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Assessing the impacts of anthropogenic degradation and climate change on global car-
bon cycling is hindered by a lack of clear, flexible and easy-to-use productivity models 
along with scarce trait and productivity data for parameterizing and testing those mod-
els. We provide a simple solution: a mechanistic framework (RS-CFM) that combines 
remotely-sensed foliar-trait and canopy-structural data with trait-based metabolic 
theory to efficiently map productivity at large spatial scales. We test this framework 
by quantifying net primary productivity (NPP) at high-resolution (0.01-ha) in hyper-
diverse Peruvian tropical forests (30040 hectares) along a 3322-m elevation gradient. 
Our analysis captures hotspots and elevational shifts in productivity more accurately 
and in greater detail than alternative empirical- and process-based models that use 
plant functional types. This result exposes how high-resolution, location-specific varia-
tion in traits and light competition drive variability in productivity, opening up pos-
sibilities to fully harness remote sensing data and reliably scale up from traits to map 
global productivity in a more direct, efficient and cost-effective manner.
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ecology, tropical forests
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Introduction

Forests are essential to the earth’s active carbon cycle 
(Field et al. 1998, Pan et al. 2011) but their future is uncertain 
under the current threats of anthropogenic degradation and 
climate change, especially in the tropics (Grace et al. 2014, 
Schimel  et  al. 2015, Baccini  et  al. 2017, Mitchard 2018). 
Accurately predicting the consequences of these global threats 
will require understanding how plant functional traits scale 
up to influence whole-forest productivity (Violle et al. 2014, 
Enquist et al. 2015). Trait-based theory and metabolic theory 
have shown that morphological, architectural and chemical 
traits – such as plant height, biomass, leaf area index (LAI), 
wood density, leaf mass per unit area (LMA) and leaf foliar 
chemistry (nitrogen, phosphorus and carbon content) – 
directly influence individual plant growth rates, survival, and, 
in turn, forest productivity (Wright et al. 2004, Enquist et al. 
2007, 2015, Violle et al. 2007, Adler et al. 2014, Díaz et al. 
2016, Funk et al. 2017, Fyllas et al. 2017). In addition, the 
collection of functional traits expressed within forests var-
ies substantially with changes in geography and climate 
(Violle et al. 2014, Šímová et al. 2015, Bruelheide et al. 2018, 
Wieczynski et al. 2019). Currently, we have an opportunity 
to capture trait composition and diversity at finer resolutions 
and larger spatial scales than ever before through remote sens-
ing (RS). However, current ecosystem models still use coarse 
functional groupings that might not represent trait variation 
at the individual level. It is therefore crucial to take advantage 
of these technological and theoretical advances that more 
directly link traits, plant growth and shifts in functional trait 
composition across environments to uncover the forces that 
drive variation in carbon flux across space and time.

Relationships between functional trait composition and 
ecosystem processes have been difficult to discern for two 
main reasons. First, it is challenging to accurately and com-
prehensively measure the functional trait composition of 
forests, especially at large spatial scales and remote or diffi-
cult-to-sample locations (Newbold et al. 2012). Solving this 
problem is the great promise of remote sensing (RS) technol-
ogy – using airborne or satellite imaging to collect extensive, 
high-resolution data at local, regional or global scales (Vane 
and Goetz 1988, Green et al. 1998, Ustin et al. 2004, Aplin 
2005, Gillespie  et  al. 2008, de Araujo Barbosa  et  al. 2015, 
Houborg et al. 2015). Remote sensing has created a surge of 
information about the functional trait characteristics of forests 
(Aplin 2005, Chambers et al. 2007, de Araujo Barbosa et al. 
2015, Houborg  et  al. 2015), leading to important ecologi-
cal insights about foliar chemistry (Asner and Martin 2016, 
Lausch et al. 2016), forest canopy structure (Lim et al. 2003, 
Zimble  et  al. 2003), taxonomic and functional diversity 
(Nagendra 2001, Asner  et  al. 2017, Schneider  et  al. 2017, 
Durán et al. 2019, Wang and Gamon 2019), biomass and car-
bon stocks (Lu 2006, Goetz and Dubayah 2011) and relation-
ships between functional traits and productivity (Smith et al. 
2002, Hilker et al. 2008, Song et al. 2013). These discover-
ies have resulted in previous initiatives to integrate remotely-
sensed functional trait data with vegetation growth models 

(Homolová et al. 2013, Scheiter et al. 2013, Fisher et al. 2018, 
Boisvenue and White 2019) – for example, dynamic global 
vegetation models (DGVMs) like LPJ-DGVM (Sitch  et  al. 
2003) and ED2 (Medvigy et al. 2009) – to better assess spa-
tiotemporal variation in carbon storage/flux across scales.

