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ABSTRACT

Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions
and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem
responses to environmental changes without capturing the high diversity of plant functional characteristics in
the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to en-
vironmental disturbances. Innovative methods and data products are needed to track changes in functional trait
composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits
by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of
canopy functional traits collected from 2434 individual trees across the tropics using a standardised metho-
dology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of
Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial po-
sitions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and
shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated
at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random
Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional
traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2
imagery in conjunction with climatic and soil information. Image textural parameters were found to be key
components of remote sensing information for predicting functional traits across tropical forests and woody
savannas. Leaf thickness (R? = 0.52) obtained the highest prediction accuracy among the morphological and
structural traits and leaf carbon content (R? = 0.70) and maximum rates of photosynthesis (R? = 0.67) obtained
the highest prediction accuracy for leaf chemistry and photosynthesis related traits, respectively. Overall, the
highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits in comparison to mor-
phological and structural traits. Our approach offers new opportunities for mapping, monitoring and under-

standing biodiversity and ecosystem change in the most species-rich ecosystems on Earth.

1. Introduction

Some of the most urgent questions in ecology and ecosystem science
today focus on how communities of organisms respond to global en-
vironmental changes (Naeem et al., 2009), how biodiversity and eco-
system changes across the world can be consistently mapped and
monitored (Navarro et al., 2017), and how spatial, temporal and
taxonomic variability in biodiversity influences ecosystem resilience to
climate change (Oliver et al., 2015). In terms of Earth system science,
we need to understand and model how the terrestrial biosphere will
respond (and already is responding) to global environmental change,
and whether there are critical thresholds or “tipping points” beyond
which major biomes may not be able to recover. Nowhere is the chal-
lenge more urgent than in the species-rich tropical forest and woody
savanna biomes, which together are home to more than half of global
biodiversity and over 60% of terrestrial productivity (Beer et al., 2010).
There is evidence that atmospheric change may have effects on tropical
forest productivity and tree functional composition (Esquivel-Muelbert
et al., 2019; Hubau et al., 2020). These effects may include a stimula-
tion of productivity (perhaps due to rising CO,) and/or a degradation or
dieback, possibly caused by increased seasonality and incurred in-
tensity of extreme drought events (Malhi et al., 2008; Malhi et al.,
2018). Such events are partly responsible for the increased tree mor-
tality and decreased carbon residence time in tropical forests worldwide
(McDowell et al., 2018). However, to adequately understand such re-
sponses we need to capture and map the high diversity of plant eco-
system function in the species-rich tropics and savannas.

Species functional traits are defined as the morphological, physio-
logical or phenological attributes which determine the fitness of or-
ganisms, their response to changes in the environment and their in-
fluence on ecosystem functions (Kissling et al., 2018; Diaz and Cabido,
2001). Functional traits provide tangible and mechanistic means of
assessing the ability of communities to adapt to climate change (Pacifici
et al., 2015) and play a major role in determining ecosystem pro-
ductivity, functioning and notably nature's contribution to people (e.g.
water and wood availability) (Diaz et al., 2019; Carmona et al., 2016).
Any tools or methods that facilitate quantification of functional traits
across large spatial scales and at high spatial resolution would be in-
valuable for quantifying ecosystem functioning and ecological

responses to disturbance at scales relevant for policy and management
(Kissling et al., 2018). However, it is still challenging to map functional
trait diversity in tropical regions given the lack of plant trait data
available for most of those locations (Jetz et al., 2016). Additional
challenges come from different and often incompatible trait collection
protocols and the lack of systematic high spatial, spectral and temporal
resolution remote sensing imagery that coincides with data for func-
tional traits at the canopy level and the lack of geo-located tree stems at
the plot level. Thus, there is a need for spatially-explicit methods to
map and quantify plant functional traits at high spatial resolution in
tropical forest and woody savanna ecosystems.

Tracking functional traits can shed light on differences in ecosystem
functioning across broad spatial extents and therefore aid policy and
decision making, e.g. for creating adequate biodiversity conservation
policies or for providing early warning of directional shifts in ecosys-
tems. The key challenges of any functional trait approach are scalability
and monitoring: how can functional shifts in highly diverse tropical
forests and woody savannas be monitored and tracked over large spatial
extents? Intensive field sampling of plant functional traits at a pan-
tropical scale is time-consuming and economically unviable. There are
large gaps in the availability of plant trait data globally, and the largest
gaps are in the tropics (Jetz et al., 2016). Large plant trait datasets aim
to overcome this issue and have advanced our ability to carry out plant
functional trait analysis in an unprecedented way (Kattge et al., 2020;
Gallagher et al., 2020). However, as with any database, the plant trait
values from such databases will represent the local trait-environment
relationships for the site where they were collected, which may not be
the area of interest. A key assumption in trait-based ecology is that the
environment is filtering for an optimal set of trait characteristics so that
the resulting communities are adapted to the environment where they
are distributed (Fell and Ogle, 2018; Lebrija-Trejos et al., 2010; Lortie
et al., 2004). Hence, we might expect an optimal set of trait char-
acteristics for a given location, which when analysed over time could
quantify the dynamics of community trait distributions or shifts in
functional composition relating to environmental changes (Enquist
et al., 2015).

Recently, there has been an increasing investment into mapping
plant functional trait distributions given economic and data availability
constraints such efforts have mostly focused on hyperspectral imagery
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at local (Schneider et al., 2017) to regional scales (Asner et al., 2015;
Asner et al., 2016). However, high resolution hyperspectral imagery is
not widely available (Clark, 2017; Szabé et al., 2019). Landsat-8 ima-
gery at coarser spatial (30 m pixel), spectral and temporal resolution
than Sentinel-2 imagery has been used to map four traits over small
(20 x 20m) vegetation plots covering small spatial extents (Wallis
et al.,, 2019). The spatial mismatch between site-level trait sampling
and the spatial resolution of pixels may partly affect overall model
predictions (Wallis et al., 2019). Other studies restricted to European
forests (Ma et al., 2019) show how Sentinel-2 imagery could be used to
map functional trait diversity in the comparatively low tree diversity
forests of Europe (Ma et al., 2019) and to retrieve specific leaf area from
Landsat-8 imagery (Ali et al., 2017). However, the tropics present a
different set of challenges, such as the high species richness, low ac-
cessibility and comparatively low availability of trait data, plus the low
coverage of remote sensing data because of persistent high cloud cover.
These challenges have hampered developments in mapping plant
functional trait distributions across most tropical areas.

