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8.1  INTRODUCTION

Emergent behavior is found throughout nature, including in biological neural net-
works where individual neurons connect and interact to form complex thought pro-
cesses and task performance. We de!ne emergence of a system to be the existence 
of complex  system-level behavior that is not present in the much simpler individual 
entities of the system. The behavior of individual entities is locally de!ned and not 
directly tied to the  system-level behavior. For instance, a bird in a "ock might "y 
with the objective of being within a certain distance of approximately the six nearest 
birds, and yet, when viewed as a whole, this "ock of birds can form  ever-changing 
patterns with no centralized control.

In this chapter, we consider two different, yet related forms of emergence in 
biological neural networks. The !rst is the coordinated activity of neurons such as 
activity “ bumps” with sustained and/ or localized activity or synchronizing oscilla-
tions. These can be both  self-sustaining, in the sense that the activity persists in the 
absence of stimuli, or transient behaviors brought about by a particular sequence of 
stimuli and vanish or decay after. These phenomena are often studied via relatively 
simple dynamical models of neurons interacting through a static network topology. 
These emergent behaviors are generally quite sensitive to both the parameters of the 
neuronal dynamics and the network interconnections between neurons. How, then, 
can large, complex neural networks form in a way that is highly dependent upon the 
experiences ( i.e., stimuli) of the organism in question? The answer to this leads to 
the second form of emergence we consider. The process of network formation in a 
neural network over time is known as plasticity or learning. In this process, the con-
nections between neurons ( i.e., synapses) are strengthened or weakened over time 
based on the activity between the neurons in question. Thus, we have a dependency 
loop between two time scales of scales of emergence: The structure of the network is 
key to the emergent collective activity from individual neurons, and correlations in 
the neuronal activity drive the formation of the network.

In line with the overall theme of this volume, it is instructive to consider just 
how much the capabilities of an organism’s brain far outstrip the capabilities of an 
individual neuron, or even a collection of neurons serving as a functional component 
( i.e., the  sub-systems of the system of systems ( SoS) we call the brain). As we will 
discuss below, an individual neuron is often modeled using a  !rst-order differential 
equation and communicates with a  single-bit channel ( i.e., a spike train) to its neigh-
bors in the network. Despite this apparent simplicity, modest collections of hundreds 
of thousands of neurons can form networks that serve essential navigational func-
tions such as head direction and position estimation as part of the hippocampal for-
mation in mammals, including humans ( Poulter, Hartley, and Lever 2018). These are 
a few of the functions of the hippocampal formation, which itself interacts with many 
other brain regions and comprises a small fraction of the total number of neurons 
present in the brain. Thus, it is quite clear that the overall dynamics of the brain can 
be viewed as a complex SoS with emergent behaviors that are driven by the interac-
tions of different functional components. These functional components, in turn, have 
emergent behaviors that are driven by the interactions of the individual neurons over 
their network interconnections.
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Given that we have cast these emergent phenomena as a set of interacting pro-
cesses on a network topology, we propose that graph signal processing ( GSP) will 
serve as a useful analysis tool here. GSP builds on its roots in spectral graph theory 
( Chung and Graham 1997) and algebraic signal processing ( Puschel and Moura 
2008) to generalize techniques from classical signal processing to signals de!ned 
on irregular domains by graphs ( Sandryhaila and Moura 2013; Shuman et al. 2013). 
Here, we propose that the outputs ( or other state) of the neurons should be treated 
as the signal of interest with the network interconnections de!ning the graph struc-
ture. GSP techniques have been applied across various  non-invasive neuroimaging 
techniques, including functional magnetic resonance imaging ( fMRI) and electroen-
cephalography. Goldsberry et al. ( 2017) and Medaglia et al. ( 2018) introduced GSP 
analysis for the joint study of structure and functional data from diffusion tensor 
imaging and fMRI, respectively, studying the alignment between functional activity 
and anatomical network in cognitive "exibility.

The study of emergence in biological neural networks is relevant to a broad range 
of application areas. Obviously, understanding the collective behavior of neurons is of 
fundamental importance in biology and medicine. Additionally, neural networks are 
the backbone of many advances in machine learning ( Schmidhuber 2015) and are the 
inspiration for neuromorphic computing ( Furber 2016), both of which hold further 
promise for continuing to revolutionize computation. Finally, to directly tie neural 
networks to a classic area of emergence, we note that neuronal dynamics have served 
as both a motivating analogy in swarm intelligence ( Trianni et al. 2011) and also as a 
direct source of swarm dynamics ( Monaco et al. 2020). To this last point, we note that 
graph theoretical techniques have been widely applied in the analysis of swarming 
dynamics ( e.g., Tanner, Jadbabaie, and Pappas 2007), further reinforcing the use of 
GSP as an analytical tool for emergence.

In the following, we !rst introduce some basic models from computational neuro-
science that will serve as the signals in our GSP analysis. Next, we review the basics 
of GSP and discuss in some detail the unique challenges presented by biological con-
straints. We then move to the discussion of  short-term emergence in neural networks 
in the form of collective activity and analyze an example emergent phenomena in the 
form of spontaneous collective !ring in a structured network. Next, we introduce the 
basics of network formation through plasticity and discuss some relevant examples of 
emergence that tie the collective dynamics of neurons to the formation of networks. 
We then consider a speci!c example of network formation that leads to a similar 
structured network previously considered and analyze its  long-term behaviors using 
GSP. We conclude with discussion and lessons learned.

