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A B S T R A C T   

Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions 
and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem 
responses to environmental changes without capturing the high diversity of plant functional characteristics in 
the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to en
vironmental disturbances. Innovative methods and data products are needed to track changes in functional trait 
composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits 
by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of 
canopy functional traits collected from 2434 individual trees across the tropics using a standardised metho
dology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of 
Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial po
sitions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and 
shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated 
at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random 
Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional 
traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2 
imagery in conjunction with climatic and soil information. Image textural parameters were found to be key 
components of remote sensing information for predicting functional traits across tropical forests and woody 
savannas. Leaf thickness (R2 = 0.52) obtained the highest prediction accuracy among the morphological and 
structural traits and leaf carbon content (R2 = 0.70) and maximum rates of photosynthesis (R2 = 0.67) obtained 
the highest prediction accuracy for leaf chemistry and photosynthesis related traits, respectively. Overall, the 
highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits in comparison to mor
phological and structural traits. Our approach offers new opportunities for mapping, monitoring and under
standing biodiversity and ecosystem change in the most species-rich ecosystems on Earth.   

1. Introduction 

Some of the most urgent questions in ecology and ecosystem science 
today focus on how communities of organisms respond to global en
vironmental changes (Naeem et al., 2009), how biodiversity and eco
system changes across the world can be consistently mapped and 
monitored (Navarro et al., 2017), and how spatial, temporal and 
taxonomic variability in biodiversity influences ecosystem resilience to 
climate change (Oliver et al., 2015). In terms of Earth system science, 
we need to understand and model how the terrestrial biosphere will 
respond (and already is responding) to global environmental change, 
and whether there are critical thresholds or “tipping points” beyond 
which major biomes may not be able to recover. Nowhere is the chal
lenge more urgent than in the species-rich tropical forest and woody 
savanna biomes, which together are home to more than half of global 
biodiversity and over 60% of terrestrial productivity (Beer et al., 2010). 
There is evidence that atmospheric change may have effects on tropical 
forest productivity and tree functional composition (Esquivel-Muelbert 
et al., 2019; Hubau et al., 2020). These effects may include a stimula
tion of productivity (perhaps due to rising CO2) and/or a degradation or 
dieback, possibly caused by increased seasonality and incurred in
tensity of extreme drought events (Malhi et al., 2008; Malhi et al., 
2018). Such events are partly responsible for the increased tree mor
tality and decreased carbon residence time in tropical forests worldwide 
(McDowell et al., 2018). However, to adequately understand such re
sponses we need to capture and map the high diversity of plant eco
system function in the species-rich tropics and savannas. 

Species functional traits are defined as the morphological, physio
logical or phenological attributes which determine the fitness of or
ganisms, their response to changes in the environment and their in
fluence on ecosystem functions (Kissling et al., 2018; Díaz and Cabido, 
2001). Functional traits provide tangible and mechanistic means of 
assessing the ability of communities to adapt to climate change (Pacifici 
et al., 2015) and play a major role in determining ecosystem pro
ductivity, functioning and notably nature's contribution to people (e.g. 
water and wood availability) (Díaz et al., 2019; Carmona et al., 2016). 
Any tools or methods that facilitate quantification of functional traits 
across large spatial scales and at high spatial resolution would be in
valuable for quantifying ecosystem functioning and ecological 

responses to disturbance at scales relevant for policy and management 
(Kissling et al., 2018). However, it is still challenging to map functional 
trait diversity in tropical regions given the lack of plant trait data 
available for most of those locations (Jetz et al., 2016). Additional 
challenges come from different and often incompatible trait collection 
protocols and the lack of systematic high spatial, spectral and temporal 
resolution remote sensing imagery that coincides with data for func
tional traits at the canopy level and the lack of geo-located tree stems at 
the plot level. Thus, there is a need for spatially-explicit methods to 
map and quantify plant functional traits at high spatial resolution in 
tropical forest and woody savanna ecosystems. 

Tracking functional traits can shed light on differences in ecosystem 
functioning across broad spatial extents and therefore aid policy and 
decision making, e.g. for creating adequate biodiversity conservation 
policies or for providing early warning of directional shifts in ecosys
tems. The key challenges of any functional trait approach are scalability 
and monitoring: how can functional shifts in highly diverse tropical 
forests and woody savannas be monitored and tracked over large spatial 
extents? Intensive field sampling of plant functional traits at a pan
tropical scale is time-consuming and economically unviable. There are 
large gaps in the availability of plant trait data globally, and the largest 
gaps are in the tropics (Jetz et al., 2016). Large plant trait datasets aim 
to overcome this issue and have advanced our ability to carry out plant 
functional trait analysis in an unprecedented way (Kattge et al., 2020;  
Gallagher et al., 2020). However, as with any database, the plant trait 
values from such databases will represent the local trait-environment 
relationships for the site where they were collected, which may not be 
the area of interest. A key assumption in trait-based ecology is that the 
environment is filtering for an optimal set of trait characteristics so that 
the resulting communities are adapted to the environment where they 
are distributed (Fell and Ogle, 2018; Lebrija-Trejos et al., 2010; Lortie 
et al., 2004). Hence, we might expect an optimal set of trait char
acteristics for a given location, which when analysed over time could 
quantify the dynamics of community trait distributions or shifts in 
functional composition relating to environmental changes (Enquist 
et al., 2015). 

Recently, there has been an increasing investment into mapping 
plant functional trait distributions given economic and data availability 
constraints such efforts have mostly focused on hyperspectral imagery 
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at local (Schneider et al., 2017) to regional scales (Asner et al., 2015;  
Asner et al., 2016). However, high resolution hyperspectral imagery is 
not widely available (Clark, 2017; Szabó et al., 2019). Landsat-8 ima
gery at coarser spatial (30 m pixel), spectral and temporal resolution 
than Sentinel-2 imagery has been used to map four traits over small 
(20 × 20 m) vegetation plots covering small spatial extents (Wallis 
et al., 2019). The spatial mismatch between site-level trait sampling 
and the spatial resolution of pixels may partly affect overall model 
predictions (Wallis et al., 2019). Other studies restricted to European 
forests (Ma et al., 2019) show how Sentinel-2 imagery could be used to 
map functional trait diversity in the comparatively low tree diversity 
forests of Europe (Ma et al., 2019) and to retrieve specific leaf area from 
Landsat-8 imagery (Ali et al., 2017). However, the tropics present a 
different set of challenges, such as the high species richness, low ac
cessibility and comparatively low availability of trait data, plus the low 
coverage of remote sensing data because of persistent high cloud cover. 
These challenges have hampered developments in mapping plant 
functional trait distributions across most tropical areas. 