Satellite imagery with high spectral, spatial and temporal resolution

Table 1
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is particularly needed in the wet tropics (Asner et al., 2017), where
clear days can be infrequent and several images may be required to
construct a cloud-free composite. The Copernicus mission from the
European Space Agency's (ESA; www.esa.int) aids in the improvement
in this area. The Sentinel-2 multispectral imager satellites are part of
the Copernicus programme, which has the potential to provide new
opportunities to evaluate canopy traits remotely. Sentinel-2 has 13
spectral channels covering the visible, near-infrared, and short-wave
infrared, a spatial resolution of 10 m for visible and near-infrared, 20 m
for short-wave infrared, revisit period of 5days and it provides open
data availability. The improved spectral sampling (13 bands, 10 ex-
cluding the 60 m atmospheric bands) and fine spatial resolution of the
Sentinel-2 images have the potential to elucidate leaf chemistry, mor-
phology, photosynthesis and water content at the pixel-level, although
this remains largely untested. Multispectral sensors do not provide the
rich information available from hyperspectral sensors, which have been
used in numerous studies to map functional traits at small spatial ex-
tents (Townsend et al., 2003; Laurin et al., 2016; Asner et al., 2015;
Martin et al.,, 2008). However, high resolution open-access

Collection details for vegetation plots and plant functional traits. A total of 2434 individual trees were sampled for functional traits.

Location Species sampled for traits Plot code Size (ha) Centroid coordinates Date of collection
X Y Vegetation census Traits
Australia 60 AEP-02 0.5 145.586 —17.146 2011 June-September 2015
AEP-03 0.5 145.592 —17.088
DRO-01 0.9 145.430 —16.103
ROB-06 1 145.630 —17.121
Ghana 63 ANK-01 1 —2.696 5.268 2013 October-March 2015/2016gramm
ANK-03 1 —2.692 5.271
BOB-01 1 -1.339 6.691 2015
BOB-02 1 -1.319 6.704
Gabon 41 LPG-01 1 11.574 -0.174 2014 February—March 2017
LPG-02 1 11.615 —-0.216
MNG-04 1 9.324 0.577 2016
Brazil -NX 64 NXV-01 1 —52.352 —14.708 2015 March-May 2014
NXV-02 1 —52.351 —14.701
VCR-02 1 —52.168 —14.832
NXV-10-1 0.1 —52.353 —14.713 2014
NXV-10-2 0.1 —52.352 —14.713
NXV-10-3 0.1 —52.351 —-14.713
NXV-10-4 0.1 —52.349 —14.713
NXV-10-5 0.1 —52.346 —14.713
NXV-10-6 0.1 —52.349 —14.712
NXV-10-7 0.1 —52.348 -14.711
NXV-10-8 0.1 —52.347 -14.711
NXV-10-9 0.1 —52.347 -14.711
NXV-10-10 0.1 —52.346 —14.712
Brazil -ST 136 261-10 0.25 —55.005 —3.019 2014 August-September 2015
261-9 0.25 —55.015 —3.040
363-6 0.25 —54.956 —3.337
363-3 0.25 —54.963 -3.297
363-7 0.25 —54.961 —3.321
Peru 159 ESP-01 1 —71.595 —13.176 2013 April-November 2013
PAN-02 1 —71.263 —12.650
SPD-01 1 —71.542 —13.047
SPD-02 1 —71.537 —13.049
TRU-04 1 —71.589 —13.106
WAY-01 1 —71.587 —13.191
ACJ-01 1 —71.632 —13.147 2014
PAN-03 1 -71.274 —12.638
TAM-05 1 —69.271 —12.830
TAM-06 1 —69.296 —12.839
Malaysia 283 SAF-01 1 4.732 117.619 2016 July-December 2015
SAF-02 1 4.739 117.617
SAF-03 1 4.691 117.588
SAF-04 1 4.765 117.700
DAN-04 1 4.951 117.796
DAN-05 1 4.953 117.793
MLA-01 1 4.747 116.970
MLA-02 1 4.754 116.950

Brazil -NX: Nova Xavantina; Brazil -ST: Santarem; Malaysia: Malaysian Borneo.
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hyperspectral imagery is not currently available from space. Although
Landsat images have been used to predict a few functional traits at a
local scale (Wallis et al., 2019), the extended spectral, spatial and
temporal capabilities of the state-of-the-art sensors onboard the Sen-
tinel-2 satellites provide greater potential for mapping functional trait
diversity in tropical forest ecosystems at large extents.

Here, we employ a unique and large dataset of in-situ plant canopy
traits and vegetation census data collected with a standardised protocol
at multiple sites across the tropics to calibrate and validate Sentinel-2
imagery for predicting community leaf trait composition. The data
provide 14 standardised measurements of in-situ collected plant func-
tional traits, precisely geo-located and delineated individual tree
crowns and vegetation censuses from Australia, South East Asia, Africa
and South America to model and predict functional trait composition at
the pixel-level. We investigate how functional traits of tropical forests
vary within and between these different tropical regions and whether
Sentinel-2 spectral data in conjunction with climatic and soil informa-
tion provide sufficient information to predict such pixel-level trait
composition in long-term vegetation plots across the tropics. We hy-
pothesised that there would be differences in trait variation among sites
and regions given the range of climatic and soil conditions across the
tropics. Given the high spectral and spatial resolution of Sentinel-2
imagery we further hypothesised that raw spectral bands and textural
information will prove to be key predictors of functional trait dis-
tributions across the tropics. The very high spatial resolution and local
origin of the input plant traits and census dataset, which represent traits
adapted to local environments, plus the use of the Sentinel-2 data will
allow us to accurately predict plant functional trait distributions that
are potentially generalisable across the tropical forest biome.

2. Methods
2.1. Vegetation plots

We collected vegetation census data from 47 permanent vegetation
plots that are part of the Global Ecosystems Monitoring network (GEM;
www.gem.tropicalforests.ox.ac.uk). These plots encompass wet tropical
forests, seasonally dry tropical forests, and tropical forest-savanna
transitional vegetation. The sampled vegetation plots have an area
ranging from 0.1 to 1ha, with most (61%) being 1 ha. The plots used
are located across four tropical continents and specifically in the
countries of Australia, Brazil, Gabon, Ghana, Malaysian Borneo (from
here onwards referred to as Malaysia) and Peru (Table 1). In each plot
all woody plant individuals with a diameter = 10 cm at breast height
(DBH) or above buttress roots were measured and their exact geo-
graphic location was recorded (see the ‘Individual tree crowns’ section
below for more details). In two plots (NXV-01 and NXV-10) in Nova
Xavantina, here onwards referred to as Brazil-NX, the DBH was mea-
sured near ground level as is standard in savanna monitoring protocols.

2.2. Functional traits

We collected plant functional trait measurements from all woody
plants located in each of the 47 vegetation plots mentioned above
(Table 2). All traits were gathered from the GEM network and were
collected following a standardised methodology across plots. Forest
inventory data were used to stratify tree species by basal area dom-
inance, a proxy for canopy area dominance. The tree species that
contributed most to basal area abundance were sampled with 3-5 re-
plicate individuals per species, with a goal of sampling 60-80% of basal
area across the sampling region. Eighty percent of basal area was often
achieved in low diversity sites (e.g. montane or dry forests) but only
around 60% was achieved in some high diversity sites (lowland humid
rainforests). For each selected tree a sun and a shade branch were
sampled and in each branch 3-5 leaves were used for trait measure-
ments. We only included the sun exposed branches in our analysis
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because we were interested in the branches that could potentially be
receiving direct sun radiation and thus show direct spectral reflectance.
This represented a total sample of 2434 individual trees across the
tropics (Table 1). The plant functional traits collected were those re-
lated to photosynthetic capacity at both saturating CO, concentration
(2000 ppm COs; Apax) and ambient CO, concentration (400 ppm COs;
Asat); leaf chemistry (nitrogen, phosphorus, carbon, calcium, potassium
and magnesium content); and leaf morphological and structural traits
(area, specific leaf area, thickness, dry mass, fresh mass and water
content). An overview of the methods for individual leaf functional trait
measurements is provided in the Supplementary Information (see full
traits collection protocol section). Further details of measurements for
the Peruvian Andes campaign are given in Martin et al. (2020) and
Enquist et al. (2017), for the Malaysian campaign in Both et al. (2019),
and for the Ghana and Brazil campaigns in Oliveras et al. (2020) and
Gvozdevaite et al. (2018).

