
Densest Subgraph: Supermodularity, Iterative Peeling, and Flow

Chandra Chekuri∗ Kent Quanrud† Manuel R. Torres‡

Abstract

The densest subgraph problem in a graph (DSG), in the simplest form, is the following. Given an undirected
graph G = (V,E) find a subset S ⊆ V of vertices that maximizes the ratio |E(S)|/|S| where E(S) is the set
of edges with both endpoints in S. DSG and several of its variants are well-studied in theory and practice
and have many applications in data mining and network analysis. In this paper we study fast algorithms and
structural aspects of DSG via the lens of supermodularity. For this we consider the densest supermodular
subset problem (DSS): given a non-negative supermodular function f : 2V → R+, maximize f(S)/|S|.

For DSG we describe a simple flow-based algorithm that outputs a (1− ε)-approximation in deterministic
Õ(m/ε) time where m is the number of edges. Our algorithm is the first to have a near-linear dependence on
m and 1/ε and improves previous methods based on an LP relaxation. It generalizes to hypergraphs, and also
yields a faster algorithm for directed DSG.

Greedy peeling algorithms have been very popular for DSG and several variants due to their efficiency,
empirical performance, and worst-case approximation guarantees. We describe a simple peeling algorithm for
DSS and analyze its approximation guarantee in a fashion that unifies several existing results. Boob et al. [12]
developed an iterative peeling algorithm for DSG which appears to work very well in practice, and made a
conjecture about its convergence to optimality. We affirmatively answer their conjecture, and in fact prove
that a natural generalization of their algorithm converges to a (1− ε)-approximation for any supermodular
function f ; the key to our proof is to consider an LP formulation that is derived via the Lovász extension of a
supermodular function. For DSG the bound on the number of iterations we prove is O(∆ ln |V |

λ∗ · 1
ε2

) where ∆ is
the maximum degree and λ∗ is the optimum value. Our work suggests that iterative peeling can be an effective
heuristic for several objectives considered in the literature.

Finally, we show that the 2-approximation for densest-at-least-k subgraph [37] extends to the supermodular
setting. We also give a unified analysis of the peeling algorithm for this problem, and via this analysis derive
an approximation guarantee for a generalization of DSS to maximize f(S)/g(|S|) for a concave function g.

1 Introduction
The densest subgraph problem (DSG) is a canonical problem in network analysis and graph mining with several
real-world applications. In its simplest form, the input to DSG is an undirected graph G = (V,E) and the goal is
to find a subset of vertices S ⊆ V to maximize the average degree in the induced graph G[S]; equivalently, find
S to maximize |E(S)|

|S| where E(S) is the set of edges with both endpoints in S. Dense subgraphs are of interest
in a variety of application areas where such subgraphs reveal useful information. Although DSG is a popular
and well-studied problem, the notion of “density” can vary by application, and researchers study several related
problems in the broad line of work called dense subgraph discovery. We refer the reader to some surveys and
tutorials [23, 28, 41] including a very recent one [63], and some recent papers [12, 13, 27, 43, 54, 65] and pointers
therein. Constrained versions of DSG such as the densest k-subgraph problem (DkSG) (see [9, 25, 36, 39, 45] and
pointers therein), densest at most k-subgraph problem (DamkSG) [3, 37], and the densest at least k-subgraph
problem (DalkSG) [3, 37, 46] are also extensively studied. Our main focus is on DSG, and we discuss the
constrained versions later.

∗Dept. of Computer Science, Univ. of Illinois, Urbana-Champaign, Urbana, IL 61801. chekuri@illinois.edu. Supported in part
by NSF grant CCF-1910149.

†Dept. of Computer Science, Purdue University, West Lafayette, IN 47907. krq@purdue.edu. Supported in part by NSF grant
CCF-2129816.

‡Dept. of Computer Science, Univ. of Illinois, Urbana-Champaign, Urbana, IL 61801. manuelt2@illinois.edu. Supported in part
by fellowships from NSF and the Sloan Foundation, and NSF grant CCF-1910149.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1531

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

An attractive aspect of DSG is that it is a polynomial-time solvable problem with interesting connections to
fundamental problems in combinatorial optimization. This can be exploited in algorithms and applications, and some
of these insights help develop heuristics and approximation algorithms. It is helpful to consider a generalization of
DSG that is tractable. A real-valued set function f : 2V → R is supermodular iff f(A)+f(B) ≤ f(A∪B)+f(A∩B)
for all A,B ⊆ V . Equivalently, f is supermodular iff f(v | A) ≥ f(v | B) for all B ⊆ A and v ∈ V \A where we let
f(v | S) := f(S ∪ {v})− f(S) denote the marginal value of v with respect to S. A set function g is submodular iff
the function −g is supermodular (one can also define submodularity directly). Consider the following problem that
we refer to as the generalized densest supermodular subset problem (GDSS): given a ground set V , a non-negative
supermodular function f : 2V → R+, and a non-negative submodular function g : 2V → R+, find S ⊆ V to
maximize f(S)

g(S) . We use DSS (densest supermodular subset problem) to refer to the special case when g(S) = |S|
which will be the main focus of this paper1. It is well-known and easy to see that DSG is a special case of DSS;
the function f : 2V → R+ where f(S) = |E(S)| is supermodular. To see that GDSS is tractable, consider the
decision problem: given f, g and λ > 0, is there an S ⊆ V such that f(S)/g(S) ≥ λ; equivalently, is there an S
such that λg(S) − f(S) ≤ 0. This reduces to submodular set function minimization which admits a (strongly)
polynomial-time algorithm [55]. Binary search over λ yields the optimum ratio.

Examples of DSS. We briefly describe several interesting special cases of DSS that have been studied in the
literature. Given a graph G = (V,E) we mentioned that f(S) = |E(S)| is supermodular. This also holds when G
is a hypergraph and E(S) is the set of hyperedges contained in S [31]. We let r denote the rank of a hypergraph.
Let F be a finite set of pattern graphs; for instance F can consist of a triangle [64] or k-clique for some k [61].
Given a graph G let f(S) be the number of copies of pattern graphs from F in the graph G[S]. It is not hard to
see that f is supermodular for any finite F [22]; by defining a hyperedge for each copy of a pattern in G we can
reduce the pattern graph problem to the hypergraph case where the rank of the resulting hypergraph is the largest
size of a pattern graph in F . A further generalization is the class of r-decomposable supermodular functions
where f can be written as a non-negative sum of “simpler” supermodular functions, each of which is defined over
only a subset of at most r vertices of V (a formal definition is given later). More recently Veldt, Benson, and
Kleinberg [65] defined the generalized mean densest subgraph problem (GDSG): for a given real-valued parameter
p and an undirected graph G define f(S) =

∑
v∈S d(v, S)p where d(v, S) of degree of v in G[S].2 When p = 1 we

obtain DSG, and for any p ≥ 1 the function is supermodular as observed in [65]. In fact, it can be seen that∑
v∈S h(d(v, S)) is supermodular for any real-valued convex function h. [65] is a very recent manuscript indicating

the ongoing interest in models and problems related to dense subgraph discovery.

Although DSS is polytime-solvable, the known algorithms for submodular function minimization are slow in
theory and practice due to their generality. For the special case of DSG, a polynomial time algorithm is also known
via a simple and elegant reduction from the decision problem to finding a maximum flow in an associated directed
graph [29, 40, 51]. One can avoid the binary search using parametric maximum flows [26], and similar ideas also
apply to DSS. The constructed graph has O(|V |+ |E|) nodes and O(|E|) edges. Although maxflow admits faster
algorithms, it can take substantial time and space for large scale graphs that arise in several applications. This
has motivated the study of heuristics and approximation algorithms.

Peeling Algorithms, Approximation, and Linear Programming. An influential development in fast
algorithms for DSG and related problems came from the work of Charikar [14]. He showed that a simple
greedy peeling algorithm for DSG that runs in essentially linear time (described by Asahiro et al. [5]) yields a
1
2 -approximation3. Second, his analysis was based on an LP formulation whose solution provides an optimum
solution for DSG. The peeling algorithm creates an ordering v1, v2, . . . , vn of the vertices as follows: v1 is a smallest
degree vertex in G, v2 is a smallest degree vertex in G − v1, and inductively vi is a smallest degree vertex in
G− {v1, . . . , vi−1}. After the ordering is created, the algorithm picks the best density subgraph among all suffixes
(of the form {vi, . . . , vn}) of the ordering. The simplicity and efficiency of the peeling algorithm, and its provable

1In this paper, as is standard, we will assume that the set functions are available as a value oracle. We will assume that all
supermodular functions considered in this paper are non-negative and normalized (f(∅) = 0), which also implies that they are monotone,
that is f(A) ≤ f(B) for A ⊆ B.

2[65] consider maximizing the objective
(
f(S)
|S|

)1/p
. For p > 0, it is equivalent to maximizing f(S)

|S| . However, the original objective
is needed when p < 0, and this regime has interesting applications and connections.

3Kortsarz and Peleg observed the 1
2
-approximation earlier in a different context [38] without highlighting peeling.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1532

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

worst-case guarantee, made it a compelling choice for large scale applications. The algorithm and the analysis
have been used in several subsequent papers. The same peeling algorithm creates a core decomposition which
was known earlier and is also extensively studied [44]. Charikar’s LP relaxation has also been influential since it
provided an avenue to use techniques from mathematical programming to solve it exactly or approximately. The
dual of the LP turns out to be a mixed packing and covering LP, albeit with additional structure (which can be
related to the flow reduction that we mentioned). Bahmani, Goel and Munagala obtained a (1− ε)-approximation
for DSG in Õ(m/ε2) time via the use of the multiplicative weight update (MWU) method, and also devised a
parallel algorithm via a clever reformulation of the LP. Here m is the number of edges in the input graph. An
important open question in the general context of approximately solving mixed packing and covering LPs is
whether one can obtain an ε-approximate solution that has near linear dependence on both 1/ε and the size of
the LP; this is known for pure packing and covering LPs [1, 67] (see [53, 66] for additional results and pointers).
Such a result would imply a (1− ε)-approximation for DSG in Õ(m/ε) time. Boob, Sawlani and Wang [13] made
partial progress towards this and developed an algorithm for mixed packing and covering that, as a corollary,
yields a (1− ε)-approximation for DSG in Õ(m∆/ε) time where ∆ is the maximum degree. Depending on the
range of ε relative to ∆, these algorithms are the fastest known (1− ε)-approximation algorithms for DSG (in
terms of asymptotic running times).

While the peeling algorithm provides a fast and simple algorithm for DSG, the worst case approximation ratio
is 1

2 . The approximation ratio becomes larger when considering objectives such as triangle density, k-clique density
or other other measures. In a paper that initially inspired our interest, Boob et al. [12] developed a simple iterative
peeling algorithm for DSG that they called Greedy++. They observed that it is very effective in their experiments
and converges to a near-optimal solution in just a few iterations. The algorithm is motivated by an MWU type
approach to solve the LP relaxation. The authors conjectured that Greedy++ converges to a (1− ε)-approximation
in O(1/ε2) iterations. However, they did not prove anything better than a 1

2 -approximation bound for Greedy++.

1.1 Motivation and Contributions Our discussion of DSG and related problems so far only touches upon a
small amount of work on this topic. It should, however, already point to the rich connections to models, algorithms
and combinatorial optimization. The impetus for this work came from the following three interrelated high-level
questions, with the first one serving as an initial inspiration.

• Does Greedy++ converge to a (1− ε)-approximation as the number of iterations grows with ε?

• Is there a (1− ε)-approximation algorithm for DSG that runs in Õ(m/ε) time?

• DSG is a special case of DSS which is tractable due to supermodularity. Can we generalize peeling and
mathematical programming based approaches in a unified fashion via properties of supermodularity?

In this paper we obtain several results that give affirmative answers to the preceding questions.

Flow strikes back for DSG. Flow-based exact algorithms are considered slow for large scale data and, as we
remarked, attention has shifted towards approximation algorithms based on peeling and linear programming. In
this paper we describe an extremely simple flow-based approximation algorithm for DSG. It suffices to obtain an
approximate flow in the following sense: the shortest augmenting path length in the residual graph has length
Ω(1

ε logm). This yields the following theorem which is the first approximation algorithm whose running time has
a near-linear dependence on m and 1/ε.

Theorem 1.1. Given an instance of DSG on a weighted graph with m edges and n nodes, a (1− ε)-approximation
can be obtained in Õ(m/ε) time. For weighted hypergraphs the running time is Õ(p/ε) time where p =

∑
e∈E |e|

is the total size.

The algorithm for hypergraphs yields improved running times for various densest pattern subgraph problems;
we defer details. We believe that the flow approach can be used to obtain faster approximation algorithms for
various other concrete special cases of DSS. The simplicity of the algorithm could lead to new heuristics that can
be competitive with other current approaches.