The second challenge is that many previous studies that 
relate remotely-sensed forest data to productivity do so via 
either empirical (statistical) models or intricate process-based 
models. Empirical models estimate productivity using prox-
ies of plant growth like chlorophyll (Madani  et  al. 2017), 
nitrogen (Smith  et  al. 2002), light use efficiency (LUE) 
(Hilker  et  al. 2008) or the normalized difference vegeta-
tion index (NDVI) (Running et al. 2004, Zhao et al. 2005). 
Process-based models like DGVMs and individual-based 
forest simulators are often extremely complex, requiring up 
to hundreds of parameters, many sub-models and consid-
erable computational power and time (Purves and Pacala 
2008, Strigul et al. 2008, Scheiter et al. 2013, Larocque et al. 
2016, Fisher et al. 2018). Extrapolating the results of purely 
empirical models to new systems and climates can be haz-
ardous because they lack mechanistic linkages among traits, 
plant growth and productivity. Instead, they rely on statistical 
relationships between plant growth proxies and productiv-
ity within a given dataset (Fisher et al. 2018, Boisvenue and 
White 2019). DGVMs and forest simulators often require 
specialized expertise, extensive data inputs or special access 
(Larocque et al. 2016), making them hard to implement or 
reproduce for most researchers. In such models, functional 
traits are rarely collected remotely and are usually coarsely 
represented as plant functional types rather than species- or 
individual-level traits (Purves and Pacala 2008, Fisher et al. 
2018, Boisvenue and White 2019). Moreover, competi-
tion for light is often only roughly incorporated (Purves 
and Pacala 2008, Quillet  et  al. 2010, Scheiter  et  al. 2013, 
Yang et al. 2015), although models including forest demo-
graphics (Sitch et al. 2003, Medvigy et al. 2009, Fisher et al. 
2018) or variation in canopy light availability through radia-
tive transfer (Pury and Farquhar 1997, Kattge  et  al. 2009, 
Bonan et al. 2012, Fyllas et al. 2017, Fauset et al. 2019) can 
accommodate more realistic light environments.

The empirical and process-based models outlined above 
offer highly-detailed productivity calculations for a range of 
resolutions and situations, providing productivity maps at 
the regional and global scale based on physiological processes 
and at least moderate functional detail. However, a simpler, 
more mechanistic approach to growth models that utilizes 
remotely-sensed functional trait data could be a complemen-
tary alternative to current productivity models that provides 
greater functional detail as well as a fundamental basis for 
understanding which factors are most important for driv-
ing variation in productivity (Klausmeier et al. 2020). These 
factors can then be varied within such models to estimate 
productivity in new systems or changes in productivity with 
changes in climate or forest composition/structure. This 
endeavor has been dubbed the ‘Holy Grail’ of plant func-
tional ecology (Lavorel and Garnier 2002), but has remained 
elusive for the reasons outlined above.
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Here we introduce a new remote sensing canopy functional 
model (RS-CFM, Fig. 1) that overcomes both data and mod-
eling challenges by merging remote sensing data with trait-
based metabolic theory (Enquist et al. 2007). Our RS-CFM 
makes several notable advances on current approaches by:

•	 More accurately representing on-the-ground functional vari-
ation via incorporation of high-resolution, location-spe-
cific functional-trait and canopy-structural data collected 
remotely, as opposed to less precise information based on 
plant functional types.

•	 Simplifying productivity computation to make it faster, eas-
ier to manipulate and explore parameter space, easier to 
clarify relationships between plant traits and productivity, 
and more open and accessible such that any individual can 
run it using their own data on their own computer (i.e. 
without a supercomputer).

•	 Scaling up from individual-level processes to ecosystem-level 
patterns by mechanistically linking traits and performance, 
thus addressing the need for theory-based and hypothesis-
driven models that incorporate traits to predict vegetation 
growth and ecosystem processes.

We use this framework to address three specific questions: 
1) Does combining trait-based metabolic theory with remote-
sensing data accurately capture variation in productivity 
across environmental gradients? 2) Is accuracy improved by 
using high-resolution, location-specific functional trait data, 
as opposed to plant functional types? 3) Are productivity esti-
mates more accurate when we include pixel-level variation in 
canopy structure and light availability?

As a case study and proof of concept, we evaluate how 
forest functional trait composition affects variation in NPP 
in 30 040 hectares of tropical rainforest along a 3322-m 
elevation gradient in Peru. Our study area spans a mean 
annual temperature gradient of ~15°C from the low-
land Amazonian rainforest to montane forest in the high 
Andes. Originally established by the Andes Biodiversity and 
Ecosystem Research Group (ABERG; <www.andesconserva-
tion.org>), this site provides a uniquely rich dataset includ-
ing highly-detailed, ground-based net primary productivity 
(NPP) measurements (Malhi  et  al. 2017), ground-based 
plant functional trait data collected from trees (Asner et al. 
2017, Malhi  et  al. 2017), ground-based NPP model esti-
mates based on this tree functional trait data (Fyllas  et  al. 
2017), and airborne lidar and imaging spectroscopy provid-
ing remote-sensing estimates of functional traits and canopy 
structure (Asner et al. 2015, 2017). Additionally, NPP esti-
mates using alternative empirical (NASA’s MODIS NPP 
product (Zhao  et  al. 2005)) and process-based (Breathing 
Earth System Simulator (BESS)) (Ryu et al. 2011, Jiang and 
Ryu 2016) approaches also exist for this region. This region 
and dataset thus provide a unique opportunity to fully evalu-
ate our RS-CFM along a broad environmental gradient and 
in the context of known productivity measurements and a 
range of alternative productivity models.

Our results demonstrate that remotely-sensed trait data 
can be reliably scaled up to predict variation in productivity 

– significantly outperforming alternative methods. This 
opens up possibilities to take advantage of a rapidly-growing 
inventory of remote data (Kampe et al. 2010, Lee et al. 2015, 
Asner and Martin 2016, Müller  et  al. 2016, Gamon  et  al. 
2019, Dubayah et al. 2020) and fulfill the current need for 
a framework that quantifies productivity across regions in a 
more direct, efficient and cost-effective manner (Boisvenue 
and White 2019).