Satellite imagery with high spectral, spatial and temporal resolution 

is particularly needed in the wet tropics (Asner et al., 2017), where 
clear days can be infrequent and several images may be required to 
construct a cloud-free composite. The Copernicus mission from the 
European Space Agency's (ESA; www.esa.int) aids in the improvement 
in this area. The Sentinel-2 multispectral imager satellites are part of 
the Copernicus programme, which has the potential to provide new 
opportunities to evaluate canopy traits remotely. Sentinel-2 has 13 
spectral channels covering the visible, near-infrared, and short-wave 
infrared, a spatial resolution of 10 m for visible and near-infrared, 20 m 
for short-wave infrared, revisit period of 5 days and it provides open 
data availability. The improved spectral sampling (13 bands, 10 ex
cluding the 60 m atmospheric bands) and fine spatial resolution of the 
Sentinel-2 images have the potential to elucidate leaf chemistry, mor
phology, photosynthesis and water content at the pixel-level, although 
this remains largely untested. Multispectral sensors do not provide the 
rich information available from hyperspectral sensors, which have been 
used in numerous studies to map functional traits at small spatial ex
tents (Townsend et al., 2003; Laurin et al., 2016; Asner et al., 2015;  
Martin et al., 2008). However, high resolution open-access 

Table 1 
Collection details for vegetation plots and plant functional traits. A total of 2434 individual trees were sampled for functional traits.          

Location Species sampled for traits Plot code Size (ha) Centroid coordinates Date of collection 

X Y Vegetation census Traits  

Australia 60 AEP-02 0.5 145.586 −17.146 2011 June–September 2015 
AEP-03 0.5 145.592 −17.088 
DRO-01 0.9 145.430 −16.103 
ROB-06 1 145.630 −17.121 

Ghana 63 ANK-01 1 −2.696 5.268 2013 October–March 2015/2016gramm 
ANK-03 1 −2.692 5.271 
BOB-01 1 −1.339 6.691 2015 
BOB-02 1 −1.319 6.704 

Gabon 41 LPG-01 1 11.574 −0.174 2014 February–March 2017 
LPG-02 1 11.615 −0.216 
MNG-04 1 9.324 0.577 2016 

Brazil -NX 64 NXV-01 1 −52.352 −14.708 2015 March–May 2014 
NXV-02 1 −52.351 −14.701 
VCR-02 1 −52.168 −14.832 
NXV-10-1 0.1 −52.353 −14.713 2014 
NXV-10-2 0.1 −52.352 −14.713 
NXV-10-3 0.1 −52.351 −14.713 
NXV-10-4 0.1 −52.349 −14.713 
NXV-10-5 0.1 −52.346 −14.713 
NXV-10-6 0.1 −52.349 −14.712 
NXV-10-7 0.1 −52.348 −14.711 
NXV-10-8 0.1 −52.347 −14.711 
NXV-10-9 0.1 −52.347 −14.711 
NXV-10-10 0.1 −52.346 −14.712 

Brazil -ST 136 261–10 0.25 −55.005 −3.019 2014 August–September 2015 
261–9 0.25 −55.015 −3.040 
363–6 0.25 −54.956 −3.337 
363–3 0.25 −54.963 −3.297 
363–7 0.25 −54.961 −3.321 

Peru 159 ESP-01 1 −71.595 −13.176 2013 April–November 2013 
PAN-02 1 −71.263 −12.650 
SPD-01 1 −71.542 −13.047 
SPD-02 1 −71.537 −13.049 
TRU-04 1 −71.589 −13.106 
WAY-01 1 −71.587 −13.191 
ACJ-01 1 −71.632 −13.147 2014 
PAN-03 1 −71.274 −12.638 
TAM-05 1 −69.271 −12.830 
TAM-06 1 −69.296 −12.839 

Malaysia 283 SAF-01 1 4.732 117.619 2016 July–December 2015 
SAF-02 1 4.739 117.617 
SAF-03 1 4.691 117.588 
SAF-04 1 4.765 117.700 
DAN-04 1 4.951 117.796 
DAN-05 1 4.953 117.793 
MLA-01 1 4.747 116.970 
MLA-02 1 4.754 116.950 

Brazil -NX: Nova Xavantina; Brazil -ST: Santarem; Malaysia: Malaysian Borneo.  
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hyperspectral imagery is not currently available from space. Although 
Landsat images have been used to predict a few functional traits at a 
local scale (Wallis et al., 2019), the extended spectral, spatial and 
temporal capabilities of the state-of-the-art sensors onboard the Sen
tinel-2 satellites provide greater potential for mapping functional trait 
diversity in tropical forest ecosystems at large extents. 

Here, we employ a unique and large dataset of in-situ plant canopy 
traits and vegetation census data collected with a standardised protocol 
at multiple sites across the tropics to calibrate and validate Sentinel-2 
imagery for predicting community leaf trait composition. The data 
provide 14 standardised measurements of in-situ collected plant func
tional traits, precisely geo-located and delineated individual tree 
crowns and vegetation censuses from Australia, South East Asia, Africa 
and South America to model and predict functional trait composition at 
the pixel-level. We investigate how functional traits of tropical forests 
vary within and between these different tropical regions and whether 
Sentinel-2 spectral data in conjunction with climatic and soil informa
tion provide sufficient information to predict such pixel-level trait 
composition in long-term vegetation plots across the tropics. We hy
pothesised that there would be differences in trait variation among sites 
and regions given the range of climatic and soil conditions across the 
tropics. Given the high spectral and spatial resolution of Sentinel-2 
imagery we further hypothesised that raw spectral bands and textural 
information will prove to be key predictors of functional trait dis
tributions across the tropics. The very high spatial resolution and local 
origin of the input plant traits and census dataset, which represent traits 
adapted to local environments, plus the use of the Sentinel-2 data will 
allow us to accurately predict plant functional trait distributions that 
are potentially generalisable across the tropical forest biome. 

2. Methods 

2.1. Vegetation plots 

We collected vegetation census data from 47 permanent vegetation 
plots that are part of the Global Ecosystems Monitoring network (GEM; 
www.gem.tropicalforests.ox.ac.uk). These plots encompass wet tropical 
forests, seasonally dry tropical forests, and tropical forest-savanna 
transitional vegetation. The sampled vegetation plots have an area 
ranging from 0.1 to 1 ha, with most (61%) being 1 ha. The plots used 
are located across four tropical continents and specifically in the 
countries of Australia, Brazil, Gabon, Ghana, Malaysian Borneo (from 
here onwards referred to as Malaysia) and Peru (Table 1). In each plot 
all woody plant individuals with a diameter ≥ 10 cm at breast height 
(DBH) or above buttress roots were measured and their exact geo
graphic location was recorded (see the ‘Individual tree crowns’ section 
below for more details). In two plots (NXV-01 and NXV-10) in Nova 
Xavantina, here onwards referred to as Brazil-NX, the DBH was mea
sured near ground level as is standard in savanna monitoring protocols. 

2.2. Functional traits 

We collected plant functional trait measurements from all woody 
plants located in each of the 47 vegetation plots mentioned above 
(Table 2). All traits were gathered from the GEM network and were 
collected following a standardised methodology across plots. Forest 
inventory data were used to stratify tree species by basal area dom
inance, a proxy for canopy area dominance. The tree species that 
contributed most to basal area abundance were sampled with 3–5 re
plicate individuals per species, with a goal of sampling 60–80% of basal 
area across the sampling region. Eighty percent of basal area was often 
achieved in low diversity sites (e.g. montane or dry forests) but only 
around 60% was achieved in some high diversity sites (lowland humid 
rainforests). For each selected tree a sun and a shade branch were 
sampled and in each branch 3–5 leaves were used for trait measure
ments. We only included the sun exposed branches in our analysis 

because we were interested in the branches that could potentially be 
receiving direct sun radiation and thus show direct spectral reflectance. 
This represented a total sample of 2434 individual trees across the 
tropics (Table 1). The plant functional traits collected were those re
lated to photosynthetic capacity at both saturating CO2 concentration 
(2000 ppm CO2; Amax) and ambient CO2 concentration (400 ppm CO2; 
Asat); leaf chemistry (nitrogen, phosphorus, carbon, calcium, potassium 
and magnesium content); and leaf morphological and structural traits 
(area, specific leaf area, thickness, dry mass, fresh mass and water 
content). An overview of the methods for individual leaf functional trait 
measurements is provided in the Supplementary Information (see full 
traits collection protocol section). Further details of measurements for 
the Peruvian Andes campaign are given in Martin et al. (2020) and  
Enquist et al. (2017), for the Malaysian campaign in Both et al. (2019), 
and for the Ghana and Brazil campaigns in Oliveras et al. (2020) and  
Gvozdevaite et al. (2018). 

