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ABSTRACT: Iron and copper enzymes are known to promote reversible S-nitrosation/denitrosation in biology. However, it is
unclear how the direction of S—N bond formation/scission is controlled. Herein, we demonstrate the interconversion of metal-S-
nitrosothiol adduct M(RSNO) and metal nitrosyl thiolate complex M(NO)(SR), which may regulate the direction of reversible S-
(de)nitrosation. Treatment of a dicopper(L,I) complex with RSNO leads to a mixture of two structural isomers: dicopper(LI) S-
nitrosothiol [Cu'Cu'(RSNO)]** and dicopper(ILII) nitrosyl thiolate [Cu"'Cu"'(NO)(SR)]**. The K,, between these two structural
isomers is sensitive to temperature, the solvent coordination ability, and counterions. Our study illustrates how copper centers can
modulate the direction of RS—NO bond formation and cleavage through a minor perturbation of the local environment.

S-Nitrosation (or S-nitrosylation) is an important post- Scheme 1
translational modification in which the thiol functional group

1% A Heme-assisted reversible S-nitrosation
in cysteine (Cys) is converted to S-nitrosothiol (RSNO).

The reversible conversion of CysS—H to CysS—NO has been 2NO’

proposed to involve important biological processes, such as the T_oNO

autoregulation of blood flow”™"? and the proper functioning of l

mitochondria."® S-Nitrosation reactions in biology are often Cys”

reversible,”’ providing a flexible strategy for modifying protein B Reversible S-nitrosation at T1Cu site

structures with NO®. Both S-nitrosation and denitrosation can SMet SMet

be mediated by iron,"*"*' copper,”>~*° and other metals.”” >’ HisN\.‘: NO* HisN\é pe
However, the factors governing the direction of S-nitrosation HisN/CUL Cys =——— Hi N/CU'_N\

vs denitrosation at metal centers remain underexplored. For -NO S Cys
example, it is unclear Why certain copper proteins promote C S-nitrosation at dicopper center without external oxidant
RS—NO bond formation’>*® while others promote NO®

release from RS—NO.>**! [Cu'y)

2 RSH + 4 NO’ 2 RSNO + Nz0 + H0

Among the reports of metal-mediated S-(de)nitrosation, two

examples are fully reversible.'””>*® Montfort et al. demon- ] ' ' .
strated that the ferric (Fe'™) heme iron site in nitrophorin associated with the conversion of NO® and RSH to RSNO.

reacts with NO® to afford nitrosated cysteinate along with a Recently, we demonstrated that a synthetic dicopper complex
heme [FeNO]’ center (Scheme 1 A)l? This Fe-mediated S- cogld promote S-nitr(.)sation without an exterr%al oxifiant,
nitrosation process is reversed over time, releasing NO® and ‘Sgc.h Serves ass ahfunctllocrllalsglscs)del of ceruloplasmin-mediated
regenerating the Fe'! heme center. Similarly, type 1 copper storage (Sc eme & )- . . . .
(T1) sites can reversibly store NO® by converting the CysS— A common mechanistic step in metal-mediated S-nitrosation
Cul’ motif to CysS—NO with the simultaneous reduction of is the insertion of NO* into metal—thiolate bonds to generate
Cu to Cu (Sch};me 1B) 26 A modeling study has shown that RSNO together with the reduced metal center, s
. . L & Y 1as reminiscent of reductive elimination in organometallic
purging a solution of the Cu'(RSNO) complex with a stream . L
of N, promotes the release of NO® and regenerates the Cu"— chemistry. Thefefore’ it is commonly proposed that the
thiolz?;te complex>® In addition to mononuclear Cu and Fe coupling of NO* with thiol occurs at a transient metal nitrosyl
sites, multinuclear metal centers, such as CuZn superoxide
dismutase and ceruloplasmin (CP), are also closely associated Received: December 5, 2021
with the storage®”** and release’””" of NO* as RSNO. Akaike Published: February 9, 2022
et al. found that the RSNO-generation activity of CP was
significantly suppressed by inhibitors of type 2 copper (T2)
and binuclear type 3 copper (T3) sites, e.g., azide, cyanide, and
fluoride,” suggesting that trinuclear copper centers may be
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thiolate species M,(NO)(SR) (Scheme 2A), which undergoes
reductive elimination to afford M,(RSNOQ).”>*>*® The reverse

Scheme 2

A Commonly proposed reversible S-nitrosation mechanism
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reaction—a formal oxidative addition of RSNO—promotes
the release of NO®. If this interconversion is possible, then the
chemical factors that govern the equilibrium between
M,(NO)(SR) and M,(RSNO) could be the key to under-
standing how biological metal centers control the direction of
S-nitrosation vs denitrosation.