8.2  BIOLOGICAL NEURAL NETWORKS

The human brain is composed of about 85 billion neurons ( nerve cells) and 85 billion 
glia cells. For decades, neurons were thought to be exclusively involved in the com-
putation of the brain through their electrical properties. Emerging evidence reveal 
that chemicals, or more speci!cally neuromodulators, are involved in neuronal com-
putation and that glia cells, in particular at least one form of glia cells, the microglial 
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can produce negative feedback similarly to the role of inhibitory neurons ( Badimon 
et al. 2020). In this chapter, a simpli!ed mathematical abstraction of a biological neu-
ronal network is described in the context of emergence. Thus details of neuromodula-
tors, glia cells, and  non-linearities within a neuron exhibited at particular dendritic 
branches ( Gidon et al. 2020) that reveal how a single neuron can itself be modeled 
as a neuronal network capable of achieving many logical  computations – AND, OR, 
 XOR – will be ignored. Instead, we introduce some  high-level and general concepts 
about various systems and processes in biological neuronal networks. To achieve 
this, we pursue the discussion at the level abstraction appropriate for computational 
or theoretical neuroscience; that is, at the level of relatively simple equations and 
interactions. For a more  in-depth introduction into computational neuroscience, we 
refer the readers to full texts such as Dayan and Abbott ( 2001) or Miller ( 2018). For an 
accessible overview of a  self-organized viewpoint of cognition, see Buzsáki ( 2019).

8.2.1  THE NEURON

The neuron is arguably the fundamental processing unit of biological neuronal net-
works and arti!cial neural networks ( ANN). However, to speak of “ the neuron” does 
a disservice to the breadth of form and function of neurons that occur in biology. 
At its core, a biological neuron is a cell with branches of dendrites ( inputs), con-
nected to a soma or cell body ( processing), which is connected to one axon ( output) 
that can transmit neural activity ( information) to a few thousand other downstream 
neurons via synapses. Dendrites, which are typically covered by synapses, can 
extend far from the soma by hundreds of microns to receive inputs via synapses 
from many upstream neurons. Dendrites have been shown to critically contribute 
to the  non-linear computations performed by neurons ( Poirazi and Papoutsi 2020; 
Gidon et al. 2020). The soma is connected to one axon, that can extend over 1 m in 
humans eventually branching out, to potentially transmit neural activity to other neu-
rons. Each biological neuron has a  state-dependent, adaptive, electrical threshold that 
when exceeded allows neural activity to propagate through the axon to other down-
stream neurons. This transmission is done via an  electro-chemical process in the 
terminus of the axon that releases tiny vesicles containing neurotransmitters that can 
lead to a change in the postsynaptic membrane voltage. One can think of the adaptive 
threshold of a real biological neuron to be an emergent property within the neuron. 
In this chapter,  single-compartment,  point-like neuron models will be discussed in 
the context of emergence; these models are devoid of any intracellular compartments 
( e.g., dendrites, axons, vesicle) or components ( e.g., neurotransmitters).

This chapter will also discuss typical ANN models, which assume dendrites to 
be passive linear receivers of neural activity, and thus all synaptic inputs are homo-
geneously summed within a  point-like neural unit. This total neural input is then 
transformed by a  non-linear threshold that represents the net effect of computation in 
biological neurons. Therefore, ANN models also exclude dendrites and axons. The 
weighted connection between neural units, however, is referred to as a “ synapse,” 
despite the lack of dendrites or any other aspect of a biological synapses besides its 
strength. Another difference between real neurons and ANNs is that while arti!-
cial neural units can have positive and negative weights onto their targets, biological 
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neurons can only make one type of connection to downstream cells, either positive 
( excitatory neurons) or negative ( inhibitory neurons). This division of connection 
valence according to cell type is known as Dale’s law ( Strata and Harvey 1999). 
Finally, it should be noted that synapses in ANN models are inspired by chemical 
synapses as described above. The biological brain also has electrical synapses, based 
on a physical connection called a gap junction, that allow neurons to communicate 
directly by sharing membrane voltage. While electrical synapses have also been 
largely ignored by ANN models, further discussion is out of scope for this chapter. 
Again, a comprehensive review is beyond the scope of this text, and we will instead 
focus at a more abstract level.

A neuron can be modeled based on its electrical activity, arising from ion "ow in 
and out of the neuronal cell membrane, which leads to a voltage potential difference 
that might lead to the generation of an action potential ( spike) that will travel the length 
of the axon. The leaky  integrate- and-!re ( LIF) model is one of many ways to model 
a neuron ( Dayan and Abbott 2001; Miller 2018), a relatively simple one that is never-
theless capable of producing emergent behaviors in the case studies below, while still 
remaining computationally tractable for larger network sizes. The “  leaky-integration” 
portion of the LIF models the membrane potential V via dynamics

 C
dV t

dt
I t

V t
R

) ) )( ( (= −  ( 8.1)

where C  is the membrane capacitance, I is the neuron’s input, and R is the membrane 
resistance. The LIF model accumulates the input signal, and when V  reaches some 
threshold potential Vt it “ !res,” sending a spike of current to the downstream neurons 
( see next section) and resetting V  to zero.

The LIF model can be generalized in a number of ways to add additional bio-
logical !delity to neuronal dynamics. One common extension is to replace the linear 
integration of the input I with a  non-linear term such as a quadratic or exponential 
rule. These  non-linearities serve to essentially change the !ring threshold based on 
the “ shape” of the input I t)( , for example so that “ fast” inputs trigger !ring where 
slower inputs with similar area do not. Additionally, these  non-linear models can 
be modi!ed to introduce refractory periods, where the accumulation rate is depen-
dent on the time since the last !ring event. This latter behavior fundamentally limits 
the overall output rate of the neuron, potentially introducing stability to the over-
all network. Additional modi!cations for adaptation can be introduced to capture 
 !ring-rate patterns observed in nature, such as initial bursts followed by limited 
activity, increasing delays between spikes, delayed/ transient responses, etc. We also 
note that the original LIF model and the extensions above have been introduced in 
terms of deterministic behaviors, and there are a number of mechanisms to introduce 
randomness to these models. One such simple mechanism is to have the !ring and 
reset behavior of the LIF model to be based on some random !ring process with the 
probability of !ring proportional to the membrane potential V . In the context of more 
general emergent phenomena, the introduction of this sort of randomness introduced 
variability into the system that may prevent degeneracies in behavior. In summary, 
computational neuroscience offers a variety of modi!cations to the simple neuronal 
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dynamics of Equation 8.1 that adapt or regulate the behavior of an individual neuron 
that could have a profound impact on the collective behavior of the network.