Some individuals in the plots lacked functional trait values. To as
sign representative trait values to unsampled individuals we did the 
following: 1) individuals from which traits were measured kept their 
original trait information, 2) for individuals with no trait information 
we randomly sampled trait values from other individuals from the same 
species present in the same plot, 3) if the species was not sampled in the 
given plot then we randomly sampled an individual from the same 
species that had trait information in other plots from the same region 
(Table 1). This protocol for trait value allocation allowed us to work 
with the existing range of trait values at the species level and avoided to 
create average values per species (Cadotte et al., 2011; Schneider et al., 
2017). We did not assign trait values to the remaining individuals be
longing to species from which no trait collection was obtained at the 
regional level. 

2.3. Individual tree crowns 

Tree crown locations and structural attributes were recorded for 
each tree, where crown area and shape were measured by direct crown 
field measurements in the case of plots in Malaysia and Peru (see 
protocol below), or by means of regional level allometric equations 
developed by Shenkin et al. (2019) (all other plots). In the latter case, 
the crown's shape was assumed to be circular. The direct field crown 
measurements were as follows: all trees ≥10 cm DBH (i.e., 1.3 m from 
the ground) were mapped using a ground-based Field-Map laser tech
nology (IFER, Ltd., Jílové u Prahy, Czech Republic) (Hédl et al., 2009). 
The Field-Map technology was based on a combination of Impulse 200 
Standard laser rangefinder (with in-built tilt sensor for measuring ver
tical angles), MapStar module II electronic compass (both Laser Tech
nology Inc., Colorado, USA), and the specialized mapping software 
Field-Map v. 11 (IFER, Czech Republic). The technology was used to 
record spatial positions of tree stems in three-dimensional space (x, y, z- 
coordinates) as well as to map individual horizontal projections of tree 
crowns in the plots. The horizontal crown projection of every tree was 
obtained by measuring spatial positions (x and y-coordinates) of series 
of points (ranging from 5 to 30 points depending on the size of the 
crown) at the boundary of a crown projected to the horizontal plane. 
The shape of crown projection was subsequently smoothed using the 
“smooth contour line” feature of Field-Map software v. 11. Heights of 
all trees with DBH ≥ 10 cm were measured by the Impulse and Tru
Pulse 360 R laser rangefinders (both Laser Technology Inc., Colorado, 
USA). Thus, each individual crown was accurately geolocated rendering 
information about its shape and vertical and horizontal position. 

2.4. Calculating pixel-level trait composition 

We calculated the community weighted mean of each trait for each 
10 × 10 m subplot (matching the highest pixel spatial resolution of the 
Sentinel-2 imagery) based on the mass ratio hypothesis, which states 
that the most dominant species drive the ecosystem processes by means 
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of their functional traits (Grime, 1998). We first geolocated the vege
tation plot, with its already mapped tree crowns (see protocol above), 
to the Sentinel-2 imagery based on the corner coordinates of the plots. 

This is an important step as geolocation errors between the vegetation 
plot and the correct location in the satellite image could represent a 
large proportion of a given plot depending on the plots' area. Then for 

Fig. 1. Diagram summarising the steps followed to assign trait values per Sentinel-2 pixel. 1) First the vegetation plots are defined based on the GEM (Global 
Environmental Monitoring) dataset and 2) from each vegetation plot the corner coordinates are extracted. 3) From each vegetation plot the XY position of each stem 
≥10 cm DBH is extracted and 4) the crown horizontal area is calculated based on the protocol described in the methods section. 5) Then the Sentinel-2 imagery for 
the study area is processed to level 2A using the ESA SNAP toolbox and 6) the vegetation plot is overlaid in the Sentinel-2 image based on its corner coordinates. In 
this last step (6) each pixel defines a ‘subplot’ which is the unit used to calculate the trait community weighted mean based on the crown area of the trees that are 
contained by that pixel. In 6) n refers to a given tree in a given pixel, trait i represents a given trait and x and y are values for that trait. The image used as an example 
in step (1) was taken by Jesus Aguirre-Gutierrez over a vegetation plot using a multispectral ALTUM camera mounted on an Inspire 1 drone.” 
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each of the traits, t, and pixels, p, we calculated their community level 
weighted mean (CWM) using the individual tree crown horizontal area 
as the weighting factor (Fig. 1) as follows: 

=
×=CWM

CA t
CAtp

i
N

ip ip

p

1

(1)  

Where CAip is the crown area of individual i in pixel p, tip is the trait 
value of individual i in pixel p, N is the total number of individuals per 
pixel and CAp is the crown area of pixel p. The crown contribution to the 
CWM was weighted by its proportional cover of the corresponding 
pixel. The total number of pixels used in our calculations are 403 for 
Australia, 449 for Brazil -NX (Nova Xavantina), 302 for Brazil -ST 
(Santarem), 464 for Gabon, 620 for Ghana, 976 for Malaysia and 1280 
for Peru. 

2.5. Sentinel-2 data, vegetation indices and canopy texture parameters 

We gathered Sentinel-2 imagery that was closest in time and season 
to the sampling dates of functional traits and vegetation census across 
the tropics for each of the study locations (Table S1). The Sentinel-2 
imagery was first selected using the European Space Agency (ESA) 
ScienceHub choosing images with high pixel quality and low cloud 
cover (< 10%). Atmospheric, radiometric and topographic corrections 
were applied to the selected imagery (Level 1C) using the Sen2Cor al
gorithm in the Sentinel SNAP toolbox (step.esa.int). Our overlapping 
imagery with the vegetation plots appeared free of clouds and cirrus 
effects. The above-mentioned steps allowed us to obtain level 2A ima
gery with surface reflectance values. We then resampled the 20 m bands 
to 10 m spatial resolution using bilinear interpolation. The Sentinel-2 
60 m resolution bands (B01, B09, B10) were not used as these are de
signed for cirrus, water vapour and cloud detection (Table 3). Band 8A 
was not used as it covers an overlapping spectral window with band 8 
and has a lower spatial resolution. Since vegetation indices may in
crease prediction accuracy when modelling community weighted traits 
(Wallis et al., 2019), we calculated three of them (Table 3) which we 
hypothesised to inform trait distributions given their association with 
chlorophyll and nutrient levels in the leaves and their use of the visible- 
to-red edge spectral bands. 