Herein, we demonstrate the reversible interconversion
between M,(NO)(SR) and M,(RSNO) (Scheme 2B).
Unprecedented Cu(ILII) u-NO p-thiolate [Cu,(NO)(SR)]
complex 3 and its structural isomer Cu(LI) S-nitrosothiol
[Cu,(RSNO)] complex 2 were fully characterized with
spectroscopy or single-crystal X-ray crystallography. In
solution, these two isomers coexist in equilibrium, and K,
varies as a function of temperature, solvent coordination
ability, and counterions. The reversible conversion between
M,(NO)(SR) and M,(RSNO) represents a potentially pivotal
mechanistic step that controls the directionality of RS—NO
bond cleavage and formation in biology.

To visualize the interconversion between M,(NO)(SR) and
M,(RSNO), we employ our dicopper platform® which has
successfully modeled the S-nitrosation process at ceruloplas-
min.”>** Instead of using the previous Py,DMB ligand
(Scheme 3 right), we prepared a new binucleating ligand L

Scheme 3. Comparison of L and Py,DMB

HO  SH '
o] Py. Py
N Ny 0 >_ 0
21T 1 e
= ~ KiCOs :
MeCN, 80 °C !
L 67% Py,DMB

by linking four pyridines with a 2-hydroxybenzenethiol linker
(Scheme 3). We hypothesize that the S atom in the secondary
coordination sphere might facilitate the cleavage of the RS—
NO bond at dicopper (LI) and stabilize the putative
[Cu",(NO)(SR)]*" intermediate. Electron-donating ligands
were found to stabilize copper complexes with higher oxidation
states, e.g, the bis-u-oxo-dicopper(IIl) isomer relative to side-
on peroxo-dicopper(I) species.’

The reaction of L with 2 equiv of [Cu(MeCN),]ONf,
[Cu(MeCN),]PF,, or [Cu(MeCN),]BAr", affords dicopper
(LI) complexes 1 with ONf, PF, or BAr", counteranions in
89—97% vyield (ONf = nonafluorobutanesulfonate, PFgq
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hexafluorophosphate, and BAr", = tetrakis(3,5-bis(trifluoro-
methyl)phenyl)borate). The treatment of 1-BAr", with S-
nitrosothiol PhM*SNO at —60 °C in a 2:1 mixture of CH,Cl,
and THF affords the dark-green species 2-BAr", (1 = 625 nm,
€ =2200 M~ cm™; 1 = 700 nm, & = 2000 M~' cm™, Figure
1B) that is stable below —35 °C. The UV-—vis features of

Me Me
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Figure 1. (A) Reaction scheme, (B) in situ UV—vis, (C) in situ IR,
and (D, E) resonance Raman (568 nm excitation) spectroscopy of
dicopper (LI) S-nitrosothiol adduct 2-BAr",.