While the analysis below will primarily focus on the basic LIF model of a neuron 
as described above, we now brie"y discuss an alternative class of models of neuronal 
dynamics,  so-called  rate-based models. These model a spike !ring rate ν( t) ( rather 
than generating spikes) and have dynamics of the form

 
d t

dt
t F I t

ν ν )() ) )( ( (= − +  ( 8.2)

where F  is some  non-linearity, and I is again the neuron’s input. The !xed points of 
these systems correspond to the condition t F I tν )() )( (= , which should be imme-
diately familiar to machine learning practitioners who deal with ANNs as the 
 input-output relationship of an arti!cial neuron. As was the case with the LIF neuron, 
there are many variants ( in the form of different  non-linearities F) that can capture 
different !ring patterns observed in biological neurons.

8.2.2  NEURAL NETWORKS

Biological neurons can communicate with  electro-chemical signals via chemical 
synapses. In the context of a simpli!ed neuron model described above, synapses are 
generally modeled as a set of “ weights” wij between neurons. If Vi denotes the LIF 
model for the ith neuron in a network of N  neurons, then we can adapt the above LIF 
dynamics to account for the network structure

 C
dV t

dt
I t w S t

V t
R

i

j

N

ij j
i∑) ) ) )( ( ( (= + −

=1

 ( 8.3)

where S tj )(  is the impulsive “  spike-train” output of neuron j which causes the volt-
age Vi to instantaneously change by wij when neuron j !res. In reality, a synapse will 
introduce additional noise,  non-linearity, transport delay, etc., not captured by this 
linear relationship.  Firing-rate models are adapted similarly, with the combination of 
exogenous input and network inputs occurring inside a  non-linearity F .

At this level of abstraction, one can analyze a neural network using the branch 
of mathematics known as graph theory, which we discuss in the following sec-
tion. Models of network processes that use graphs are often modeled as symmetric 
w wij ji= , however, such a model is not considered biologically plausible as synapses 
are naturally directional ( requiring a directed graph model). As noted above, Dale’s 
law states that a given neuron is either excitatory, meaning its spiking should produce 
an increase in spiking on its  post-synaptic neighbors, or inhibitory, which tends to 
suppress !ring in its  post-synaptic neighbors. From the perspective of our network 
model, this implies that our network contains both negative and positive weights, cor-
responding to inhibitory and excitatory neurons, again violating a common approach 
to modeling networks as consisting entirely of  non-negative weights. Furthermore,  
as this is a property of the neuron and not the synapse, for a given neuron j, wij must 
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all be either  non-positive ( inhibitory) or  non-negative ( excitatory), inducing addi-
tional structure on our network model.

Taking a step back from the precise mathematical model described above, one 
can imagine the potential interactions between neurons ( or indeed, agents in other 
SoS emergence scenarios) might be broadly impacted by the notion of excitatory 
and inhibitory interactions. Excitatory interactions result in increased activity in the 
network, whereas inhibitory interactions result in decreased activity in the network. 
These general concepts and the presence of  non-linearities in the models suggest 
that there will likely be a delicate balance between the excitatory and inhibitory 
neurons that can generate the desired “ positive” emergence in a neural network ( i.e., 
the neural activity that supports its function). Any imbalances might lead to a lack of 
neuronal activity ( due to too much inhibition) or saturation of neuronal activity ( due 
to too little inhibition).

8.3  GRAPH SIGNAL PROCESSING

Over the past decade, the !eld of GSP has expanded across multiple applications 
and novel techniques have enabled analyses otherwise not possible. In this section, 
we provide the foundations for graph theory needed for GSP, followed by an over-
view of GSP, and will conclude with a review of graph spectral analysis and GSP in 
neuroscience.

8.3.1  INTRODUCTION TO GRAPH THEORY

First, we de!ne a ( undirected) graph G V E)(= , , where V  is a set of vertices or nodes 
and E u v u v V{ }{ }= ∈, : ,  is a set of edges representing relationships among the ver-
tices. Note that a graph is called simple if there are no  self-loops ( u u E{ } ∉,  for all 
u V∈ ) and multiple edges do not exist between a single pair of vertices. For an edge 
u v E{ } ∈, , we say that u and v are adjacent and that v is a neighbor of u. Both vertices 

and edges may have attributes associated with them. For instance, a vertex attribute 
in a  co-authorship graph may be a label ( e.g., name of the author represented by the 
vertex) or a numerical value ( e.g., how long the author has been publishing, how 
many papers they have published, etc.). An edge attribute describes the relationship. 
The most common edge attribute is a weight indicating the strength of the relation-
ship. In the  co-authorship network example, each edge might be weighted by the 
number of papers  co-authored by two people. The degree of a vertex is the number of 
neighbors of the vertex. For v V∈ , deg v u u v E{ }{ })( = ∈: , .

The adjacency matrix of a graph, indicated by A, represents the edge relation-
ships among the vertices with Aij = 1 if v v j Ei{ } ∈, _  and Aij = 0 otherwise. For a 
weighted graph, A wij ij=  where wij is the weight of the edge v vi j{ }, . Note that if G is 
simple, then Aii = 0 for all i. Additionally, A is symmetric when G is undirected. For 
a simple undirected graph, the Laplacian matrix is de!ned as L D A= − , where D is 
a diagonal matrix with D deg vii i )(= , the degree of vertex vi  and A is the adjacency 
matrix. The Laplacian matrix is a rich representation of a graph, as it encodes several 
interesting properties of the graph such as the number of spanning trees, the number 
of connected components, and the overall strength of connectedness of the graph. 
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For undirected graphs with nonnegative,  real-valued weights, both the adjacency 
and Laplacian matrices are real and symmetric, meaning they have n ( not necessar-
ily unique) real eigenvalues and one can !nd a corresponding set of n orthonormal 
eigenvectors, L U UT= Λ . While the eigenvalues of the adjacency matrix sum to 0, 
the Laplacian matrix is positive  semi-de!nite and thus has  non-negative eigenvalues.