Some individuals in the plots lacked functional trait values. To as-
sign representative trait values to unsampled individuals we did the
following: 1) individuals from which traits were measured kept their
original trait information, 2) for individuals with no trait information
we randomly sampled trait values from other individuals from the same
species present in the same plot, 3) if the species was not sampled in the
given plot then we randomly sampled an individual from the same
species that had trait information in other plots from the same region
(Table 1). This protocol for trait value allocation allowed us to work
with the existing range of trait values at the species level and avoided to
create average values per species (Cadotte et al., 2011; Schneider et al.,
2017). We did not assign trait values to the remaining individuals be-
longing to species from which no trait collection was obtained at the
regional level.

2.3. Individual tree crowns

Tree crown locations and structural attributes were recorded for
each tree, where crown area and shape were measured by direct crown
field measurements in the case of plots in Malaysia and Peru (see
protocol below), or by means of regional level allometric equations
developed by Shenkin et al. (2019) (all other plots). In the latter case,
the crown's shape was assumed to be circular. The direct field crown
measurements were as follows: all trees =10 cm DBH (i.e., 1.3 m from
the ground) were mapped using a ground-based Field-Map laser tech-
nology (IFER, Ltd., Jilové u Prahy, Czech Republic) (Héd! et al., 2009).
The Field-Map technology was based on a combination of Impulse 200
Standard laser rangefinder (with in-built tilt sensor for measuring ver-
tical angles), MapStar module II electronic compass (both Laser Tech-
nology Inc., Colorado, USA), and the specialized mapping software
Field-Map v. 11 (IFER, Czech Republic). The technology was used to
record spatial positions of tree stems in three-dimensional space (x, y, z-
coordinates) as well as to map individual horizontal projections of tree
crowns in the plots. The horizontal crown projection of every tree was
obtained by measuring spatial positions (x and y-coordinates) of series
of points (ranging from 5 to 30 points depending on the size of the
crown) at the boundary of a crown projected to the horizontal plane.
The shape of crown projection was subsequently smoothed using the
“smooth contour line” feature of Field-Map software v. 11. Heights of
all trees with DBH = 10 cm were measured by the Impulse and Tru-
Pulse 360 R laser rangefinders (both Laser Technology Inc., Colorado,
USA). Thus, each individual crown was accurately geolocated rendering
information about its shape and vertical and horizontal position.

2.4. Calculating pixel-level trait composition

We calculated the community weighted mean of each trait for each
10 x 10 m subplot (matching the highest pixel spatial resolution of the
Sentinel-2 imagery) based on the mass ratio hypothesis, which states
that the most dominant species drive the ecosystem processes by means


http://www.gem.tropicalforests.ox.ac.uk

J. Aguirre-Gutiérrez, et al. Remote Sensing of Environment 252 (2021) 112122

of their functional traits (Grime, 1998). We first geolocated the vege- This is an important step as geolocation errors between the vegetation
tation plot, with its already mapped tree crowns (see protocol above), plot and the correct location in the satellite image could represent a
to the Sentinel-2 imagery based on the corner coordinates of the plots. large proportion of a given plot depending on the plots' area. Then for

Individual tree with
@ XY stem location

Vegetation plot
— r

®

Corner
coordinates
&

@ Sentinel-2 scene

Calculate pixel level
trait CWM weighted
by tree crown area

®

Pixel reflectance

Tree n with trait i value y
Tree 1 with trait i value x

Fig. 1. Diagram summarising the steps followed to assign trait values per Sentinel-2 pixel. 1) First the vegetation plots are defined based on the GEM (Global
Environmental Monitoring) dataset and 2) from each vegetation plot the corner coordinates are extracted. 3) From each vegetation plot the XY position of each stem
>10 cm DBH is extracted and 4) the crown horizontal area is calculated based on the protocol described in the methods section. 5) Then the Sentinel-2 imagery for
the study area is processed to level 2A using the ESA SNAP toolbox and 6) the vegetation plot is overlaid in the Sentinel-2 image based on its corner coordinates. In
this last step (6) each pixel defines a ‘subplot’ which is the unit used to calculate the trait community weighted mean based on the crown area of the trees that are
contained by that pixel. In 6) n refers to a given tree in a given pixel, trait i represents a given trait and x and y are values for that trait. The image used as an example
in step (1) was taken by Jesus Aguirre-Gutierrez over a vegetation plot using a multispectral ALTUM camera mounted on an Inspire 1 drone.”
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each of the traits, t, and pixels, p, we calculated their community level
weighted mean (CWM) using the individual tree crown horizontal area
as the weighting factor (Fig. 1) as follows:

N
Zi:l CAip X tip

CWM,, = oA
p @

Where CA;, is the crown area of individual i in pixel p, t;, is the trait
value of individual i in pixel p, N is the total number of individuals per
pixel and CA,, is the crown area of pixel p. The crown contribution to the
CWM was weighted by its proportional cover of the corresponding
pixel. The total number of pixels used in our calculations are 403 for
Australia, 449 for Brazil -NX (Nova Xavantina), 302 for Brazil -ST
(Santarem), 464 for Gabon, 620 for Ghana, 976 for Malaysia and 1280
for Peru.

2.5. Sentinel-2 data, vegetation indices and canopy texture parameters

We gathered Sentinel-2 imagery that was closest in time and season
to the sampling dates of functional traits and vegetation census across
the tropics for each of the study locations (Table S1). The Sentinel-2
imagery was first selected using the European Space Agency (ESA)
ScienceHub choosing images with high pixel quality and low cloud
cover (< 10%). Atmospheric, radiometric and topographic corrections
were applied to the selected imagery (Level 1C) using the Sen2Cor al-
gorithm in the Sentinel SNAP toolbox (step.esa.int). Our overlapping
imagery with the vegetation plots appeared free of clouds and cirrus
effects. The above-mentioned steps allowed us to obtain level 2A ima-
gery with surface reflectance values. We then resampled the 20 m bands
to 10 m spatial resolution using bilinear interpolation. The Sentinel-2
60 m resolution bands (BO1, B09, B10) were not used as these are de-
signed for cirrus, water vapour and cloud detection (Table 3). Band 8A
was not used as it covers an overlapping spectral window with band 8
and has a lower spatial resolution. Since vegetation indices may in-
crease prediction accuracy when modelling community weighted traits
(Wallis et al., 2019), we calculated three of them (Table 3) which we
hypothesised to inform trait distributions given their association with
chlorophyll and nutrient levels in the leaves and their use of the visible-
to-red edge spectral bands.

