possible that its performance could increase or
decrease on some or all fuzzing targets based on tunable parame-
ters, such as the frequency at which hints are applied. We believe
that this could be interesting future work, but feel that such an
evaluation is outside of the scope of this paper.

Like JQF-Zest, Confetti assumes the availability of generators
to exercise the programs under test. We do not see this as a signi!-
cant limitation, however, due to the popularity of generator-based
testing tools like JQF [65], ScalaCheck [60] and JUnit-Quickcheck [46].
Furthermore, our evaluation used only the pre-existing generators
that were used in the original evaluation of JQF-Zest [66]. One
hypothesis for the success of global hinting in our experiments
is that the pre-existing generators were overly restrictive in the
values that they could generate, and global hints provided a means
to generate more diverse inputs. In this light, Confetti might be
seen more as an approach to automatically improve the quality of
existing generators, bypassing these restrictions. While we have
not yet been able to design an experiment to con!rm this result,

we now believe quite strongly that future research in fuzzing JVM-
based applications should focus on either approaches to evaluate
and improve developers’ existing generators and property tests, or
to design new approaches that do not rely on those generators.

While we have very carefully tested our prototype implemen-
tation of Confetti, it is possible that our evaluation is a"ected
by bugs that remain in Confetti or any of the other systems that
we used (including JQF-Zest, JaCoCo and Phosphor). We analyzed
the fuzzing results of both Confetti and JQF-Zest quite carefully,
conducting thousands of short debugging runs, using JaCoCo to
analyze the coverage (or lack thereof) of particular branches. We
note that in addition to our own implementation bugs that we
found and patched in Confetti, we also found several bugs in JQF-
Zest and JaCoCo. For example: we found that JQF-Zest’s coverage
implementation did not correctly distinguish between the multi-
ple cases of a single switch statement, and was generally prone to
frequent collisions, where multiple branches used the same cov-
erage counter. These issues resulted in JQF-Zest discarding many
coverage-revealing inputs, rather than saving them and mutating
them further. We implemented a new branch coverage instrumen-
tation and runtime for JQF-Zest that eliminated these collisions,
while also improving the fuzzer’s execution speed by 7-10x. We
used this enhanced coverage in our evaluation of JQF-Zest, and
submitted this change as a pull request to the JQF-Zest maintainers,
who are excited to merge it in to their next release [25].

As part of this JQF-Zest debugging, we also found a bug in Ja-
CoCo that could cause branches to appear uncovered if the !rst
statement enclosed by the branch was a method invocation which
threw an exception. Tracing precise branch coverage in the pres-
ence of exceptional )ow requires placing probes before and after
any instruction that might throw an exception, which can decrease
performance, and hence, this may not be desirable as a general
feature. After considerable re)ection, we determined that this be-
havior was acceptable within the scope of what JaCoCo aims to
detect, and did not submit these changes to the JaCoCo developers.
However, our branch of JaCoCo with the patch for this issue is in
our artifact [52].

To help support future research and development of Confetti,
JQF-Zest, and related fuzzers, we have created and shared a GitHub
Actions work)ow that automatically executes the entire evaluation
that is described in this paper. We have found this work)ow to be
extremely useful in our development. For example: when debugging
a memory leak in Confetti, we could easily launch many paral-
lel experiments, collect metrics, and compare performance across
branches. This work)ow was also quite useful in our development
of the faster, collision-free coverage implementation for JQF-Zest,
which allowed us to easily create and share performance evaluation
results in our pull request [25].

6 Related Work
In classic dynamic symbolic execution, for instance, as proposed

by KLEE [32] or JPF-SE [22], programs are executed symbolically,
by a special-purpose interpreter. Concolic execution, executes a
program concretely, but uses runtime support to collect path con-
straints as they relate to the input, then later negates some of these
constraints, solves them using an SMT solver, and executes the
newly generated input [31, 71]. Hybridizing concolic execution
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and random testing/fuzzing was !rst proposed by Majumdar and
Sen [57]. This work showed that once fuzzing saturates code cover-
age, concolic testing can help to discover new program states that
random testing didn’t otherwise !nd. More recent work has also
explored hybridizing concolic execution with fuzzing [61, 62, 74],
but Confetti is the !rst work to use the global hinting strategy to
integrate concolic guidance with fuzzing.

Fuzzing parsers for well structured, human readable, input is
challenging. One line of research aims to guide a fuzzers with a
grammar that describes the input structure [41, 43, 67, 77, 78]. For
instance, SkyFire used grammars to generate well formed inputs
as seeds for AFL [77], and Superion integrated the grammar with
AFL [78]. Such input grammars are required to be context-free,
which limits their applicability. To address this limitation, previous
work focused on learning tree models [67] or probabilistic context-
sensitive grammars [43] from a corpus of valid seeds. In contrast,
Confetti’s generators are small programs that can generate so-
phisticated inputs (e.g., any valid Javascript program) without the
restrictions of context-free grammars.