Remark 1.1. A (1 − ε)-approximation to the directed graph version of DSG [14, 34, 37, 43] can be obtained
via O(log n

ε) calls to a (1 − ε)-approximation for vertex-weighted DSG [54]. Via this reduction we obtain a
(1− ε)-approximation for directed DSG in Õ(m/ε2) time.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1533

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Analysis of greedy peeling for DSS. We describe a natural greedy peeling algorithm for DSS and establish an
approximation guarantee based on a parameter that depends on f . For a real-valued set function f we consider the
parameter cf := maxS⊆V

∑
v∈S f(v|S−v)

f(S) . It can be seen that 1 ≤ cf ≤ |V | and cf = 1 iff f is modular4. For DSG,
f(S) = |E(S)|, and it is easy to see that cf = 2 from the observation that sum of degrees is 2|E(S)|. Similarly for
a hypergraph of rank r, cf ≤ r.

The peeling algorithm finds v1 = arg minv∈V f(v | V − v). It then recursively finds the ordering for V − v1 by
restricting f to V − v1, and appends the resulting ordering to v1. After computing the ordering, it picks, among all
suffixes of the ordering, the set S that maximizes the desired ratio f(S)/|S|. Via a simple combinatorial analysis
(inspired by [3, 35, 37, 38] for DSG), we prove a bound on the approximation ratio achieved by greedy peeling in
terms of cf .

Theorem 1.2. Let f : 2V → R≥0 be a nonnegative monotone supermodular function. Then the greedy peeling
algorithm for DSS on f has an approximation ratio of at least 1

cf
. For maximizing f(S)/g(|S|) where g is a

non-negative concave function, peeling yields an approximation ratio of at least 1
(cf+1) .

We can derive several previous results, in a unified fashion, by upper bounding cf . We encapsulate two general
results in the following and give more details in Section 3. The analysis for these cases is known to be tight from
previous work.

Corollary 1.1. Greedy peeling yields an r-approximation for DSS when f is an r-decomposable supermodular
function. For GDSG it yields a 1/(p+ 1)p approximation.

Remark 1.2. For a supermodular function f : 2V → R, we can define a k-core to be a maximal set S such that
f(v | S − v) ≥ k for all v ∈ S. Greedy peeling creates a nested “core” decomposition for any f . Although this
property is studied extensively in graphs with several applications [44], the connection to supermodularity is not
made explicit — see Theorem 3.2.

Convergence of iterative peeling algorithms. A formal description of the iterative peeling algorithm Greedy++

suggested in [12] is given in Figure 1 (see Section 4). Recall that Boob et al. conjectured that after T = O(1
ε2)

iterations, the algorithm returns a (1− ε)-approximate densest subgraph. The first iteration of the algorithm is
exactly the greedy peeling algorithm which implies that Greedy++ is a 1

2 -approximation. Despite the very strong
form of their conjecture, no better worst-case approximation bound was shown even after an arbitrary number of
iterations. We describe a natural extension of Greedy++ to the setting of DSS and we refer to it as Super-Greedy++

(see formal description in Section 4). We show that it converges to a near-optimal solution.

Theorem 1.3. Let f : 2V → R≥0 be a nonnegative supermodular function over the ground set V with
n = |V |. Super-Greedy++ outputs a (1 − ε)-approximate solution after T = O(

∆f log n
λ∗ε2) iterations where

∆f = maxv∈V f(V)− f(V − v) and λ∗ is optimum density. For DSG, Greedy++ outputs a (1− ε)-approximation
after O(∆ log n

λ∗ε2) iterations where ∆ is the maximum degree in the input graph.

Although we do not resolve the conjecture from [12] in its strongest form, our result captures its spirit, is
obtained via a connection to an MWU-based algorithm, and has the right dependence on ε. Further, ∆

λ∗ is likely to
be a small constant in practice. Resolving the precise convergence rate of Greedy++ and Super-Greedy++ in terms
of various parameters is an interesting open problem. The key to our proof is to consider the general problem
DSS via the Lovász extension of a supermodular function and a corresponding LP relaxation. Our result implies
that a simple extension of the peeling algorithm provably converges to an optimum solution for any instance of
DSS. The impressive practical performance of Greedy++ for DSG, and our result, give an impetus to try iterative
peeling for related problems.

The densest at-least-k supermodular subset problem. A useful variant of DSG is the following constrained
version: given an additional parameter k, find the densest subgraph among all subgraphs with at least k vertices.

4The notion of the curvature, introduced in [16], has been well-studied in the context of submodular function maximization (see
[58]). A similar notion to curvature called steepness [32] has been studied in the context of decreasing supermodular functions. Our
measure is related but appears to be different in that we consider a ratio that depends on all possible sets rather than on marginal
values of individual elements.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1534

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Andersen and Chellapilla [3] introduced this problem, and showed that the peeling algorithm with the modification
to choose the best suffix with at least k vertices yields a 1

3 -approximation. Khuller and Saha showed that the
problem is NP-hard while also giving a 1

2 -approximation [37], and Manurangsi showed that under the small set
expansion hypothesis, one cannot obtain a (1

2 + ε)-approximation for any constant ε > 0 [46]. We define the densest
at-least-k supermodular subset problem (DalkSS) which is the natural generalization of DSS. We extend the
results and algorithms in [3, 37] and prove the following theorem.

Theorem 1.4. A β-approximation for DSS implies a β
(β+1) -approximation for DalkSS. In particular there is a

1
2 -approximation for DalkSS. The peeling algorithm yields a 1

(cf+1) -approximation for DalkSS.

Along the way we note that the combinatorial algorithm of [37] creates a nested decomposition of dense
subgraphs which has been studied as locally dense decomposition in [17, 57, 59, 60]. The nested decompositon is
very natural in the context of supermodularity under the operation of contraction, while it may appear a bit ad
hoc in graphs. We note that our analysis of the peeling algorithm for DalkSS is used in proving the bound for
the variant of DSS with a concave denominator (see Theorem 1.2). For the special case of DSG and concave
denominator, [35] derived a 1

3 -approximation which follows as a corollary.
There are several other concrete algorithmic consequences, as well as questions, that arise out of our broad

investigation in this paper. We defer these to the future.

1.2 Technical Ideas Our first technical contribution is about flow-based approximations for DSG, which
produces a fractional b-matching problem. For maximum cardinality bipartite matching, it is well-known that
computing an approximate flow such that the shortest augmenting path in the residual network has length at
least 1/ε yields a (1−O(ε))-approximate matching. This idea has been exploited even in the setting of weighted
matchings in general graphs [18], and also for weighted matroid intersection [15]. The density problem is different
in that an approximately maximum weight matching does not suffice. A key idea in the proof of Theorem 1.1 is a
region-growing argument; similar ideas have appeared previously in local graph clustering [50]. The application of
these ideas to DSG appears to be novel.

Our second technical idea is to generalize Charikar’s LP for DSG to obtain a mathematical programming
relaxation for DSS. For this purpose we use the well-known Lovász extension f̂ of a supermodular function f .
f̂ extends the discrete function to the continuous domain [0, 1]V . It is known that f̂ is concave whenever f is
supermodular. One then obtains a relaxation for DSS as max f̂(x) subject to x ∈ [0, 1]V and

∑
v xv = 1. It is

not hard to prove that this convex program is an exact relaxation for DSS. A key observation is to rewrite the
preceding convex program as a linear program by considering the equivalent objective of minimizing |S|/f(S)

which leads to min
∑
v xv subject to x ∈ [0, 1]V and f̂(x) ≥ 1. The advantage of this reformulation comes via a

min-max characterization of f̂ that converts it into a large implicit linear program which corresponds to packing
orderings of the ground set V . This reformulation makes clear the key role that orderings play in DSS and DSG.
Our proof of convergence of Super-Greedy++ (and hence Greedy++) is based on interpreting it as a fixed-step size
version of MWU to approximately solve this linear program. Although it may appear simple in retrospect, we
note that the reformulations are far from clear without the proper general perspective.

Finally, a key to many of our results is to apply the lens of supermodularity. We apply this to peeling
algorithms to isolate the dependence of the approximation ratio for DSS, DalkSS and related problems on a
single parameter for f . This makes the analysis transparent, unifies past work, and points out the classes of
functions for which one can expect good bounds.

1.3 Other Related Work There is extensive work on dense subgraph discovery since it is an important topic
in data mining and social network analysis. We already referred to several surveys. Most of the work has been on
graph and hypergraph related problems due to their concrete nature and applications. Although supermodularity
has been recognized as the reason for tractability of DSG and several related problems, we are not aware of
any work that used the lens of supermodularity to unify existing results. In the literature, various objectives of
the form |E(S)|/g(S) are considered where g may not be submodular. In such cases the resulting problem often
becomes NP-Hard since they capture DkSG or one of its variants; we refer the reader to [62] and [35] where they
consider the case when g(S) is a convex function of |S|. Recall the GDSG problem in [65]; for p ≥ 1 it gives rise
to a supermodular objective while the setting of p < 1 gives rise to non-supermodular functions; their complexity
and approximability status is not yet clear.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1535

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

In the theoretical CS literature there has been extensive work on the densest k-subgraph problem (DkSG)
due to the important role it played (and plays) in approximation algorithms. The best known approximation
guarantee is O(min{k, n1/4+ε)}) [9] and there are also lower bounds on various strong mathematical programming
relaxations [10]. In contrast, it has been very difficult to prove hardness of approximation. There have been several
non-trivial works on hardness (see [2, 24, 36]) before Manurangsi [45] proved almost polynomial-factor hardness
under the ETH assumption; proving a similar hardness under P 6= NP remains a challenging open problem.
DkSG is also an interesting problem since several other seemingly unrelated problems can be reduced from it.
The approximability of DamkSG is closely related to that of DkSG [37].

As we mentioned already, there has been much interest in fast (approximation) algorithms for DSG and
related problems. There have been several interesting papers on parallel (PRAM, MapReduce and MPC) and
streaming models of computation [7, 8, 11, 21, 27, 47]. One can use sparsification to reduce the graph size as a
preprocessing step [21, 47, 48]. Dynamic graph algorithms have been of much interest in both theory and practice
and the paper of Sawlani and Wang [54] obtained the first fully dynamic algorithm for (1− ε)-approximate DSG
with worst-case polylogarithmic update time; the paper has pointers to prior work.

A convex optimization approach to DSG was developed by Danisch et al. [17], and adapted to the k-clique
densest subgraph problem [57]. The authors use Charikar’s LP relaxation and apply the Frank-Wolfe iterative
algorithm and analysis [33], viewing it as a convex program. Each iteration of the algorithm corresponds to a simple
procedure and one can use a bound on the iteration count of the Frank-Wolfe algorithm to obtain a convergence
guarantee. In fact, as we observe in this paper, one can view Charikar’s LP as a convex program via the Lovász
extension and apply the same Frank-Wolfe approach to any supermodular function. The convergence guarantee
coupled with the time for each iteration yields an overall run time of poly(m,n)/ε2 for a (1− ε)-approximation.
Theoretically faster algorithms are known for DSG (and also the hypergraph version) via the methods in [7, 13],
however, there is no direct empirical comparison between the various methods.

The directed DSG problem was proposed by Kannan and Vinay [34]. The input is a directed graph G = (V,E)
and the goal is to find two sets of vertices S, T (not necessarily disjoint) to maximize the ratio |E(S, T)|/

√
|S||T |

where E(S, T) is the set of arcs with one endpoint in S and the other in T . The directed version generalizes
the undirected one. Charikar [14] obtained an exact algorithm for directed DSG based on an LP relaxation as
well as a faster 2-approximation. Khuller and Saha [37] obtained a faster flow-based exact algorithm, and also
claimed that a peeling based linear-time algorithm was a 2-approximation. Ma et al. [43] showed that the claim
in [37] regarding peeling is incorrect, and developed another 2-approximation that runs in O(m2.5) time, as well
as other results. We mentioned the reduction in [54] (based on some ideas in [14]) that effectively reduces the
(1− ε)-approximate directed version to the vertex-weighted undirected version.

Organization. In Section 2, we present our flow-based approximation algorithm for DSG. We analyze the greedy
peeling algorithm for DSS in Section 3. In Section 4, we show the convergence of Greedy++ for DSG by proving
the convergence of the natural extension Super-Greedy++ for DSS. We present our approximation algorithms for
DalkSS in Section 5.

2 Flow-based approximation

We describe a simple and fast (1− ε)-approximation for DSG via flow that runs in Õ(m/ε) time. The algorithm
works for hypergraphs with edge and vertex weights. Previous (1− ε)-approximation algorithms [7, 12, 13] were
based on (non-flow) LP viewpoints, whereas our algorithm demonstrates the efficacy of flow specifically, while also
yielding the first algorithm that has near-linear dependence on the input size and 1/ε.

Let G = (V,E) be a hypergraph with positive edge weights w : E → [1,∞). Each hyperedge e ∈ E (which we
simply refer to as an edge) is a subset of vertices and hence e ⊆ V . We denote n = |V |, m = |E|, p =

∑
e∈E |e|,

and W =
∑
e∈E w(e). For a set of vertices U ⊆ V , E(U) = {e ∈ E | e ⊆ U} is the set of edges contained in U ,

and we let f(U)
def
=
∑
e∈E(U) w(e) denote the weight of E(U); f(U) is supermodular. The goal is to maximize the

ratio f(U)/|U |, which is called the density of U , over all sets U (where we treat 0/0 = 0). We also consider the
version with vertex weights at the end of the section — see Remark 2.1. The main result of this section is the
following approximation algorithm via flow.