Canopy structure may play an important role in separating different
vegetation types and differences in canopy spectral composition. To
characterise canopy structure, we calculated the Grey Level Co-
Occurrence Matrix (GLCM) based texture features (Haralick et al.,

Table 3
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1973). The desired texture metrics are computed from a grey tone
matrix that is spatially dependent. The co-occurrence matrix depends
on the angular relationship and distance between two neighbouring
pixels and depicts the number of occurrences of the relationship be-
tween a pixel and its neighbour. After trials with smaller windows size
(5 x 5) we opted to use a 9 x 9 pixel kernel window which was suf-
ficient to render enough canopy contrast information during the mod-
elling step (see section 2.7 below) without taking large periods of time
for its calculation. The texture results obtained with the used kernel
window was highly correlated to the smaller kernel window
(Cor = 0.94, P < 0.0001). Based on the GLCM we calculated two
variables that are least correlated with each other, the Entropy and
Correlation, for each of the vegetation indices. While Entropy measures
the homogeneity level for a given area, the Correlation measures
probability of occurrence of the specified pixel pairs across the image
(Haralick et al., 1973; Wallis et al., 2019). All remote sensing analyses
related to the generation of vegetation indices and texture metrics were
carried out using the Sentinel SNAP toolbox (step.esa.int) and the R
statistical environment (R Development Core Team, 2014) with the
‘Sen2R’ package.

2.6. Environmental and soil data

Climatic, topographic and soil characteristics may vary across re-
gions and could at least partly determine the region's vegetation and
intrinsic trait composition. We obtained information on these three
components for each sampling location. The three components were
grouped as belonging to environmental (climate) or soil-terrain (tex-
ture, pH, cation exchange capacity and topography) drivers (Table 3).

For climate and for each sampling location we gathered gridded
data on the mean annual climatic water deficit (MCWD), which is a
metric of drought intensity and severity, mean annual maximum tem-
perature (MATmax), solar radiation (SRAD) and soil moisture (SM)
(Table 3). All climatic data with a spatial resolution of ~4km were
obtained from the TerraClimate gridded climate product (Abatzoglou
et al., 2018). To characterise the climatic conditions for each location
we used a climatology of 30 years (1986-2015) as suggested by the
World Meteorological Organization (WMO; www.wmo.int/pages/prog/
wep/ccl/fags.php). We used the terrain slope to characterise the plot's
topography, as it has been shown that topography may shape the
composition and structure of tropical forests (Jucker et al., 2018) and
may affect the vegetation spectral reflectance by modifying soil water

Spectral remote sensing, environmental and soil related variables used during the modelling protocol. All climatic variables but slope were calculated using a
climatology of 30 years (1986-2015). All soil variables were calculated for the top 30 cm soil layer. Sentinel-2 band wavelengths (nm) are given in parenthesis after

the band name.

Type Variable Description References
RS B2 (490), B3 (560), B4 (665), B8 (842) Sentinel-2 bands with spatial resolution of www.esa.int
10m
B5 (705), B6 (740), B7 (783), B11 (1610), Sentinel-2 bands with spatial resolution of
B12 (2190) 20m
MCARI Modified Chlorophyll Absorption in (Daughtry et al., 2000)

Reflectance Index

(Qi et al., 1994)
(Barnes et al., 2000)
(Haralick et al., 1973)

(Abatzoglou et al., 2018)

MSAVI2 Modified Soil Adjusted Vegetation Index 2
NDRE Normalized Difference Red edge Index
Texture Entropy, calculated for vegetation indices
Correlation, calculated for vegetation indices
Climate MCWD Mean annual climatic water deficit
MATmax Mean maximum annual temperature
SM Soil moisture as a water balance indicator
SRAD Downward Solar Radiation
Soil-Terrain  eCEC Cation Exchange Capacity (mmol* /kg™")
pH Soil pH (H20 solution)
Clay (%) Amount of clay (weight %)
Sand (%) Amount of sand (weight %)
Slope Terrain slope (30 m resolution)

Plot level soil data from the Global Environmental Monitoring
(GEM) database

(Farr et al., 2007)



http://step.esa.int
http://step.esa.int
http://www.wmo.int/pages/prog/wcp/ccl/faqs.php
http://www.wmo.int/pages/prog/wcp/ccl/faqs.php
http://www.esa.int
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and nutrient availability. Terrain slope was calculated using a high-
resolution digital elevation model, ~30m pixel size at the equator,
from the Shuttle Topography Mission (Farr et al., 2007). At most sites
soil data were sampled locally, and analysed to a standardised protocol
in labs in either INPA, Manaus, Brazil or the University of Leeds, UK,
following the RAINFOR soil protocol (Quesada et al., 2012). From these
data we summarised plot level soil data averaged over the first 30 cm
for texture (Sand% and Clay%), cation exchange capacity (eCEC) and
pH-H,O (pH). Plot level texture data were not available for plots in
Australia and the NXV-10 plots and were thus derived from the Soil-
Grids dataset at 250 m pixel spatial resolution for those plots only
(Hengl et al., 2017).

2.7. Comparing community level trait distributions across regions

We tested if and to what extent the community-level trait dis-
tributions differed among regions. We square-root transformed the trait
value to improve normality and applied an analysis of variance
(ANOVA). We then applied a Tukey's Honest Significant Difference
(Tukey HSD) test to investigate the significance of the differences be-
tween the means of the community weighted mean (CWM) trait values
among locations. The ANOVA and Tukey test were carried out using the
‘stats’ package for R (R Development Core Team, 2014).

2.8. Relating pixel-level trait composition to spectral reflectance,
environment and soil conditions

We modelled the community weighted mean (CWM) of each trait at
the pixel-level (10 X 10 m) as a function of the Sentinel-2 remote sen-
sing, environmental and soil covariates (Table 3) using a ‘spatial’ ver-
sion of the machine learning Random Forest (RF) algorithm (Breiman,
2001) named Geographic Random Forests (GRF) (Georganos et al.,
2019). RF is a nonparametric algorithm that has been shown to be
robust to overfitting and variable inputs thanks to the bagging process
and its random feature selection (Hastie et al., 2009). Moreover, it has
been extensively used to model and predict ecological and remote
sensing data within and across ecosystems (e.g. Asner et al., 2016; Van
der Plas et al., 2018). In contrast to RF, GRF disaggregates the under-
lying data in geographic space, in this case based on the spatial co-
ordinates of the Sentinel-2 pixels, building global and local sub-models
(plot level), making the modelling framework thus spatially explicit.
The explicit inclusion of the spatial component (XY pixel location) in
the models, which are sequentially fitted with different sets of the
training data (the bagging process) may contribute to the observed
reduced spatial autocorrelation of GRF in comparison to the common
RF (Georganos et al., 2019). In the GRF, a global model is built as in
other RF applications. However, GRF also generates a local RF for each
location, which includes a specified number of nearby observations,
here defined by all pixels in the vegetation plot (mostly 1 ha; Table 1),
called ‘neighbourhood’, obtaining in this way metrics of local and
global model predictive power and variable importance. For model
predictions, a fusion between the global model (that uses more data)
and local models (with low bias) can be applied, weighting the con-
tributions of the global and local models based on the parameters that
increase the predictive accuracy and decrease the model's Root Mean
Square Error (RMSE). We used the spatial GRF to fit a global model for
each functional trait (first eliminating statistical outliers) and also fit a
specific model for each region (Australia, Brazil -ST, Brazil -NX, Gabon,
Ghana, Malaysia and Peru) using the SpatialML package in R.

