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Abstract

Measuring and testing the dependency between multiple random functions is often
an important task in functional data analysis. In the literature, a model-based method
relies on a model which is subject to the risk of model misspecification, while a model-free
method only provides a correlation measure which is inadequate to test independence.
In this paper, we adopt the Hilbert-Schmidt Independence Criterion (HSIC) to mea-
sure the dependency between two random functions. We develop a two-step procedure
by first pre-smoothing each function based on its discrete and noisy measurements and
then applying the HSIC to recovered functions. To ensure the compatibility between
the two steps such that the effect of the pre-smoothing error on the subsequent HSIC is
asymptotically negligible when the data are densely measured, we propose a new wavelet
thresholding method for pre-smoothing and to use Besov-norm-induced kernels for HSIC.
We also provide the corresponding asymptotic analysis. The superior numerical perfor-
mance of the proposed method over existing ones is demonstrated in a simulation study.
Moreover, in an magnetoencephalography (MEG) data application, the functional con-
nectivity patterns identified by the proposed method are more anatomically interpretable
than those by existing methods.
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1 Introduction

In recent decades, functional data analysis (FDA) has developed rapidly due to a huge and
increasing number of datasets collected in the form of curves, surfaces and volumes. General
introductions to the subject may be found in a few monographs (e.g., Ramsay and Silverman),
2005 Ferraty and Vieu}|2006). In many scientific fields, measurements are taken from multiple
random functions per subject and the dependency between these functions is of interest. For
instance, neuroscientists are interested in functional connectivity patterns between signals
at multiple brain regions, which are measured over time in functional magnetic resonance
imaging data. It is thus an important task in FDA to measure their dependency and to
further test the significance of the dependency. Among extensive relevant research endeavors,
most dependency test methods can be categorized as either model-based or model-free.

A model-based method typically infers the dependency between multiple functions by
first assuming a functional regression model (see, e.g., Morris| 2015, for a survey) which
characterizes their structural relationship, and then testing the significance of the assumed
model. See examples of model-based methods by |Guo| (2002); Huang et al.| (2002); |Shen and
Faraway| (2004); |Antoniadis and Sapatinas| (2007) for concurrent/varying-coefficient models
and by Kokoszka et al.| (2008); Chen et al.| (2020) for function-on-function regression models.
The main disadvantage of a model-based method is its reliance on correct model specification.
If the model is misspecified, the inference is not well grounded and might be inaccurate.

A model-free method can avoid the misspecification issue associated with model-based
methods since it typically quantifies the dependency between random functions by a correla-
tion measure, without assuming any particular model. As a natural extension of the canonical
correlation for multivariate data, the functional canonical correlation is a popular correlation
measure for functional data (e.g., |Leurgans et al., [1993; He et al.| 2003} Eubank and Hsing,
2008; Shin and Leel |2015). However, it is plagued by the involvement of inverting a covari-

ance operator, which is an ill-posed problem and often requires proper regularizations. The



dynamical correlation (Dubin and Miiller| |2005; |[Sang et al.;|2019) and temporal correlation
(Zhou et al.,[2018)) are two functional correlation measures without the aforementioned inverse
problem. The former measures the angle between two random functions in the L? space. The
latter essentially computes the Pearson correlation between two random functions at each
time point and then averages all pointwise Pearson correlations over the time domain. How-
ever, since uncorrelatedness does not imply independence, these functional correlations are
insufficient to test independence. Recently a few model-free approaches have been developed
to test mean independence for functional data (e.g., Patilea et al.,|2016}|Lee et al.,|2020), but
they can only test a weaker notion of independence.

In this paper we develop a model-free independence test for functional data. Under the
reproducing kernel Hilbert space (RKHS) framework, we propose to use the Hilbert-Schmidt
Independence Criterion (HSIC, e.g., Gretton et al. 2005||2008) to measure the dependency
between two random functions. An appealing property is that HSIC endowed with charac-
teristic kernels is zero if and only if the two random functions are independent. However,
the application of HSIC requires fully observed and noiseless functional data, while in prac-
tice functional data are always discretely measured and contaminated by noise. To tackle
this problem, one may perform a two-step procedure: first pre-smooth the data, and then
apply HSIC to the resulting functions. Clearly, pre-smoothing will affect the performance of
HSIC. Indeed, the functional distance with respect to which the asymptotic convergence of the
pre-smoothing procedure is measured is crucial, as HSIC is fundamentally based on a func-
tional distance. Some common pre-smoothing procedures do not have existing convergence
results on the required functional distance, and hence may not be compatible; namely, the
pre-smoothing error may have a profound effect on the subsequent HSIC. See Section for
more discussion. In this work, we carefully design our procedure to ensure that the two steps
are compatible. For the first step, we propose a new wavelet thresholding method while we use
Besov-norm-induced kernels for HSIC in the second step. We can show that these choices in

the two steps are theoretically compatible if the functional data are sufficiently densely mea-



sured. See Section |4] for details. Our work is motivated by the Human Connectome Project
(HCP, https://www.humanconnectome.org) from which various brain imaging datasets are
publicly accessible. In Section [7] the application of our method to a magnetoencephalogra-
phy (MEG) dataset from HCP is capable of identifying anatomically interpretable functional
connectivity patterns, suggesting a great potential of the proposed method in the study of
functional connectivity between brain regions.