Theorem 2.1. Given a weighted hypergraph of total size p, minimum edge weight 1, and total edge weight W ,
and parameters λ > 0 and ε ∈ (0, 1), there is a deterministic algorithm that, in O

(
p ln(W) log

(
(m+ n)2/p

)
/ε
)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1536

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

time5, either:

1. Certifies that the densest subgraph of H has density at most λ.

2. Returns a subgraph of density at least (1− ε)λ.

We can approximate the densest subgraph with an additional log n factor in the running time.

Corollary 2.1. Given a weighted hypergraph of total size p, rank r, minimum edge weight 1 and total edge weight
W , and parameter ε ∈ (0, 1), there is a deterministic algorithm that, in O

(
p ln(W) log

(
(m+ n)2/p

)
(ln(r) + 1/ε)

)
time, computes a (1− ε)-approximate densest subgraph.

Proof. We obtain an r-approximation to λ∗, the optimum density, via the simple peeling algorithm. Using binary
search, in O(log r) calls to the algorithm in Theorem 2.1 with fixed error tolerance (say 1/2), we can obtain a
2-approximation to λ∗ in total time O

(
p ln(W) log

(
(m+ n)2/p

)
ln r
)
. For i ∈ Z≥0, let εi = 1/2i. We start off with

the 2-approximation which is a (1 + ε0)-factor approximation. For i ≥ 0, given an (1 + εi)-approximation to the
optimum density, one can compute a (1 + εi+1)-approximation to the optimum density in O(1) calls to Theorem
2.1 with error parameter εi+1, which takes O

(
p ln(W) log

(
(m+ n)2/p

)
/εi+1

)
time. Refine the approximate

density in this manner until ε/2 ≤ εi ≤ ε, the total running time is dominated by the last iteration, giving
O
(
p ln(W) log

(
(m+ n)2/p

)
/ε
)
time for this second phase. Combining the running time of the two phases yields

the desired time bound.

2.1 Flow network and setup We start with a reduction of DSG to flow that generalizes naturally to
hypergraphs. The reduction is slightly different from the classical ones [29, 51] and is inspired by the dual of
the LP considered by Charikar [14]; as far as we are aware this was first described in [12] . Given a parameter
λ > 0, one can verify that the maximum density is at most λ via flow in the following bipartite flow network
H = (VH , EH). (We discuss arcs when referring to EH to distinguish them from undirected edges of G.) VH
consists of the following vertices: a source s, a sink t, a vertex ae for each edge e ∈ E, and a vertex av for every
vertex v ∈ V . EH consists of the following: an arc (s, ae) with capacity w(e) for every e ∈ E; an arc (av, t) with
capacity λ for every vertex v ∈ V ; and an arc (ae, av) with capacity +∞ for every edge e ∈ E and every endpoint
v ∈ e. The total size of the flow network is O(p). Note that the maximum (s, t)-flow in H is at most W (assuming
W ≥ nλ wlog), as this is the total out-degree of s. We will represent a flow in H by a vector x ∈ REH≥0 and let |x|
denote the value of flow.

For every set U ⊆ V , the vertex set

{s} ∪ {av : v ∈ U} ∪ {ae : e ∈ E and e ⊆ U}

– which gathers all the auxiliary vertices associated with the subgraph G[U], along with s – induces an (s, t)-cut in
H of capacity W − f(U) + λ|U |. In particular, if U has density strictly greater than λ, then the maximum flow
has size less than W . (The converse – if the densest subgraph has density at most λ, then the maximum flow has
size W – also holds, but here it is not needed.)

Let x be a fixed flow. The arc (s, ae) is saturated if x(s, ae) = w(e) — and also say that the edge e ∈ E is
saturated — and unsaturated otherwise. We let Hx denote the residual graph of x. We call an arc in Hx an input
arc if it also appears in H, and a reverse arc if it does not. For a set of vertices S in H, we let ∂+(S |Hx) denote
the out-cut of S in the residual graph Hx, and we let c(∂+(S |Hx)) denote the total capacity of this cut.

For a fixed flow x, we consider distances from s in Hx w/r/t the number of reversed arcs in any path. Let
Li be the ith level set in distance (measured by the number of reverse arcs) from s (but excluding s). We call
an arc in Hx a forwards arc if it goes from Li to Li+1 for some i; otherwise it is called a backwards arc. (Note
that “backwards” and “reverse” have different meanings, and that all forwards arcs are reverse arcs.) For each
index i, we let Si = L0 ∪ L1 ∪ · · · ∪ Li denote the union of the level sets up to Li. We let Fi = {e ∈ E : ae ∈ Si}
denote the set of edges whose auxiliary vertex is in Si. We let Ui = {v ∈ V : av ∈ Si} be the set of vertices whose
auxiliary vertex is in Si.

With the flow network and notation as described above, we have the following convenient properties that are
easily verified.

5For (1− ε)-approximations W can be reduced to be a small polynomial in m,n via a standard preprocessing step of removing
edges whose weight is much smaller than the heaviest weight edge. Hence, ln(W) = O(ln(m+ n)).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1537

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Lemma 2.1. For any flow x in H, we have the following.

1. If an edge e ∈ E is unsaturated, then ae ∈ L0.

2. For all edges e ∈ E, and endpoints v ∈ e, if ae ∈ Si, then av ∈ Si.

2.2 Approximation analysis: long augmenting paths imply dense level sets Through this section, let x
be a fixed flow, and let h be the minimum number of reverse arcs along any augmenting path. We analyze the
densities of the subgraphs induced by the sets Ui and prove that, unless x already routes W units of flow, larger
values of h imply a greater maximum density among these subgraphs.

Lemma 2.2. Suppose x is not a maximum flow in H, and the reverse-arc-distance of the shortest augmenting
path is at least h. Then there is an index i such that

c
(
∂+(s+ Si |Hx)

)
≤
(
W 1/h − 1

)
w(Fi).

Proof. Observe that all forwards arcs from Li to Li+1 – i.e., in ∂+(s+ Si |Hx) – are of the form (av, ae) for a
saturated edge e ∈ E and an endpoint v ∈ e. For such an edge e, we have e ∈ Fi+1 \ Fi, and the total capacity of
its associated forward (and reverse) arcs – (avi , ae) in Hx over i ∈ [k] – is at most w(e). Charging the capacity of
these forward arcs to the weight of e, and summing over all e, we have

c
(
∂+(s+ Si |Hx)

)
≤ w(Fi+1)− w(Fi)(2.1)

for all i ∈ Z≥0.
Now, suppose by contradiction that c(∂+(s+ Si |Hx)) >

(
W 1/h − 1

)
w(Fi) for all i. Then for each i, we have

w(Fi+1)
(a)
≥ c

(
∂+(s+ Si |Hx)

)
+ w(Fi) > W 1/hw(Fi)

where (a) is by (2.1). Unrolling via the above, we have

W ≥ w(Fh) > W 1/hw(Fh−1) > · · · > Ww(F0)
(b)
≥ W,

a contradiction. Here (b) is because F0 is nonempty when x is not a maximum flow (per Lemma 2.1), and every
edge has weight at least 1.

Lemma 2.3. Suppose x is not a maximum flow in H, and that any augmenting path in Hx has at least h reverse
arcs. Then there exists an index i such that

f(Ui)

|Ui|
≥W−1/hλ.

Proof. Let i be the index asserted by Lemma 2.2. We have

W
(c)
> |x| = c

(
∂+(s+ Si |H)

)
− c
(
∂+(s+ Si |Hx)

)
(d)
≥ λ|Ui|+W − f(Ui)− c

(
∂+(s+ Si |Hx)

)
(e)
≥ λ|Ui|+W − f(Ui)−

(
W 1/h − 1

)
w(Fi)

(f)
≥ λ|Ui|+W −W 1/hf(Ui).

as desired (up to rearrangement). Here (c) is because x is not a max flow. (d) is by construction of H. (e) is by
choice of i (per Lemma 2.2). (f) is because Fi ⊆ E(Ui) for all i by Lemma 2.1.

This brings us to the proof of Theorem 2.1.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1538

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

2.3 Proof of Theorem 2.1 Let h0 = d2 ln(W)/εe+ 2 and let h1 = 2h0 + 2. By running blocking flows in H for
h1 iterations, we obtain a flow x where the length of the shortest augmenting path in Hx is at least h1. Observe
that any augmenting path in Hx must alternate between input and reverse edges except at the beginning and end
where there are two consecutive input edges. Thus every augmenting path has at least h0 reverse edges. Either x
is a flow of size W – certifying that every subgraph has density at most λ – or by Lemma 2.3, we obtain a set
U ⊆ V such that

f(U) ≥W−1/h0λ|U | ≥ e−ε/2λ|U | ≥ (1− ε)λ|U |,

as desired.
As for the running time, each blocking flow takes O

(
p log

(
(m+ n)2/p

))
time [30], so constructing x takes

O
(
p ln(W) log

(
(m+ n)2/p

)
/ε
)
time. It is easy to see that the set U can be obtained in O(p) time.

Remark 2.1. Consider the variant where the vertices in the input hypergraph G = (V,E) have non-negative
weights given by g : V → R>0, and the goal is to solve maxS⊆V f(S)/g(S). Theorem 2.1 and its corollary easily
extend to this setting. The flow network assigns the capacity of the arc (av, t) to be λ · g(v) instead of λ. The
vertex-weighted version is useful in reducing the densest subgraph problem in directed graphs to one in undirected
graphs [54].

3 Greedy peeling algorithm for DSS

Let f : 2V → R≥0 be a nonnegative monotone supermodular function with f(∅) = 0. We consider the natural
peeling algorithm to find maxS⊆V

f(S)
|S| . Recall from the introduction that the algorithm creates an ordering

v1, v2, . . . , vn of V with the property that for each j, vj = arg minv∈Sj f(v | Sj − v) where Sj = {vj , vj+1, . . . , vn}.
The algorithm returns Sj where j = arg maxi

f(Si)
|Si| . The analysis is via the parameter cf . Recall that for any

S ⊆ V we have f(S) ≤
∑
v∈S f(v | S − v) ≤ cff(S).

Theorem 3.1. Let f : 2V → R≥0 be a nonnegative monotone supermodular function where f(∅) = 0. The natural
greedy peeling algorithm has an approximation ratio of at least 1

cf
.

Proof. Let S∗ be a maximum density subset and λ∗ = f(S∗)
|S∗| . We claim that for all v ∈ S∗, f(v | S∗ − v) ≥ λ∗.

If S∗ is a singleton {v}, then f(v | S∗ − v) = f(S∗)− f(∅) = λ∗. Suppose |S∗| ≥ 2 and the claim is false. Then
f(S∗)− f(S∗ − v) < f(S∗)

|S∗| . Rearranging, we have f(S∗−v)
|S∗|−1 > f(S∗)

|S∗| , but then the set S∗ − v would contradict the
optimality of S∗, thus proving the claim. Let vj be the first element of S∗ in the peeling order. Thus, vj ∈ Sj
and S∗ ⊆ Sj where f(vj | Sj − vj) = minu∈Sj f(u | Sj − u). From our earlier claim f(vj | S∗ − vj) ≥ λ∗, and by
supermodularity f(vj | Sj − vj) ≥ λ∗ since S∗ ⊆ Sj . To lower bound the density of Sj , we have

f(Sj)

|Sj |
=

f(Sj)∑
u∈Sj f(u | Sj − u)

·
∑
u∈Sj f(u | Sj − u)

|Sj |
≥ 1

cf
· |Sj |f(vj | Sj − vj)

|Sj |
≥ λ∗

cf
.

The first inequality follows from the definition of cf and the choice of vj (monotonicity of f implies all marginal
values are positive), and the second inequality is from the preceding argument that f(vj | Sj − vj) ≥ λ∗. Sj is a
set considered for output by the algorithm; this concludes the proof.

The preceding proof is similar to the one in [37] for DSG. One can summarize the argument as proving two separate
facts: (i) for any j we have f(Sj)/|Sj | ≥ f(vj | Sj − vj)/cf , and (ii) there exists a j such that f(vj | Sj) ≥ λ∗.
Upper bounding cf . The generic analysis of peeling reduces the approximation analysis to estimating an
upper bound on cf which is often straight forward. We already observed that when f(S) = |E(S)| for a rank
r hypergraph, cf ≤ r. Rank r hypergraphs implicitly capture various density measures such as triangle and
k-clique density [61] and pattern graph density [22]. To further generalize hypergraphs we consider r-decomposable
supermodular functions — a similar notion is studied in the submodular minimization literature [6, 20, 49, 56].
We define this class below.