We performed an extensive set of model optimization and regular-
ization procedures to reduce over-fitting. For the CWM models we se-
lected the number of trees to fit by 10-fold cross-validation analysis
with number of trees ranging between 500 and 1500 and the number of
variables randomly sampled as candidates at each split (mtry) ranging
between 1 and 10, using in the final model the combination of terms
that generated the lowest RMSE. All covariates included in the models
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had pairwise Pearson correlation coefficients r < 0.82 (Table 3). For the
final global and local models, we used 80% of the data for model fitting
and the remaining 20% for model evaluation. Variable importance for
each model was computed as the decrease in node impurities from
splitting on the variable, averaged over all trees and derived from the
Out of Bag (OOB) error. Then the resulting importance was standar-
dised to a 0-1 scale for comparison purposes.

We carried out all analyses stated above with the full set of tree
individuals present in each vegetation plot with functional traits as-
suming that the contribution of small individuals to the trait CWM
value, and thus to the community reflectance at the pixel-level, would
be minimal given the weighting factor used (i.e. the individual's crown
area). However, to underpin this we carried out all analyses on two
smaller datasets, one where the 25th and other where the 50th per-
centile of the smallest trees per region were removed. All analyses were
carried out in the R statistical environment with the ‘caret’, ‘tidyverse’
and ‘SpatialML’ packages. All covariates were centrered and standar-
dized (z-scores) prior to model building.

3. Results
3.1. Variation in trait composition across tropical forests

Most leaf functional traits exhibited significant differences across
the tropics (Fig. 2) including wide trait range variation within the same
region (Fig. S8), with leaf fresh mass and leaf thickness being on
average less variable among locations (Table S2).

Leaf chemistry and photosynthetic capacity (An.x and As,d) often
showed significant differences among locations (Table S2). Drier loca-
tions as in Nova Xavantina (Brazil -NX) displayed trait adaptations to
seasonal rainfall and temperature with on average thicker and smaller
(30 + 0.05mm and 56.2 + 24.7 cm?> respectively) leaves at the
community level, with some of the highest community-level leaf ni-
trogen concentration (2.2 * 0.3%) and highest photosynthetic capa-
city (mean Amax = 21.9 * 4.3pmolm™ 2571, and
A = 8.3 + 2.5umolm~2s™1). In contrast, wetter regions such as
Malaysia displayed on average some of the biggest (113.5 * 55cm?)
and thinnest (0.25 * 0.05mm) leaves with high leaf water content
(59.1 + 5%). The Peruvian altitudinal transect showed large variation
in community-level traits values, which often overlapped with trait
values from all other sampled locations across the tropics (Fig. 2). For
most nutrients, leaf nutrient concentration was often highest in forests
found in Ghana (e.g. K% = 0.97 + 0.27 and Mg% = 0.33 + 0.1) and
Malaysia (K% = 1.05 = 0.27 and Mg% = 0.27 = 0.1). Australian
forests showed on average some of the lowest community-level N
(1.3 + 0.21%) and P (0.07 + 0.01%) leaf concentrations.

3.2. Pantropical and local community level functional trait models

The analyses carried out with the full dataset and the dataset where
the 25th and 50th percentile of the smallest trees per region were re-
moved gave similar results for the global (R? = 0.95 and R? = 0.97
respectively; Table S3) and local (R = 0.81 and R? = 0.80 respec-
tively; Table S4) models of plant trait distributions. Therefore, in the
following we only present the results for the models carried out with the
full vegetation dataset.

The accuracy of the pantropical prediction of functional traits
ranged between a minimum of R? = 0.26, for leaf fresh mass, and a
maximum of R? = 0.70 for leaf carbon content (C%) based on the out-
of-sampled (testing) data across the tropics (Table 4). The predictive
accuracies of leaf chemistry and photosynthetic traits were often higher
than for morphological and structural traits such as leaf dry mass
(R? = 0.27) and leaf area (R = 0.43) (Fig. 3). At the pantropical level,
the highest prediction accuracy was obtained for leaf thickness
(R? = 0.52) for morphological and structural traits, for leaf Ca (Ca%;
R? = 0.64) and leaf K (K%; R? = 0.63) for the chemical traits other than
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Fig. 2. Comparison of trait distributions across tropical regions. The boxplots
are based on the pixel-level (10 X 10 m) community trait values for each trait
and region (n = 403 for Australia, 449 for Brazil-NX, 302 for Brazil-ST, 464 for
Gabon, 620 for Ghana, 976 for Malaysia and 1280 for Peru). Horizontal lines in
each boxplot show the median value and vertical lines are the whiskers that
extend to the largest value or not further than 1.5 times the inter-quartile range.
For some locations information for all traits was not available. For full details in
significant differences in mean trait values among locations see Table S4. Brazil
-NX: Nova Xavantina; Brazil -ST: Santarem.
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Table 4
Statistical results on the test data (20% of full dataset) for the global trait dis-
tribution models. The prediction accuracy is shown by the R score.

Type Trait MAE  RMSE R?
Morphological and structural ~ Area (cm?) 28.32 39.854 0.43
Dry mass (g) 0.349 0.48 0.27
Fresh mass (g) 0.799  1.075 0.26
SLA (m?*g™1) 0.001  0.001 0.50
Thickness (mm) 0.034 0.046 0.52
Chemistry LWC (%) 3.718 4.886 0.36
C (%) 1.237 1.615 0.70
Ca (%) 0.14 0.204 0.64
K (%) 0.133  0.186 0.63
Mg (%) 0.055  0.075 0.46
N (%) 0.23 0.3 0.59
P (%) 0.015 0.02 0.59
Photosynthetic Amax (umolm~2s™')  2.89 3.937 0.67

Asat (umolm~2s™1) 1.297  1.734 0.55

MAE: Mean Absolute Error; RMSE: Root mean square error.

carbon. Leaf N and P concentrations were also predicted with high
accuracy (R? = 0.59). Leaf photosynthetic capacity traits, Ay and Ag,g,
showed some of the highest prediction accuracies ranging from
R? = 0.55 to 0.67, respectively. Model spatial predictions for several
traits and locations are shown in Fig. 4 and others can be seen in Fig.
S1-Fig. S7.