species 2-BAr’, closely resemble those of our previously
reported dicopper(LI) di-S-nitrosothiol adduct (1 = 575 nm, &
=2400 M~' em™ A = 675 nm, € = 1450 M~ cm™').** To
establish the ratio of PhAM®SNO to the dicopper center in 2-
BAr",, we performed a UV—vis titration experiment at —50 °C
with dicopper(I) precursor 1-BAr", and PhM°SNO. The
complete conversion of 1-BArf, to 2-BArY, requires 1 equiv
of PhM*SNO (Figures S26—528), suggesting that 2-BAr", is a
dicopper(LI) mono-S-nitrosothiol adduct (Figure 1A). Con-
sistent with this assignment, N NMR spectroscopy of 2-'°N
prepared with PhM*S"NO at —47.9 °C shows a single
resonance at 561.6 ppm (vs NH;, Figure 3B).>>** Solution IR
studies of 2 in THF or acetone display two '“N-sensitive
stretches at 1516(—22) cm™' (N=O stretch, Figures S90 and
S91) and 729 (—13) ecm™' (S—N stretch, Figure 1C).
Resonance Raman spectra of 2-BAr", in THF-dg or THF
using a 568 nm excitation beam show three *N-sensitive
stretches at 1509 (—18) cm™, 734 (—22) cm™" (Figure S94),
and 420 (—12) cm™), which were assigned as N=0O, S—N, and
Cu—N stretches, respectively (Figure 1D,E). The observed '°N
isotope shifts for the Cu—N and N-—S vibrations match
Hooke’s law. The "N isotope shift for the N=0O mode is
lower than expected, likely because of coupling with additional
vibrational modes. DFT models of 2 were optimized and
calculated at the TPSSh/def2-TZVP/PCM(THF) level of
theory. The calculated vibrational frequencies of both syn and
anti isomers reproduce the experimental results reasonably well
(Figure S95, Tables S7—S9).

Dicopper (LI) S-nitrosothiol adduct 2 can also be generated
from the treatment of 1 with 2-methylbenzenethiol (Ph™°SH)

https://doi.org/10.1021/jacs.1c12799
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in the presence of excess NO® (Figures S57—S62). This . R —|2+ o —‘2"
reaction presumably proceeds through dicopper (ILIII) u-O - = N—¢ & == N -

NO intermediate [Cu"Cu™(y-O)(u-NO)]** prior to S—N \ \C{J C\:’N\/ Keg  \ N-cd \CU:N\/

bond formation,> as we demonstrated previously for the
primary thiols.”> The addition of 2 equiv of 2-Ph™*SH to 1-
BAr¥, or 1-PFy in the presence of NO® (56 equiv) generates 2-
BAr", or 2-PF in 85 or 90% spectroscopic yield, respectively.

Despite its dark-green color in THF or acetone solution,
complex 2-BAr", crystallized as brown crystals from a mixture
of pentane and THF at —40 °C. To our surprise, X-ray
diffraction analysis reveals dicopper (ILII) u-NO u-SPhMe
[Cu",(NO)(SPh™®)] complex 3-BAr", (Figure 2). Each Cu

Figure 2. Single-crystal X-ray diffraction structure of complex 3-BAr*,
with thermal ellipsoids at 30% probability. The BArF, counteranion
and other solvent molecules are omitted for clarity. Selected bond
lengths (A) and angles (deg) for 3-BArf,: Cul—Cu2 = 3.118(2).
Cul—NI1 = 2.064(7), Cu2—N1 = 2.046(7), Cul—=S1 = 2.244(2),
Cu2-S1 = 2.230(2), N1-O1 = 1.212(9), N1-S1 = 2.633(8), Cul—
N1—-Cu2 = 98.7(3), and Cul—S1—Cu2 = 88.36(8).

center binds a THF solvent molecule on the axial position to
complete a square pyramidal geometry. The N=0 distance is
1.212(9) A, which is slightly lon§er than that in [(XYL-
0)Cu',(u-NO7)]* (1.176(1) A)*° and [Py,DMBCu,(u-
0)(u-NO)J** (1.154(19) A).** Solid-state IR of 3-BArF,
(Figure S84) exhibits a '’N-sensitive N=O stretch at
1530(—24) cm™', which is slightly lower than those for
[(XYL-O)Cu",(u-NO7)]** (1536 cm™") and [Py,DMBCu,(u-
0)(u-NO)J** (1554 cm™). Both the N=0O bond distance
and stretch are consistent with an NO™ formulation. No S—N
stretch was detected in solid-state IR (Figure S85), consistent
with the absence of an RS—NO bond in complex 3-BAr", (N---
S distance 2.633(8) A). The reaction of 3-BArf, with
cobalt(II) porphyrin (TPP)Co in CH,Cl, at —40 °C resulted
in the release of 1 equiv of NO*® in 79% yield (Supporting
Information, Figure S75—78).