The main contribution of this paper is three-fold. First, we design some suitable kernels
such that the corresponding HSIC can identify the independence of a pair of random functions
of which sample paths belong to Besov spaces, a larger class of functions than Sobolev spaces
which are popular in RKHS modeling. We propose to use the Besov sequence norm for
the wavelet coefficients of these random functions induce such kernel, which is shown to be
characteristic. Second, for dense functional data, we develop the asymptotic distribution of
the empirical HSIC based on pre-smoothed functions by wavelet thresholding. To theoretically
guarantee the compatibility between the pre-smoothing and empirical HSIC, we propose a new
wavelet thresholding method that can efficiently reduce the pre-smoothing error measured by
the Besov sequence norm used in the empirical HSIC when the noise is nearly independent.
Since the asymptotic distribution involves many unknown quantities, we suggest a permutation
test in practice and prove that not only can the test control the Type I error probability but
also it is consistent. The theoretical results show that the two steps in our proposed procedure
are compatible. Finally, we propose a data-adaptive approach to tuning the smoothness
parameter for the Besov norm needed to induce the kernel for HSIC. It is numerically shown
that this approach is able to enhance the sensitivity of HSIC to detecting dependencies at
high frequencies.

The rest of the paper proceeds as follows. Section |2| provides a brief introduction to
HSIC. The two-step procedure for the proposed wavelet-based HSIC test is given in Section
Its asymptotic properties are presented in Section Section discusses tuning parameter

selection. The numerical performance of the proposed method is illustrated in a simulation



study in Section [6] and an MEG functional connectivity study in Section [7] where it is also
compared with representative existing methods. Section [8| concludes the paper. The code
to implement the proposed method is publicly available on GitHub (https://github.com/

rui-miao/wavHSIC).

2 Hilbert-Schmidt Independence Criterion

In this section we give a brief introduction to HSIC. Let X and Y be two random functions of
which sample paths belong to function spaces X and ) respectively, and H(xx) and H(xy)
be the RKHS equipped with kernels ky and xy defined on X x X and ) x ) respectively.

HSIC requires that both ky and ky are characteristic, in the sense that two probability
measures P = P’ if and only if P*2(P) = P*2(P’) where P*2(P) = Ep{rz(Z,-)} for a ran-
dom function Z € Z which follows P and (Z, Z) = (X, X) or (Y,)). A characteristic kernel
may be induced by a strong negative type semi-metric (see Definition S1 and Proposition S1
in the supplementary material). Denote the joint probability measure of X and Y by Pxy and
their marginal probability measures by Px and Py respectively. Since xky and xy are char-
acteristic, Px and Py are fully characterized by P**(Px) = Ep,{rkx(X,-)} and P"™(Py) =
Ep, {ry(Y,-)} respectively. Let P**®"(Pyy) = Ep, {(kx ® ry)((X,Y), (*,-))}, where the
tensor product kernel ky®ky is defined by (kx®ky)((z,y), (2',Y)) = kx(z, 2" ) ky(y,¥), z, 2" €
X, y,y €.

Sejdinovic et al.| (2013) showed that X and Y are independent, i.e., Pyy = PxPy, if
and only if P"*®"(Pyy) = P**(Pyx)P" (Py), although ky ® ky is not characteristic for
all probability measures on H(ky) x H(ky). Therefore, to test the independence between X
and Y, it suffices to study the difference between P®"*®%»(Pyy) and P*¥(Px)P*¥(Py). Since
Prx(Px) € H(ky), P™(Py) € H(ky) and P*® (Pyy) € H(ky ® Kky) where H(ky ® Ky)
is the RKHS equipped with Ky ® ky, HSIC may be used to measure this difference under the

norm of H(kx ® ky).



Definition 1 (HSIC). Suppose that [, rx(x,2)dPx(z) < oo and [y, ky(y,y)dPy(y) < oo.
The HSIC of Pxy is defined by

V(Pxy, kx,ky) = [P (Pxy) — P (Px)P™ (Py)|l3;

Kx®KY)
~ 4 / / (. 2V (. )Py — Py Py) (@, 1)d(Pyy — PxPy) (@),
XxY JAXXY

In practice with {(X;,Y;) : ¢« = 1,...,n} which are independently and identically dis-
tributed (i.i.d.) copies of (X,Y"), the sample versions of P®¥ (Px ), P (Py) and P"*®% ( Pyy)
are defined by P*¥ (P, x) =n" ' >0 | ka(Xi, ), P™(Py) =n ' Y0 ky(Yi,+), and PR (P, vy ) =
n~t T {(ka ®ky) (X5, Y5), (*,+))}. Obviously P** (P, x) € H(kx), P (P,y) € H(ky) and

Prx®w (P, vy) € H(kx ® Ky), so we can obtain a sample version of HSIC as follows.

Definition 2 (Empirical HSIC). Under the same setting in Deﬁmtion the empirical HSIC,
which is an estimator of HSIC, is defined by

V(Poxy, ki, kiy) = [P (B xy) = P (Pox)P™ (Poy) [ xony)
- 4/ / H/\{(iL‘, ml)/@y(y, y,)d<Pn,XY - Pn,XPn,Y)(.T, y)d(pxy — Pn,XPn,Y)(m,a y’).
XXY JAXY
By|Sejdinovic et al.| (2013), the empirical HSIC can be rewritten as
V(P xv, K, Ky) = Tl_2tr(1"XHI‘YH)7

where T = (kx(Xi, X;))1<ij<n and TV = (ky(Y;, Y;))1<ij<n are Gram matrices, and H =
I, — n'1,1] is the centering matrix with the n x n identity matrix I,, and 1,, = (1,...,1)"

of dimension n.