Models built for each tropical region and trait uncovered marked
differences in prediction accuracy among them (Fig. 5; Table 5 and
Table S5). Leaf area prediction accuracy ranged from R? = 0.04 (Brazil
-ST) to 0.35 (Australia), and that of specific leaf area (SLA) ranged from
R? = 0.06 for Malaysia to 0.54 for Brazil -NX (Table S5). The local
models showed a higher accuracy for predicting local level leaf che-
mical nutrients (up to R? = 0.68), especially for P, Ca, and N con-
centrations in comparison to morphological (e.g. leaf area and SLA)
traits (Table 5; Fig. 5). Traits related to photosynthetic capacity showed
an overall better prediction accuracy than leaf area and SLA with pre-
diction values ranging between 0.36 (Peru) to 0.49 (Ghana) for A.x
and up to 0.52 for Ay, (Brazil -NX; Fig. 5). On average the highest
prediction accuracy across regions for a given trait were reached for
leaf P concentration (R? = 0.47) and Ay (R? = 0.44) and the locations
with the highest average prediction accuracy across traits were the
Nova Xavantina savanna (Brazil -NX, R? = 0.40) and the Peru elevation
gradient (R? = 0.38; Table 5), both sites encompassing strong gradients
in vegetation morphology and structure.

3.3. Importance of spectral remote sensing, climatic and soil data for
mapping trait distributions

We included Sentinel-2 band derived reflectance values, vegetation
indices, their canopy texture parameters, climatic and soil variables in
the general trait models to predict community level traits at the pixel-
level (Table 3). The importance of these variables for predicting traits
depended on the specific trait being addressed (Fig. 6). In the global
model, the remote sensing texture parameters were the first or second
major contributor for predicting nine of the functional traits across the
tropics (Fig. 6 and Fig. S9). Raw spectral variables were the second
most important group for predicting four of such functional traits but
often lower in importance than the textural parameters. In the global
model, soil and terrain factors were on average some of the most im-
portant for predicting photosynthetic traits and foliar P concentration.
On average, climatic variables were important for predicting 11 out of
14 functional traits but their contribution was lower for predicting leaf
dry and fresh mass and leaf water content (Fig. 6). However, it is evi-
dent that a combination of textural, spectral, climatic and soil in-
formation is required to obtain the best general model predictions
across functional traits and no single variable appears as the most
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Observed values

Fig. 3. Model predictions to the 20% test data from the general model which was fitted with 80% of the trait data from across the tropics. Grey dots are the observed
against predicted trait values of the pixel-level (10 x 10 m) community weighted mean traits from the test dataset. The black line shows the 1:1 relationship between
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observed and predicted values. Model prediction accuracy is shown in the top left. Full model results are shown in Table 4.
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Fig. 5. Models predictions to the 20% test data from the regional models fitted with 80% of the trait data from each region across the tropics. Each colour represents
an individual regional model and the coloured symbols are the observed against predicted trait values of the pixel-level (10 X 10 m) community weighted mean traits
from the test dataset. The black line shows the 1:1 relationship between observed and predicted values. Model prediction accuracy is shown in Table 5. Full model
results are shown in Table S5. Brazil -NX: Nova Xavantina; Brazil -ST: Santarem.
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Table 5
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Prediction accuracy (R?) on the testing data among regions (shaded Region mean R? column) and functional traits (shaded Trait mean R? row). Not shaded values in
the table show the prediction accuracy (R?) on the test data per region and trait.

Amax

Asat

Dry

P(%) (umol Ca(%) N (%) TMckness ol Mg(%) €(%) oA Lwc(%) K(%) mass ~red  Fresh - Region
Location m2s?) (mm) m?2s) (m*g™) & (cm?)  mass(g) meanR
Australia 021 - 033 017 021 0.03 012 034 025 - 0.06 035 - 0.21
Brazil -NX 068 042 049 052 0.66 0.52 0.46 - 0.54 007 007 038 008 031 0.40
Brazil -ST 0.47 - 015  0.30 0.42 - 028 007 029 005 029 025 004 0.18 0.23
Gabon 060 - 039 050 0.23 - 052 022 015 038 024 022 011 0.11 0.31
Ghana 047 049 053  0.52 0.22 0.36 0.15 - 0.14 - 023 - 029 - 0.34
Malaysia 034 048 050 027 031 036 031 038 006 024 028 007 011 0.03 0.27
Peru 049 036 069 044 0.64 0.38 046 047 032 034 030 009 018 0.20 0.38
TraitmeanR? 047 044 044 039 0.38 0.33 033 030 025 022 021 020 017 017

-: no data available; Brazil -NX: Nova Xavantina; Brazil -ST: Santarem.

0.751
0.501
0.251
0.00+

0.751
0.501
0.251
0.00+

0.75+
0.501
0.251
0.00+

0.75+

Median variable importance

0.501
0.251
0.00+

0.75+
0.50+
0.251
0.00+

Area (cm?) SLA (m?*g™
-..I -.II
Dry mass (g) Fresh mass (g)

C (%) Ca (%)

Mg (%) N (%)

Amax (umolm@s™)  Asat(umolm?s™)

Thickness (mm)

LWC (%)

K (%)

P (%)

[] s2 -Spectral

S2 -Texture
Climate
] Soil-Terrain

13

Fig. 6. Group median variable importance of spectral
remote sensing, environmental and soil related variables
for determining functional trait predictions in the global
model. Variable importance (Y axis) ranges from 0 (no
importance) to 1 (highest importance) and represents
the decrease in node impurities from splitting on the
variable, averaged over all trees and derived from the
Out of Bag error, the resulting value has been standar-
dised to a 0-1 scale for comparison purposes. The
spectral group (S2 -Spectral) contains the select raw
bands from the Sentinel-2 and the vegetation indices;
Texture parameters (S2 -Texture) contain the
Correlation and Entropy metrics from the grey level co-
occurrence matrix obtained from the vegetation indices;
Climate contains all climatic variables; Soil-Terrain
contains all soil characteristics and slope. All variables
are described in Table 3.
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important across all traits (Fig. S9).

The local models provided a site-specific view of the most important
remote sensing derived variables, environmental and soil conditions for
deriving community level traits composition (Fig. S10). Sentinel-2 re-
mote sensing related variables were more important for detecting leaf
morphology and nutrient values than environmental and soil related
variables in 88% of the trait models (in 75 out of 85 possible traits by
region combinations). Eighty-one percent of the time (69 location by
trait combinations) the canopy texture parameters were more im-
portant than the raw spectral reflectance factors. In 5.9% and 4.7% of
the possible trait and region combinations, climatic or soil-topography
related variables respectively were the most important for detecting
community traits (Fig. S10).

4. Discussion

To the best of our knowledge, this is the first study evaluating the
ability of Sentinel-2 satellite data to map plant functional traits across
tropical ecosystems. Tropical forest trait mapping is fundamental for
understanding of plant responses to global change, and notably the
plant functional traits we predict in this study are relevant to plant
species responses to a changing environment (Both et al., 2019; Nunes
et al., 2019; Soudzilovskaia et al., 2013; Aguirre-Gutiérrez et al., 2019).
We have demonstrated that accurate pixel-level (10 X 10 m) predic-
tions of tropical forest functional trait distributions across the tropics
can be generated by making use of extensive in-situ collected plant
functional traits, geo-located canopy structure, vegetation censuses and
high spectral and spatial resolution remote sensing data from the Sen-
tinel-2 satellites.