Definition 3.1. A non-negative supermodular function f : 2V → R+ is r-decomposable if there exist subsets
V1, V2, . . . , Vm of V and non-negative supermodular functions f1, f2, . . . , fm such that (i) |Vi| ≤ r for each i (ii)
fi : 2Vi → R+ for each i, and (iii) f(S) =

∑m
i=1 fi(S ∩ Vi) for each S ⊆ V .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1539

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

We now upper bound cf for an r-decomposable supermodular function f .

Proposition 3.1. For any non-negative r-decomposable supermodular function f , cf ≤ r.

Proof. As f is r-decomposable, for S ⊆ V , we can write f(S) =
∑m
i=1 fi(S ∩ Vi) for nonnegative supermodular

functions fi : 2Vi → R+ where |Vi| ≤ r for each i. Let S ⊆ V . We have

∑
v∈S

f(v | S − v) =
∑
v∈S

m∑
i=1

(fi(S ∩ Vi)− fi((S ∩ Vi)− v)) =
m∑
i=1

∑
v∈S∩Vi

fi(v | (S ∩ Vi)− v).

Then
m∑
i=1

∑
v∈S∩Vi

fi(v | (S ∩ Vi)− v) ≤
m∑
i=1

|Vi| · fi(S ∩ Vi) ≤ r ·
m∑
i=1

fi(S ∩ Vi) = r · f(S),

where the first inequality follows by the nonnegativity of the fi. This implies cf ≤ r.

Another interesting class of supermodular functions associated with graphs was considered recently in [65].
Given a graph G = (V,E) and a parameter p they consider the function gp(S) =

∑
v∈S dS(v)p where dS(v) is the

degree of v in the induced graph G[S]. They observed that for p ≥ 1, gp is supermodular. They prove that peeling
with respect to gp gives a 1/(p+ 1) approximation, yielding a 1/(p+ 1)1/p approximation for the GDSG problem.
Implicit in their proof is the following claim that we reprove formally for the sake of completeness.

Proposition 3.2. For the function f = gp when p ≥ 1, cf ≤ p+ 1.

Proof. Let N(v) = {u ∈ V : uv ∈ E} denote the neighborhood of v in G. As the function h(x) = xp is convex in
x, h(y) ≥ h(z) + h′(z)(y − z) for all y, z ∈ R≥0 where h′ denotes the derivative of h. Setting z = x and y = x− 1,
we have xp − (x− 1)p ≤ pxp−1. Then

∑
v∈S

gp(v | S − v) =
∑
v∈S

dS(v)p +
∑

u∈N(v)∩S

dS(u)p − (dS(u)− 1)p


≤
∑
v∈S

dS(v)p +
∑

u∈N(v)∩S

p · dS(u)p−1


= (p+ 1)

∑
v∈S

dS(v)p

= (p+ 1) · gp(S),

implying cf ≤ p+ 1.

Density with concave denominator. Consider the problem of finding a set S minimizing f(S)
g(|S|) where g is

a real-valued non-negative concave function. This problem is polynomial-time solvable since g is a submodular
function. Here we consider the approximation provided by the peeling algorithm. Let v1, v2, . . . , vn be the order
produced by the greedy peeling algorithm for the DSS on input f and let Sj = {vj , vj+1, . . . , vn} for j ∈ [n]. We
show that the algorithm that returns the set Sj maximizing f(Sj)

g(|Sj |) yields a 1
cf+1 -approximation. The problem and

analysis is inspired by the work of Kawase and Miyauchi who considered maximizing |EG(S)|
g(|S|) for an undirected

graph G [35]. We leverage the analysis of the greedy peeling algorithm for DalkSS, and for this reason we describe
it in Section 5.3 after we consider DalkSS.

Core decomposition of a supermodular function. It is well-known that greedy peeling yields a “core”
decomposition for an undirected graph. In fact this is a property of supermodularity. To understand this we first
consider the definition of a k-core of a graph G = (V,E): a k-core is a maximal subset S ⊆ V of vertices such that
the degree of every vertex in G[S] is at least k. It is not hard to establish that the k-core is unique for any given k

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1540

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Greedy++(G = (V,E), T ∈ Z+)

for all v ∈ V , set `(0)
v = 0

for i from 1 to T do
Si,1 ← V
for j from 1 to n− 1 do
vi,j ← arg min

v∈Si,j
`(i−1)
v + degG[Si,j](v)

`(i)vi,j ← `(i−1)
vi,j + degG[Si,j](v)

Si,j+1 ← Si,j − vi,j
end for

end for
return arg max

Si,j

|E(Si,j)|
|Si,j |

Super-Greedy++(f : 2V → R≥0, T ∈ Z+)

for all v ∈ V , set `(0)
v = 0

for t from 1 to T do
St,1 ← V
for j from 1 to n do
vt,j ← arg min

v∈St,j
`(t−1)
v + f(v | St,j − v)

`(t)vt,j ← `(t−1)
vt,j + f(vt,j | St,j − vt,j)

St,j+1 ← St,j − vt,j
end for

end for
return arg max

St,j

f(St,j)

|St,j |

Figure 1: The Greedy++ algorithm of Boob et al. [12] and an extension to DSS called Super-Greedy++.

and that if S1 is the k1-core and S2 is the k2-core with k1 ≤ k2 then S2 ⊆ S1. In other words the k-cores form
a nested sequence. In fact, the peeling algorithm generates all the nested k-cores as suffixes of the ordering it
produces. We refer the reader to [44] for an extensive survey. For a supermodular function f : 2V → R+ we define
the k-core as a maximal subset S ⊆ V such that f(v | S − v) ≥ k for all v ∈ S. It is not hard to verify that greedy
peeling creates a core decomposition for any supermodular function. We believe that this property is known to
experts but does not seem to be explicit in the literature. For this reason we capture the property in a theorem
and provide a short proof.

Theorem 3.2. Let f : 2V → R+ be a supermodular function. Let v1, v2, . . . , vn be the ordering produced by the
greedy peeling algorithm on f . For any number γ there is a unique γ-core C(γ) of f , and moreover C(γ) = Si
where i is the smallest index such that f(vi | Si − vi) ≥ γ.

Proof. Suppose A and B are both γ-cores and A 6= B. For any v ∈ A ∪ B we have f(v | A − v) ≥ γ and
f(v | B − v) ≥ γ since A,B are γ-cores, and this implies, by supermodularity that f(v | A ∪ B − v) ≥ γ. This
contradicts maximality of A,B and hence there is a unique γ-core.

Let C(γ) be the γ-core and let vj be the first element of C(γ) in the peeling order. This implies that C(γ) ⊆ Sj .
Since vj ∈ C(γ), f(vj | C(γ)− vj) ≥ γ, and by supermodularity, f(vj | Sj − vj) ≥ γ because C(γ) ⊆ Sj . From the
peeling property it follows that for all u ∈ Sj , f(u | Sj − vj) ≥ γ. Since C(γ) is unique we must have Sj = C(γ).

4 Iterative Peeling for DSG and DSS
As discussed in the introduction, this section is motivated by the work of [12] who proposed the algorithm

Greedy++ for DSG. They conjectured that Greedy++ converges to a (1− ε)-approximation in O(1/ε2) iterations.
In this section, we present and analyze an algorithm for the more general DSS problem called Super-Greedy++.
See Figure 1 for a formal description.

We first give an informal description of Super-Greedy++ and offer some intuition (which comes from [12]
via Greedy++). Recall that a single iteration of the peeling algorithm already gives an approximation for DSS.
Super-Greedy++, following Greedy++, tries to improve the approximation by iteratively running the peeling algorithm,
with a similar greedy peeling process that are now based on loads. Loads, which are defined element-wise, are
inspired by the load-balancing LP for DSG, and incorporate information from earlier iterations of peeling. The
load of an element v is denoted `v, and initially all vertices v have load 0. In each iteration, the load-based peeling
process peels off the element v that minimizes `v + f(v |S − v), where S denotes the set of vertices remaining at an
intermediate point in the peeling process. For the peeled off element v, we increase `v by f(v |S − v). Observe that
the first iteration, where `(0)

v = 0, coincides with the standard peeling algorithm analyzed in Section 3. Selecting v
to minimize `v + f(v |S − v) can be interpreted as a greedy heuristic to minimize the maximum load over all the

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1541

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

elements (partly because by supermodularity, the increase of f(v |S − v) dwindles as elements are peeled from
S). This reflects the intuition behind the standard greedy peeling algorithm, except now in a certain aggregate
sense. The hope is that the loads converge to an optimum solution to the load-balancing LP (for DSG). For each
iteration of load-based peeling, the suffixes of the peeling order are candidates for the densest supermodular set.
Super-Greedy++ outputs the densest suffix over all of its iterations.

Super-Greedy++ is appealing because it is simple and intuitive. We prove that it also converges to optimum
solutions to DSS, as follows.

Theorem 4.1. Let f : 2V → R≥0 be a normalized, nonnegative, and monotone supermodular function. Let
ε ∈ (0, 1). Let ∆ = maxv∈V f(v |V) and let λ? be the maximum density. For T ≥ O

(
∆ ln(n)
λ?ε2

)
, Super-Greedy++

outputs a (1− ε)-approximation to DSS.

Therefore, as a special case of Super-Greedy++, Greedy++ outputs a (1− ε)-approximation in O(∆ ln(n)
λ?ε2) iterations

where ∆ is the maximum degree of the graph.
The remainder of this section is dedicated to proving Theorem 4.1. Throughout this section, we let f , ∆, λ?,

T , and ε be fixed and as described in Theorem 4.1. For ease of exposition, we will instead prove Theorem 4.1
with a (1− cε)-approximation for some constant c ≥ 1, rather than 1− ε. The (1− ε)-approximation bound then
follows from decreasing ε by a constant factor, which only increases the constant hidden in the O

(
∆ ln(n)
λ?ε2

)
.

The high-level argument is as follows. First, we identify a different packing LP for DSS, where solutions to
the dual covering LP can be rounded to solutions to DSS. We then describe a robust MWU algorithm for this
packing LP (which also gives solutions to the dual) and describe standard bounds that match Theorem 4.1 (but
for a different algorithm). Having established the MWU framework as an algorithmic template, we argue that
Super-Greedy++ is in fact a special case of the MWU framework, and that it is also implicitly rounding the dual
solution provided by MWU (approximately) on-the-fly. In the end, we obtain the bounds of Theorem 4.1 by proxy
to the MWU framework, for a carefully selected packing LP formulation of DSS.

4.1 The Lovász extension, contrapolymatroids, and packing and covering LPs based on orderings
As discussed, there are multiple ways to express DSG as a linear program. The flow formulation of [29, 51], the
load balancing LP via the dual of the LP of Charikar [14] (motivating [12, 13]), the low-width packing formulation
of [7], and the associated dual LPs all model DSG yet lead to very different algorithms and bounds. However
none of these LP’s fully explain Greedy++. Another shortcoming of existing LP’s is the explicit dependence on
the underlying graph. To generalize to DSS, we require an LP that abstracts out the underlying graph. In this
section, with these motivations in hand, we derive another LP for DSS. Our approach is based on connections
between the Lovász extension, contrapolymatroids, and the symmetric group of V , building on classical work by
Edmonds [19] and Lovász [42].

Let f̂ : [0, 1]E → R≥0 denote the Lovász extension of f . There are multiple equivalent definitions of f̂
(cf. [42]) and here we give a concrete one convenient for our discussion. Given x ∈ [0, 1]E , and τ ∈ [0, 1], let
Sτ = {v ∈ V : xv ≥ τ}. Then

f̂(x) = E
τ

[f(Sτ)]

where the randomness is over τ ∈ [0, 1] drawn uniformly at random. It is well-known that f̂ is a (piece-wise linear)
concave function iff f is supermodular (equivalently it is convex iff f is submodular). Consider now the following
maximization problem.

maximize f̂(x) over x ∈ RV≥0 s.t.
∑
v∈V

xv ≤ 1.(4.2)

(4.2) is essentially equivalent to DSS in the following sense.

Lemma 4.1. (4.2) is an exact formulation for DSS. Moreover:

1. Given a set S with density λ, the vector x = 1S/|S| is feasible in (4.2) and has value f̂(x) = λ.

2. Given a feasible solution x to (4.2), there exists a value τ ∈ [0, 1] such that Sτ has density at least f̂(x).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1542

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Proof. The initial claim regarding the objective value follows from the two subsequent items. The first item follows
directly from the definition of f̂(x). For the second item, fix a feasible x for (4.2), and suppose by contradiction
that all sets of the form Sτ have density less than f̂(x). Then

f̂(x) = E[f(Sτ)] < f̂(x) E[|Sτ |] = f̂(x)〈1, x〉 = f̂(x),

a contradiction.

Charikar’s LP for DSG [14] is a special case of (4.2). This can be seen by noting that f̂(x) =
∑
uv∈E min{xu, xv}

when f(S) = |E(S)| for a given graph G = (V,E); one can then rewrite the concave objective as a linear objective
via additional variables ye for e ∈ E. In general, (4.2) is not a linear program. Towards an LP formulation, let SV
denote the symmetric group (i.e., the set of all permutations, or equivalently, the set of all orderings) of V . For an
ordering σ ∈ SV , consider the vector q(σ) ∈ RV≥0 defined by

qv(σ) = f(v | {w : w ≺σ v})

for v ∈ V . Then f̂ can now be described alternatively as follows.