3 Methodology

Suppose that bivariate functional data {(X;,Y;) : i = 1,...,n} collected from n subjects are
i.i.d. copies of a pair of random functions (X,Y), which, without loss of generality, is defined

on the domain [0, 1] x [0, 1]. Let the sample paths of X and Y belong to function spaces X and



Y respectively. In many applications such as brain imaging analysis, the measurements of each
function are sampled at a discrete and regular grid and subject to noise contamination. Hence
we assume that the observations are {(Xy, ;) == (X;(T)) +eX,Yi(T) +€X) :i=1,...,n;l =
1,...,m}, where {T; = (I —1)/m : l = 1,...,m} is a regular grid with m = 27*1 for some
integer J > 0 and the two sets of mean-zero random noise, {ey : i =1,...,n;l=1,...,m} and
{el :i=1,...,n;1l=1,...,m}, are independent of each other and of {(X;,Y;):i=1,...,n}.
The error terms in each set are further assumed to be identically distributed, independent
across subjects, but possibly dependent within each subject. We defer the discussion on the
error dependence structures to Section Our goal is to formulate an HSIC-based test
for the independence between X and Y via {(Xil,ﬁl) i =1,....,n;1 = 1,...,m}. For
simplicity we assume that all functions share the same measurement grid and m = 27/%1,
but the proposed method is applicable with minor modifications if the grid is irregular, the
functions are measured at different grids, or m # 2% (see Remark.

Due to the success of existing HSIC-based independence tests for multivariate data, it is
tempted to treat the discretized observations as multivariate data and directly apply existing
methods. However, there are two issues with this approach. First, in order to capture enough
information, m should be large enough, which naturally leads to high-dimensional data. With-
out reasonable structure across these m dimensions, HSIC does not perform well. In the FDA
literature, modeling the sample paths with certain form of smoothness has been shown an em-
pirically successful strategy in many applications. It is beneficial to incorporate smoothness
structure during the design of a tailor-made HSIC method. Second, the discretized observa-
tions are contaminated by noise. Hence these raw observations are indeed not “smooth” but
the noiseless ones are.

The proposed method is directly based on the definition of HSIC (Definition (1)) when ap-
plied to random functions. Clearly, the application of such HSIC requires the trajectories of
all random functions to be fully observed and noiseless. Thus, with discrete and noisy mea-

surements in practice, a natural idea is to perform pre-smoothing to recover these trajectories



followed by applying HSIC to random functions. However, the compatibility of these two
steps is generally unclear. Namely, it is non-trivial to know whether the pre-smoothing error
(measured in a certain norm) would have a profound effect on the subsequent HSIC-based test.
For instance, if the sample paths of all random functions are assumed to belong to a Sobolev
space, it is seemingly reasonable to pre-smooth each trajectory by a smoothing spline followed
by the HSIC based on Sobolev-norm-induced kernels. However, the compatibility of the two
steps is unknown since there is no theoretical result to guarantee that the pre-smoothing error
under a Sobolev norm converges to zero, although the corresponding results with respect to
the L? or empirical norm exist.

To address this compatibility issue, we propose to use HSIC based on Besov-norm-induced
kernels for testing independence under the assumption that the sample paths of all random
functions belong to Besov spaces, a larger class of functions than Sobolev spaces. To recover
each trajectory, we develop a new wavelet thresholding method for pre-smoothing. Its theo-
retical compatibility with the proposed HSIC is given in Section (4l In the rest of this section,
we first introduce wavelets (e.g.,|Ogden) 1997} Vidakovic} 2009} Morettin et al.}|2017) together

with other related results and then the details of the proposed two-step procedure.

3.1 Wavelets and Besov Sequence Norms

Following the Cohen-Daubechies-Jawerth-Vial (CDJV) construction (Cohen et al., [1993), let
father and mother wavelets be ¢, € CT[0,1] respectively with D vanishing moments (e.g.,
Daubechies, [1992) where C[0, 1] is the space of all functions on [0, 1] with R-th order continu-
ous derivatives. We consider a Besov space By, [0, 1] with norm ||| g 0,1 of which smoothness
parameter a satisfies 1/p < a < min{R, D} such that By [0, 1] can be embedded continuously
in C[0,1]. Formal definitions of By [0,1] and its norm | - |pa, 0,1y are given in Section S1.2 in
the supplementary material. Then for any function f € By [0,1] N L?[0, 1] and a fixed coarse

scale L, we have the following decomposition
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= > G202 — k) + ) 0 {2Pe(@t - k)}, teo,1]. (1)

j>L k=0

Denote 05 = &44,0 < j < L,0 < k <2/ and _19 = &. Based on the wavelet coefficients
of f, 07 = ((62)7,(8))7,....(05)7,(07.,)"....)" where 8] = (0,0,0;1,....0;21)" and
0’:1 = 0_1p, the Besov sequence norm || - Hbg,q (e.g., |Donoho et al.| |1995; [Johnstone and

Silverman, |2005) is defined by

1/q
167 [lbe, = <Z 2j5‘1||‘5’f||q> , s=a+1/2-1/p, (2)

j>—1
where || - [|, refers to the £,-norm for vectors. Denote the corresponding space by b5, = {a :
[allpg,, < oo}. Note that the two norms || - |pa, and || - [|sg, are equivalent (e.g., DeVore and

Lorentz, 1993} | Donoho et al.; |1995) and obviously b7, C bgq if 3 < a. In practice, if f is
observed at m = 277! dyadic time points {0/m,1/m,...,(m —1)/m}, the discrete wavelet
transformation can be used to calculate the wavelet coefficients 87 with 0; = 0 when 5 > J.
Then we can denote 87 = (87 )7, (81)7,...,(05)T)T.