A graph is directed if the edges have directionality. We use parentheses to indicate 
a directed edge so the edge set is E u v u v V{ })(= ∈, ,  , . Then, u is referred to at the 
head and v is the tail.  In-degree is the number of edges coming into a vertex, denoted 
d v u u v E)()( = ∈− { : , }. Similarly,  out-degree is the number of edges leaving a ver-
tex, denoted d v v u v E)()( = ∈+ |{ : , } |. Moreover, a signed directed graph is a graph in 
which its edges eij  can take both positive and negative values. In addition to biological 
neural networks, signed directed graphs are observed in multiple applications, such 
as social networks.

8.3.2  INTRODUCTION TO GSP

The main motivation of GSP is to analyze signals over a graph, where signals now 
live on an irregular domain ( Shuman et al. 2013). A graph signal x ∈ RN is de!ned 
over a graph G ( with N  vertices) and the nodes of the graph form the domain of the 
signal. An example graph with corresponding signal is depicted in  Figure 8.1. The 
!eld of GSP has focused on extending techniques from classical signal processing 
into signals de!ned over graphs. Note that now the emphasis is no longer on time, but 

 FIGURE  8.1 Illustration of graph signals over a  Watts-Strogatz network. The thin lines 
are the edges between the nodes, and the graph signal is depicted by the thick vertical lines 
protruding from the top of the node for positive signal components or the bottom for negative 
signal components
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on how the signal varies over the nodes of a graph. An important transform applied to 
graph signals is the graph Fourier transform ( GFT), generally de!ned as

 x U xT=ˆ , ( 8.4)

where x ∈ RN is the graph signal and U ∈ RN × RN is a matrix whose columns de!ne 
the graph Fourier basis functions, or harmonics. Typically, these are the eigenvectors 
of the graph Laplacian, but the eigenvectors of the adjacency matrix can also be used 
as basis functions. In this chapter, the GFT of x, x̂ is de!ned over the eigenvalues of L,  

 Nλ λ λ≤ ≤ −0 1 1. Now the eigenvalues of the graph Laplacian de!ne the frequencies 
of the signal. For undirected, unsigned graphs, the !rst eigenvector u0, corresponding 
to the smallest eigenvalue, is constant, an analog to a zero frequency component in 
classical signal processing. Eigenvectors corresponding to larger eigenvalues oscil-
late faster. This is a convenient property of the Laplacian spectrum for graph fre-
quencies, which follows analog de!nitions as in classical Fourier analysis.

In multiple applications, the graph signals also vary over time, de!ning a new 
signal X ∈ RN×T, i.e., the N  nodes are discretely sampled at T  time points. To analyze 
graph signals that vary over the graph and time, the joint  vertex-time ( JVT) trans-
form extends the GFT ( Grassi et al. 2017)

 X l k
T

X u e
n

N

t

T

n t l n
jw tk∑∑)( =

= =

−ˆ ,
1

,
1 1

, ,
*  ( 8.5)

where ul  is the lth eigenvector of the graph Laplacian and e jw tk−  is the Fourier basis. 
Alternatively, in matrix form

 X JVT X U XUG F
T{ }= =ˆ †  ( 8.6)

where UG consists of the graph Laplacian eigenvectors, and UF is the DFT matrix of 
appropriate dimension. The JVT essentially computes the classical Fourier transform 
over time of the GFT over the graph nodes.

Unlike the graphs used in many GSP applications, in biological neural networks, 
the graph model is both directed ( due to the  one-way directionality of the synapses) 
and signed ( due to the presence of both excitatory and inhibitory neurons). From 
a spectral graph theory perspective, this presents several challenges as the graph 
Laplacian is no longer diagonalizable into an orthonormal basis for the transforms. 
These spectral conditions then impact the interpretation and intuition derived from 
the GFT. For directed graphs, multiple techniques have been proposed to obtain an 
orthonormal basis from the graph Laplacian or the adjacency matrix. Those methods 
involve either optimization approaches that impose certain constraints to derive the 
basis function, or approaches that propose novel representations of the graph into 
matrices that can produce an orthonormal basis, such as the Hermitian Laplacian 
Furutani et al. ( 2019). Here we employ the signed Hermitian Laplacian

 ,= − Γ ( )L D Aq q
s  ( 8.7)
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where D is the degree matrix of a symmetrized graph, 2eq
j q w w

ij
ij jiΓ = π ( )− ,  denotes 

elementwise multiplication, and A s)(  is the symmetrized adjacency matrix, i.e., 

A w wij
s

ij ji )(= +)( 1
2

.

8.3.3  GSP IN NEUROSCIENCE

In recent years, network neuroscience has emerged as a powerful tool for the study 
of neuronal networks across multiple scales. In particular, graph spectral analysis has 
been used for graph comparison, graph embeddings, and  structure-function analysis. 
One illustration of the use of graph spectral analysis for network comparison is the 
work of de Lange, de Reus, and Van Den Heuvel ( 2014) where the connectomes from 
the neuronal networks of the macaque, cat, and C. elegans were compared to model 
and empirical networks by using a similarity metric based on the spectral distance 
from a smoothed eigenvalue distribution from the normalized Laplacian. In another 
work, Raj et al. ( 2020) developed a spectral graph model based on the spectrum of 
the Laplacian from the structural connectome to derive a  closed-form solution to the 
 structure-function problem. The graph spectra has been also employed in the con-
struction of spectral graph embeddings to determine the importance of cells in C. 
elegans ( Petrovic et al. 2019). Finally, Aqil et al. ( 2021) developed a spatiotemporal 
framework of dynamical models in the human connectome based on the eigenvectors 
of the human connectome Laplacian to study  structure-function relationships.

Earlier work in GSP for neuroscience applications focused mostly on  macro-scale 
neuroscience. Various works focused on the study of alignment Medaglia et al. ( 2018) 
and the introduction of GSP for neuroimaging data ( Huang et al. 2018; Goldsberry 
et al. 2017). GSP wavelets have also provided signi!cant contributions to the study 
of  macro-scale connectivity in the human brain ( Leonardi and Van De Ville 2013), 
including novel ways to construct connectomes ( Behjat et  al. 2015). Other works 
focused on the study of fMRI temporal analysis using GSP techniques ( Brahim and 
Farrugia 2020).