Canopy structure may play an important role in separating different 
vegetation types and differences in canopy spectral composition. To 
characterise canopy structure, we calculated the Grey Level Co- 
Occurrence Matrix (GLCM) based texture features (Haralick et al., 

1973). The desired texture metrics are computed from a grey tone 
matrix that is spatially dependent. The co-occurrence matrix depends 
on the angular relationship and distance between two neighbouring 
pixels and depicts the number of occurrences of the relationship be
tween a pixel and its neighbour. After trials with smaller windows size 
(5 × 5) we opted to use a 9 × 9 pixel kernel window which was suf
ficient to render enough canopy contrast information during the mod
elling step (see section 2.7 below) without taking large periods of time 
for its calculation. The texture results obtained with the used kernel 
window was highly correlated to the smaller kernel window 
(Cor = 0.94, P ≤ 0.0001). Based on the GLCM we calculated two 
variables that are least correlated with each other, the Entropy and 
Correlation, for each of the vegetation indices. While Entropy measures 
the homogeneity level for a given area, the Correlation measures 
probability of occurrence of the specified pixel pairs across the image 
(Haralick et al., 1973; Wallis et al., 2019). All remote sensing analyses 
related to the generation of vegetation indices and texture metrics were 
carried out using the Sentinel SNAP toolbox (step.esa.int) and the R 
statistical environment (R Development Core Team, 2014) with the 
‘Sen2R’ package. 

2.6. Environmental and soil data 

Climatic, topographic and soil characteristics may vary across re
gions and could at least partly determine the region's vegetation and 
intrinsic trait composition. We obtained information on these three 
components for each sampling location. The three components were 
grouped as belonging to environmental (climate) or soil-terrain (tex
ture, pH, cation exchange capacity and topography) drivers (Table 3). 

For climate and for each sampling location we gathered gridded 
data on the mean annual climatic water deficit (MCWD), which is a 
metric of drought intensity and severity, mean annual maximum tem
perature (MATmax), solar radiation (SRAD) and soil moisture (SM) 
(Table 3). All climatic data with a spatial resolution of ~4 km were 
obtained from the TerraClimate gridded climate product (Abatzoglou 
et al., 2018). To characterise the climatic conditions for each location 
we used a climatology of 30 years (1986–2015) as suggested by the 
World Meteorological Organization (WMO; www.wmo.int/pages/prog/ 
wcp/ccl/faqs.php). We used the terrain slope to characterise the plot's 
topography, as it has been shown that topography may shape the 
composition and structure of tropical forests (Jucker et al., 2018) and 
may affect the vegetation spectral reflectance by modifying soil water 

Table 3 
Spectral remote sensing, environmental and soil related variables used during the modelling protocol. All climatic variables but slope were calculated using a 
climatology of 30 years (1986–2015). All soil variables were calculated for the top 30 cm soil layer. Sentinel-2 band wavelengths (nm) are given in parenthesis after 
the band name.      

Type Variable Description References  

RS B2 (490), B3 (560), B4 (665), B8 (842) Sentinel-2 bands with spatial resolution of 
10 m 

www.esa.int 

B5 (705), B6 (740), B7 (783), B11 (1610), 
B12 (2190) 

Sentinel-2 bands with spatial resolution of 
20 m 

MCARI Modified Chlorophyll Absorption in 
Reflectance Index 

(Daughtry et al., 2000) 

MSAVI2 Modified Soil Adjusted Vegetation Index 2 (Qi et al., 1994) 
NDRE Normalized Difference Red edge Index (Barnes et al., 2000) 
Texture Entropy, calculated for vegetation indices (Haralick et al., 1973) 

Correlation, calculated for vegetation indices 
Climate MCWD Mean annual climatic water deficit (Abatzoglou et al., 2018) 

MATmax Mean maximum annual temperature 
SM Soil moisture as a water balance indicator 
SRAD Downward Solar Radiation 

Soil-Terrain eCEC Cation Exchange Capacity (mmol+ /kg−1) Plot level soil data from the Global Environmental Monitoring 
(GEM) database pH Soil pH (H2O solution) 

Clay (%) Amount of clay (weight %) 
Sand (%) Amount of sand (weight %) 
Slope Terrain slope (30 m resolution) (Farr et al., 2007) 
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and nutrient availability. Terrain slope was calculated using a high- 
resolution digital elevation model, ~30 m pixel size at the equator, 
from the Shuttle Topography Mission (Farr et al., 2007). At most sites 
soil data were sampled locally, and analysed to a standardised protocol 
in labs in either INPA, Manaus, Brazil or the University of Leeds, UK, 
following the RAINFOR soil protocol (Quesada et al., 2012). From these 
data we summarised plot level soil data averaged over the first 30 cm 
for texture (Sand% and Clay%), cation exchange capacity (eCEC) and 
pH-H2O (pH). Plot level texture data were not available for plots in 
Australia and the NXV-10 plots and were thus derived from the Soil
Grids dataset at 250 m pixel spatial resolution for those plots only 
(Hengl et al., 2017). 

2.7. Comparing community level trait distributions across regions 

We tested if and to what extent the community-level trait dis
tributions differed among regions. We square-root transformed the trait 
value to improve normality and applied an analysis of variance 
(ANOVA). We then applied a Tukey's Honest Significant Difference 
(Tukey HSD) test to investigate the significance of the differences be
tween the means of the community weighted mean (CWM) trait values 
among locations. The ANOVA and Tukey test were carried out using the 
‘stats’ package for R (R Development Core Team, 2014). 

2.8. Relating pixel-level trait composition to spectral reflectance, 
environment and soil conditions 

We modelled the community weighted mean (CWM) of each trait at 
the pixel-level (10 × 10 m) as a function of the Sentinel-2 remote sen
sing, environmental and soil covariates (Table 3) using a ‘spatial’ ver
sion of the machine learning Random Forest (RF) algorithm (Breiman, 
2001) named Geographic Random Forests (GRF) (Georganos et al., 
2019). RF is a nonparametric algorithm that has been shown to be 
robust to overfitting and variable inputs thanks to the bagging process 
and its random feature selection (Hastie et al., 2009). Moreover, it has 
been extensively used to model and predict ecological and remote 
sensing data within and across ecosystems (e.g. Asner et al., 2016; Van 
der Plas et al., 2018). In contrast to RF, GRF disaggregates the under
lying data in geographic space, in this case based on the spatial co
ordinates of the Sentinel-2 pixels, building global and local sub-models 
(plot level), making the modelling framework thus spatially explicit. 
The explicit inclusion of the spatial component (XY pixel location) in 
the models, which are sequentially fitted with different sets of the 
training data (the bagging process) may contribute to the observed 
reduced spatial autocorrelation of GRF in comparison to the common 
RF (Georganos et al., 2019). In the GRF, a global model is built as in 
other RF applications. However, GRF also generates a local RF for each 
location, which includes a specified number of nearby observations, 
here defined by all pixels in the vegetation plot (mostly 1 ha; Table 1), 
called ‘neighbourhood’, obtaining in this way metrics of local and 
global model predictive power and variable importance. For model 
predictions, a fusion between the global model (that uses more data) 
and local models (with low bias) can be applied, weighting the con
tributions of the global and local models based on the parameters that 
increase the predictive accuracy and decrease the model's Root Mean 
Square Error (RMSE). We used the spatial GRF to fit a global model for 
each functional trait (first eliminating statistical outliers) and also fit a 
specific model for each region (Australia, Brazil -ST, Brazil -NX, Gabon, 
Ghana, Malaysia and Peru) using the SpatialML package in R. 