We can show that some Besov sequence norm can induce a characteristic kernel, which is

required by HSIC.

Theorem 1. For 0 < ¢ < ¢ < p <2, 0< a < d and o/ > 1/p, let the semi-metric
pes (fr9) = 167 — BgHba for f,g € B [0 1], where 8 and 69 are the wavelet coefficients of f
and g respectively. The function mduced by pg,, which is k (2, 2") = pye (2,0) + prg (2, 0) —
pos, (2,7), 2,2 € Bo‘ 40,1}, is a characteristic kernel.

The proof of Theorem [I] is given in Section S2.1 in the supplementary material. By
Theorem |1} we can define HSIC properly based on kernels induced by Besov sequence norms.
For simplicity, hereafter we focus on popular choices of p = ¢ = 2 and ¢’ = 1. Accordingly we

abbreviate Bg,[0,1] and b5, to B and b respectively, and the kernel functions are
kz(21,22) = |07 [y, + |07, — |07 — 0|45, 21,220 € 2,0 < Bz < ag,

for (Z,Z) = (X, X) and (Y, ).



3.2 Two-Step Procedure

Let Z = X or Y. Under the setting in Section we assume Z € B2 where 1/2 < ay <
min{R, D}. Note that B*2 C B"Z for 0 < 7 < az so Z € B2 as well. To test the
independence between X and Y based on their discretely measured and noisy observations,
we propose to first denoise each function and then apply HSIC to the recovered functions.

The two-step procedure is explicitly stated as follows:

Step 1 By the decomposition and the resolution limitation due to a finite number of
measurements m = 27+ taken for each subject, we obtain the initial wavelet coefficient
estimates for each Z;, denoted by 8% = ((0?3)1 (Ogi)T, ce (Hgi)T)T, via the discrete wavelet
transformation with the coarse scale L. The coarse scale Lz may be selected by cross-

validation or domain knowledge. We propose to denoise 0% and accordingly obtain 0% =

((6%)7,(87)7,....(6%)T)T as follows. First, we let 8% = 67 for j = —1,...,Ly — 1.
Moreover, we apply the following penalized least squares to obtain 03-21', j=DLg,....J:
67 — arg min {167 = 0,113+ 0% pen,(1050) }, 5= Lz.o. (3)
J
where || - ||2 denotes the Euclidean norm, ||-||o denotes the number of non-zero elements, d; =

2°21§, is the noise standard deviation at the resolution level j with §; > 0, and the penalty
pen; (k) = kCz{1 + V2(1 + 2¢z) log(rym;/k)}* that depends on (z > 1, ¢z > —1/2, m; = 27,
and 7; = 722270770+ with 7, > e and jg =0+ (sz+1/2)/az)/(az + sz +1/2) - log, 5,7t

The proposed procedure in is capable of denoising a certain type of correlated noise
(see technical assumptions in Theorem [2[in Section . Compared to the penalty (12.34) in
Johnstone| (2019), we employ a different 7; in the penalty in such that the pre-smoothing
error measured by the Besov sequence norm used in the empirical HSIC in Step 2 below
converges to zero if m diverges to infinity (see Theorem in Section. This can guarantee
the compatibility between this and the next steps.

Similar to | Johnstone and Paul| (2014), to obtain the estimate Ofi, Ly < j < J, defined in

10



(3), one may apply the level-wise hard thresholding as follows: For each level L, < j < J,
let |t9jZ(k)| be the k-th term after the elements of HJZ are sorted in a decreasing order of their
2jfl)|. Then the hard threshold at level j
is 6Z7j\/penj(]%j) — penj(l%j — 1), where k; = arg ming - {Zk/zk |93'Z:Ek/)|2 + 5%7jpenj(k:)} . De-
tailed steps of solving are summarized in Algorithm The discussion of tuning parameter

absolute values, namely [077,| = [057,)| = -+ = |9j,(

selection is deferred to Section [5l

Step 2 Since the wavelet coefficient estimates 0% c pox c bPx and @Y € b C b,
1=1,...,n, for fx < ax and By < ay, we may apply HSIC to the denoised functions where
the kernels ky and ky are induced by p,sx and pys, respectively as defined in Theorem

Explicitly, we have y(P, gy, kx, ky) = n*Qtr(I‘XHI‘YH), where

¥ — (Jlo*

vix + 1165 ex — [0 — er||bﬁX) and

1<ij<n’
7 = (167 o + 167 v — 16" — 6% ) .
1<i,j<n

By adopting p,sx and ps, where Bx < ax and fy < ay to construct kernels, we are
able to make the pre-smoothing step theoretically compatible with the HSIC. As revealed in
Theoremsandin Sectionbelow, if the observations of all functions are sufficiently dense,
the denoising error is asymptotically negligible in the asymptotic distribution of the HSIC.
This is a key benefit of using wavelets and Besov norms for pre-smoothing.

In Section 4] the asymptotic distribution of fy(Pm %y Kx, Ky) is developed in Theorem
under the independence hypothesis. Despite its theoretical appeal, the asymptotic distribution
unfortunately involves many unknown quantities. Therefore, we suggest using permutations

to perform the independence test which, as shown in Theorem 4| can control the Type I error

probability and is also consistent.

Remark 1. Since denoising is performed separately for each function and subject, the proposed
method is applicable when the functions of different subjects are not measured at the same grid.