8.4  EMERGENCE IN THE SHORT TERM: COLLECTIVE ACTIVITY

Collective activity in neural networks can take place in many forms, including activ-
ity bumps, oscillations, and traveling waves. Activity bumps are when a subset of the 
neurons !re in response to an external ( from the perspective of a given neural net-
work) input signal. This type of behavior should be familiar to machine learning prac-
titioners where, for example, inputs to convolutional neural networks produce feature 
extraction as activity bumps across the hidden layers ( Lindsay 2021). Unsurprisingly, 
since these networks and related structures derive motivation from the visual cortex, 
activity bumps are prevalent there and other sensory receptive !elds. Some forms of 
activity bumps maintain their activity even if the external input is removed, resulting 
in  so-called  self-sustaining activity bumps. This form of collective behavior is espe-
cially prevalent in the hippocampal formation where spatial computation and estima-
tion is performed in the form of place, head direction, and grid cells, among others 
( Knierim and Zhang 2012). A leading theory of these stable activities is attractor 
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theory where the emergent bumps are controlled by these external inputs, yet the 
bumps remain active even when these inputs are removed due to “ attraction” of the 
dynamics to the low energy states of the network. This theory was originally formu-
lated as a mechanism for memory ( Hop!eld 1982; Amit and Treves 1989) that could 
store discrete patterns as !xed points of the network dynamics. However, as space is 
itself continuous, attractor theory was soon extended to  so-called continuous attrac-
tors ( Samsonovich and McNaughton 1997), where instead of stable !xed points, the 
dynamics of the network are attracted to stable  sub-manifolds of equal energy.

The above emergent phenomena are analogous to collective behaviors in space, 
since the collective !ring is occurring roughly simultaneously, in response to some 
external input ( or persistently, in the case of  self-sustaining activity bumps). There 
are also examples of emergent collective !ring that are more  time-oriented, such as 
oscillations. There are numerous emergent oscillations in the brain ranging from 0.02 
to 600 Hz ( Penttonen and Buzsáki 2003). These oscillations are important because 
they form a hierarchical framework for action potentials to traf!c within and across 
neuronal circuits at many temporal scales ( Buzsáki 2019; Monaco, Rajan, and Hwang 
2021). When viewed together, these oscillation bands form a linear progression on a 
natural log scale, spanning ten frequency bands. These frequency bands can  co-exist 
and interact with each other in the brain in the same or different structures giving 
rise to various brain states ( e.g., task engagement or sleep). Many of these frequency 
bands are thought to be nested in which the phase of the slower oscillation modulates 
the amplitude of a faster oscillation, and in turn that phase of the faster oscillation 
modulates the amplitude of the even faster oscillation and so on. Many of these fre-
quency bands have been observed across many species, and some have been given 
names. In rodent studies, entrainment of theta oscillations (  4–10 Hz) is required to 
enable movement ( Fuhrmann et al. 2015), while the frequency of theta oscillations 
modulate movement speed ( McNaughton, Barnes, and O’Keefe 1983). In contrast, 
sharp wave ripples (  100–200 Hz) are known to occur transiently during deliberate 
moments of immobility ( Pfeiffer and Foster 2013) in spatial memory tasks. Monaco 
et al. ( 2021) proposed that these hierarchically nested oscillations are reentrant "ows 
on recurrent networks that can form a new computational basis. Sharp wave ripples 
are an example of a traveling wave ( that happens to be oscillatory), where a set of 
neurons !re in sequence.

In the following sections, we consider a pair of simulation examples from the com-
putational neuroscience literature to illustrate the utility of GSP in understanding the 
collective behaviors of the neurons. These examples focus on the analysis of activ-
ity bumps as these are more analogous to the spatial motivation of GSP, as opposed 
to purely oscillatory behaviors that are readily identi!ed by standard  time-domain 
( Fourier) analysis. That said, the combination of GSP and standard Fourier analysis 
is a powerful tool for understanding joint spatial and temporal dynamics. To this 
end, in the latter example, we consider a network that is driven by an oscillatory 
input, resulting in oscillatory outputs that give a sense of the potential for the JVT 
analysis of neural networks. This behavior could also be viewed as a stationary trav-
eling wave, and as such serves as an example for the ability of the JVT to reveal 
joint spatiotemporal structure in stationary emergent behaviors. Transient traveling 
waves are by their very nature  non-stationary and would require additional tools 
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form  non-stationary signal processing such as ( graph) wavelets, which is beyond the 
scope of this chapter.

8.4.1  CASE STUDY: SLOW SWITCHING ASSEMBLIES

Schaub et al. ( 2015) used a basic LIF model of a neuron along with a series of struc-
tured network models to produce coordinated !ring whose behavior is interpreta-
ble with the network structure. The !rst model we will consider from Schaub et al. 
( 2015) consists of densely connected “ blocks” of excitatory neurons with only sparse 
connections between these densely connected blocks. Unlike the excitatory neurons, 
the inhibitory neurons are connected uniformly at random, as are the connections 
between excitatory and inhibitory ( and vice versa). An example network is shown in 
 Figure 8.2a, which was actually generated using the learning rules discussed in the 
following section. In this particular instance, there are 100 excitatory neurons split 
into six densely connected blocks and 25 inhibitory neurons.

As found in Schaub et al. ( 2015), when the excitatory neurons are stimulated by 
a critical level of external stimuli, these blocks exhibit bursts of activity within a 
densely connected block that slowly ( and chaotically) transitions between blocks. An 
example of this slow switching assembly ( SSA) behavior is shown in  Figure 8.2b, 
illustrating that activity is concentrated within one block at a time, and exhibits slow, 
random switches between blocks. The inhibitory neurons are essentially randomly 
activated throughout the process, yet must play a key role in regulating the overall 
emergent behavior of the neural network. In particular, Schaub et  al. ( 2015) note 

 FIGURE 8.2  Slow-switching assembly simulations. ( Adapted from Schaub et al. 2015.) ( a) 
Adjacency matrix showing block structure. ( b) Neuronal activity showing slow switching 
behavior between blocks. ( c) GFT power using the undirected positive Laplacian. ( d) GFT 
power using the signed Hermitian Laplacian.