We performed an extensive set of model optimization and regular
ization procedures to reduce over-fitting. For the CWM models we se
lected the number of trees to fit by 10-fold cross-validation analysis 
with number of trees ranging between 500 and 1500 and the number of 
variables randomly sampled as candidates at each split (mtry) ranging 
between 1 and 10, using in the final model the combination of terms 
that generated the lowest RMSE. All covariates included in the models 

had pairwise Pearson correlation coefficients r ≤ 0.82 (Table 3). For the 
final global and local models, we used 80% of the data for model fitting 
and the remaining 20% for model evaluation. Variable importance for 
each model was computed as the decrease in node impurities from 
splitting on the variable, averaged over all trees and derived from the 
Out of Bag (OOB) error. Then the resulting importance was standar
dised to a 0–1 scale for comparison purposes. 

We carried out all analyses stated above with the full set of tree 
individuals present in each vegetation plot with functional traits as
suming that the contribution of small individuals to the trait CWM 
value, and thus to the community reflectance at the pixel-level, would 
be minimal given the weighting factor used (i.e. the individual's crown 
area). However, to underpin this we carried out all analyses on two 
smaller datasets, one where the 25th and other where the 50th per
centile of the smallest trees per region were removed. All analyses were 
carried out in the R statistical environment with the ‘caret’, ‘tidyverse’ 
and ‘SpatialML’ packages. All covariates were centrered and standar
dized (z-scores) prior to model building. 

3. Results 

3.1. Variation in trait composition across tropical forests 

Most leaf functional traits exhibited significant differences across 
the tropics (Fig. 2) including wide trait range variation within the same 
region (Fig. S8), with leaf fresh mass and leaf thickness being on 
average less variable among locations (Table S2). 

Leaf chemistry and photosynthetic capacity (Amax and Asat) often 
showed significant differences among locations (Table S2). Drier loca
tions as in Nova Xavantina (Brazil -NX) displayed trait adaptations to 
seasonal rainfall and temperature with on average thicker and smaller 
(30  ±  0.05 mm and 56.2  ±  24.7 cm2 respectively) leaves at the 
community level, with some of the highest community-level leaf ni
trogen concentration (2.2  ±  0.3%) and highest photosynthetic capa
city (mean Amax = 21.9  ±  4.3 μmol m−2 s−1, and 
Asat = 8.3  ±  2.5 μmol m−2 s−1). In contrast, wetter regions such as 
Malaysia displayed on average some of the biggest (113.5  ±  55 cm2) 
and thinnest (0.25  ±  0.05 mm) leaves with high leaf water content 
(59.1  ±  5%). The Peruvian altitudinal transect showed large variation 
in community-level traits values, which often overlapped with trait 
values from all other sampled locations across the tropics (Fig. 2). For 
most nutrients, leaf nutrient concentration was often highest in forests 
found in Ghana (e.g. K% = 0.97  ±  0.27 and Mg% = 0.33  ±  0.1) and 
Malaysia (K% = 1.05  ±  0.27 and Mg% = 0.27  ±  0.1). Australian 
forests showed on average some of the lowest community-level N 
(1.3  ±  0.21%) and P (0.07  ±  0.01%) leaf concentrations. 

3.2. Pantropical and local community level functional trait models 

The analyses carried out with the full dataset and the dataset where 
the 25th and 50th percentile of the smallest trees per region were re
moved gave similar results for the global (R2 = 0.95 and R2 = 0.97 
respectively; Table S3) and local (R2 = 0.81 and R2 = 0.80 respec
tively; Table S4) models of plant trait distributions. Therefore, in the 
following we only present the results for the models carried out with the 
full vegetation dataset. 

The accuracy of the pantropical prediction of functional traits 
ranged between a minimum of R2 = 0.26, for leaf fresh mass, and a 
maximum of R2 = 0.70 for leaf carbon content (C%) based on the out- 
of-sampled (testing) data across the tropics (Table 4). The predictive 
accuracies of leaf chemistry and photosynthetic traits were often higher 
than for morphological and structural traits such as leaf dry mass 
(R2 = 0.27) and leaf area (R2 = 0.43) (Fig. 3). At the pantropical level, 
the highest prediction accuracy was obtained for leaf thickness 
(R2 = 0.52) for morphological and structural traits, for leaf Ca (Ca%; 
R2 = 0.64) and leaf K (K%; R2 = 0.63) for the chemical traits other than 
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carbon. Leaf N and P concentrations were also predicted with high 
accuracy (R2 = 0.59). Leaf photosynthetic capacity traits, Amax and Asat, 
showed some of the highest prediction accuracies ranging from 
R2 = 0.55 to 0.67, respectively. Model spatial predictions for several 
traits and locations are shown in Fig. 4 and others can be seen in Fig. 
S1-Fig. S7. 

Models built for each tropical region and trait uncovered marked 
differences in prediction accuracy among them (Fig. 5; Table 5 and 
Table S5). Leaf area prediction accuracy ranged from R2 = 0.04 (Brazil 
-ST) to 0.35 (Australia), and that of specific leaf area (SLA) ranged from 
R2 = 0.06 for Malaysia to 0.54 for Brazil -NX (Table S5). The local 
models showed a higher accuracy for predicting local level leaf che
mical nutrients (up to R2 = 0.68), especially for P, Ca, and N con
centrations in comparison to morphological (e.g. leaf area and SLA) 
traits (Table 5; Fig. 5). Traits related to photosynthetic capacity showed 
an overall better prediction accuracy than leaf area and SLA with pre
diction values ranging between 0.36 (Peru) to 0.49 (Ghana) for Amax 

and up to 0.52 for Asat (Brazil -NX; Fig. 5). On average the highest 
prediction accuracy across regions for a given trait were reached for 
leaf P concentration (R2 = 0.47) and Amax (R2 = 0.44) and the locations 
with the highest average prediction accuracy across traits were the 
Nova Xavantina savanna (Brazil -NX, R2 = 0.40) and the Peru elevation 
gradient (R2 = 0.38; Table 5), both sites encompassing strong gradients 
in vegetation morphology and structure. 

3.3. Importance of spectral remote sensing, climatic and soil data for 
mapping trait distributions 

We included Sentinel-2 band derived reflectance values, vegetation 
indices, their canopy texture parameters, climatic and soil variables in 
the general trait models to predict community level traits at the pixel- 
level (Table 3). The importance of these variables for predicting traits 
depended on the specific trait being addressed (Fig. 6). In the global 
model, the remote sensing texture parameters were the first or second 
major contributor for predicting nine of the functional traits across the 
tropics (Fig. 6 and Fig. S9). Raw spectral variables were the second 
most important group for predicting four of such functional traits but 
often lower in importance than the textural parameters. In the global 
model, soil and terrain factors were on average some of the most im
portant for predicting photosynthetic traits and foliar P concentration. 
On average, climatic variables were important for predicting 11 out of 
14 functional traits but their contribution was lower for predicting leaf 
dry and fresh mass and leaf water content (Fig. 6). However, it is evi
dent that a combination of textural, spectral, climatic and soil in
formation is required to obtain the best general model predictions 
across functional traits and no single variable appears as the most 

Fig. 2. Comparison of trait distributions across tropical regions. The boxplots 
are based on the pixel-level (10 × 10 m) community trait values for each trait 
and region (n = 403 for Australia, 449 for Brazil-NX, 302 for Brazil-ST, 464 for 
Gabon, 620 for Ghana, 976 for Malaysia and 1280 for Peru). Horizontal lines in 
each boxplot show the median value and vertical lines are the whiskers that 
extend to the largest value or not further than 1.5 times the inter-quartile range. 
For some locations information for all traits was not available. For full details in 
significant differences in mean trait values among locations see Table S4. Brazil 
-NX: Nova Xavantina; Brazil -ST: Santarem. 