4.1. Tropical forest trait distributions

Plant functional traits are characteristics that aid species to thrive in
their environment or adapt to new conditions. Given such adaptations
to specific environments it might be expected that trait variation would
be higher in regions that encompass more varied environmental con-
ditions (Enquist et al., 2015). Environmental adaptation is exemplified
by the strong variation in values for most traits in Peru and Malaysia. In
Peru, the data represent a climatic and altitudinal gradient ranging
from the lowland Amazon in the Tambopata National Park at an ele-
vation of 200-225 masl to plots in Acjanaco at above 3000 masl. In
Malaysia, the vegetation plots are distributed across a land-use gradient
ranging from undisturbed to heavily logged forests (Both et al., 2019).
Environmental adaptation may be also shown by the observed differ-
ences in trait distributions between different regions across the tropics
(e.g. Australia and Gabon; see also Fig. 2). The pixel-based community
trait values in the Peruvian transect often extend across much of the
range in trait values observed in other locations (Fig. 2). We detected an
overall significant difference among locations in terms of morpholo-
gical, chemical and photosynthetic traits (Table S2). This wide variation
in traits suggests the presence of local biotic and abiotic controls of trait
distributions and plant species adaptations that may differ among tro-
pical regions. Such differences in trait composition highlight the im-
portance and the challenge of sampling as fully as possible the func-
tional trait diversity across different tropical forests. This is of pivotal
importance when comparing forest responses to changing environments
across multiple regions. We thus suggest that further field trait survey
campaigns across the tropics are needed to improve pantropical trait
predictions. As for the local biotic and abiotic controls of trait dis-
tributions, for instance, it is widely known that African tropical forests
are in general less species diverse than their Asian and South American
counterparts but that they have some of the highest biomass carbon
storage capacity per unit area (Sullivan et al., 2017). Tropical forests in
West Africa are in general drier in comparison to Amazonian tropical
forests (Parmentier et al., 2007) and some African regions such as
Gabon have experienced increases in temperature and decreases in
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precipitation over the last 30years (Bush et al., 2020). Thus, such
changes in climatic conditions as those observed in West African tro-
pical forest may also underlie variations in species composition and the
locally observed functional trait pool as shown in this study. It is also
worth noting that two caveats of the community-weighted mean trait
approach may account for part of the unexplained trait variation. First,
it makes the assumption of a unique functional optimum in a given
environment, while multiple optimal strategies — potentially corre-
sponding to contrasting trait values — could coexist (Laughlin et al.,
2018). Secondly, it does not account for the dynamic nature of com-
munities, so that a community weighted mean at a given time point
might not encompass the optimum at equilibrium (Laughlin et al.,
2018).

Morphological and structural traits such as leaf area, fresh and dry
mass, leaf thickness, SLA and LWC, represent trade-offs between energy
acquisition, consumption and survival and form a main part of the
global spectrum of plant functioning (Diaz et al., 2016). Besides in-
vestigating the predictability of such plant structural traits, we further
analysed the potential for predicting leaf chemistry (C, K, Mg, Ca, N, P)
and photosynthesis related traits (Ap.x and Ag,). Mapping chemical
and photosynthetic traits at a pantropical scale has the potential for
increasing our understanding of how photosynthetic capacity shifts
across tropical regions and on possible impacts of a changing en-
vironment on tropical forests productivity (Guan et al., 2015; Mueller
et al., 2014).

4.2. Sentinel-2 remote sensing for mapping community level trait
distributions across the tropics

In their pioneering work with hyperspectral imagery and simulated
multispectral Sentinel-2 data over Ghana, Laurin et al. (2016) demon-
strated that Sentinel-2 imagery could be used to discriminate tropical
forest types and map plant functional types. The authors argued that the
full band set and vegetation indices derived from the Sentinel-2 would
be advantageous for accurately mapping plant functional guilds in the
tropics. By using functional trait data collected in situ across tropical
forests and modelling at high spatial resolution (pixel-level) we show
that most of our global trait distribution models present a high pre-
dictive power for most traits analysed, with prediction accuracy on the
testing datasets being highest for predicting leaf chemical and photo-
synthetic capacity traits. However, we also show that the local level
trait models produced less accurate predictions than the global models,
probably as a result of the narrower range of plant trait values found
within the region in comparison to across the regions, something also
shown by Wallis et al. (2019). The prediction accuracy obtained from
our models using Sentinel-2 multispectral data is similar and in some
cases higher than that shown by recent studies that make use of hy-
perspectral imagery and other multispectral sensors to map functional
traits (Martin et al., 2018; Asner et al., 2017; Asner et al., 2015). For
instance our predictions on test data for leaf nitrogen, phosphorus and
carbon are comparable or higher than those obtained by other in-
novative studies in Malaysia (R* = 0.46, 0.44 and 0.48 respectively;
Martin et al., 2018), Peru (R? = 0.48, 0.39 and 0.44; Asner et al., 2015)
and temperate forests (R = 0.55, 0.22, 0.46; Nunes et al., 2017), and
closely related to those obtained by Wallis et al. (2019) with other
multispectral sensor for nitrogen and phosphorus (R? = 0.65 and 0.65).
Specially the work of Asner et al. (2017) has shown how such plant trait
predictions (with its inherent accuracies) can be used for other appli-
cations such as to guide biodiversity conservation actions. In our ap-
proach we resample the 20 m spatial resolution bands from the Sen-
tinel-2 to 10 m pixels as to work with the highest spatial resolution
available for most spectral bands. Such resampling could in principle
have an effect on the match between the tree canopies' reflectance
signal and the spectral signal from the Sentinel-2 pixel and could thus
influence the textural parameters, by for instance, detecting lower
heterogeneity.
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Some of the leaf chemistry we modelled can be directly related to
the reflectance obtained from the Sentinel-2 remote sensor in the
visible, infrared and red-edge regions which capture the leaf bio-
geochemistry (Ustin and Gamon, 2010). For instance, it has been shown
how carbon and carbon containing metabolites peak in reflectance at
around 550 nm (band 3 in the Senitnel-2) and at the lower part of the
702-715nm (Ely et al., 2019), which would be depicted best by the red-
edge band 5 in the Sentinel-2. such spectral behaviour captured by the
Sentinel-2 bands contributed to the high prediction accuracy of leaf
carbon in our study. Our models show how Sentinel-2 imagery, and
especially the canopy texture parameters derived from it, can be
especially useful for mapping traits related to leaf chemistry (Fig. 2 and
Fig. S9). Moreover, our high predictive accuracy for photosynthetic
capacity (Amax, Asad) i consistent with studies carried out in other ve-
getation types (e.g. agroecosystems; Serbin et al., 2015) where a strong
association was shown between photosynthesis related traits and the
red-edge spectral region. Sentinel-2 has 3 bands over the red-edge
spectral region (bands 5, 6, 7) and two over the near infrared (bands 8
and 8a) with different bandwidths, which as shown by Shiklomanov
et al. (2016) can be advantageous for detecting foliar nutrients such as
leaf N (Schlemmer et al., 2013), as small differences in wavelength
position in different bands may impact their capacity to retrieve canopy
trait characteristics. Moreover, the strong relationship between photo-
synthetic capacity and spectral reflectance can be partly captured from
the leaf N signal, as leaf N concentrations are strongly associated with
photosynthetic capacity (Reich, 2012; Vincent, 2001). The N re-
flectance signal is often best obtained in wavebands centred between
440 and 570 nm (Ferwerda et al., 2005).