Lemma 4.2. For all x ∈ [0, 1]V , f̂(x) = minσ〈x, q(σ)〉. Moreover, for a given x, minσ〈x, q(σ)〉 is attained by the
ordering σx that sorts the elements of V in decreasing order of values xv.

The proof of the first claim Lemma 4.2 follows from combining work of Edmonds [19] (who showed that the points
q(σ) give the vertices of the base contrapolymatroid of f) and Lovász [42] (who showed that f̂(x) minimizes 〈x, p〉
over all points p in the base contrapolymatroid). The second claim comes from the greedy algorithm of [19]. (See
also [55].)

The characterization of the Lovász extension given in Lemma 4.2 allows us to express (4.2) as an LP. Recall
that λ? denotes the optimum value of DSS and (4.2), and consider the following LP.

minimize
∑
v∈V

xv over x ≥ 0 s.t. 〈x, q(σ)〉 ≥ λ? for all σ ∈ SV .(4.3)

The covering constraints over σ ∈ Sv are equivalent to the requirement that f̂(x) ≥ λ?. Clearly, by choice of λ?,
the optimum value of this covering LP is 1, and any optimum solution of (4.3) is also an optimum solution to
(4.2). The dual of (4.3) is the following packing LP:

maximize λ?
∑
σ∈SV

yσ over y : SV → R≥0 s.t.
∑
σ∈SV

yσqv(σ) ≤ 1 for all v ∈ V.(4.4)

This final LP – packing (vertices of the contrapolymatroid of f induced by) orderings, into 1V – is the LP that we
will argue that Super-Greedy++ is implicitly solving. We will also argue Super-Greedy++ is solving (and rounding)
the dual covering LP (4.3). Before entering this next segment of our proof, let us summarize our discussion in the
following lemma. We omit the proof which is straightforward given the description above.

Lemma 4.3. (4.3) and (4.4) have optimum value 1. Given a feasible solution x to (4.3), there exists τ ∈ [0, 1]
such that the set Sτ = {v ∈ V : xv ≥ τ} has density λ?/〈1, x〉.

4.2 Solving packing LP (4.4) via MWU In the preceding section, we identified dual pure packing and
covering LP’s, (4.4) and (4.3), that model DSS. Observe that the packing LP (4.4) has n constraints indexed by
V and exponentially many variables indexed by SV .

For a set of weights w : V → R≥0, the Lagrangian relaxation of (4.4) induced by w (collapsing the n packing
constraints to a single one) is solved by identifying the ordering σ ∈ SV minimizing 〈w, q(σ)〉. As noted in Lemma
4.2, this is polynomial time solvable by taking σ ∈ SV to be the ordering that is decreasing in wv. This feature
makes (4.4) well-suited to the MWU framework which approximates (4.4) via a sequence of approximate solutions
to such relaxations.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1543

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Order-Packing-MWU(f : 2V → R≥0, ε ∈ (0, 1), T ∈ N, α ≥ 1)

w(0) ← 1V , y(0) ← 0SV , and η ← ln n
ε

for t from 1 to T do
σ(t) ← any σ ∈ SV such that
〈w(t), q(σ)〉 ≤ αminσ′∈SV 〈w

(t), q(σ′)〉
y(t) ← y(t−1) + 1

λ?T 1σ(t)

for v ∈ V do
w(t+1)
v ← w(t)

v · e
η

λ?T
qv(σ(t)) = eη

∑
σ y

(t)
σ qv(σ)

end for
end for
return y(T) // = 1

λ?T

∑T
t=1 1σ(t)

Figure 2: The MWU framework applied to the packing LP (4.4).

When we apply the MWU framework to (4.4), with a fixed (i.e., width-dependent) step size6, we obtain the
algorithm Order-Packing-MWU described in figure Figure 27. We highlight some salient features of this algorithm.
First, the parameter ∆ plays a role as it bounds the maximum load induced on a single packing constraint by any
choice of σ. Meanwhile the optimum value of the LP is 1/λ? which constrains the sum of yσ’s. This leads to an
iteration count proportional to ∆/λ?. Second, the MWU framework is robust to approximate solutions to the
Lagrangian relaxation, where an α-approximation to the relaxation leads to an additional α-multiplicative factor in
the approximation of the ultimate solution. This tolerance to local approximation plays a critical role in the overall
argument, as we will later prove that the iterative peeling step in Super-Greedy++ produces orderings π(t) that
approximate these Lagrangian relaxations. (We have encoded α explicitly as a parameter to Order-Packing-MWU.)
Standard analyses for the MWU framework implies the following bounds.

Lemma 4.4. T ≥ O
(
∆ ln(n)/λ?ε2

)
, and α ≥ 1, Order-Packing-MWU has the following guarantees, where we let

β = (1 + ε)α.

1. The vector β−1y(T) is a β−1-approximate solution to the packing LP (4.4).

2. For some iteration t ∈ [T], the point βw(t)/〈1, w(t)〉 is a feasible β-approximate solution for the dual covering
LP (4.3).

Proof. The proof is standard and included for the sake of completeness8. For ease of readability, we prove the
lemma except with the (1 + ε) replaced with (1 + 2ε). The claimed bounds then follow from replacing ε with ε/2
by a constant, which only increases the hidden constant in T .

Let β = (1 + 2ε)α. We first address the first claim, that β−1y(T) is a β−1-approximation to (4.4). Clearly
y(T) has objective value λ?〈1, y(T)〉 = λ?

∑T
t=1

1
λ?T = 1, which is the optimum value of (4.4). We claim that y(T)

violates the packing constraints by at most a β-multiplicative factor. If so, then scaling y(T) down by β makes it a
feasible β−1-approximation.

Let y? : SV → R≥0 be an optimal solution to (4.3). In particular, we have
∑
σ y

?
σ = 1/λ? and

∑
σ y

?
σqv(σ) ≤ 1

for all v ∈ V . Now, for each iteration t, we have

〈w(t), q(σ(t))〉 ≤ α∑
σ y

?
σ

∑
σ

y?σ〈w(t), q(σ)〉 ≤ α∑
σ y

?
σ

〈w(t), 1〉 = αλ?〈w(t), 1〉.(4.5)

6MWU is an extensively used technique for solving linear programs, and there are several variants [4]. The one that we need is
closest to the algorithm from [52]. We give a short self-contained analysis using our terminology.

7The algorithm Order-Packing-MWU assumes access to λ?, which is not known a priori. This is valid because here Order-Packing-
MWU serves only as an idealized algorithm that facilitates the analysis of Super-Greedy++. One can rewrite Order-Packing-MWU to
avoid the dependence on λ?; however, the relation to Super-Greedy++ becomes more complicated.

8Particularly as there are some competing notions of “width” in the literature for DSG.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1544

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Consequently, for each iteration t, we have

〈1, w(t+1)〉 =
∑
v

w(t)
v e

η
λ?T

qv(σ(t))
(g)
≤ 〈1, w(t)〉+

(1 + ε)η

λ?T
〈w(t), q(σ(t))〉

≤ 1 +
(1 + ε)αη

T
〈1, w(t)〉 ≤ e(1+ε)αη/T 〈1, w(t)〉.

Here (g) is by the inequality ex ≤ 1 + x+ x2 for small x, noting that η
λ?T q(σ

(t)
v) ≤ εq(σ(t)

v)/∆ ≤ ε. Unrolling the
inequality obtained above from w(T) down to w(0) = 1 gives 〈1, w(T)〉 ≤ eεαηn. Now, for each element v, we have∑

σ

y(T)
σ qv(σ) =

1

η
ln(w(T)) ≤ 1

η
ln(〈1, w(T)〉) ≤ (1 + ε)α+ ε ≤ β,

as desired.
Suppose by contradiction that for all iterations t, x(t) = βw(t)/〈1, w(t)〉 was not a β-approximation. In

particular, x(t) is not feasible for (4.3). Then for every iteration t, instead of (4.5), we obtain the stronger
inequality,

〈w(t), q(σ(t))〉 =
〈1, w(t)〉

β
〈x(t), q(σ(t))〉 ≤ α〈1, w(t)〉

β
min
σ′
〈x(t), q(σ′)〉 < α〈1, w(t)〉

β
λ?.(4.6)

(4.6) is stronger than the inequality (4.5) by a factor of β (and makes the inequality strict). Then repeating the
same calculations as for the first claim above, except using (4.6) instead of (4.5), improves the bounds by a factor
of β and leads us to conclude

∑
σ y

(T)
σ qv(σ) < 1. But then scaling up y(T) slightly gives a feasible solution with

objective value better than λ?, a contradiction. This establishes the second claim and completes the proof.

4.3 Super-Greedy++ as a special case of MWU Each iteration of Super-Greedy++ peels the elements in
some order. Let π(t) ∈ SV denote the reverse of this peeled ordering in iteration t. In this section, we recast
Super-Greedy++ as a special case of Order-Packing-MWU, where the reverse-peeled orderings π(t) assume the roles
of orderings σ(t) selected in Order-Packing-MWU.

Lemma 4.5. Super-Greedy++ is an instance of Order-Packing-MWU with α = eε via the following correspondence
for each iteration t ∈ [T].

1. For each v ∈ V , `(t)v in Super-Greedy++ corresponds to λ?T
∑
σ y

(t)
σ qv(σ) in Order-Packing-MWU, thereby

w(t) = e(η/λ?T)`(t)v .

2. Each π(t) in Super-Greedy++ corresponds to σ(t) in Order-Packing-MWU.

Proof. The claim in item 1 holds initially for t = 0 when `(0) = 0 and w(0) = 1. The key claim is that

Each π(t) is an eε-approximation to the ordering σ ∈ SV minimizing
〈
w(t), q(σ)

〉
.

Assuming this claim, it is easy to see that the subsequent increase in `(t) in Super-Greedy++ matches the subsequent
increase in w(t) to maintain the correspondence in item 1. Here we point out that since π(t) is the reverse of the
peeling order, qvt,j (π(t)) = f(vt,j |St,j − vt,j) for all j. We then have

∑
σ y

(t)
σ qv(σ) = 1

λ?T

∑
t σ

(t)qv(σ
(t)) = 1

λ?T `
(t)
v ,

and w(t) = exp(η
∑
σ y

(t)
σ qv(σ)) = exp

(
η
λ?T `

(t)
v

)
, for all t.

To prove the claim, fix an iteration t, and let γ(t) be the ordering decreasing in w(t)
v . By Lemma 4.2, γ(t)

minimizes 〈w(t), q(σ)〉 over all orderings σ ∈ SV . We prove in Lemma 4.6 below that there exists a vector
w̃(t) : V → R>0 such that (a) w(t) ≤ w̃(t) ≤ eεw(t) and (b) π(t) is decreasing in w̃(t). Assuming such a vector w̃(t),
we then have

〈q(π(t)), w(t)〉
(h)
≤ 〈q(π(t)), w̃(t)〉

(i)
≤ 〈q(γ(t)), w̃(t)〉

(j)
≤ eε〈q(γ(t)), w(t)〉,

as desired. Here (h) is because q(π(t)) is nonnegative by monotonicity of f , and w(t) ≤ w̃(t). (i) is because, by
Lemma 4.2, π(t) minimizes 〈q(σ), w̃(t)〉 over all orderings σ. (j) is because q(γ(t)) is nonnegative and w̃(t) ≤ eεw(t).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1545

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

It remains to prove Lemma 4.6, as follows.

Lemma 4.6. For all iterations t ∈ [T], there exists a vector w̃(t) ∈ RV>0 such that (a) w(t) ≤ w̃(t) ≤ eεw(t) and (b)
π(t) is decreasing in w̃(t).

Proof. Fix t. For ease of notation, we omit t and denote w = w(t), ` = `(t), and π = π(t). Let γ be the ordering
decreasing in `v, which is also the ordering decreasing in wv because wv exponentiates `v. Define a vector w̃ ∈ RV>0

(which will be the desired vector w̃(t)) by setting

w̃v = max
u�πv

wu

for all elements v. Clearly π is decreasing in w̃v, and w ≤ w̃. It remains to show that w̃ ≤ eεw.
Fix v ∈ V . If w̃v > wv, then w̃v = wu for an element u with v ≺π u. We have `u ≤ `v + ∆ because otherwise

v would be peeled before u, hence u ≺π v, a contradiction. In terms of weights, we have

w̃v = wu = e(η/λ?T)`u ≤ e(η/λ?T)`v+(η∆/λ?T) ≤ e(η/λ?T)`v+ε = eεwv,

as desired.

4.4 Completing the proof of Theorem 4.1 The previous section helps us understand Super-Greedy++ within
the MWU framework. We now leverage this viewpoint to argue that the set output by Super-Greedy++ is indeed a
good approximation of the densest subset, completing the proof of Theorem 4.1.