183Analyzing Emergence in Biological Neural Networks

that the inputs to the inhibitory networks must be slightly larger than the excitatory 
weights in order to maintain stability of the network.

In Schaub et al. ( 2015), analysis of this collective activity was considered in the 
context of the Schur decomposition of the network connectivity matrix. This lin-
ear algebraic technique could, in theory, be used to perform GSP analysis, since it 
produces a set of orthonormal basis vectors. However, the Schur decomposition is 
not unique, leading to a lack of reproducibility. As discussed above, since this net-
work is both signed and directed, we need to consider GFTs that accommodate this 
additional structure. The !rst transform we consider uses the underlying undirected 
transform, and the graph signal power with respect to this transform is shown in 
 Figure 8.2c. This transform captures most of the signal power of the excitatory net-
work into a few harmonics, but there are more contributing harmonics than there are 
blocks in the network model. Additionally, the inhibitory and excitatory portions of 
the network are not totally separated, partially due to the constant harmonic, but also 
in the higher frequency harmonics.

In contrast to the underlying undirected transform, accounting for the signed 
and directed nature of the network model produces a graph Fourier power spec-
trum that clearly separates the excitatory and inhibitory portions of the network ( see 
 Figure 8.2d). Furthermore, the number of harmonics that capture the excitatory sig-
nal power is equal to the number of blocks in the excitatory portion of the network. 
The inhibitory portion of the network, on the other hand, is reasonably evenly split in 
power among 25 harmonics, consistent with the notion that they are seemingly !ring 
at random. We will further explore the distribution of harmonics in this network in 
Section 5.1.

8.4.2  CASE STUDY: FRUIT FLY PROTOCEREBRAL BRIDGE

Another form of emergent collective !ring in neural networks is  self-sustained activ-
ity bumps, that is, localized regions of increased activity in a contiguous portion of the 
network. The output activity of the network may be guided by  feed-forward inputs to 
the network that can manipulate the activity bump, but in the absence of such inputs 
the activity bump will be maintained. This sort of emergent behavior is prominent 
in neuronal circuits associated with navigation, where the inference of position and 
orientation must be maintained even in the absence of stimuli. Additionally, these 
circuits should be robust to noise such as random !rings of both neurons within the 
network, and those modeled by the feedforward inputs. As such, seemingly chaotic 
coordinated !ring as observed in the previous section represents a fundamentally 
different emergent behavior. To study this phenomenon through the lens of GSP, we 
use a simulation of the fruit "y protocerebral bridge ( Kakaria and de Bivort 2017), 
which is believed to be responsible for an egocentric estimate of the "y’s heading.

Unlike the SSA model from the previous example, the model of the fruit "y proto-
cerebral bridge is structured in a fundamentally different way than the stochastic block 
model above ( see  Figure 8.3a). Here, the excitatory portion of the network results in 
 ring-attractor dynamics with a corresponding triple of interlocking ring graphs ( for 
full anatomic details see Kakaria and de Bivort ( 2017)). These ring attractor dynam-
ics are exploited to maintain the heading estimate of the fruit "y. Additionally, unlike 
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the SSA model, the weights of the synapses are chosen from similar, discrete values, 
and not the more random weights as above. The activity of the network is shown in 
 Figure 8.3b. Unlike the SSA example above, this model expects a more structured 
 feed-forward input that corresponds to the output of unmodeled upstream neurons. 
In the absence of this input signal, the network maintains a !xed activity bump cor-
responding to the last state estimate. Here, this corresponds to the times before 0.5 
second and after 4.5 seconds. In the intervening times, a stimulus is applied that 
corresponds to a 1 Hz rotation, which causes the activity bumps on the excitatory 
neurons to rotate at that rate.

Using the undirected, positive Laplacian as the basis for a GFT we see consider-
able structure in the graph power spectrum ( see  Figure 8.3b). Harmonics 0, 32, and 
59 capture the average contributions between the major functional components at 
each point in time. The next two contributing harmonics ( 1 and 2) are shown in 
 Figure 8.3d. These harmonics resemble a pair of sinusoidal waves on the excitatory 
networks that are 90° out of phase. Such harmonics are characteristic of  ring-like 
networks, and these harmonics contribute to the localized activity bumps that encode 
the heading of the fruit "y. In contrast, using the signed Hermitian Laplacian ( not 
shown) appears to group the network into three regimes (  0–31,  32–49,  50–59), and 
only has the  ring-like harmonics on neurons (  0–31).

Next, we further explore the interplay between GSP and emergence in neural 
networks by highlighting the ability of GSP to identify hidden patterns of coordi-
nated activity in time and space. When the neurons are enumerated as in  Figure 8.3b, 

 FIGURE  8.3 Fruit "y protocerebral bridge simulations. ( Adapted from Kakaria and de 
Bivort, 2017.) ( a) Adjacency matrix for the model. ( b) Neural activity to a !xed angular veloc-
ity stimulus applied at 0.5 second for 4 seconds. ( c) GFT power of the neural outputs. ( d) GFT 
harmonics of the  non-trivial active harmonics that are approximately sinusoidal and 90° out 
of phase on the excitatory neurons.
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the coordinated !ring activity is quite obvious, although one might question why 
the activity bump is repeated six times ( or twice on each functional component). 
However, if the natural ordering were not known a priori, and instead we are pre-
sented with a random permutation of the neuronal indices, then the output is consid-
erably harder to decipher ( see  Figure 8.4a). One might note that many of the neurons 
appear to have some periodic behavior, and standard Fourier analysis of the indi-
vidual neurons indicates that many of the neurons do indeed have considerable power 
contributions at 1 Hz.