Interestingly, dissolution of the brown crystals of 3-BAr", in
a 2:1 mixture of CH,Cl, and THF at —60 °C affords a dark-
green solution with UV—vis features identical to those of 2-
BArf, (Figures S30 and S31), suggesting that 3-BAr", is
converted back to 2-BAr", upon dissolution in coordinating
solvents. In contrast, the dissolution of 3-BAr", in cold CH,Cl,
generates a brown solution with a single UV—vis feature at 715
nm (e = 3000 M~'cm™"), consistent with the distinct brown
color of 3-BAr", in the solid state (Figure 3A, S32). Thus,
while the formation of [Cu’,(RSNO)] 2-BAr%, is favored in
coordinating solvents such as THF and acetone (Figures 529
and $45), brown isomer [Cu",(NO)(SR)] 3-BAr", can be
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Figure 3. (A) UV—vis spectra obtained from dissolving crystals of
complex 3-BArf, in cold CH,Cl, (red trace) or a 2:1 mixture of
CH,Cl, and THF (green trace). UV—vis spectrum of complex 2-
BAr", formed in a 2:1 mixture of CH,Cl, and THF is shown in the
blue trace as a comparison. (B) 'NMR spectrum of 2-BAr", in a
mixture of THF-dg/CD,Cl, in 2:1 ratio (top), 3-BAr*, in CD,Cl,
(middle), and a mixture of 2-BAr¥, and 3-BAr", in a mixture of THF/
CD,CL, in a ca. 1:18 ratio (bottom). (C) van’t Hoff plot and (D)
variable-temperature '"H NMR data of 2-BArf,/3-BAr¥, in a mixture
of THF/CD,Cl, in a 1:140 ratio from 188.4 to 225.3 K.

directly generated in noncoordinating solvents such as CH,Cl,.
The titration of Ph™*SNO with various amounts of 1-PF or 1-
BArf, in dichloromethane suggests that the stoichiometry of
the dicopper center with respect to Ph™*SNO remains 1:1 in 3
(Figures S19—S24). When prepared with Ph™*S'*NO, 3-°N
exhibits a single "N NMR signal at 585.2 ppm, which is
significantly different from 2-'*N (561.6 ppm, Figure 3B). The
key spectroscopic features of 2-BAr", and 3-BAr", are
summarized in Table 1. The observation of dicopper (LI) S-
nitrosothiol in a coordinating solvent versus dicopper(ILII) y-
NO p-thiolate in a noncoordinating solvent suggests that these
two isomers might display a solvent-dependent interconver-

Table 1. Summary of Spectroscopic Features of 2-BAr*, and
3-BAr,

IR UV-vis SNNMR 'HNMR
em™  namM'emT)  ppm ppm
o R .+ 1516 625 254
g N=0 (2200) H;3C(Ar)
AR 561.6
Cu Cu 729 700 6.08, 6.52
2 N-S (2000) HCPy,
ﬁ 2+ 2.75
: H,C(A
cul Ceu 1530 715 s85.0 3C(AN
, =0 (3000) :
& 6.19, 6.53
3 HCPy2
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sion. Indeed, the addition of THF to a dichloromethane
solution of 3-BAr", causes the gradual conversion to 2-BAr",
(Figures S34—S37). When the ratio of THF/CH,Cl, reaches
1:6, 3-BAr", cleanly converts to 2-BAr",. To further confirm
that 2-BAr®, and 3-BAr", can coexist in solution, we dissolved
crystals of 3-'*N in cold CD,Cl, and performed N NMR
analysis at —47.9 °C. Notably, the crystals of 3-"*N contain a
certain amount of cocrystallized THF, which is expected to
cause the partial conversion of 3-"°N to 2-"*N. Indeed, two
distinct "N NMR signals were observed for 3-"N (587.7
ppm) and 2-"*N (579.4 ppm) (Figure 3B bottom).