In this study we leverage evidence on covariation among traits to
estimate and predict values of traits that have no clear physical effects
on spectral reflectance. There is ample evidence of the existence of
covariation among plant traits, as for instance between leaf N con-
centration, specific leaf area and leaf longevity (Walker et al., 2017).
Such covariation among traits may in principle also represent covar-
iation in the spectral reflectance patterns across vegetation types (Ma
et al., 2019), especially if such individuals vary in leaf structural tissue
that drive energy scattering and reflectance (Ollinger, 2011). Such
covariation between traits can be helpful for mapping functional trait
diversity across large spatial extents that include diverse vegetation
types (Townsend et al., 2003; Both et al., 2019). We show that the
spectral reflectance, image textural parameters (Entropy and Correla-
tion), climate and soil, are highly relevant for modelling plant trait
distributions across the tropics with high prediction accuracy. However,
the canopy texture parameters (Entropy and Correlation) are some of
the most important for attaining high trait prediction accuracies across
plant functional traits (Sarker and Nichol, 2011; Wallis et al., 2019) and
differences in spectral, climatic and soil conditions between different
regions are key components for improving model predictions across
broad spatial extents.

Image texture parameters were derived from the vegetation indices
that we calculated, which in turn were derived from the raw spectral
bands of the Sentinel-2. Thus, the texture metrics besides taking ad-
vantage of the high spectral resolution of the sensor also take advantage
of its high spatial resolution. Although the raw spectral bands of the
Sentinel-2 were not as important for predicting some functional traits as
image texture, it is relevant to consider that texture values tend to differ
based on the spatial resolution of the underlying data on which they are
based. A larger pixel (e.g. Landsat's 30 X 30 m pixels) may thus mask
differences in the landscape that could in principle be captured by the
Sentinel 10 x 10 m resolution texture generated metrics. This therefore
highlights the relevance of Sentinel-2 imagery for functional plant
functional trait predictions in comparison to others with lower spectral
and spatial resolution. Image texture parameters can help characterise
the upper surface of the vegetation, which in our study is composed of
varied sets of functional trait characteristics that confer them different
spectral responses. When such spectral differences are analysed with
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grey level co-occurrence matrices, the generated image texture para-
meters (e.g. entropy and correlation) can help differentiate contrasting
vegetation in the landscape. The role of texture parameters for mod-
elling biomass and functional traits has also been recognised by other
studies focusing not only on mapping functional traits along elevation
gradients but also for estimating standing biomass (Wallis et al., 2019).
Moreover, such relevance of texture parameters does not seem to be
limited to the spatial resolution of the Sentinel-2 imagery as shown
when using high spatial resolution SPOT imagery for modelling forest
aboveground biomass (Hlatshwayo et al., 2019) and WorldView-3 for
tree species identification (Ferreira et al., 2019), or lower spatial re-
solution data as that from the Landsat (Wallis et al., 2019). Other added
value of the Sentinel-2 in contrast to finer spatial resolution satellites
(e.g. SPOT and WorldView-3) is its high revisit period, to obtain cloud
free imagery, and it's free availability. Moreover, soil properties can be
informative when modelling trait distributions across regions in the
tropics as they partly drive the plant functional and species composi-
tional turnover (Prada et al., 2017; Asner et al., 2016). In our study
different vegetation plots appeared to be on soils with different parent
materials resulting in varying cation exchange capacity, pH and soil
texture, and thus including differences between sites contributes to
increasing the prediction accuracy of trait distributions.

Although in the past it was thought not to be possible to map in-
dividual plant species or functional traits (Price, 1994; Ustin and
Gamon, 2010), the advent of remotely sensed data with high spectral,
spatial and temporal resolution has made it possible to extract in-
formation on the chemical and structural composition of forest canopies
even in highly biodiverse tropical forests. This has been demonstrated
with the use of hyperspectral sensors (Asner et al., 2017; Asner et al.,
2015; Jetz et al., 2016), which often collect hundreds of spectral bands
at very high spatial and spectral resolutions but at relatively small
spatial extents and often without temporal replication. More research is
needed to disentangle to what extent hyperspectral data offers more
information to that offered by the Sentinel-2 sensors for an increased
mapping accuracy of functional traits of tropical forests. As shown by
Laurin et al. (2016), results obtained with simulated Sentinel-2 data are
highly comparable to those obtained from hyperspectral imagery for
mapping forest types, dominant tree species and functional guilds.
Being able to monitor functional traits at high spatial and temporal
resolution with multispectral data ranging from the visible to the
shortwave infrared across the tropics and with freely available data
opens new opportunities for understanding the effects of environmental
changes on biodiversity at a local scale. This is because functional traits
play a major role in determining ecosystem productivity and func-
tioning, e.g. carbon capture (Diaz et al., 2019; Carmona et al., 2016).
Moreover, spatially explicit models of functional traits shift across the
tropics can help decipher how ecosystem functioning varies even
among tropical areas, providing a cost-effective pathway to identifying
regions of high conservation value and hence aid in the creation of
locally adequate biodiversity conservation policies. Overall, our find-
ings are of relevance for informing biodiversity monitoring policies
under ecosystem change as we show that accurate predictions of re-
levant plant functional traits can be obtained in high biodiversity areas
such as the tropics. Our approach thus facilitates tracking possible shifts
in trait distributions and composition across large spatial extents as a
response to environmental changes using the Sentinel-2 satellites.

5. Conclusions

Tropical forest ecosystems are witnessing a rapid transformation as
a result of changing environmental conditions and direct human im-
pacts (Lewis et al., 2015; Taubert et al., 2018; Aguirre-Gutiérrez et al.,
2019). However, we cannot adequately understand or simulate tropical
ecosystem responses to environmental changes based solely on current
ecosystem model approaches as these are unable to capture the high
diversity of plant ecosystem functions in the species-rich tropics.
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Neglect of functional biodiversity can oversimplify the simulated re-
sponse of an ecosystem to an environmental disturbance. Here we show
the high variation in functional traits that exists among tropical regions,
which hints at the different capabilities of such forests to respond to a
changing environment. We demonstrate opportunities for measuring
the distribution of key functional traits across tropical forest ecosystems
at the pixel-level using the Sentinel-2 satellites, which if done across
time could reveal areas where functional shifts have occurred and likely
where biodiversity conservation/amelioration measures are needed.
Although the Sentinel-2 satellites show high promise for this en-
deavour, our approach is limited by the short time interval since they
were launched (i.e. 2015) and the lower spectral resolution of Sentinel-
2 imagery in comparison to that derived from hyperspectral sensors.
Methods and data products are needed to track changes in functional
composition in forest ecosystems across time and space. We demon-
strate a new approach to develop a rapid monitoring tool for capturing
the effects of a changing environment across the tropics. This new tool
has the potential to contribute to a more robust and evidence-based
policy-making for conservation of tropical forest ecosystems.
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