Methods

Ground-based NPP measurements and model estimates

Our ground-based dataset consists of nine 1-ha forest plots 
situated along a 3322-m Amazon to Andes elevation transect 
in Peru. All ground data used in this study were collected in 
previous field campaigns (Fyllas et al. 2017, Malhi et al. 2017). 
Collection methods and analyses for ground-based NPP mea-
surements and model estimates are described in detail in the 
original articles and are summarized here. Ground-based NPP 
measurements were originally reported by Malhi et al. (2017) 
for all nine focal plots in the current study and include data 
collected from 2007 to 2015. Total NPP for each plot was 
calculated as an aggregate of multiple key components of the 
autotrophic carbon cycle, including canopy litterfall, leaf loss 
to herbivory, aboveground woody productivity and branch 
turnover. Ground-based NPP model estimates were originally 
calculated for each of these plots by Fyllas et al. (2017) using 
trait data collected via conventional field measurements of indi-
vidual trees (no remote sensing data; Malhi et al. 2017). Within 
each plot, species identity was determined for all stems greater 
than 10 cm in diameter at breast height (DBH). Trait data were 
collected for a subset of these individual stems (~7%), includ-
ing measurements of wood density (WD), leaf dry mass per 
unit wet area (LMA) and leaf nitrogen (N) and phosphorus (P) 
content per unit area. These data were then incorporated into 
an individual-based forest simulator to estimate NPP accord-
ing to a trait-based vegetation growth equation (Enquist et al. 
2007). The ground-based NPP model estimates presented here 
were recalculated using the same field measurements and an 
updated version of the original Fyllas et al. model (Fyllas et al. 
2017) (described in detail in the Supporting information). 
The essential advances of our new remote-sensing framework 
(described below; Fig. 1) over this previous ground-based model 
(Fyllas et al. 2017) is that we 1) digitally reconstruct the for-
est canopy using highly-detailed remote-sensing data for traits 
and canopy structure – instead of using ground-based data col-
lected from trees – and 2) reconfigure the trait-based vegetation 
growth equation from Enquist  et  al. (2007) to quantify pro-
ductivity for individual pixels within this digital forest canopy.

Remote sensing canopy functional model (RS-CFM)

Our framework quantifies productivity through four basic 
steps (Fig. 1). First, airborne remote sensing data were col-
lected by the Global Airborne Observatory using visible-to-
shortwave infrared (VSWIR) spectrometry and dual-laser 
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Figure 1. Step-by-step process for converting remote sensing data (visible-to-shortwave infrared (VSWIR) spectrometry and dual-laser 
waveform light detection and ranging (LiDAR)) into net primary productivity (NPP) estimates using our trait-based remote sensing canopy 
functional model (RS-CFM) framework. Growth rate estimates for individual remote sensing pixels (Ṁpixel) are based on key functional 
traits including carbon use efficiency (c), carbon mass fraction (ω), leaf mass per unit area (LMA), leaf photosynthetic rate (AL) – which is 
a function of LMA and leaf nitrogen (N) and phosphorus (P) content – and leaf biomass (ML). Within each pixel, AL and ML are further 
subdivided into 1 m pixel slices to account for vertical gradients light and biomass throughout the canopy (step 3) and productivity is cal-
culated for each pixel using trait-based metabolic scaling theory (step 4).
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waveform light detection and ranging (LiDAR) (Asner et al. 
2015). Second, VSWIR images were processed and analyzed 
using partial least squares regression to estimate average val-
ues of leaf mass per unit area (LMA) and leaf nitrogen and 
phosphorus content per unit area (Narea, Parea) for the vegeta-
tion within individual RS pixels (Asner  et  al. 2015, 2017). 
LMA, Narea and Parea were then used as inputs to calculate 
leaf photosynthetic rates (AL). For each pixel, LiDAR top-of-
canopy height measurements and plot-aggregate allometry 
(Asner et al. 2012a, Asner and Mascaro 2014) were used to 
estimate total aboveground biomass and leaf-mass allom-
etry (Fyllas et al. 2017) was used to calculate total leaf bio-
mass (ML). Third, to account for vertical heterogeneity in 
canopy biomass and light availability, individual pixels were 
divided vertically into 1-m slices, each of which was assigned 
a unique value for leaf biomass and solar radiation based on 
vertical biomass and light profiles calculated using ground 
data (Supporting information). Finally, using our mechanis-
tic plant growth model (RS-CFM), we calculated pixel-level 
growth rates (Ṁpixel) by summing growth estimates across all 
vertical slices within each pixel at 0.01, 1 and 100 ha spatial 
resolutions. NPP was then calculated as the average growth 
rate across all pixels within a given plot or elevation band. The 
remote-sensing data used in steps 1 and 2 were collected and 
converted from hyperspectral data to trait values in previous 
studies (Asner et al. 2015, 2017) while all of the remaining 
components of the RS-CFM are original contributions of the 
current study.

Remote-sensing trait and canopy data

Visible-to-shortwave infrared (VSWIR) spectrometry and 
dual-laser waveform light detection and ranging (LiDAR) 
remote-sensing (RS) data were previously collected for 9 focal 
plots by the Global Airborne Observatory in August of 2013 
(Asner  et  al. 2012b, 2015) (Fig. 1, step 1). Although these 
data fall within the temporal window of ground-based NPP 
measurements, we acknowledge that environmental variation 
within and among years is likely to produce variation in NPP 
that we may not capture using a single snapshot of RS trait 
data. However, for the purpose of our study – to more accu-
rately estimate variation in NPP as it emerges from the trait 
composition of forests that vary in mean annual temperature 
across elevations – our RS data should be sufficiently repre-
sentative. Each remote sensing (RS) plot is geographically 
centered over an associated ground plot (Fyllas  et  al. 2017, 
Malhi et al. 2017) and is 9 ha in size. The raw hyperspectral 
and lidar data were previously processed (Asner et al. 2015) to 
provide estimates of mean top of canopy height (TCH), LMA, 
N and P within 10 m pixels (0.01 ha) using a previously devel-
oped protocol (Asner  et  al. 2015, 2017, Asner and Martin 
2016) (Fig. 1, step 2). Hyperspectral data were shade-masked 
by Asner et al. (2015) such that only sunlit portions of the 
canopies were used to measure spectral profiles for traits. RS 
trait data were also collected for 30 040 hectares of forest sur-
rounding the 9 focal RS plots. Each landscape-scale RS pixel 
was assigned to an associated focal plot/elevation according to 

whichever focal plot was nearest in elevation, creating exclu-
sive elevation bands across the 3344 m gradient. The 0.01 ha 
RS data were aggregated at 1 ha resolution for both plot-scale 
and landscape scale datasets. Additionally, landscape-scale RS 
data were aggregated at 100 ha resolution for direct compari-
son with MODIS and BESS NPP estimates.