Consider again Order-Packing-MWU for α = eε = (1 +O(ε)). Recall from Lemma 4.4 that for some iteration
t, the point x(t) = (1 +O(ε))w(t)/

〈
1, w(t)

〉
induces a (1 +O(ε))-approximate solution to the dual covering LP

(4.3). Then, by Lemma 4.3, there is a set of the form Sτ = {v : x(t)(v) ≥ τ} that has density (1−O(ε))λ?. One
way to generate this set is to index V = {v1, . . . , vn} in decreasing order of x(t); then some prefix of the form
Si = {v1, . . . , vi} will be the desired set. Note that x(t) and w(t) induce the same ordering on V , so one can instead
generate the sets Si based on w(t).

We argue that this is what Super-Greedy++ is doing, however approximately and indirectly. We first give
some intuition. Super-Greedy++ does not maintain the weights w(t) explicitly and the reverse-peeled ordering
π(t) is not necessarily decreasing in w(t). However we now know that π(t) is decreasing w/r/t a vector w̃(t) that
closely approximates w(t). The sets St,j considered by Super-Greedy++ are implicitly rounding w̃(t), and thereby
approximately rounding w(t).

We now make this argument precise. Let t be an iteration where the point x(t) induces a (1 +O(ε))-
approximate solution to the dual covering LP (4.3). By Lemma 4.6, there exists a positive vector w̃(t) ∈ RV>0

such that w(t) ≤ w̃(t) ≤ eεw̃(t) and such that π(t) is decreasing in w̃(t). Let x̃(t) = w̃(t)/〈1, w̃(t)〉; clearly π(t) is
decreasing in x̃(t) as well. We have

f̂(x̃) = 〈x̃(t), q(π(t))〉 ≥ e−ε〈x(t), q(π(t))〉 ≥ e−εf̂(x(t)) ≥ (1−O(ε))λ?.

By Lemma 4.3, some set Sτ = {v : x̃(t) ≥ τ} has density at least f̂(x̃). Since the tth peeling order is increasing
in x̃(t), this set is among the candidate sets St,j considered by Super-Greedy++. Thus Super-Greedy++ returns a
(1−O(ε))-approximate densest subgraph, completing the proof of Theorem 4.1.

5 Densest at-least k Supermodular Subset (DalkSS)
In this section we consider the DalkSS problem, which generalizes DalkSG. Recall that DalkSG is the
constrained version of DSG that is much more tractable than other constrained versions, DkSG and DamkSG.
The input to the DalkSS problem is a nonnegative monotone supermodular function f : 2V → R≥0 and a positive
integer k. The goal is to find a subset S of the ground set V of size at least k that maximizes the ratio f(S)

|S| .
Khuller and Saha gave two different 1

2 -approximations for DalkSG. We extend them to DalkSS. These two
results are based on having access to exact algorithms for certain subroutines; we also analyze the setting with
approximation subroutines. We then consider a natural greedy peeling algorithm for DalkSS in Section 5.3, and
prove that it yields a 1/(cf + 1)-approximation; this generalizes the algorithm and analysis in [3] for DalkSG.
Throughout the section, we use ρf (S) := f(S)

|S| to simplify notation.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1546

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Combinatorial-DalkSS(f : 2V → R≥0, k ∈ Z+)

D0 ← ∅; f0 ← f ; j ← 0
while |Dj | < k do
j ← j + 1
Hj ← arg maxS⊆V \Dj−1

ρfj−1
(S)

Dj ← Dj−1 ∪Hj

Let fj = fDj for notational simplicity
end while
Let `← j
for j = 1 to ` do

add an arbitrary set of max(k − |Dj | , 0) vertices to Dj to form D′j
end for
j∗ ← arg maxj∈[`] ρf (D′j)
return D′j∗

Figure 3: A combinatorial approximation algorithm for DalkSS.

5.1 A combinatorial 1
2 -approximation for DalkSS We describe the natural extension of a combinatorial

algorithm for DalkSG by Khuller and Saha [37]. Given a supermodular function f : 2V → R and A ⊂ V we obtain
a new function fA : 2V \A → R by contracting A; that is, we define fA(S) := f(A ∪ S)− f(A) = f(S | A) for every
S ⊆ V \A. It is easy to verify that fA is also supermodular. Moreover, fA is normalized and non-negative if f is.
The algorithm is based on repeatedly finding a densest subset, contracting, and iterating until the accumulated set
achieves the desired size of k. It then returns the best set among the iterations after suitably augmenting it to reach
the desired size k. A formal description of this simple and intuitive algorithm is given in Figure 3. The algorithm
assumes that an exact algorithm is available for DSS. We discuss extensions using approximation algorithms after
the cleaner analysis with the exact algorithm. The algorithm naturally creates a nested decomposition of V that
has useful properties, which we discuss after the analysis.

Theorem 5.1. Let f : 2V → R≥0 be a nonnegative monotone supermodular function with f(∅) = 0 and k ∈ Z+.
Then Combinatorial-DalkSS(f, k) is a 1

2 -approximation for DalkSS.

Proof. Let H∗ be a densest subset of size at least k. Let ` be the total number of iterations in which the while loop
of Combinatorial-DalkSS(f, k) is entered. Note that |D`| ≥ k and |Dj | < k for all j < `. We consider two cases.

Case 1: There exists j ∈ [`− 1] such that f(Dj ∩H∗) ≥ f(H∗)
2 . In other words, half the value of H∗ is already

captured by Dj and |Dj | < k; we can add k − |Dj | arbitrary elements to Dj , and due to monotonicity, this will
not decrease its value. Formally, we have

ρf (D′j) =
f(D′j)

k
≥ f(Dj ∩H∗)

k
≥ f(H∗)

2k
≥ f(H∗)

2 |H∗|
=
ρf (H∗)

2
,

where the first inequality is by the monotonicity of f , the second inequality is by assumption, and the third
inequality uses the fact that k ≤ |H∗|. Since D′j is one of the sets considered in the return statement, the algorithm
yields a 1

2 -approximation in this case.
Case 2: For every j ∈ [`− 1], f(Dj ∩H∗) < f(H∗)

2 . Note that we also have f(D0 ∩H∗) < f(H∗)
2 as D0 = ∅

and f(∅) = 0. For j ∈ {0, 1, . . . , `− 1}, let Sj = V \Dj . Since f(Dj ∩H∗) < f(H∗)
2 , informally speaking, there is

at least f(H∗)
2 value in V \Dj , and hence finding a dense set in it with respect to fj implies that Hj+1 has density

at least ρf (H∗)/2. Repeating this allows us to argue that the final set D` has good density. We formalize this now.
We have Dj ∪H∗ = Dj ∪ (Sj ∩H∗). Via the supermodularity of f , we have f(Dj ∩H∗) + f(Dj ∪ (Sj ∩H∗))−

f(Dj) ≥ f(H∗). Combining this with the assumption that f(Dj ∩H∗) < f(H∗)
2 , we have

f(Dj ∪ (Sj ∩H∗))− f(Dj) ≥
f(H∗)

2
.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1547

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Let H ′j+1 = Sj ∩H∗. Then

ρfj (H
′
j+1) =

fj(H
′
j+1)∣∣H ′j+1

∣∣ =
f(Dj ∪ (S ∩H∗))− f(Dj)∣∣H ′j+1

∣∣ ≥ f(H∗)

2
∣∣H ′j+1

∣∣ ≥ f(H∗)

2 |H∗|
=
ρf (H∗)

2
.

Since Hj+1 is a densest set in V \Dj with respect to fj , we have ρfj (Hj+1) ≥ ρfj (H ′j+1) ≥ 1
2 · ρf (H∗).

We now analyze ρf (D`). Recall that f(∅) = 0 and hence

f(D`) =
`−1∑
j=0

f(Dj+1)− f(Dj) =
`−1∑
j=0

f(Dj ∪Hj+1)− f(Dj) =
`−1∑
j=0

ρfj (Hj+1) · |Hj+1| .

As ρfj (Hj+1) ≥ 1
2 · ρf (H∗) for all j ∈ {0, 1, . . . , `− 1}, we have

`−1∑
j=0

ρfk(Hj+1) · |Hj+1| ≥
ρf (H∗)

2
·
`−1∑
j=0

|Hj+1| =
ρf (H∗)

2
· |D`| .

Thus, ρf (D`) ≥ 1
2 · ρf (H∗). Since |D`| ≥ k, it follows D` = D′`. As D′` is considered in the return statement of the

algorithm, the algorithm is a 1
2 -approximation in this case.

Remark 5.1. The preceding analysis can be easily modified to show that if we used a β-approximation for DSS
in each iteration where β ∈ (0, 1], then the approximation ratio of Combinatorial-DalkSS will be β

β+1 . In the first

case, instead of considering f(Dj) ≥ f(H∗)
2 we consider f(Dj) ≥ β

β+1f(H∗). Note that the supermodular function
changes in each iteration (obtained via contraction of the original one) and hence the β-approximation needs to
apply to each of those.

Nested decomposition of dense subgraphs. The algorithm Combinatorial-DalkSS(f, |V |) creates a nested
decomposition of V into ∅ = D0 (D1 (· · · (D` = V for some `. It is easy to show, via supermodularity, that
there is a unique maximal densest subset; it follows from the fact that if S, T both have density λ∗ then S ∪ T
also has density λ∗. Thus, if one chooses in each iteration j of Combinatorial-DalkSS(f, |V |), a maximal densest
subset for fj from V \Dj−1, then one obtains a maximal decomposition. Tatti and Gionis [60] and Tatti [59]
defined the notion of a locally dense decomposition in the context of DSG, and this coincides with the maximal
decomposition. The definitions in [59, 60] are not as transparent because the operation of contraction, which
is very natural in the context of supermodular functions, can be more involved for specific subclasses since the
function after contraction may not be in the same class as the original one. In the context of DSG, Danisch et al.
[17] defined the notation of a quotient graph which coincides with the contraction operation, and show that this is
equivalent to the definitions in [59, 60]. We refer the reader to [17, 59] for other aspects of (approximate) locally
dense decompositions. However, as we saw in Remark 5.1, even with an approximate DSS algorithm that does not
necessarily find maximally dense sets, the nested decomposition that is obtained has the following nice property.
Given the decomposition, we can compute, for any given k, a β/(β + 1)-approximation for DalkSS easily. One
can view the nested decomposition as an ordering of the vertices which is easy to store. In this sense it has strong
similarities to the peeling algorithm which also provides an ordering from which one can obtain an approximation
for DalkSS for any given k; see Section 5.3.

5.2 1
2 -approximation via the natural convex programming relaxation We give a 1

2 -approximation for
DalkSS via a natural extension of the LP-based 1

2 -approximation for DalkSG given by Khuller and Saha [37].
Recall that we denote the Lovász extension of f as f̂ . Let ` be an integer. We consider the following convex
program which is analogous to (4.2) with additional box constraints to enforce the property that the output set
has at least ` elements.

(P̂(`)) maximize f̂(x) over x ∈ [0, 1]V s.t.
∑
v∈V

xv ≤ 1 and xv ≤
1

`
for all v ∈ V.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1548

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Round-DalkSS(f : 2V → R≥0, ` ∈ Z+, x ∈ [0, 1]n)

let v1, v2, . . . , vn be ordering of V such that x(v1) ≤ x(v2) ≤ · · · ≤ x(vn)
for j ∈ [n], let Sj := {vj , vj+1, . . . , vn}
j∗ ← arg maxj∈[n]

f(Sj)
max{`,|Sj |}

return Sj∗ with arbitrary set of max{`− |Sj∗ | , 0} elements added to it

Convex-Program-DalkSS(f : 2V → R≥0, k ∈ Z+)

for ` from k to n do
x(`) ← optimal solution to (P̂(`))
S(`) ← Round-DalkSS(f, `, x(`))

end for
`∗ ← arg max`∈{k,k+1,...,n} ρf (S(`))

return S(`∗)

Figure 4: An approximation for DalkSS via rounding the relaxation (P̂(`)).

We show that this program is in fact a valid relaxation of DalkSS if ` is chosen to be the cardinality of an
optimum solution, and that we can round feasible solutions while only losing a factor of 2. The rounding algorithm
is given in Figure 4. Our goal is to prove the following lemma.

Lemma 5.1. Let f : 2V → R≥0 be a nonnegative, monotone supermodular function and k ∈ Z+. The algorithm
Convex-Program-DalkSS(f, k) (see Figure 4) is a 1

2 -approximation for DalkSS.

The first lemma shows that if we know the size of the optimal solution, call it `, then the optimal value
of (P̂(`)) is at least the optimal value of DalkSS.

Lemma 5.2. Let f : 2V → R≥0 be a nonnegative monotone supermodular function. Let H∗ be the subset of
size at least k with maximum density and let ` = |H∗|. Let OPT(P̂(`)) be the optimal value of (P̂(`)). Then
OPT(P̂(`)) ≥ ρf (H∗).