Form # 2771 at possibly irreqular and uncommon designs, linear interpolation may be applied

11



if the original measurement resolution is sufficiently high (e.g., Kovac and Silvermany|2000).
We demonstrate the satisfactory performance of this strategy via a simulation study, and the

corresponding results are given in Section S3 of the supplementary material.

Algorithm 1: Solving by wavelet thresholding.
Input : {OJZ cj=1Lg, ..., J};

fixed tuning parameters (z > 1,77 > e,¢z > —1/2,5, > 0.
Output: {9]21 cj =1Ly, ..., J}.
1 for j < Ly to J do
2 | (0% 2 167, 2 - 2 107, |« sort {6
3 | 0ot (5z,j\/penj(l%j) — pen;(k; — 1), where
k; = arg min {Zk’zk lejzjzk’)|2 + 5%,jpenj(k)};
4 | fork<+ 0to2 —1do

271 - : .
}i_o in descending order;

Z; Zs Z; Thresh
5 9j7k — Hj’k]l(wj’k > Hj resh)
6 end
7 end

Remark 2. In Step 1, the time complezity for the discrete wavelet transformation is O(m)
for each subject (Cohen et al.,|1993) and so is that for denoising. In Step 2, the time com-
plexity for calculating Gram matrices is O(mn?) and so is that for calculating the empirical
HSIC. Therefore, the permutation test based on B permutations requires O(Bmn?) of time.
In addition to the time complexity analysis, we report the computing time for the proposed

method when applied to the MEG data in Section |7}

4 Asymptotic Theory

In this section we show that the proposed two-step procedure can lead to an asymptotically

valid test, which addresses the compatibility issue raised in Section Explicitly, we first

12



provide the rate of convergence for the denoising error involved in Step 1 in Theorem [2] then
the asymptotic distribution of HSIC (P, 4y, kx,ky) in Step 2 in Theorem (3| and finally the

asymptotic properties of the permutation test in Theorem[d] Hereafter, the kernels xx and y

are induced by p,sx and pys, respectively. For the noise terms {eZ : i =1,...,n;l=1,...,m}
where Z = X or Y, we assume that e7 = e7(T;),l = 1,...,m where {eZ : i =1,...,n} are
z

i.i.d. copies of a stationary stochastic process e“.

Theorem 2. Assume that Bz < agz, ||0%|wz < Cg for a constant Cz > 0, and 0" —
(Q;fi),lgjgjz;k:o7,_,,2j,1, the discrete wavelet coefficients of eZ, satisfy Qjei = 27902, where
Sz > —1/2 and z = (ZM),1SJSJZ;k:0,,,,,2j,1 is a zero mean Gaussian random vector that is
weakly correlated, i.e., its covariance matriz X satisfies EE1 < 3 < EZT where 1 is the identity
matriz, 0 < ¢ < 1 < & < oo are constants, and A < B means that B — A is positive

semidefinite. Then for 0% obtained by @, we have

sup E (HOZ — 6%

Z.
107 |0z <Cz

o OZZ') =0(67)=0(m™), uniformly fori=1,...,n,

asm — 00, where r = (az —Bz)/(az+sz+1/2). This implies that ||OZ — 6%

v, = Op(m™)

bBz

uniformly fori=1,...,n as m — o0.

The proof of Theorem is given in Section S2.2 in the supplementary material. Theorem
shows that the pre-smoothing error under the Besov sequence norm b°# converges to zero
uniformly for all subjects if m diverges to infinity. This theoretical guarantee is achieved due
to the new penalty in the proposed wavelet thresholding method . The assumption on
the noise Hji = 27952, where z = (2jk)—1<j<tyk=0,. 2i—1 is weakly correlated Gaussian is a
generalization of the Gaussian white noise model by allowing correlation among noise terms
to some extent. First, the assumption encompasses both short- and long-range dependences
of the noise process when it is a stationary and Gaussian (Johnstone and Silverman) [1997).
For the short-range dependence case where ¢z = 0, there is no variance inflation with the

increase of level j. For the long-range dependence case where —1/2 < ¢z < 0, the process

13



e%“( ) =m™! Z}mlt eZ can be approximated by a fractional Brownian motion 6% 27 By (t),

= 1/2 —¢; (Taqqul} |1975), which is widely used for modeling long-range dependence. Then

0L H — 527 in ) is asymptotically minimax

the convergence rate (with 0 replaced by
up to a constant. When Sz = 0 in particular, this rate coincides with those of [Wang| (1996)
and |Johnstone and Silverman| (1997). Second, when ¢z > 0, ¢z captures noise amplification
as reflected in the noise level 0z, = 252§, which is common in the linear inverse problem
(Abramovich and Silverman, 1998} |Johnstone and Paul| [2014), e.g., sz = 1/2 for the two-
dimensional Radon transformation (Donohol 1995).

Since the HSIC is constructed based on the kernels induced by pysx and pys, the same
norms used to evaluate the denoising error as in Theorem [2| the compatibility between the
pre-smoothing by wavelet soft-thresholding and HSIC is theoretically guaranteed. As shown in
Theorem [3] the effect of the denoising error on the distribution of the HSIC is asymptotically
negligible for dense functional data.

To develop the asymptotic distribution of W(Pn, <y K, Ky), we further define the centered
kernel for Ky by kx(X, X') = (ka(X,-) = P (Px), kx (X', -) = P**(Px))3(x). Furthermore
define an integral kernel operator Sy, : H(kx) — H(kx) by Sz, (9) = [ Fx(x,-)g(x)dPx(z)
for any g € H(xx). An integral kernel operator S, for Y can be similarly defined.