Many other systems also combine symbolic or concolic execu-
tion with fuzzing [33, 35, 63, 72, 79, 80]. Perhaps most similar to
Confetti is Angora, which, like Confetti, also uses taint track-
ing to collect path constraints [33]. Confetti di"ers from these
prior systems in that it records strings generated by concolic ex-
ecution as global hints, allowing these magic values to be used in
elsewhere in the same or other inputs. In our evaluation, we found
that this strategy accounted for most of the coverage-revealing
inputs found by our fuzzer. These global hints are e"ectively a
dynamically generated fuzzing dictionary — fuzzers like AFL [81],
libFuzzer [55] and JQF-Zest [66] all allow developers to specify a
pre-de!ned dictionary of strings that might be interesting to use in
fuzzing. In our evaluation, all fuzzers were seeded with dictionaries
by JQF-Zest’s original authors, providing a realistic representation
of the dictionaries that a developer would create.

Similarly, Confetti is not the !rst approach to combine taint
tracking with fuzzing. Like Confetti, VUzzer combines taint track-
ing with fuzzing in order to target the fuzzer and determine magic
bytes [69]. BuzzFuzz uses taint tracking to identify which input
bytes that )ow into targeted branches, and then modi!es those
bytes directly [40]. Similarly, TaintScope uses taint tracking to
identify inputs that )ow through checksum-like routines and at-
tempts to use a symbolic representation to ensure that the fuzzed
inputs still pass those checksums [80]. Again, Confetti di"ers
from all of this prior work in that it also introduces the notion
of global hints, which repurpose values detected from taint track-
ing particular bytes of one input to be used when fuzzing other
inputs. There have also been numerous advancements in fuzzer
seed selection and scheduling, most of which are complementary
to Confetti, and combinations of the approaches could be studied
in future work. For instance, directed greybox fuzzing guides a
traditional greybox fuzzer by casting guidance as an optimization
problem, and hence does not require whitebox guidance at all [30].

Confetti ameliorates the implicit )ow problem by loosening
the coupling between values detected by taint tracking or con-
colic execution and the part of a particular input where that magic
value should be applied. Mathis et al.’s lFuzzer addresses taint

tag loss through implicit )ows in input tokenization by automati-
cally identifying routines that parse input characters into tokens
and propagating taint tags along those conversions [58]. Like Con-
fetti, lFuzzer also adds these tokens to a global dictionary to
use in fuzzing. In our evaluation, we found that Confetti’s hints
revealed bugs in program logic after tokenization and parsing,
for instance, in the optimization phase of the Closure compiler
— outside of the tokenization routines that lFuzzer would target.
Other taint-tracking-based fuzzers attempt to address the implicit
)ow problem by inferring control dependencies between branches
and input bytes, by comparing coverage results while mutating
inputs [34, 39]. However, these systems can only detect that re-
lationship after the fuzzer succeeds in covering the branch. We
demonstrated that Confetti’s global hints can be used to reveal
branches that the fuzzer could not otherwise. Future work might
combine Confetti with heuristics for selectively propagating taint
tags through implicit )ows [24, 49].

While popular fuzzers like AFL target x86 binaries, there remains
a need for fuzzers targeting higher level languages like Java. Java
PathFinder (JPF) [76] is a model checker for Java programs that
uses a custom-built interpreter to collect and solve path constraints
in order to explore di"erent program states. JPF has been a sig-
ni!cant resource for the Java testing community, and has been
extended in many ways to support various forms of dynamic sym-
bolic execution [22, 48, 56]. Prior concolic execution tools for Java
like JCute [70], CATG [73] and Cinger [21] used instrumentation-
based approaches to track constraints in a limited subset of classes.
In contrast, Confetti uses a dynamic taint tracking system to
track path constraints, and does so in all classes. To our best of
our knowledge, Confetti is the !rst system that supports concolic
execution of real-world Java programs like those in our evaluation.

7 Conclusion
Confetti is a concolic-guided fuzzer for JVM software that gen-

erates inputs covering more branches and revealing more bugs
than the existing state-of-the-art JVM fuzzer. Through our empiri-
cal studies, we have identi!ed that Confetti’s novel global hinting
mechanism yields a signi!cant improvement in coverage and bug
!nding compared to the state-of-the-art approach of targeted hint-
ing. Although we have only explored global hinting in the context
of a single fuzzer (JQF-Zest) and a single language (Java), we be-
lieve that there is strong evidence that this approach will be quite
successful in other fuzzing domains, too. Based on our analysis of
the failures that could be detected only by Confetti (and not by
the variant without global hints), we have a strong intuition that
the same kinds of programming patterns that restrict the e+cacy
of targeted hints in our experiments occur in other applications
and languages, as well. We hope that our open-source release of
Confetti and its CI work)ow will help to support the growing
community of practitioners and researchers engaged in fuzzing
JVM-based software [51, 52].
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