Proof. We construct a feasible solution to (P̂(`)) with objective value at least ρf (H∗). For this solution, set xi = 1
`

if i ∈ H∗ and 0 otherwise. Clearly, all constraints of (P̂(`)) are satisfied. The value of this solution is

f̂(x) = Eλ∈[0,1][f({v ∈ V : xv > λ})] =
1

`
f(H∗) +

(
1− 1

`

)
f(∅) ≥ 1

`
f(H∗) = ρf (H∗),

where the inequality follows from the nonnegativity of f . Thus, OPT(P̂(`)) ≥ ρf (H∗).

Next, we prove that we can round a solution to (P̂(`)) for any ` while only losing a factor of 2. The rounding
algorithm Round-DalkSS is given in Figure 4.

Lemma 5.3. Let f : 2V → R≥0 be a nonnegative monotone supermodular function, let ` ≥ 1, and let x 6= 0

be a feasible solution to (P̂(`)). Let S be the output of the algorithm Round-DalkSS(f, `, x). Then |S| ≥ ` and
ρf (S) ≥ 1

2 f̂(x).

Proof. For r ∈ [0, 1
`], define S(r) := {v ∈ V : xv ≥ r}. We show there exists r such that f(S(r))

max{`,|S(r)|} ≥
1
2 f̂(x). Let

rmin be the smallest value in [0, 1
`] such that |S(rmin)| = `. Note then that |S(r)| ≥ ` for r ≤ rmin.

We claim there exists r1 ∈ [0, rmin) such that ρf (S(r1)) ≥ 1
2 f̂(x) or there exists r2 ∈ [rmin,

1
`] such

that f(S(r2)) ≥ `
2 · f̂(x). Suppose not. First, we have for r′ ∈ [0, rmin), ρf (S(r′)) < 1

2 f̂(x). We see that∫ 1/`

0
|S(z)| dz =

∑
v∈V xv ≤ 1 as x is feasible for (P̂(`)). We have∫ rmin

0

f(S(z)) dz <
f̂(x)

2

∫ rmin

0

|S(z)| dz ≤ f̂(x)

2

∫ 1/`

0

|S(z)| dz ≤ f̂(x)

2
.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1549

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Second, we have for all r′ ∈ [rmin,
1
`], f(S(r′)) < `

2 · f̂(x). Then∫ 1/`

rmin

f(S(z)) dz <
` · f̂(x)

2

∫ 1/`

rmin

dz =
` · f̂(x)

2

(
1

`
− rmin

)
.

Combining these two inequalities,∫ 1/`

0

f(S(z)) dz <
f̂(x)

2
+
` · f̂(x)

2

(
1

`
− rmin

)
= f̂(x)− rmin · `f̂(x)

2
≤ f̂(x).

This implies that
∫ 1/`

0
f(S(z)) dz < f̂(x). As S(γ) = ∅ for all γ > 1

` as x is feasible for (P̂(`)), we have
f̂(x) =

∫ 1

0
f(S(z)) dz =

∫ 1/`

0
f(S(z)) dz, which is a contradiction.

By the claim, there exists r ∈ [0, 1
`] such that f(S(r))

max{`,|S(r)|} ≥
1
2 f̂(x). If we add an arbitrary set of

max{`−|S(r)| , 0} vertices to S(r) and call this set S′(r), then by the monotonicity of f , we have ρf (S′(r)) ≥ 1
2 f̂(x).

Assume 0 ≤ x(v1) ≤ x(v2) ≤ · · · ≤ x(vn). If there exists i such that x(vi) < x(vi+1), then for all
r1, r2 ∈ [x(vi), x(vi+1)), we have S(r1) = S(r2). This implies there are at most n distinct sets amongst all
of the sets S(r) for r ∈ [0, 1

`]; these (not necessarily distinct) sets are S(x(v1)), S(x(v2)), . . . , S(x(vn)). As these
are all of the sets considered in the algorithm Round-DalkSS, we have that the output of the algorithm S satisfies
ρf (S) ≥ 1

2 f̂(x).

We are now ready to prove Lemma 5.1.

Proof. [Proof of Lemma 5.1.] Let H∗ be a maximum density subset of size at least k. Suppose that we
know the size ` of H∗. Let x(`) be an optimal solution to the concave program (P̂(`)). By Lemma 5.3,
the output S(`) of Round-DalkSS(f, `, x(`)) has size

∣∣S(`)
∣∣ ≥ ` and ρf (S(`)) ≥ 1

2 f̂(x(`)). By Lemma 5.2,
ρf (S(`)) ≥ 1

2 f̂(x(`)) ≥ 1
2ρf (H∗). As Convex-Program-DalkSS(f, k) checks all possible values of ` ≥ k, it follows

that the algorithm is a 1
2 -approximation.

We note that a β-approximate solution to (P̂(`)), by the above analysis, yields a β/2-approximate solution to
DalkSS.

5.3 Greedy peeling for DalkSS We analyze the natural greedy peeling algorithm for DalkSS. Let
v1, v2, . . . , vn be the order of the elements produced by the natural greedy peeling algorithm for DSS (see
Section 3). Let Sj = {vj , vj+1, . . . , vn} for j ∈ [n]. The natural greedy peeling algorithm for DalkSS that we
analyze in this section returns the set Sj maximizing f(Sj)

|Sj | subject to the constraint that |Sj | ≥ k. The analysis is
inspired by that in [3] for DalkSG; however, we also need Theorem 3.2 on core decomposition for supermodular
functions. Recall that C(γ, f) is the γ-core of f which we shorten to C(γ) when f is clear.

The key technical lemma is the following.

Lemma 5.4. Let H ⊆ V and let d = f(H)/|H|. For any α ∈ (0, 1), f(C(αd)) ≥ (1− α)f(H).

Proof. Let St = C(αd). Consider the elements of H \ St that precede vt in the peeling order and let them be
vj1 , vj2 , . . . , vj` where ` = |H \ Sj | and j1 < j2 < · · · < j` < t. For i ≤ ` we let Ai = {vji , . . . , vj`} ∪ (H ∩ Sj).
Note that A1 = H; for notational convenience we let A`+1 = H ∩ Sj . By telescoping we see that

f(H) = f(A1) = f(A`+1) +
∑̀
i=1

(f(Ai)− f(Ai+1)) = f(A`+1) +
∑̀
i=1

f(vji | Ai+1).

By supermodularity, for each i ≤ `, f(vji | Ai+1) ≤ f(vji | Sji − vji) since Ai+1 ⊆ Sji − vji . Since t is the smallest
index such that f(vt | St − vt) ≥ αd, we have f(vji | Ai+1) < αd for 1 ≤ i ≤ `. Putting together we have

f(H) < f(A`+1) + `αd ≤ f(A`+1) + α|H|d = f(A`+1) + αf(H).

Therefore, f(A`+1) ≥ (1− α)f(H). By monotonicity, f(St) ≥ f(A`+1) since A`+1 = H ∩ St.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1550

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Theorem 5.2. Greedy peeling yields a 1
cf+1 -approximation for DalkSS.

Proof. Let S∗ be an optimum solution to the given instance of DalkSS. We have |S∗| ≥ k. Let λ∗ = f(S∗)/|S∗|
and let γ =

cf
cf+1λ

∗. Let C(γ) be the γ-core of f . From Theorem 3.2 we have C(γ) = Sj where vj is the smallest
index in the peeling order such that f(vj | Sj − vj) ≥ γ. We consider two cases.

In the first case, |Sj | ≥ k, and it is a candidate set considered for output. From the peeling property,
f(u | Sj − u) ≥ cf

cf+1λ
∗ for all u ∈ Sj and hence f(Sj) ≥ 1

cf

∑
u∈Sj f(u | Sj − u) ≥ 1

cf
(|Sj | · cf

cf+1λ
∗) =

|Sj |λ∗
cf+1 .

Therefore f(Sj)/|Sj | ≥ λ∗/(cf + 1).
In the second case, |Sj | < k. Applying Lemma 5.4 to S∗ and setting α = cf/(cf + 1), we have

f(Sj) ≥ (1 − α)f(S∗) = f(S∗)/(cf + 1). Consider Sn−k+1 which contains Sj since |Sj | = n − j + 1 < k.
We have |Sn−k+1| = k and it is a candidate set considered for output. By monotonicity f(Sn−k+1) ≥ f(Sj) and
hence f(Sn−k+1)

|Sn−k+1| ≥
f(Sj)
k ≥ 1

cf+1
f(S∗)
k ≥ 1

cf+1
f(S∗)
|S∗| where the last inequality is from the fact that |S∗| ≥ k.

Remark 5.2. Peeling yields a 1
cf

approximation for DSS. One might ask if the analysis in Section 5.1 (see
Remark 5.1) immediately implies that peeling yields a 1

(cf+1) -approximation for DalkSS. Although this seems
plausible, there is a technicality since we cannot show that cfA ≤ cf for any A ⊆ V . This is true for some functions
but does not appear to be true for all functions. For this reason we use a direct argument.

Greedy peeling algorithm for maximizing f(S)
g(|S|) for concave g. Let f : 2V → R≥0 be a nonnegative

monotone supermodular function. Let g : R≥0 → R+ be a non-negative concave function such that g(0) = 0. We
want to maximize the density f(S)

g(|S|) over all non-empty S. Consider the following algorithm. Let v1, v2, . . . , vn
be the ordering produced by the natural greedy peeling algorithm for the DSS on input f (see Section 3). Let
Sj = {vj , vj+1, . . . , vn} for j ∈ [n]. The algorithm we consider in this section returns the set Sj maximizing f(Sj)

g(|Sj |) .
The analysis below generalizes the one in [35] to the supermodular setting via Theorem 5.2.

Lemma 5.5. Let f : 2V → R≥0 be a nonnegative monotone supermodular function where f(∅) = 0 and let g be a
concave function such that g(0) = 0. The greedy peeling algorithm described above for the density f(S)

g(|S|) has an
approximation ratio of at least 1

cf+1 .

Proof. Let S∗ = arg maxS⊆V
f(S)
g(|S|) and let k∗ = |S∗|. Let v1, v2, . . . , vn be the ordering of the elements produced

by greedy peeling for DSS on input f and let S̄j = {vn−j+1, vn−j+2, . . . , vn}. Note |S̄j | = j.
Let i = arg maxj:|S̄j |≥k∗ f(S̄j)/|S̄j |. We will prove that the set S̄i yields a good approximation.
We have

f(S∗)

g(|S∗|)
=
f(S∗)

|S∗|
· |S

∗|
g(|S∗|)

≤ (cf + 1)
f(S̄i)

|S̄i|
· |S

∗|
g(|S∗|)

≤ (cf + 1)
f(S̄i)

|S̄i|
· |S̄i|
g(|S̄i|)

= (cf + 1)
f(S̄i)

g(|S̄i|)

where the first inequality is by Theorem 5.2 and definition of i, and the second inequality is due to concavity of g
and the fact that |S̄i| ≥ |S∗|. This concludes the proof.

References
[1] Zeyuan Allen-Zhu and Lorenzo Orecchia. “Nearly linear-time packing and covering LP solvers”. In:

Mathematical Programming 175.1 (2019), pp. 307–353 (cit. on p. 3).

[2] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein. “Inapproximability
of densest κ-subgraph from average case hardness”. In: Unpublished manuscript 1 (2011) (cit. on p. 6).

[3] Reid Andersen and Kumar Chellapilla. “Finding dense subgraphs with size bounds”. In: International
Workshop on Algorithms and Models for the Web-Graph. Springer. 2009, pp. 25–37 (cit. on pp. 1, 4, 5, 16,
20).

[4] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The multiplicative weights update method: a meta-algorithm
and applications”. In: Theory of Computing 8.1 (2012), pp. 121–164 (cit. on p. 14).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1551

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[5] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. “Greedily finding a dense subgraph”.
In: Journal of Algorithms 34.2 (2000), pp. 203–221 (cit. on p. 2).

[6] Kyriakos Axiotis, Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Adrian Vladu. “Decomposable
Submodular Function Minimization via Maximum Flow”. In: arXiv preprint arXiv:2103.03868 (2021) (cit. on
p. 9).

[7] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. “Efficient primal-dual graph algorithms for
mapreduce”. In: International Workshop on Algorithms and Models for the Web-Graph. Springer. 2014,
pp. 59–78 (cit. on pp. 6, 12).

[8] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. “Densest subgraph in streaming and MapReduce”.
In: Proceedings of the VLDB Endowment 5.5 (2012), pp. 454–465 (cit. on p. 6).

[9] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan. “Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph”. In: Proceedings of the forty-second
ACM symposium on Theory of computing. 2010, pp. 201–210 (cit. on pp. 1, 6).

[10] Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaraghavan, and Yuan Zhou.
“Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph”. In: Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms. SIAM. 2012, pp. 388–405 (cit. on p. 6).

[11] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos Tsourakakis. “Space-and
time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams”. In: Proceedings of
the forty-seventh annual ACM symposium on Theory of computing. 2015, pp. 173–182 (cit. on p. 6).