An important feature of the GFT is that it is “ invariant” to permutations of the 
vertices, in the sense that individual harmonic vertex values will be permuted in the 
same way. Thus, the GFT power spectrum using the underlying undirected posi-
tive Laplacian is identical to that in  Figure 8.3c. Armed with the knowledge of the 
structure from Fourier analysis in the time and vertex domains individually, we 
next considered the JVT transform (  Figure 8.4c). This reveals that the 1 Hz power 
observed in the individual neurons in  Figure 8.4b is strongly concentrated in just 
two harmonics, and these are of course harmonics 1 and 2. With the permutation of 
the neurons, these harmonics do not have the same readily apparent structure as in 
 Figure 8.3d. Since these two harmonics have nearly identical graph frequency, one 
might be tempted to think of them in an analogous manner to the real and imagi-
nary parts of a standard Fourier complex exponential harmonic. With this intuition, 
 re-permuting the neuron index by the “ phase” of the combined harmonic U jU+1 2 at 

 FIGURE 8.4 Permuting the index of the protocerebral bridge simulations. ( a) Neuronal out-
puts when the neuron indices are permuted ( i.e., the rows of Fig. 3b are  permuted – the data 
is itself identical). ( b) Power spectrum of neuronal outputs, illustrating concentration around 
1 Hz. ( c) JVT power spectrum, illustrating concentration of 1 Hz power in to two harmonics 
( note scale difference from b). ( d)  Re-permuting the neuron index using the phase between 
each neuron’s contribution to the dominant JVT harmonic, clearly revealing rotational input.
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each neuron yields  Figure 8.4d. This sorting completely unravels both the permuta-
tion and the original interleaved structure and shows how the activity bump travels 
smoothly across the excitatory portion of the network.

8.4.3  SUMMARY

In summary, neural networks exhibit many different forms of emergent collective 
activity that is coordinated spatially, temporally, or both. The synaptic network 
between the neurons is key in producing these collective behaviors, with the con-
nectivity and weights ultimately responsible for generating the collective dynamics. 
Commonalities between the examples’ network structure reveal a motif for potential 
consideration for wider SoS scenarios. This motif is that of structured, yet sparse, 
connectivity in the excitatory portion that demonstrates the “ core” of some emergent 
behavior, coupled with dense connectivity involving a smaller inhibitory portion that 
serves to regulate the overall collective behavior. Additionally, we showed that GSP 
can be used to reveal  low-dimensional hidden structure in time and space for these 
collective behaviors, but transforms that account for the directed nature and presence 
of inhibitory interactions may be required to fully reveal this structure.

8.5  EMERGENCE IN THE LONG TERM: NETWORK 
FORMATION AND LEARNING

The above discussion focused on emergent behaviors in networks of neurons where 
the network between the neurons is viewed as static in both the weights of the model 
as well as the connectivity. However, the structure of the network itself is funda-
mental in the overall function of the neural network. This is especially evident for 
 self-sustaining activity bumps when viewed through the lens of attractor theory, as 
the network weights are a major component in the determination of the stable mani-
folds. As there is no centralized mechanism that governs the formation of the net-
work, this formation process can itself be viewed as an emergent phenomena. The 
formation of the connections in the network and their strength ( i.e., their weight in a 
model) is governed by a process known as plasticity, or more colloquially, learning. 
In machine learning applications, this learning process is often executed through a 
centralized gradient descent process that incrementally tunes the weights of the net-
work from a  pre-de!ned connectivity pattern or “ architecture” in order to minimize 
some loss function.

In biological neural networks, the learning process is modeled using learning 
rules that are accomplished using only local information available to each neuron, 
individually. Perhaps the most common model of plasticity is Hebbian learning, 
which uses the reasoning that neurons that “ !re together” should “ wire together,” 
that is, coordinated !ring should strengthen synaptic connectivity, and vice versa. 
The most common formulation of this approach is in terms of !ring rate models, 
where the synaptic weights change via

 
dw
dt

g wij
ij i jν ν )(= , , , ( 8.8)
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where g is a function of the current weight and the !ring rates iν  of the neurons. The 
most basic form of Hebbian learning is g wij i j ij i jν ν η ν ν)( =, , , where ijη  is referred to 
as the learning rate.

While computationally tractable and intuitively appealing, this form of “ pure” 
Hebbian learning has some shortcomings with respect to the network constraints 
observed in biological neural networks. First, it is clear that the learning rule above 
is symmetric, which will always result in undirected network models. Second, this 
approach to learning was originally intended for excitatory neurons only and does 
not account for inhibitory neurons. Finally, the dynamics of Hebbian learning often 
leads to instability, with exponential growth in the magnitudes of the weights. This 
latter failing can be addressed by various normalization techniques, leading to alter-
native learning rules such as Oja’s g w wij i j i j ij iν ν η ν ν ν )()( = −, , 2 , which asymptoti-
cally normalizes w

j

ij∑ 2 to 1.

The above learning rules are appropriate for !ring rate models, with their rates ηi 
de!ned at all times. For  spike-based models with their discrete spiking events, the 
learning rules should be dependent on the time between the  pre-synaptic spike and 
the  post-synaptic spike,  so-called  spike- timing-dependent plasticity ( STDP). If we 
de!ne tk

i  to be the time of the k th spike in the spike train Si and tl
j for the train Sj, a 

basic form of STDP is

 
dw
dt

h t tij

k l

k
i

l
j∑∑ )(= − , ( 8.9)

where h t)(  is called the learning window. A basic form of h is

 h t
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exp ,     0,

exp ,     0,
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with A±, τ ± positive, and A± may depend on wij. As with the  rate-based Hebbian 
learning above, there are many variants of the STDP rules that capture different 
biologically observed phenomena. In particular, STDP can serve as both a model 
for directed connectivity as well as for a method of plasticity for inhibitory neurons.