'"H NMR spectroscopy of 2-BAr",/3-BAr", in a 1:140
mixture of THF and CD,Cl, reveals that the ratio of 2/3 is
0.93:1 (Figure 3D) at —47.9 °C (225.3 K). As we cooled the
'"H NMR sample to —84.7 °C (188.4 K), the ratio of 2/3
increased to 3.6:1. The construction of a van’t Hoff plot using
In(K,y) = In([3]/[2]) vs —1/T affords thermodynamic
parameters for the 2 = 3 equilibrium: AH = 3.1 kcal/mol
and AS = 13.9 cal/(mol K) (Figure 3C). These findings
suggest that the formation of 3 is enthalpically disfavored and
entropically favored.

The solvent-dependent core isomerization is reminiscent of
the interconversion of u-%:n*-peroxo->"** and bis(u-oxo)
dicopper complexes first observed by Tolman’”~** and later by
Karlin,***>*7% Stack,"”™° and others’' ™ (Scheme 4A).

Scheme 4. Coordinating Solvents Favor the Cleavage of the
O—-0 Bond and the Formation of the S—N Bond
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Both the reversible formation/cleavage of O—O and S—N
bonds at the dicopper center shift as a function of the solvent
coordination ability, albeit with opposite trends. Karlin et al.
observed increasing quantities of the O—O bond cleavage
product—dicopper(IILIII) bis-u-oxo complex along the series
CH,Cl, < Et,0 < acetone < THF.” The more coordinating
solvents are anticipated to stabilize the formal Cu™ oxidation
state and facilitate cleavage of the O—0O bond.>** In contrast,
S—N bond formation is favored in solvents with greater
coordinating abilities (Supporting Information, Figures S37
and S49 and Tables S1 and S2). We postulate that the
coordination of solvent molecules to copper centers in
complex 2 or 3 favors reductive elimination due to the
dominating steric effects, as the coordination number changes
from $ in [Cu™,(NO)(SR)] to 4 in [Cu',(RSNO)] (Scheme
4B). Analogous coordination-induced reductive eliminations
have been observed in other Fe® and Cu organometallic
complexes.””*
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We also investigated the impact of coordinating anions on
the interconversion of [Cu',(RSNO)] and [Cu™,(NO)(SR)].
In contrast to 1-BAr", or 1-PF (Figures S59 and S63—S66),
the treatment of PhMSNO with 1-ONf, which features a
coordinating sulfonate anion, produces [Cu',(RSNO)] isomer
2-ONf exclusively, regardless of the solvent environment
(Figures S53—S55). Furthermore, [Cu",(NO)(SR)] complex
3-BAr", can be converted to [Cu',(RSNO)] 2-ONf upon
treatment with external sulfonate source TBAON{ (Supporting
Information, Figures S67—S71). The coordination of sulfonate
to the dicopper center promotes the formation of the S—N
bond, similar to Stack et al.’s observation that O—O bond
formation at the dicopper center is preferred with basic
sulfonate anions.>

In summary, we report the first example of the controlled
interconversion of RSNO and NO°®/thiol at a metal center.
The addition of S-nitrosothiol to a dicopper(LI) complex in
coordinating solvents affords dicopper(LI) S-nitrosothiol
[Cu',(RSNO)] complex 2-BArf, The same reaction in a
noncoordinating solvent produces dicopper(ILII) u-nitrosyl u-
thiolate [Cu",(NO)(SR)] complex 3-BAr",. The equilibrium
between structural isomers [Cu',(RSNO)] and [Cu™,(NO)-
(SR)] is controlled by the temperature, solvent coordinating
ability, and counterion identity. This experimental verification
of the interconversion between M, (RSNO) and M, (NO)(SR)
provides an important precedence that S-nitrosation and
denitrosation can occur at the same metal site. Our ability to
observe and control such an equilibrium demonstrates the
sensitivity of S—N bond formation/cleavage to the local
environment, which potentially explains how the direction of
S-nitrosation vs denitrosation is regulated in space and time. A
minor perturbation of the local environment, ie., pH value,
secondary coordination sphere, or hydrophobicity/hydro-
philicity, could lead to a reverse in RSNO formation/
decomposition. We hope that this work will motivate future
studies to attempt the characterization of this important
process in biological systems.
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