Theorem 3. Under the same assumptions of Theorem if m satisfies
m(0z=02)/Raz+2z+1) — o(p=1y, (4)
for both Z =X and Z =Y, then
> > e NZ,,  if X and Y are independent,

ny (P, gy, kx, Ky) ~
0, otherwise,

where “~" represents weak convergence, Ny, ~ N(0,1),u,v > 1 are i.i.d. and {u, : u > 1}
and {v, : v > 1} are eigenvalues of Sk, and Sz, respectively.

The proof of Theorem (3| is given in Section S2.3 in the supplementary material. The
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n

{(X:,Y:) : X; € B Y; € B% i =1,...,n} (Sejdinovic et al.||[2013). The requirement (4

asymptotic distribution of (P Xy B Ky) in Theoremis the same as that for fully observed

ensures that the error due to the denoising procedure is asymptotically negligible under 5%
norm if the measurements are sufficiently dense. In general, for fixed oz, Bz and ¢z, the order
of m should be higher than n'/" where r = (az — 37)/(2az + 25z + 1) which, for example, is
93 if (ay, Bz, sz) = (2,1/2,0) and n* if (ay, Bz,52) = (3,1,1/2).

Since the asymptotic reference distribution of (P, %y, ka, ky) when X and Y are assumed
independent involves many unknown quantities, in practice we perform the test by permuta-

tion. As shown in Theorem [4] the permutation test can control the Type I error probability

and is also consistent.

Theorem 4 (Permutation Test). Let the level of significance be o € (0,1). If the null hypoth-
ests that X and Y are independent is true, the permutation test of V(Pn,f(f/v Kx,ky) based on
a finite number of permutations rejects the null hypothesis with probability at most a.. If the
alternative hypothesis that X and Y are dependent is true and the assumptions of Theorem
and hold, the permutation test of (P, gy, kx,ky) based on B > 1/a — 1 permutations is

consistent, i.e., P(pyy < o) = 1 as n — 0o, where gy is the p-value.

The proof of Theorem [4]is given in Section S2.4 in the supplementary material. Theorem
shows that the proposed permutation test is also theoretically compatible with the proposed
wavelet thresholding method in Step 1.

5 Tuning Parameter Selection

In this section, we discuss the selection of tuning parameters involved in the two-step procedure
proposed in Section They include (7, 77, <z and dz in Step 1 and Bz in Step 2, where
Z=XorY.

First, to guarantee ( > 1 and 77 > e, we suggest (z = 1.0001 and 7, = 1.0001e which
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are slightly larger than their respective lower bounds, unless domain knowledge is available.
Second, for ¢z which captures noise amplification and d; which reflects the noise level,
we adopt crude estimates for them based on the top two levels of the wavelet coefficients
(Johnstone and Silverman, [1997). Explicitly, we obtain ¢y = log2(3z7 J/SZ J—1) and oy =
07.7/277 where d,,; = media;a{\/ﬁﬁfjC k=0,...,2 — 1} /median(|W]) for j = J — 1, J,
and W is a standard normal random variable.
Finally, for the smoothness parameter 5, we will first discuss its role in dependency
detection and then propose a data-adaptive selection method for it.
In Section Theorem seems to imply that given ay and ay, the best choice is Sx = fy =
0 because the corresponding denoising error attains the best rate of convergence. However,
this choice of Sx and [y may result in a poor dependency detection especially when the
dependency of X and Y originates from their high frequency bands.
For illustration, by Deﬁnitionand (2), we consider the first-order approximation (Chakraborty
and Zhang} 2019, Theorem 5.1)
V(Pxy, ks ky) R ey > D ”Y(ny, 220x9x g, 22ﬁYjY/f§gY)>a (5)
Jx2—1jy=>-1
where £57)(z,2) = ||0%]2 + |02 — (|07 — 67|13 for jz > —1, with (2,7, Z) = (z,X,X) or
(y,Y,Y) and Euclidean norm ||-||2, and cxy = 4y/E[[ X — X'[[Z%x E[|Y — Y'||%, with X" and Y’
being the independent copies of X and Y, respectively. Apparently (PXy, 220x7x m(;)‘), 220y iy /{Sf”)

measures the dependency contribution to the HSIC at jx and jy of X and Y respectively,
which is zero if and only if X and Y are independent at jx and jy. If Bx = [y = 0, the
scaling factors 26x7x = 26viv — 1 for all jx > —1,jy > —1 and it will be very difficult to
detect the dependency between X and Y at high frequencies since the dependency contri-
butions contained at high frequencies are very likely to be overwhelmed by the independent
signals at low frequencies. Therefore, we aim to select Sx and [y such that the dependency
contributions at high frequencies, if any, are detectable.

The idea of the proposed tuning method is to balance the dependency contributions to
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HSIC at all frequency scales such that they are approximately the same. To lessen the compu-
tational burden, a marginal selection algorithm is proposed in the sense that the optimal Sy
is selected only based on X without reliance on Y. Note that, by Appendix A in[Sejdinovic
et al.| (2013)) and the properties of distance covariance, the dependency contribution at each

Jx,Jy = —1 satisfies

’7<PXY, 928xjx ,é;k)) 92By iy HS{Y)) < 92(Bxix+By jy) \/’7<Px, ’iggX))V(PYy /fggY))7
where 3(Pz, n§7) = P27 927 (P7) (v, ) = P27 (BA) (0P (PO, 1 o0 G2 2
kz kz
—1, is essentially a distance variance (Székely et al. [2007) with (2,72, 2) = (z,X,X) or
(y,Y,Y) (Sejdinovic et al.|[2013). Thus we propose to select Sx by balancing 22°x3x 4 /~v( Py, mggX))

at all jx > —1. If 225XjX\/7(PX,/<;()gX)) ~ C where C > 0 is a constant, then 28xjx +
%log2 v(Px, Ii()gx)) ~ log, C, so Bx may be selected as the estimated slope of the linear regres-
sion on (—2jx, log, v(Px, /{E,?X))/Q).