Vertical variation in pixel-level leaf biomass and 
light availability

Each RS pixel was divided vertically into 1 m slices that were 
assigned unique values for leaf biomass and light availabil-
ity (Fig. 1, step 3; see Supporting information for details). 
Total biomass within each pixel was estimated as a function 
of top of canopy height (TCH) using plot-aggregate allome-
tric scaling (Asner  et  al. 2012a, Asner and Mascaro 2014). 
Total leaf biomass was estimated for each pixel (ML,pixel) by 
multiplying the total AGB of each pixel by the leaf mass frac-
tion (LMF) of each associated ground plot (Eqn. S6). We 
then distributed ML,pixel across 1m slices within each RS pixel 
according the vertical distribution of leaf biomass calculated 
for associated ground plots. Light availability for each pixel 
slice was estimated based on a continuous light-decay func-
tion calibrated using vertical distributions of leaf area index 
(LAI) from associated ground plots (Eqn. S16).

Net primary productivity (NPP) estimates

The rate of change in biomass over time for each pixel slice was 
calculated using the mean trait values available for each RS 
pixel (same values used for each slice within a pixel) (Eq. 1):

dM
dt

c A ML L
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=
æ
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where c is carbon use efficiency and was previously observed to 
be constant throughout this study region (Malhi et al. 2017) 
(c = 0.33, no units), ω is the whole-plant carbon mass frac-
tion (Martin and Thomas 2011, Asner and Mascaro 2014) 
(ω = 0.48, no units), AL,slice is leaf area specific photosynthetic 
rate calculated for each pixel slice (gC m−2 y−1) and is a func-
tion of foliar traits (LMA, N and P; Eqn. S8) and light avail-
ability, LMA is leaf mass per unit area (g cm−2) and ML,slice 
is the total leaf biomass within an individual pixel slice (kg). 
Thus, traits were incorporated into the model both directly 
(LMA and ML,slice) and indirectly via their effects on photosyn-
thetic rate (LMA, N and P). Total growth rate per pixel is the 
sum of growth across all slices within that pixel (Eq. 2):

M
dM

dt
dM

dtpixel
pixel slice= = å 	 2

Finally, total annual plot NPP was calculated by taking the 
mean value of Ṁpixel across all RS pixels associated with a 
given plot/elevation (Eq. 3):
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NPP pixel= å1
n
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The units for both Ṁpixel and NPP were standardized to MgC 
ha−1 yr−1 at all spatial scales and resolutions to enable cross-
comparison between all RS productivity estimates, ground-
based measurements and ground-based model estimates.

Trait and Ṁpixel analyses

Pixel growth rate deviations were calculated by subtracting 
the associated empirical NPP measurements for a given focal 
plot/elevation from the RS-CFM NPP estimates. In order to 
compare NPP estimates from each dataset with empirically 
measured NPP, we calculated root mean squared deviations 
(RMSD) between measured and estimated (predicted) NPP 
values for each plot/elevation as (Eq. 4):

RMSD NPP NPPmeasured predicted= -( )æ
è
ç

ö
ø
÷E

2
	 4

where E() represents the expected value. To differentiate 
the contributions of individual RS-CFM growth model 
components – LMA, Narea, Parea, AL and ML – on pixel-level 
growth rates (Ṁpixel) we performed a main effects multiple 
linear regression with standardized coefficients. To produce 
standardized regression coefficients, we centered and rescaled 
all independent variables (growth model components) prior 
to analysis by subtracting the means and dividing by their 
standard deviations. Because correlations between model 
components could affect the interpretability of regression 
coefficients, we evaluated multicollinearity and the percent-
age of total variance (R2) in Ṁpixel that is uniquely explained 
by each model component. We did this by calculating vari-
ance inflation factors and performing a commonality analysis 
(Ray-Mukherjee et al. 2014) using the R functions ‘vif ’ (‘car’ 
package; Fox and Weisberg 2019) and ‘regr’ (‘yhat’ package; 
Nimon et al. 2020) respectively.

We evaluated shifts in the distributions of individual 
RS-CFM growth model components and Ṁpixel values by 
first calculating the first four central moments of each vari-
able within each plot/elevation. Relationships between the 
moments of each variable at each spatial scale and resolution 
were then evaluated using both linear and quadratic regres-
sion analyses. In cases where both linear and quadratic mod-
els produced significant fits and AIC scores differed by less 
than 4 points, the linear model was chosen as the best fit 
model on the basis of parsimony (fewer parameters).

All data analyses and productivity estimations were per-
formed in R ver. 4.0.0 (<www.r-project.org>).