Table 4 
Statistical results on the test data (20% of full dataset) for the global trait dis
tribution models. The prediction accuracy is shown by the R2 score.       

Type Trait MAE RMSE R2  

Morphological and structural Area (cm2) 28.32 39.854 0.43 
Dry mass (g) 0.349 0.48 0.27 
Fresh mass (g) 0.799 1.075 0.26 
SLA (m2 g−1) 0.001 0.001 0.50 
Thickness (mm) 0.034 0.046 0.52 

Chemistry LWC (%) 3.718 4.886 0.36 
C (%) 1.237 1.615 0.70 
Ca (%) 0.14 0.204 0.64 
K (%) 0.133 0.186 0.63 
Mg (%) 0.055 0.075 0.46 
N (%) 0.23 0.3 0.59 
P (%) 0.015 0.02 0.59 

Photosynthetic Amax (μmol m−2 s−1) 2.89 3.937 0.67 
Asat (μmol m−2 s−1) 1.297 1.734 0.55 

MAE: Mean Absolute Error; RMSE: Root mean square error.  
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Fig. 3. Model predictions to the 20% test data from the general model which was fitted with 80% of the trait data from across the tropics. Grey dots are the observed 
against predicted trait values of the pixel-level (10 × 10 m) community weighted mean traits from the test dataset. The black line shows the 1:1 relationship between 
observed and predicted values. Model prediction accuracy is shown in the top left. Full model results are shown in Table 4. 
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Fig. 5. Models predictions to the 20% test data from the regional models fitted with 80% of the trait data from each region across the tropics. Each colour represents 
an individual regional model and the coloured symbols are the observed against predicted trait values of the pixel-level (10 × 10 m) community weighted mean traits 
from the test dataset. The black line shows the 1:1 relationship between observed and predicted values. Model prediction accuracy is shown in Table 5. Full model 
results are shown in Table S5. Brazil -NX: Nova Xavantina; Brazil -ST: Santarem. 

J. Aguirre-Gutiérrez, et al.   Remote Sensing of Environment 252 (2021) 112122

12



Table 5 
Prediction accuracy (R2) on the testing data among regions (shaded Region mean R2 column) and functional traits (shaded Trait mean R2 row). Not shaded values in 
the table show the prediction accuracy (R2) on the test data per region and trait. 

Loca�on
P (%)

Amax 
(μmol 

m−2 s−1)
Ca (%) N (%) Thickness 

(mm)

Asat 
(μmol 

m−2 s−1)
Mg (%) C (%) SLA 

(m2 g−1) LWC (%) K (%)
Dry 

mass 
(g)

Area 
(cm2)

Fresh 
mass (g)

Region 
mean R2

Australia 0.21 - 0.33 0.17 0.21 0.03 0.12 0.34 0.25 - 0.06 - 0.35 - 0.21
Brazil -NX 0.68 0.42 0.49 0.52 0.66 0.52 0.46 - 0.54 0.07 0.07 0.38 0.08 0.31 0.40
Brazil -ST 0.47 - 0.15 0.30 0.42 - 0.28 0.07 0.29 0.05 0.29 0.25 0.04 0.18 0.23
Gabon 0.60 - 0.39 0.50 0.23 - 0.52 0.22 0.15 0.38 0.24 0.22 0.11 0.11 0.31
Ghana 0.47 0.49 0.53 0.52 0.22 0.36 0.15 - 0.14 - 0.23 - 0.29 - 0.34
Malaysia 0.34 0.48 0.50 0.27 0.31 0.36 0.31 0.38 0.06 0.24 0.28 0.07 0.11 0.03 0.27
Peru 0.49 0.36 0.69 0.44 0.64 0.38 0.46 0.47 0.32 0.34 0.30 0.09 0.18 0.20 0.38
Trait mean R2 0.47 0.44 0.44 0.39 0.38 0.33 0.33 0.30 0.25 0.22 0.21 0.20 0.17 0.17

-: no data available; Brazil -NX: Nova Xavantina; Brazil -ST: Santarem.  

Fig. 6. Group median variable importance of spectral 
remote sensing, environmental and soil related variables 
for determining functional trait predictions in the global 
model. Variable importance (Y axis) ranges from 0 (no 
importance) to 1 (highest importance) and represents 
the decrease in node impurities from splitting on the 
variable, averaged over all trees and derived from the 
Out of Bag error, the resulting value has been standar
dised to a 0–1 scale for comparison purposes. The 
spectral group (S2 -Spectral) contains the select raw 
bands from the Sentinel-2 and the vegetation indices; 
Texture parameters (S2 -Texture) contain the 
Correlation and Entropy metrics from the grey level co- 
occurrence matrix obtained from the vegetation indices; 
Climate contains all climatic variables; Soil-Terrain 
contains all soil characteristics and slope. All variables 
are described in Table 3. 
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important across all traits (Fig. S9). 
The local models provided a site-specific view of the most important 

remote sensing derived variables, environmental and soil conditions for 
deriving community level traits composition (Fig. S10). Sentinel-2 re
mote sensing related variables were more important for detecting leaf 
morphology and nutrient values than environmental and soil related 
variables in 88% of the trait models (in 75 out of 85 possible traits by 
region combinations). Eighty-one percent of the time (69 location by 
trait combinations) the canopy texture parameters were more im
portant than the raw spectral reflectance factors. In 5.9% and 4.7% of 
the possible trait and region combinations, climatic or soil-topography 
related variables respectively were the most important for detecting 
community traits (Fig. S10). 

4. Discussion 

To the best of our knowledge, this is the first study evaluating the 
ability of Sentinel-2 satellite data to map plant functional traits across 
tropical ecosystems. Tropical forest trait mapping is fundamental for 
understanding of plant responses to global change, and notably the 
plant functional traits we predict in this study are relevant to plant 
species responses to a changing environment (Both et al., 2019; Nunes 
et al., 2019; Soudzilovskaia et al., 2013; Aguirre-Gutiérrez et al., 2019). 
We have demonstrated that accurate pixel-level (10 × 10 m) predic
tions of tropical forest functional trait distributions across the tropics 
can be generated by making use of extensive in-situ collected plant 
functional traits, geo-located canopy structure, vegetation censuses and 
high spectral and spatial resolution remote sensing data from the Sen
tinel-2 satellites. 