(3x)

In practice, we could estimate v(Px,x3~’) by (P % K%’x))

for each jx > —1, but its

accuracy is poor for very high frequencies due to noise contamination. Thus we only consider
Jx up to jx = max; > {7(P, %, /{S?X)) > (P ex, KE,?X))} where éX = X — X is the residual,
such that the distance variances of all jx < jy are not smaller than that of the residual. If
a known frequency band is of interest in the context of a study, e.g., the alpha band of brain
signals, one may alternatively select Sx by balancing 226x7x 4 /~v( Py, /{()@'X )) over that frequency
band. Last, we remark that the computational benefit of the proposed marginal approach for

tuning parameter selection is substantial when many tests have to be performed, such as in

the functional connectivity analysis (Section .

6 Simulation

In this section we evaluate the numerical performance of our proposed wavelet-based HSIC

method wavHSIC in both controlling the Type I error probability and statistical power. We
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also compare it with a few representative existing methods, including

(a)

Pearson Correlation (Pearson). It is a one-sample t-test based on Fisher-Z transformed
correlation coefficients of all subjects. The correlation coefficient for each subject is
obtained by applying the Pearson correlation formula to the bivariate time series of the
subject, without adjusting for any possible dependence within the time series. It is a

popular functional connectivity measure in neuroscience (e.g., He et al.l[2012).

Dynamical Correlation (dnm,|Dubin and Muller, 2005). It is defined as the expectation

of the cosine of the L? angle between the standardized versions of two random functions.

Global Temporal Correlation (gtemp, Zhou et al.l|2018). It is the integral of the Pearson

correlation obtained at each time point.

Bias-Corrected Distance Covariance (dCov-c, [Székely and Rizzo| 2013). It is a t-test
designed to correct the bias of distance covariance for high-dimensional multivariate
data. We apply it by treating the discrete measurements of two random functions

as multivariate data. If the bias is not corrected, it is equivalent to wavHSIC with
Bx =Py =0.

Functional Principle Component Analysis (FPCA) Based Distance Covariance (FPCA,
Kosorok| [2009). The distance covariance (Székely et al., 2007)) is applied to top Func-

tional Principle Component (FPC) scores which cumulatively account for 95% of the

variation of each random function. When all FPC scores are used, it is equivalent to

wavHSIC when Sx = By = 0.

Functional Linearity Test (KMSZ, |Kokoszka et al.| [2008). It is an approximate chi-
squared test for the nullity of the coefficient function by assuming a functional linear
model between the two random functions. The model fitting requires a satisfactory
approximation of each random function by its top FPC scores and we select those which

cumulatively account for 95% of variation of each random function.
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(2)

Permutation-Based Functional Linearity Test (KMSZ-p). It is the same as KMSZ except
that the p-value is obtained by permutation. Such a modification can be regarded as a

finite-sample correction of KMSZ.

Projection-based Mean Independence Test (PSS, |Patilea et al.l |2016)). For a functional
response Y and a functional predictor X, PSS aims to test the conditional mean in-
dependence of Y given X, ie.,, E(Y | X) = E(Y),a.s. PSS is a model-free test that
does not specify a model for E(Y | X). It requires a finite-dimensional projection of X
and uses wild bootstrap to find critical values. To implement PSS, we used the R pack-
age fdapss which is publicly available at http://webspersoais.usc.es/persoais/

cesar.sanchez/|

Functional Martingale Difference Divergence Based Mean Independence Test (FMDD,
Lee et all [2020). FMDD is also a model-free mean independence test. It measures
the conditional mean independence using the metric of functional martingale difference
divergence and uses wild bootstrap to find critical values. To implement FMDD, we used
the R code publicly available at https://publish.illinois.edu/xshao/files/2019/
06/CodeCMDexamplel.txt.

The first five (a-e) in comparison are model-free methods. KMSZ is one of the most

popular model-based methods in the FDA literature, but it can only test for linearity. PSS

and FMDD can handle nonlinear effects of the functional predictor, but only on the mean of

the functional response, so they can only test a weaker notion of independence. Hereafter,

for bivariate random functions (X,Y’), PSS(Y ~ X)) denotes testing E(Y | X) = E(Y), a.s.

using PSS. Moreover, PSS(Omnibus) denotes the omnibus test which takes the smaller p-
value between those obtained by PSS(Y ~ X) and PSS(X ~ Y') respectively. FMDD(Y ~

!The package is only for Windows platform. For the user-chosen parameters required by this package, we
followed the recommendation in Section 4.1 of [Patilea et al.| (2016) and set the bandwidth h = n~2/9 penalty
coefficient a = 2, grid size n, = 50 and number of FPCs which cumulatively account for 95% of the variation
of the functional predictor.
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X), FMDD(X ~ Y) and FMDD(Omnibus) are similarly defined. To obtain p-values, 1,999
permutations were used for wavHSIC, dnm, gtemp, FPCA and KMSZ-p while 1,999 bootstrap
samples were used for PSS and FMDD. We declare statistical significance in each simulated
data based on the level of significance 0.05.