[12] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang, and Junxing
Wang. “Flowless: Extracting Densest Subgraphs Without Flow Computations”. In: Proceedings of The Web
Conference 2020. 2020, pp. 573–583 (cit. on pp. 1, 3, 4, 6, 7, 11, 12).

[13] Digvijay Boob, Saurabh Sawlani, and Di Wang. “Faster width-dependent algorithm for mixed packing and
covering LPs”. In: Advances in Neural Information Processing Systems 32 (NIPS 2019) (2019) (cit. on pp. 1,
3, 6, 12).

[14] Moses Charikar. “Greedy approximation algorithms for finding dense components in a graph”. In: International
Workshop on Approximation Algorithms for Combinatorial Optimization. Springer. 2000, pp. 84–95 (cit. on
pp. 2, 3, 6, 7, 12, 13).

[15] Chandra Chekuri and Kent Quanrud. “A fast approximation for maximum weight matroid intersection”. In:
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2016,
pp. 445–457 (cit. on p. 5).

[16] Michele Conforti and Gérard Cornuéjols. “Submodular set functions, matroids and the greedy algorithm:
tight worst-case bounds and some generalizations of the Rado-Edmonds theorem”. In: Discrete applied
mathematics 7.3 (1984), pp. 251–274 (cit. on p. 4).

[17] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. “Large scale density-friendly graph decomposition
via convex programming”. In: Proceedings of the 26th International Conference on World Wide Web. 2017,
pp. 233–242 (cit. on pp. 5, 6, 18).

[18] Ran Duan and Seth Pettie. “Linear-time approximation for maximum weight matching”. In: Journal of the
ACM (JACM) 61.1 (2014), pp. 1–23 (cit. on p. 5).

[19] Jack Edmonds. “Submodular functions, matroids, and certain polyhedra”. In: Combinatorial Structures and
Their Applications (Proceedings Calgary International Conference on Combinatorial Structures and Their
Applications, Calgary, Alberta, 1969; R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.) Ed. by R. Guy,
H. Hanani, N. Sauer, and J. Schönheim. New York: Gordon and Breach, 1970 (cit. on pp. 12, 13).

[20] Alina Ene, Huy L Nguyen, and László A Végh. “Decomposable submodular function minimization: discrete
and continuous”. In: arXiv preprint arXiv:1703.01830 (2017) (cit. on p. 9).

[21] Hossein Esfandiari, MohammadTaghi Hajiaghayi, and David P Woodruff. “Brief announcement: Applications
of uniform sampling: Densest subgraph and beyond”. In: Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures. 2016, pp. 397–399 (cit. on p. 6).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1552

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[22] András Faragó. “A general tractable density concept for graphs”. In: Mathematics in Computer Science 1.4
(2008), pp. 689–699 (cit. on pp. 2, 9).

[23] András Faragó and Zohre R Mojaveri. “In search of the densest subgraph”. In: Algorithms 12.8 (2019), p. 157
(cit. on p. 1).

[24] Uriel Feige. “Relations between average case complexity and approximation complexity”. In: Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing. 2002, pp. 534–543 (cit. on p. 6).

[25] Uriel Feige, David Peleg, and Guy Kortsarz. “The dense k-subgraph problem”. In: Algorithmica 29.3 (2001),
pp. 410–421 (cit. on p. 1).

[26] Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. “A fast parametric maximum flow algorithm
and applications”. In: SIAM Journal on Computing 18.1 (1989), pp. 30–55 (cit. on p. 2).

[27] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. “Improved parallel algorithms for density-based
network clustering”. In: International Conference on Machine Learning. PMLR. 2019, pp. 2201–2210 (cit. on
pp. 1, 6).

[28] Aristides Gionis and Charalampos E Tsourakakis. “Dense subgraph discovery: Kdd 2015 tutorial”. In:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2015, pp. 2313–2314 (cit. on p. 1).

[29] Andrew V Goldberg. Finding a maximum density subgraph. University of California Berkeley, 1984 (cit. on
pp. 2, 7, 12).

[30] Andrew V. Goldberg and Robert E. Tarjan. “Finding Minimum-Cost Circulations by Successive Approx-
imation”. In: Math. Oper. Res. 15.3 (1990), pp. 430–466. Preliminary verison in STOC, 1987 (cit. on
p. 9).

[31] Shuguang Hu, Xiaowei Wu, and TH Hubert Chan. “Maintaining densest subsets efficiently in evolving
hypergraphs”. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.
2017, pp. 929–938 (cit. on p. 2).

[32] Victor P. Il’ev. “An approximation guarantee of the greedy descent algorithm for minimizing a supermodular
set function”. In: Discrete Applied Mathematics 114.1 (2001). discrete analysis & operations research, pp. 131–
146 (cit. on p. 4).

[33] Martin Jaggi. “Revisiting Frank-Wolfe: Projection-free sparse convex optimization”. In: International
Conference on Machine Learning. PMLR. 2013, pp. 427–435 (cit. on p. 6).

[34] Ravindran Kannan and V Vinay. “Analyzing the structure of large graphs”. Unpublished manuscript. 1999
(cit. on pp. 3, 6).

[35] Yasushi Kawase and Atsushi Miyauchi. “The densest subgraph problem with a convex/concave size function”.
In: Algorithmica 80.12 (2018), pp. 3461–3480 (cit. on pp. 4, 5, 10, 21).

[36] Subhash Khot. “Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique”. In: SIAM
Journal on Computing 36.4 (2006), pp. 1025–1071 (cit. on pp. 1, 6).

[37] Samir Khuller and Barna Saha. “On finding dense subgraphs”. In: International Colloquium on Automata,
Languages, and Programming. Springer. 2009, pp. 597–608 (cit. on pp. 1, 3–6, 9, 17, 18).

[38] Guy Kortsarz and David Peleg. “Generating sparse 2-spanners”. In: Journal of Algorithms 17.2 (1994),
pp. 222–236 (cit. on pp. 2, 4).

[39] Guy Kortsarz and David Peleg. “On Choosing a Dense Subgraph (Extended Abstract)”. In: 34th Annual
Symposium on Foundations of Computer Science, Palo Alto, California, USA, 3-5 November 1993. IEEE
Computer Society, 1993, pp. 692–701 (cit. on p. 1).

[40] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, 1976 (cit. on
p. 2).

[41] Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. “A survey of algorithms for dense subgraph
discovery”. In: Managing and Mining Graph Data. Springer, 2010, pp. 303–336 (cit. on p. 1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1553

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[42] László Lovász. “Submodular functions and convexity”. In: Mathematical programming the state of the art.
Springer, 1983, pp. 235–257 (cit. on pp. 12, 13).

[43] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V.S. Lakshmanan, Wenjie Zhang, and Xuemin Lin.
“Efficient Algorithms for Densest Subgraph Discovery on Large Directed Graphs”. In: Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. SIGMOD ’20. Portland, OR, USA:
Association for Computing Machinery, 2020, 1051–1066 (cit. on pp. 1, 3, 6).

[44] Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and Michalis Vazirgiannis. “The
core decomposition of networks: Theory, algorithms and applications”. In: The VLDB Journal 29.1 (2020),
pp. 61–92 (cit. on pp. 3, 4, 11).

[45] Pasin Manurangsi. “Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph”. In:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. 2017, pp. 954–961
(cit. on pp. 1, 6).

[46] Pasin Manurangsi. “Inapproximability of maximum biclique problems, minimum k-cut and densest at-least-
k-subgraph from the small set expansion hypothesis”. In: Algorithms 11.1 (2018), p. 10 (cit. on pp. 1,
5).

[47] Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. “Densest Subgraph in Dynamic Graph
Streams”. In: Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS
2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II. Ed. by Giuseppe F. Italiano, Giovanni Pighizzini,
and Donald Sannella. Vol. 9235. Lecture Notes in Computer Science. Springer, 2015, pp. 472–482 (cit. on
p. 6).

[48] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis, and Shen Chen Xu.
“Scalable large near-clique detection in large-scale networks via sampling”. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015, pp. 815–824 (cit. on
p. 6).

[49] Robert Nishihara, Stefanie Jegelka, and Michael I Jordan. “On the convergence rate of decomposable
submodular function minimization”. In: arXiv preprint arXiv:1406.6474 (2014) (cit. on p. 9).

[50] Lorenzo Orecchia and Zeyuan Allen Zhu. “Flow-Based Algorithms for Local Graph Clustering”. In: Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014. Ed. by Chandra Chekuri. SIAM, 2014, pp. 1267–1286 (cit. on p. 5).

[51] Jean-Claude Picard and Maurice Queyranne. “A network flow solution to some nonlinear 0-1 programming
problems, with applications to graph theory”. In: Networks 12.2 (1982), pp. 141–159 (cit. on pp. 2, 7, 12).

[52] Serge A Plotkin, David B Shmoys, and Éva Tardos. “Fast approximation algorithms for fractional packing
and covering problems”. In: Mathematics of Operations Research 20.2 (1995), pp. 257–301 (cit. on p. 14).

[53] Kent Quanrud. “Fast approximations for combinatorial optimization via multiplicative weight updates”.
PhD thesis. University of Illinois, Urbana-Champaign, 2019 (cit. on p. 3).

[54] Saurabh Sawlani and Junxing Wang. “Near-optimal fully dynamic densest subgraph”. In: Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing. 2020, pp. 181–193 (cit. on pp. 1, 3, 6, 9).

[55] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. 24. Springer Science &
Business Media, 2003 (cit. on pp. 2, 13).

[56] Peter Stobbe and Andreas Krause. “Efficient minimization of decomposable submodular functions”. In: arXiv
preprint arXiv:1010.5511 (2010) (cit. on p. 9).

[57] Bintao Sun, Maximilien Danisch, TH Chan, and Mauro Sozio. “KClist++: A Simple Algorithm for Finding
k-Clique Densest Subgraphs in Large Graphs”. In: Proceedings of the VLDB Endowment (PVLDB) (2020)
(cit. on pp. 5, 6).

[58] Maxim Sviridenko, Jan Vondrák, and Justin Ward. “Optimal approximation for submodular and supermodular
optimization with bounded curvature”. In: Mathematics of Operations Research 42.4 (2017), pp. 1197–1218
(cit. on p. 4).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1554

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[59] Nikolaj Tatti. “Density-friendly graph decomposition”. In: ACM Transactions on Knowledge Discovery from
Data (TKDD) 13.5 (2019), pp. 1–29 (cit. on pp. 5, 18).

[60] Nikolaj Tatti and Aristides Gionis. “Density-friendly graph decomposition”. In: Proceedings of the 24th
International Conference on World Wide Web. 2015, pp. 1089–1099 (cit. on pp. 5, 18).

[61] Charalampos Tsourakakis. “The k-clique densest subgraph problem”. In: Proceedings of the 24th international
conference on world wide web. 2015, pp. 1122–1132 (cit. on pp. 2, 9).

[62] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria Tsiarli. “Denser
than the densest subgraph: extracting optimal quasi-cliques with quality guarantees”. In: Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013, pp. 104–112
(cit. on p. 5).

[63] Charalampos Tsourakakis and Tianyi Chen. Dense subgraph discovery: Theory and application (Tutoral
at SDM 2021). https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-
tutorial-sdm-2021/. 2021 (cit. on p. 1).

[64] Charalampos E Tsourakakis. “A novel approach to finding near-cliques: The triangle-densest subgraph
problem”. In: arXiv preprint arXiv:1405.1477 (2014) (cit. on p. 2).

[65] Nate Veldt, Austin R. Benson, and Jon Kleinberg. The Generalized Mean Densest Subgraph Problem. 2021.
arXiv: 2106.00909 [cs.DS] (cit. on pp. 1, 2, 5, 10).

[66] Di Wang. “Fast Approximation Algorithms for Positive Linear Programs”. PhD thesis. EECS Department,
University of California, Berkeley, 2017 (cit. on p. 3).

[67] Di Wang, Satish Rao, and Michael W Mahoney. “Unified Acceleration Method for Packing and Covering
Problems via Diameter Reduction”. In: 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016 (cit. on p. 3).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited1555

D
ow

nl
oa

de
d

08
/1

1/
22

 to
 7

3.
22

.2
8.

10
7

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/
https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/
https://arxiv.org/abs/2106.00909

	Introduction
	Motivation and Contributions
	Technical Ideas
	Other Related Work

	Flow-based approximation
	Flow network and setup
	Approximation analysis: long augmenting paths imply dense level sets
	Proof of [theorem:apx-hds-flow]Theorem 2.1

	Greedy peeling algorithm for DSS
	Iterative Peeling for DSG and DSS
	The Lovász extension, contrapolymatroids, and packing and covering LPs based on orderings
	Solving packing LP [equation:pack-orderings](4.4) via MWU
	Super-Greedy as a special case of MWU
	Completing the proof of [theorem:sgpp]Theorem 4.1

	Densest at-least k Supermodular Subset (DalkSS)
	A combinatorial 12-approximation for DalkSS
	12-approximation via the natural convex programming relaxation
	Greedy peeling for DalkSS