4.1. Tropical forest trait distributions 

Plant functional traits are characteristics that aid species to thrive in 
their environment or adapt to new conditions. Given such adaptations 
to specific environments it might be expected that trait variation would 
be higher in regions that encompass more varied environmental con
ditions (Enquist et al., 2015). Environmental adaptation is exemplified 
by the strong variation in values for most traits in Peru and Malaysia. In 
Peru, the data represent a climatic and altitudinal gradient ranging 
from the lowland Amazon in the Tambopata National Park at an ele
vation of 200–225 masl to plots in Acjanaco at above 3000 masl. In 
Malaysia, the vegetation plots are distributed across a land-use gradient 
ranging from undisturbed to heavily logged forests (Both et al., 2019). 
Environmental adaptation may be also shown by the observed differ
ences in trait distributions between different regions across the tropics 
(e.g. Australia and Gabon; see also Fig. 2). The pixel-based community 
trait values in the Peruvian transect often extend across much of the 
range in trait values observed in other locations (Fig. 2). We detected an 
overall significant difference among locations in terms of morpholo
gical, chemical and photosynthetic traits (Table S2). This wide variation 
in traits suggests the presence of local biotic and abiotic controls of trait 
distributions and plant species adaptations that may differ among tro
pical regions. Such differences in trait composition highlight the im
portance and the challenge of sampling as fully as possible the func
tional trait diversity across different tropical forests. This is of pivotal 
importance when comparing forest responses to changing environments 
across multiple regions. We thus suggest that further field trait survey 
campaigns across the tropics are needed to improve pantropical trait 
predictions. As for the local biotic and abiotic controls of trait dis
tributions, for instance, it is widely known that African tropical forests 
are in general less species diverse than their Asian and South American 
counterparts but that they have some of the highest biomass carbon 
storage capacity per unit area (Sullivan et al., 2017). Tropical forests in 
West Africa are in general drier in comparison to Amazonian tropical 
forests (Parmentier et al., 2007) and some African regions such as 
Gabon have experienced increases in temperature and decreases in 

precipitation over the last 30 years (Bush et al., 2020). Thus, such 
changes in climatic conditions as those observed in West African tro
pical forest may also underlie variations in species composition and the 
locally observed functional trait pool as shown in this study. It is also 
worth noting that two caveats of the community-weighted mean trait 
approach may account for part of the unexplained trait variation. First, 
it makes the assumption of a unique functional optimum in a given 
environment, while multiple optimal strategies – potentially corre
sponding to contrasting trait values – could coexist (Laughlin et al., 
2018). Secondly, it does not account for the dynamic nature of com
munities, so that a community weighted mean at a given time point 
might not encompass the optimum at equilibrium (Laughlin et al., 
2018). 

Morphological and structural traits such as leaf area, fresh and dry 
mass, leaf thickness, SLA and LWC, represent trade-offs between energy 
acquisition, consumption and survival and form a main part of the 
global spectrum of plant functioning (Díaz et al., 2016). Besides in
vestigating the predictability of such plant structural traits, we further 
analysed the potential for predicting leaf chemistry (C, K, Mg, Ca, N, P) 
and photosynthesis related traits (Amax and Asat). Mapping chemical 
and photosynthetic traits at a pantropical scale has the potential for 
increasing our understanding of how photosynthetic capacity shifts 
across tropical regions and on possible impacts of a changing en
vironment on tropical forests productivity (Guan et al., 2015; Mueller 
et al., 2014). 

4.2. Sentinel-2 remote sensing for mapping community level trait 
distributions across the tropics 

In their pioneering work with hyperspectral imagery and simulated 
multispectral Sentinel-2 data over Ghana, Laurin et al. (2016) demon
strated that Sentinel-2 imagery could be used to discriminate tropical 
forest types and map plant functional types. The authors argued that the 
full band set and vegetation indices derived from the Sentinel-2 would 
be advantageous for accurately mapping plant functional guilds in the 
tropics. By using functional trait data collected in situ across tropical 
forests and modelling at high spatial resolution (pixel-level) we show 
that most of our global trait distribution models present a high pre
dictive power for most traits analysed, with prediction accuracy on the 
testing datasets being highest for predicting leaf chemical and photo
synthetic capacity traits. However, we also show that the local level 
trait models produced less accurate predictions than the global models, 
probably as a result of the narrower range of plant trait values found 
within the region in comparison to across the regions, something also 
shown by Wallis et al. (2019). The prediction accuracy obtained from 
our models using Sentinel-2 multispectral data is similar and in some 
cases higher than that shown by recent studies that make use of hy
perspectral imagery and other multispectral sensors to map functional 
traits (Martin et al., 2018; Asner et al., 2017; Asner et al., 2015). For 
instance our predictions on test data for leaf nitrogen, phosphorus and 
carbon are comparable or higher than those obtained by other in
novative studies in Malaysia (R2 = 0.46, 0.44 and 0.48 respectively;  
Martin et al., 2018), Peru (R2 = 0.48, 0.39 and 0.44; Asner et al., 2015) 
and temperate forests (R2 = 0.55, 0.22, 0.46; Nunes et al., 2017), and 
closely related to those obtained by Wallis et al. (2019) with other 
multispectral sensor for nitrogen and phosphorus (R2 = 0.65 and 0.65). 
Specially the work of Asner et al. (2017) has shown how such plant trait 
predictions (with its inherent accuracies) can be used for other appli
cations such as to guide biodiversity conservation actions. In our ap
proach we resample the 20 m spatial resolution bands from the Sen
tinel-2 to 10 m pixels as to work with the highest spatial resolution 
available for most spectral bands. Such resampling could in principle 
have an effect on the match between the tree canopies' reflectance 
signal and the spectral signal from the Sentinel-2 pixel and could thus 
influence the textural parameters, by for instance, detecting lower 
heterogeneity. 
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Some of the leaf chemistry we modelled can be directly related to 
the reflectance obtained from the Sentinel-2 remote sensor in the 
visible, infrared and red-edge regions which capture the leaf bio
geochemistry (Ustin and Gamon, 2010). For instance, it has been shown 
how carbon and carbon containing metabolites peak in reflectance at 
around 550 nm (band 3 in the Senitnel-2) and at the lower part of the 
702–715 nm (Ely et al., 2019), which would be depicted best by the red- 
edge band 5 in the Sentinel-2. such spectral behaviour captured by the 
Sentinel-2 bands contributed to the high prediction accuracy of leaf 
carbon in our study. Our models show how Sentinel-2 imagery, and 
especially the canopy texture parameters derived from it, can be 
especially useful for mapping traits related to leaf chemistry (Fig. 2 and 
Fig. S9). Moreover, our high predictive accuracy for photosynthetic 
capacity (Amax, Asat) is consistent with studies carried out in other ve
getation types (e.g. agroecosystems; Serbin et al., 2015) where a strong 
association was shown between photosynthesis related traits and the 
red-edge spectral region. Sentinel-2 has 3 bands over the red-edge 
spectral region (bands 5, 6, 7) and two over the near infrared (bands 8 
and 8a) with different bandwidths, which as shown by Shiklomanov 
et al. (2016) can be advantageous for detecting foliar nutrients such as 
leaf N (Schlemmer et al., 2013), as small differences in wavelength 
position in different bands may impact their capacity to retrieve canopy 
trait characteristics. Moreover, the strong relationship between photo
synthetic capacity and spectral reflectance can be partly captured from 
the leaf N signal, as leaf N concentrations are strongly associated with 
photosynthetic capacity (Reich, 2012; Vincent, 2001). The N re
flectance signal is often best obtained in wavebands centred between 
440 and 570 nm (Ferwerda et al., 2005). 