Results

We begin by comparing our RS-CFM NPP estimates with 
ground-based NPP measurements (Malhi  et  al. 2017) and 
model NPP estimates using trait data collected from trees on 

the ground (Fyllas  et  al. 2017). In general, we found very 
close agreement between ground- and remote-based NPP 
(Fig. 2, Supporting information). At both the plot- and land-
scape-scales, our framework accurately predicts local (within-
elevation) NPP as well as characteristic declines in NPP with 
increasing elevation, including the leveling off of NPP at 
high elevations (Fig. 2a and b). The highest-resolution plot-
scale NPP estimates (RS-CFM Plot 0.01 ha) performed best 
(Fig. 2a, Supporting information), exhibiting a root mean 
square deviation (RMSD) between measured and predicted 
NPP of 1.02, lower than all other datasets, even ground-
based model estimates (ground model: RMSD = 1.28). At 
the level of individual pixels, growth estimates (Ṁpixel) from 
the RS Plot 0.01 ha dataset also performed best, deviating 
from ground-based NPP measurements by only 0.26 MgC 
ha−1 yr−1 on average (Fig. 2c, Supporting information).

Interestingly, we found that NPP estimates are sensi-
tive to the spatial scale and resolution of the remote dataset 
being used. Within all focal plots/elevations, RS-CFM NPP 
estimates decline with decreasing pixel resolution (Fig. 2a 
and b, Supporting information). This results in a systematic, 
downward shift in NPP-elevation trends at lower resolu-
tions, despite the shapes of these trends remaining relatively 
unchanged. Higher-resolution (0.01 ha) plot-scale data 
produced highly accurate NPP estimates (RMSD = 1.02) 
while lower-resolution data slightly underestimated pro-
ductivity (RMSD = 1.59) (Fig. 2a), suggesting that the 
accuracy of NPP estimates increases with pixel resolution. 
However, at the landscape scale, intermediate resolution (1 
ha) NPP estimates are actually closest to NPP measurements 
(RMSD = 1.08) (Fig. 2b).

We compared our approach with two easily accessible 
alternative methods for estimating NPP using remote-sensing 
data: 1) NASA’s MODIS terrestrial NPP product (empirical 
model) (Running et al. 2004, Zhao et al. 2005) and 2) the 
Breathing Earth System Simulator (BESS, which provides 
GPP estimates that were converted to NPP here using a car-
bon use efficiency of 0.33) (process-based model) (Ryu et al. 
2011, Jiang and Ryu 2016). MODIS NPP estimates are con-
siderably higher on average than both BESS NPP as well as 
NPP and pixel growth estimates from our RS-CFM (Fig. 2b 
and d, Supporting information). This result has been noted 
before (Jiang and Ryu 2016) and is similar to findings that 
DGVMs also tend to overestimate biomass (Le Toan  et  al. 
2004). Both MODIS and BESS NPP remain relatively 
constant across elevations, except for a dramatic decline in 
MODIS estimates at higher elevations, in contrast to gradual 
declines across all elevations seen in our RS-CFM (Fig. 2b). 
Moreover, this sharp decline in MODIS NPP estimates 
occurs exactly where NPP measurements and our model esti-
mates show a leveling off (3537 m; Fig. 2b), potentially due 
to canopy sparseness reducing the role of vertical variation in 
light availability. Interestingly, overestimates in MODIS NPP 
were contrasted by underestimates in BESS NPP at low eleva-
tions (Fig. 2b). At the level of individual pixels, MODIS NPP 
values were substantially higher on average than measured 
NPP values, exhibiting a mean pixel growth rate deviation of 
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8.88 MgC ha−1 yr−1 (Fig. 2d). Even at the highest pixel resolu-
tion tested here (100 ha), RS-CFM estimates (RMSD = 1.72) 
represent a significant improvement over both MODIS esti-
mates (RMSD = 8.31) and BESS estimates (RMSD = 3.14) 
(Supporting information). Indeed, RS-CFM growth esti-
mates were most improved over alternative methods at lower 
elevations, where the average absolute deviation from empiri-
cal NPP measurements was 1.39 MgC ha−1 yr−1 at 100 ha 
resolution (0.04 (215 m), −1.89 (223 m), −0.16 (595 m) and 
−3.48 (1527 m)), compared with 6.66 in MODIS and 4.28 
in BESS (Supporting information, Fig. 2b).

The RS-CFM revealed extensive, fine-scale variation 
in vegetation growth rates at the level of individual pixels 
(Ṁpixel). As with NPP estimates, deviations between Ṁpixel 
and associated NPP measurements increased with pixel size 
(Fig. 2c and d). High-resolution (0.01 ha) plot-scale Ṁpixel 
estimates performed best, exhibiting deviations from mea-
sured NPP that were only slightly higher on average than 
those of ground-based NPP estimates (µ = 0.26 and µ = 0.13 
MgC ha−1 yr−1, respectively; Fig. 2c). Landscape-scale Ṁpixel 

estimates also performed well at both 0.01 ha and 1 ha 
resolutions (average deviations of µ = 0.61 and µ = −0.50 
MgC ha−1 yr−1, respectively; Fig. 2d). Lower-resolution data 
resulted in the largest mean pixel growth rate deviations, but 
this effect was less exaggerated at the landscape scale (Fig. 2c 
and d). In fact, the mean deviation in Ṁpixel at 1 ha reso-
lution was much lower in magnitude at the landscape-scale 
(µ = −0.50) than at the plot-scale (µ = −1.49) – which was 
also reflected in the accuracy of associated NPP estimates 
(plot-scale RMSD = 1.59, landscape-scale RMSD = 1.08; 
Supporting information). Variation in Ṁpixel deviations also 
increased with pixel resolution and was substantially higher at 
the landscape scale (Fig. 2c and d, Supporting information), 
corresponding to wider and more continuous distributions 
of pixel-level trait values both within and across elevations 
(Supporting information).