8.5.1  CASE STUDY: STRUCTURED ASSEMBLY FORMATION

In Triplett, Avitan, and Goodhill ( 2018), a  Hebbian-like learning rule was used to 
evolve the excitatory portion of a neural network from an initially uniformly ran-
domly connected network to one that exhibits both the stochastic block structure and 
the slow switching behavior of Schaub et al. ( 2015). In a sense, this is essentially a 
generative mechanism for the dynamics of Schaub et al. ( 2015), although we note that 
the weights of any edges connected to the inhibitory network are !xed. There, for 
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ease of simulation, the LIF dynamics were simpli!ed and time discretized, simulat-
ing the responses of the excitatory neurons Si

E and inhibitory neurons Si
I  via

 

1

1 ,

S t w S t w S t t

S t w S t w S t t

i
E

j

ij
EE

j
E

j

ij
EI

j
I

i
E

i
I

j

ij
IE

j
E

j

ij
II

j
I

i
I

∑ ∑

∑ ∑

β γ

β γ

( )

( )

( ) ( ) ( )

( ) ( ) ( )

+ = Θ − + −












+ = Θ − + −












 ( 8.11)

where wij
EE, wij

EI , wij
IE, and wij

II  are the  excitatory- to-excitatory,  inhibitory- to-excitatory, 
 excitatory- to-inhibitory, and  inhibitory- to-inhibitory portions of the network, respec-
tively, Θ is the Heaviside step function, γ  is the activation threshold, and ti

Eβ )( , 
ti

Iβ ( ) are random variables that drive spontaneous background activity. The model 
of Triplett, Avitan, and Goodhill ( 2018) uses a covariance learning rule, where the 
weights of the excitatory  sub-network wij

EE are updated via

 ,w t S t S t S t S tij
EE

i
E

i
E

j
E

j
Eη ( )( )( ) ( ) ( ) ( ) ( )∆ = − −  ( 8.12)

where S ti
E )(〈 〉 is the running average of S ti

E )(  and η  is the learning rate. Furthermore, 
the weight updates are constrained to prevent negative excitatory weights normalized 
to maintain a constant sum of weight for each excitatory neuron. This latter step is 
needed to prevent the “  rich-get richer” phenomenon where all of the synaptic weight 
accumulates in a single edge.

As shown in Triplett, Avitan, and Goodhill ( 2018), the combination of these neu-
ronal dynamics and learning rule results in the formation of strongly connected block 
models with  slow-switching behavior in the vein of ( Schaub et al. 2015). In fact, a 
simulation of this process was used to generate the network connectivity used in 
Section 8.1, that was then used as the connectivity for the  higher-!delity dynamics 
of ( Schaub et al. 2015).  Figure 8.5a shows how the number of strongly connected 
components evolves over time, increasing monotonically from the single initial com-
ponent to six components. In the context of the GFT, the evolution of this network 
can be interpreted in terms of the associated graph frequencies, see  Figure  8.5b. 
This !gure shows that the formation of strongly connected blocks in the excitatory 
subnetwork are associated with the appearance of a  low-frequency graph harmonic 
in the GFT. Of course, this result does not hold for the undirected transform, only the 
transform that accounts for the signed and directed nature of the graph.

8.6  CONCLUSION

In conclusion, biological neural networks exhibit many different forms of emergent 
coordinated !ring activity that evolve both temporally and spatially across the net-
work. Furthermore, the very process of network formation is itself an example of an 
emergent behavior on a much longer time scale. As a process that takes place on a 
natural network structure, tools from GSP can be applied to analyze these emergent 
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behaviors, revealing insight into these processes. Given the rich history of intercon-
nections between signal processing and control theory, this also points toward a 
future potential capability to engineer desired emergent behaviors. Looking beyond 
biological neural networks to the perspective of general SoS, biological neurons and 
neural networks have a number of interesting features to motivate the design of SoS, 
and GSP is a natural tool to consider these emergent SoS behaviors. Speci!c facets 
discussed in this chapter include:

• Collective emergent behaviors in neural networks assumes many forms 
beyond standard consensus and synchronization behaviors and may serve 
as inspiration for a number of other application areas. Many problems can 
presumably !nd neuromorphic or neuromimetic solutions once the appro-
priate neural circuit and conversion to problem domain is identi!ed, see e.g., 
the swarming approach considered in Monaco et al. ( 2020).

• The structure of the neural network is key to the presence of emergence, and 
this structure must form organically, itself an example of emergence on a 
longer time scale than the shorter dynamical time scale.

• Neurons and the synapses that interconnect them have a number of regu-
latory processes that allow for interesting collective behaviors to emerge. 
These include
• Excitatory and inhibitory neurons. In the examples studied here, what 

we would identify as the emergent behavior is observed primarily in the 
excitatory neurons, but the inhibitory neurons are needed to stabilize the 
behavior.

•  Auto-regulatory behaviors that vary the responsiveness of a neuron to 
inputs in order to prevent saturation.

• Regulatory processes for the weakening and strengthening of synapses 
( network plasticity) to limit the rate of network change, maintain certain 
network features, and/ or prevent degeneracies.

 FIGURE  8.5 Learning induced block formation. ( Adapted from Triplett, Avitan, and 
Goodhill, 2018.) ( a) Number of blocks over time, eventually resulting in the network shown 
in Fig. 2a. ( b) Evolution of graph frequencies over time, using signed Hermitian Laplacian. 
 High-frequencies ( λ > 2) cover the inhibitory neurons, whereas lower frequencies consist pri-
marily of excitatory neurons. The  dashed-colored lines are those that eventually map to a block 
in the model, which forms when the frequencies drop below the main group of frequencies.
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These processes and the motifs in the way they are employed could be 
valuable in understanding potential designs for emergence in other SoS, 
even those that are not explicitly  neuro-inspired.

• GSP is a developing tool for analyzing dynamics and interactions on net-
works, but the peculiarities of biological neural networks ( directed and 
signed) are an  under-studied area.

• The proper choice of GFT can identify  low-dimensional structure that is 
characteristic of emergent behavior and can also identify functional compo-
nents in a neural network.

• The combination of graphical and standard Fourier analysis, leading to a 
JVT, can further reveal this  low-dimensional behavior by detecting behav-
iors that evolve both temporally and spatially across the network.
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