In this study we leverage evidence on covariation among traits to 
estimate and predict values of traits that have no clear physical effects 
on spectral reflectance. There is ample evidence of the existence of 
covariation among plant traits, as for instance between leaf N con
centration, specific leaf area and leaf longevity (Walker et al., 2017). 
Such covariation among traits may in principle also represent covar
iation in the spectral reflectance patterns across vegetation types (Ma 
et al., 2019), especially if such individuals vary in leaf structural tissue 
that drive energy scattering and reflectance (Ollinger, 2011). Such 
covariation between traits can be helpful for mapping functional trait 
diversity across large spatial extents that include diverse vegetation 
types (Townsend et al., 2003; Both et al., 2019). We show that the 
spectral reflectance, image textural parameters (Entropy and Correla
tion), climate and soil, are highly relevant for modelling plant trait 
distributions across the tropics with high prediction accuracy. However, 
the canopy texture parameters (Entropy and Correlation) are some of 
the most important for attaining high trait prediction accuracies across 
plant functional traits (Sarker and Nichol, 2011; Wallis et al., 2019) and 
differences in spectral, climatic and soil conditions between different 
regions are key components for improving model predictions across 
broad spatial extents. 

Image texture parameters were derived from the vegetation indices 
that we calculated, which in turn were derived from the raw spectral 
bands of the Sentinel-2. Thus, the texture metrics besides taking ad
vantage of the high spectral resolution of the sensor also take advantage 
of its high spatial resolution. Although the raw spectral bands of the 
Sentinel-2 were not as important for predicting some functional traits as 
image texture, it is relevant to consider that texture values tend to differ 
based on the spatial resolution of the underlying data on which they are 
based. A larger pixel (e.g. Landsat's 30 × 30 m pixels) may thus mask 
differences in the landscape that could in principle be captured by the 
Sentinel 10 × 10 m resolution texture generated metrics. This therefore 
highlights the relevance of Sentinel-2 imagery for functional plant 
functional trait predictions in comparison to others with lower spectral 
and spatial resolution. Image texture parameters can help characterise 
the upper surface of the vegetation, which in our study is composed of 
varied sets of functional trait characteristics that confer them different 
spectral responses. When such spectral differences are analysed with 

grey level co-occurrence matrices, the generated image texture para
meters (e.g. entropy and correlation) can help differentiate contrasting 
vegetation in the landscape. The role of texture parameters for mod
elling biomass and functional traits has also been recognised by other 
studies focusing not only on mapping functional traits along elevation 
gradients but also for estimating standing biomass (Wallis et al., 2019). 
Moreover, such relevance of texture parameters does not seem to be 
limited to the spatial resolution of the Sentinel-2 imagery as shown 
when using high spatial resolution SPOT imagery for modelling forest 
aboveground biomass (Hlatshwayo et al., 2019) and WorldView-3 for 
tree species identification (Ferreira et al., 2019), or lower spatial re
solution data as that from the Landsat (Wallis et al., 2019). Other added 
value of the Sentinel-2 in contrast to finer spatial resolution satellites 
(e.g. SPOT and WorldView-3) is its high revisit period, to obtain cloud 
free imagery, and it's free availability. Moreover, soil properties can be 
informative when modelling trait distributions across regions in the 
tropics as they partly drive the plant functional and species composi
tional turnover (Prada et al., 2017; Asner et al., 2016). In our study 
different vegetation plots appeared to be on soils with different parent 
materials resulting in varying cation exchange capacity, pH and soil 
texture, and thus including differences between sites contributes to 
increasing the prediction accuracy of trait distributions. 

Although in the past it was thought not to be possible to map in
dividual plant species or functional traits (Price, 1994; Ustin and 
Gamon, 2010), the advent of remotely sensed data with high spectral, 
spatial and temporal resolution has made it possible to extract in
formation on the chemical and structural composition of forest canopies 
even in highly biodiverse tropical forests. This has been demonstrated 
with the use of hyperspectral sensors (Asner et al., 2017; Asner et al., 
2015; Jetz et al., 2016), which often collect hundreds of spectral bands 
at very high spatial and spectral resolutions but at relatively small 
spatial extents and often without temporal replication. More research is 
needed to disentangle to what extent hyperspectral data offers more 
information to that offered by the Sentinel-2 sensors for an increased 
mapping accuracy of functional traits of tropical forests. As shown by  
Laurin et al. (2016), results obtained with simulated Sentinel-2 data are 
highly comparable to those obtained from hyperspectral imagery for 
mapping forest types, dominant tree species and functional guilds. 
Being able to monitor functional traits at high spatial and temporal 
resolution with multispectral data ranging from the visible to the 
shortwave infrared across the tropics and with freely available data 
opens new opportunities for understanding the effects of environmental 
changes on biodiversity at a local scale. This is because functional traits 
play a major role in determining ecosystem productivity and func
tioning, e.g. carbon capture (Díaz et al., 2019; Carmona et al., 2016). 
Moreover, spatially explicit models of functional traits shift across the 
tropics can help decipher how ecosystem functioning varies even 
among tropical areas, providing a cost-effective pathway to identifying 
regions of high conservation value and hence aid in the creation of 
locally adequate biodiversity conservation policies. Overall, our find
ings are of relevance for informing biodiversity monitoring policies 
under ecosystem change as we show that accurate predictions of re
levant plant functional traits can be obtained in high biodiversity areas 
such as the tropics. Our approach thus facilitates tracking possible shifts 
in trait distributions and composition across large spatial extents as a 
response to environmental changes using the Sentinel-2 satellites. 

5. Conclusions 

Tropical forest ecosystems are witnessing a rapid transformation as 
a result of changing environmental conditions and direct human im
pacts (Lewis et al., 2015; Taubert et al., 2018; Aguirre-Gutiérrez et al., 
2019). However, we cannot adequately understand or simulate tropical 
ecosystem responses to environmental changes based solely on current 
ecosystem model approaches as these are unable to capture the high 
diversity of plant ecosystem functions in the species-rich tropics. 
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Neglect of functional biodiversity can oversimplify the simulated re
sponse of an ecosystem to an environmental disturbance. Here we show 
the high variation in functional traits that exists among tropical regions, 
which hints at the different capabilities of such forests to respond to a 
changing environment. We demonstrate opportunities for measuring 
the distribution of key functional traits across tropical forest ecosystems 
at the pixel-level using the Sentinel-2 satellites, which if done across 
time could reveal areas where functional shifts have occurred and likely 
where biodiversity conservation/amelioration measures are needed. 
Although the Sentinel-2 satellites show high promise for this en
deavour, our approach is limited by the short time interval since they 
were launched (i.e. 2015) and the lower spectral resolution of Sentinel- 
2 imagery in comparison to that derived from hyperspectral sensors. 
Methods and data products are needed to track changes in functional 
composition in forest ecosystems across time and space. We demon
strate a new approach to develop a rapid monitoring tool for capturing 
the effects of a changing environment across the tropics. This new tool 
has the potential to contribute to a more robust and evidence-based 
policy-making for conservation of tropical forest ecosystems. 
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