At all scales and resolutions, variation in pixel growth rates 
is linked to variation in underlying traits. We performed a 
multiple regression on the individual trait components of our 
growth model – pixel-level mean LMA, Narea, Parea, AL and 

Figure 2. (a–b) Net primary productivity (NPP) and (c–d) individual pixel vegetation growth rate estimates (Ṁpixel) from ground-based, 
airborne remote sensing (RS-CFM), NASA-MODIS and BESS NPP models shown at multiple spatial scales (plot and landscape) and reso-
lutions (0.01, 1 and 100 ha). NPP estimates are shown across elevations and compared with ground-based NPP measurements (black) and 
ground-based NPP model estimates (green) at (a) plot- and (b) landscape-scales. Deviations between pixel growth rate estimates (Ṁpixel) and 
NPP measurements at (c) the plot scale and (d) landscape scales. Each gray dot represents the deviation between an individual Ṁpixel estimate 
and the empirical NPP measurement of its associated focal plot and horizontal bars indicate mean values. Note how both mean and variance 
in Ṁpixel deviations tend to decrease with decreasing pixel resolution.
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ML – against Ṁpixel values using standardized coefficients to 
determine which traits had the largest impact on variation 
in growth rates. At all spatial scales and resolutions, ML, AL 
and LMA were the strongest predictors of variance in Ṁpixel 
while leaf nitrogen and phosphorus content, though signif-
icant, were less influential (e.g. parameter estimates in the 
RS-CFM 0.01 ha model were: LMA = −2.03, Narea = 0.07, 
Parea = 0.23, AL = 2.69 and ML = 2.47, adjusted R2 = 0.92, p 
< 10−5; Supporting information). Variance inflation factors 
(VIFs) indicated moderate levels of multicollinearity among 
traits (i.e. VIF > 1), but commonality analysis showed that 
the variance in Ṁpixel explained uniquely by each trait was still 
highest for ML, AL and LMA (Supporting information), con-
firming the results of the regression model. Trait distributions 
also shift in position and shape along the elevation gradient 
(Supporting information), consistent with shifts reported in 
previous research in this region (Asner et al. 2017, Fyllas et al. 
2017). However, here we also found associated shifts in the 
distributions of Ṁpixel values across elevations (Supporting 
information). We summarized these shifts by calculating the 
first four central moments of Ṁpixel distributions and evaluat-
ing both linear and polynomial (quadratic) regressions across 
elevation (Supporting information). Mean Ṁpixel values (our 
measure of NPP) decline significantly with increasing eleva-
tion at all spatial scales and resolutions. Variance, skewness 
and kurtosis in Ṁpixel distributions tend to increase with ele-
vation. However, evidence for shifts in these higher moments 
is somewhat limited, except perhaps at the landscape scale.

One of the most crucial and challenging components of 
our model is the inclusion of vertical heterogeneity in light 
availability (light competition) (Fig. 3). Instead of using a 

single light value for each pixel, our RS-CFM uses a straight-
forward method for distributing light continuously through-
out the canopy. In order to evaluate the importance of this 
component, we compared our light model with two alter-
natives that assume no vertical light gradient. When vertical 
light profiles are held constant and light is assumed to be fully 
available throughout the canopy (i.e. no light competition), 
our model overestimates productivity (Fig. 3, ‘No shading’). 
However, if we assume that light availability is limited by 
shading – determined by leaf area index (LAI) – but is not 
structured by height (as is true in many current carbon mod-
els (Purves and Pacala 2008)), then productivity is substan-
tially underestimated (Fig. 3, ‘Average shading’). Accounting 
for this vertical light gradient avoids the problems with both 
of the limits above and also considerably improves NPP esti-
mates, regardless of the scale or resolution of remote sensing 
data (Fig. 2). These results are consistent with previous find-
ings (Fyllas et al. 2017) that light competition does indeed 
play an essential role in the distribution of tree growth rates 
and estimates of overall forest productivity.

Estimating growth rates using remote sensing data allows 
us to create high-resolution productivity maps across large 
regions at multiple spatial scales (Fig. 4). At the plot scale, 
we find remarkable fine-grain spatial heterogeneity in growth 
rate estimates both within and across elevations (Fig. 4a). 
Landscape-scale data reveal a strong elevation gradient in 
productivity as well as substantial local variation around this 
trend (Fig. 4b). Such maps provide precise information about 
the spatial distributions of traits and vegetation growth, 
allowing us to more accurately measure shifts in productivity 
with shifts in environmental conditions and to better identify 

Figure 3. Remote sensing productivity estimates (RS-CFM) calculated using alternative canopy shading schemes. ‘No shading’ indicates 
that light is freely available throughout the canopy and ‘Average shading’ indicates that each vertical canopy slice receives the same amount 
of light equal to the average throughout a given pixel. Root-mean-square deviation (RMSD) between estimated and measured NPP: no 
shading plot 3.87 (0.01 ha) 3.02 (1 ha), no shading landscape 3.53 (0.01 ha) 2.73 (1 ha) 2.59 (100 ha), avg. shading plot 6.16 (0.01 ha) 
6.51 (1 ha), avg. shading landscape 6.28 (0.01 ha) 6.55 (1 ha) 6.89 (100 ha).
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local and regional hotspots in functional diversity and pri-
mary production.

Discussion

Here we combined remotely-sensed trait and canopy data 
with a mechanistic, trait-based metabolic growth model to 
estimate productivity at high resolution across large regions 
and in remote and difficult to sample locations. Our frame-
work is flexible enough to apply to virtually any region or cli-
mate because vegetation growth rates are rooted in direct links 
between a few key plant traits and metabolism (Enquist et al. 
2007). This provides a baseline for producing more accurate, 
location-specific, high-resolution productivity estimates at 
larger spatial scales and lower costs. This information can be 
used to better understand the forces governing community 
assembly and to help predict future shifts in the composition 
and functioning of forests in response to anthropogenic deg-
radation and climate change. Such an approach is especially 
crucial in hyper-diverse (Barlow  et  al. 2018), structurally 
complex (Gough et al. 2019) productivity hotspots like trop-
ical forests (Field et al. 1998, Roy et al. 2001), where we need 
to account for detailed and localized functional variation to 
reduce the high uncertainty in carbon flux predictions with 
future climate change (Pan et al. 2011, Barlow et al. 2018, 
Mitchard 2018).

By incorporating highly-localized, fine-grained func-
tional trait and canopy information – as opposed to using 
plant functional types – we are able to uncover three new and 
important ecological results:

•	 Hotspots and shifts in productivity can be identified and 
mapped with greater accuracy and detail using local trait 
data, especially at low elevations where the canopy is 
denser and light competition may be more important (see 
Fig. 2b and Supporting information (RMSDs of 1.72 for 
our (RS-CFM) compared with 8.31 (MODIS) and 3.14 
(BESS)) and high-resolution (0.01 ha) landscape maps in 
Fig. 4).

•	 The accuracy of NPP estimates increases with pixel reso-
lution, reflecting increased variation in location-specific, 
pixel-level trait values and growth rates (see means and 
variances in Fig. 2c and d and increased variance in trait/
growth rate distributions in Supporting information).

•	 Productivity estimation is vastly improved when light 
competition is driven by continuous variation in vertical 
canopy structure at the level of individual pixels (see Fig. 3 
(RMSDs of 1.02 (RS-CFM) compared to 3.87 (no shad-
ing) and 6.16 (avg. shading) at 0.01 ha-resolution)).

Our framework also exposes fundamental links among 
traits, canopy structure and productivity across a broad 

Figure 4. Spatial maps of landscape-scale growth estimates for individual pixels (Ṁpixel) using our remote sensing canopy functional model 
(RS-CFM) at (a) 0.01 ha resolution for individual forest plots and (b) 1 haresolution for 30 040 hectares of forest surrounding the nine 
focal plots. Boxes in the upper right corner show areas outside the main plot area. Black pixels in plot-level images indicate that no data 
were available.
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temperature/elevation gradient, improving estimates most 
noticeably in high-productivity, low-elevation forests where 
canopies are densest (Fig. 2b, Supporting information). 
This improvement may result from more accurately recreat-
ing forest canopy diversity in two ways. First, both MODIS 
and BESS models represent functional diversity using plant 
functional types (Running  et  al. 2004, Zhao  et  al. 2005, 
Ryu et al. 2011, Jiang and Ryu 2016), which divides forests 
into a restricted number of functionally distinct vegetation 
groups and is common practice in productivity modeling 
(Purves and Pacala 2008). In contrast, our framework bases 
functional diversity on remote-sensing measurements of 
average trait values within individual pixels, better capturing 
on-the-ground diversity in foliar traits. Second, the MODIS 
model bases light absorption on total LAI (Running  et  al. 
2004, Zhao et al. 2005), while the BESS model uses a more 
sophisticated radiative transfer process (Ryu et al. 2011, Jiang 
and Ryu 2016). Our framework combines LiDAR canopy 
height measurements for individual pixels with site-specific 
information about the rate of light extinction as a function 
of vertical heterogeneity in LAI. The combination of a more 
complete representation of foliar trait diversity and more pre-
cise details about canopy structural diversity – both unique 
to individual high-resolution pixels – could explain why our 
RS-CFM captures productivity more accurately, perhaps 
moving us a step closer to the so-called ‘Holy Grail’ of plant 
functional ecology (Lavorel and Garnier 2002).

Although a variety of modeling frameworks have been 
developed to evaluate primary production at large spa-
tial scales, the remote sensing canopy functional model 
(RS-CFM) presented here breaks from previous approaches 
in important ways. First, our model explicitly links plant 
traits with growth, exposing direct connections between 
productivity and variation in traits that vary with spatial 
scale and resolution (Supporting information). This provides 
a highly flexible model that can be applied across systems, 
in contrast to models that rely on statistical relationships 
between variables within a particular dataset, making 
extrapolation and prediction either challenging or impos-
sible (Scheiter  et  al. 2013, Fisher  et  al. 2018, Boisvenue 
and White 2019). Second, we incorporate spatial variation 
in functional composition by collecting trait information 
directly from remote sensing data at high spatial resolution. 
Although other models (specifically DGVMs) often include 
remotely-sensed climate data, they typically include indirect 
estimates of functional variation via established relation-
ships between climate variables and plant functional types 
(Fisher et al. 2018, Boisvenue and White 2019).

Most importantly, our framework provides a simpler, 
more mechanistic alternative that provides highly accurate 
estimates of productivity based on forest functional com-
position at a given point in time (i.e. without the need for 
repeated flyovers (Caughlin et al. 2016)). Indeed, on a per-
sonal laptop computer with 4 CPU cores, it takes only about 
30 s to estimate productivity for the entire region studied 
here (30 040 ha) at 1 ha resolution. In contrast, DGVMs 
involve many parameters, sub-models and subroutines that 

can often take substantial time to run (Quillet et al. 2010, 
Fisher  et  al. 2018). Individual-based models track individ-
ual trees in a spatially explicit manner that requires lots of 
information and memory (Larocque et al. 2016, Fisher et al. 
2018). These simulation-based models are also evaluated on 
very short timescales (e.g. hourly as in ED2 (Medvigy et al. 
2009)) and often require ‘spin-up’ periods to equilibrate to 
initial forest conditions prior to analysis (e.g. 1000 yrs in 
LPJ-DGVM (Sitch et al. 2003)). These models are attractive, 
largely because of their attention to such details, but the level 
of detail comes at considerable computational expense. Thus, 
improved computational efficiency while maintaining atten-
tion to biologically important details are the main advantages 
of the RS-CFM.

In addition, our framework is flexible and can be easily 
generalized by including information from other regions 
beyond the specific choices and calculations we made here 
for Peruvian tropical forests. For example, it will be interest-
ing to extend the RS-CFM framework to temperate regions 
– where functional richness is relatively low (Lamanna et al. 
2014, Wieczynski et al. 2019) – or regions exhibiting strong 
gradients in other environmental variables, like precipita-
tion or vapor pressure. To estimate biomass within pixels we 
use an aggregate allometry that relates biomass to canopy 
heights and elevation specifically for the wet montane forests 
of southern Peru (Asner and Mascaro 2014). However, allo-
metric relationships between canopy height and biomass are 
known to vary and have already been evaluated across regions 
(Chave et al. 2014, Asner and Mascaro 2014), which can be 
accommodated in our framework by altering the underlying 
biomass allometry accordingly.

Because ground-based NPP measurements were originally 
collected within the same nine focal plots as our plot-scale 
remote data, we expect our plot-scale NPP estimates to be 
more representative of the ground-based NPP measurements 
used in this study than of landscape-scale estimates in gen-
eral. Given the positive relationship between pixel resolution 
and NPP estimate accuracy at the plot-scale, it is possible 
that higher-resolution (0.01 ha) landscape-scale NPP esti-
mates would actually be the most representative of overall 
regional productivity. However, verifying this requires more 
extensive ground sampling throughout the region than is cur-
rently available. Additionally, although smaller pixels exhibit 
larger uncertainty due to inherent errors associated with fine-
scale remote sensing data, it has been shown that 1 ha resolu-
tion remote data for carbon density estimates exhibit 90% 
agreement with ground-based field estimates (Mascaro et al. 
2011, Asner and Mascaro 2014). Conversely, functional rich-
ness increases with sampling area (Karadimou  et  al. 2016, 
Schneider  et  al. 2017, Durán  et  al. 2019), meaning that 
lower resolution remote data may underestimate trait varia-
tion by averaging over larger areas. As a result, lower reso-
lution remote data may only provide accurate growth/NPP 
estimates at larger spatial scales where more data are available. 
Consequently, based on this reasoning and our empirical 
results, we propose more generally that 1 ha-resolution trait 
and productivity estimates most accurately reflect the true 
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variation in forests, even across different forests and environ-
ments. Further evaluating how these opposing forces produce 
variation in remote trait and productivity estimates will be an 
interesting area of future study.

Our analysis identifies ML, AL and LMA as the strongest 
contributors to pixel growth rates (Ṁpixel) while leaf N and 
P content alone were less influential. This suggests that leaf 
nutrients affect biomass production mainly through their net 
impacts on leaf photosynthetic rate. The particular impacts 
of leaf nutrients on biomass production found here depend 
on the specific way that these traits were incorporated in our 
model (i.e. through statistical relationships with multiple 
components of leaf photosynthetic rate in our study region 
(Eqn. S8)). In addition to the important impacts of the 
leaf traits studied here, we argue that future models could 
be developed to more mechanistically link these and other 
leaf traits to photosynthetic rates, potentially improving pro-
ductivity estimates and their sensitivity to variation in forest 
functional composition.

Furthermore, we use vertical LAI and biomass profiles 
derived from ground data in the nine focal plots in this 
study. These components may also vary with study area or 
the level of disturbance present in a given forest. Such effects 
could be accounted for by incorporating more sophisticated 
LiDAR methods that have already been developed to directly 
measure vertical canopy biomass profiles (Drake et al. 2002, 
Asner  et  al. 2012a). Remote sensing technology shows 
great promise for evaluating this spatial and temporal varia-
tion in forest functional composition and productivity 
(Homolová et al. 2013). We argue that combining elements 
of our canopy functional model with airborne and satellite 
remote sensing data (Kampe  et  al. 2010, Lee  et  al. 2015, 
Asner and Martin 2016, Müller  et  al. 2016, Gamon  et  al. 
2019, Dubayah  et  al. 2020) has the potential to greatly 
improve the spatio-temporal acuity of productivity estimates. 
This information will be especially useful when evaluating the 
consequences of natural and anthropogenic degradation for 
the global carbon budget.

Climate change and deforestation are expected to alter 
the spatial distribution of functional traits expressed within 
forests (Enquist  et  al. 2015, Wieczynski  et  al. 2019). Our 
framework provides a mechanistic basis for predicting large-
scale changes in ecosystem functioning as a result of these 
expected future disturbances through their effects on trait 
composition. A first step toward such predictions might be 
to analyze time-series of remote sensing trait data to estab-
lish relationships between changes in functional composition 
and changes in climate, natural disturbances, anthropogenic 
impacts, etc. This information can then be combined with 
mechanistic, trait-based models like ours and extrapolated 
based on expected future environmental shifts. Analyzing such 
changes using high-resolution trait and productivity maps 
will help decode connections between forest composition and 
NPP, leading to stronger predictions about climate-induced 
shifts in carbon dynamics, more precise identification of pro-
ductivity hotspots and more effective management strategies 
in the future. In this way, directly linking productivity with 

functional traits and forest structure will not only improve 
our ability to predict future changes, but will also lead to a 
deeper understanding of the basic processes driving large-scale 
patterns in carbon dynamics within and across ecosystems.
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