We generated 199 simulated datasets, where the number 199 is chosen to prevent em-
pirical Type I and Type II error probabilities from coinciding with the level of significance
0.05. In each simulated dataset n = 50 or 200 independent subjects with bivariate func-
tions {(X;(¢),Yi(t)) : t € [0,1],4 = 1,...,n} were generated where for the i-th subject,
Xi(t) = 3202y minow(t) and Yi(t) = 32,2, Gud(t +0.2) with o 1(t) = V2 cos(2mht), dox(t) =
V2sin(2rkt) for k = 1,...,8. We considered three settings with different dependency struc-
tures of the bivariate functional data which are controlled by the FPC scores {(ni, Gix) : k =
1,...,16;i=1,...,n}.

e Setting 1. We generated 7, ~ N(0,k71%) &k = 1,...,16 and ( ~ N(0,k712) k =

1,...,16 independently.

e Setting 2. With p=0fork=1,...,8 and p=0.6 for k=9,...,16, we generated

’ 0 L1105 11125
Mik | N 7 P
C'k 0 pl{fl'l% k71.2
e Setting 3. For k = 1,...,8, nix ~ N(0,k71%) was generated independently of (j ~

N(0,k7'2). For k=9,...,16, nix ~ N(0,k719) and (i = n% — En.

Apparently X and Y are independent in Setting 1 and dependent in Settings 2 and 3.
In Setting 2, the FPC scores of X and Y are linearly correlated but only at high spectral
frequencies, while in Setting 3 they are linearly uncorrelated but dependent only at high
spectral frequencies, so it is more difficult to detect dependency for all methods in Setting 3
than Setting 2.

Both functions are measured at m = 64 or 256 equidistant points on the time domain

[0,1]. We added Gaussian noise to all measurements with signal-to-noise ratio SNR = 4
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or 8, which is the variance of all measurements over the noise variance. The noise terms
were generated independently across subjects. Within each subject, we experimented with
both independent (white noise) and dependent (correlated noise) settings. For the dependent
setting, the Gaussian noise was generated by differencing the fractional Brownian motion with
Hurst exponent 0.7.

Since all methods in comparison require noiseless functions, we used the same denoising
procedure in Step 1 for all of them for fairness. We chose the CDJV wavelet basis func-
tions with vanishing moment D = 10 for both X and Y, which leads to ax = ay =~ 2.902
(Daubechies||1992). The tuning parameters Sx and By were selected by the method in Section
The results are given in Tables

Tables and show that all methods are almost always able to control type I error prob-
abilities except for PSS(X ~ Y') and the two omnibus tests when the two random functions
are truly independent. Relatively, KMSZ is very conservative in many cases and KMSZ-p
corrects its p-values to some extent. However, KMSZ-p seems more likely to detect spurious
dependency when (n,m) = (50, 64), so does dCov-c when (n,m) = (200, 256).

Tables and [6] show that the statistical powers of all methods typically improve
when one of n, m and SNR increases under Setting 2, but unnecessarily under Setting 3
except for KMSZ, KMSZ-p and wavHSIC. This demonstrates the difficulty of Setting 3 in
detecting dependency to some extent. Except wavHSIC, all model-free methods have very low
powers in all scenarios under either Setting 2 or 3, which indicates their poor performances in
detecting linear dependency in high frequencies or nonlinear dependency. The performance
of KMSZ is satisfactory for n = 200 under Setting 2 when the relationship between X and
Y is truly linear. KMSZ-p improves the statistical power of KMSZ further for n = 50 under
Setting 2 by permutation. However, both KMSZ and KMSZ-p are poor at testing nonlinear
dependency in Setting 3. The performances of PSS and FMDD, which can detect nonlinear
mean dependency, are comparable with those of dCov-c and FPCA in Settings 2 and 3, but
worse than those of KMSZ and KMSZ-p in Setting 2 where X and Y are linearly dependent.
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Tables and [6] also demonstrate the appealing performance of wavHSIC. It is always
the most powerful method, and substantially better than the other methods. Only the powers
of KMSZ and KMSZ-p are comparable with those of wavHSIC when the sample size n = 200 is
large and the linearity assumption is valid under Setting 2. For fixed (n, m, SNR), the medians
of the selected parameters Sx and [y for wavHSIC are always similar between Settings 2 and
3 since they were tuned marginally regardless of the dependency structure. On average, both
Bx and By were considerably away from zero, which confirms the need and benefit of choosing
them properly to enhance the detection sensitivity of wavHSIC.

We also performed an additional simulation study described in Section S3.2 of the supple-
mentary material, which follows the same settings in Section 1.2 of the supplementary material

of [Lee et al.|(2020). The results also demonstrate the superiority of wavHSIC.

Remark 3. It is worth noting that the development of the asymptotic distribution of wavHSIC
as in Theorem@ requires the number of measurements per curve m to be large compared to the
sample size n (see ), but the simulation results here show that the finite sample performance
of wavHSIC is still satisfactory, even when m is small relatively to n. However, this is not
entirely surprising. First, under the null hypothesis that X and Y are independent, a poor
pre-smoothing due to a relatively small m does not inflate the empirical Type I error probability
since the remaining noise does not enhance the dependency between X and 'Y and the critical
value 1s obtained by permutation. Second, under the alternative hypothesis that X and Y are
dependent, as long as m is sufficiently large such that the dependency signals can captured by

the wavelet coefficients, wavHSIC can still detect dependency, but its power may be worse if

s not satisfied.
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Table 1: Empirical Type I error probabilities for all methods under Setting 1 with white noise.

The last two rows provide the medians of the selected Sx and By for wavHSIC.

Setting 1 with | n =50 n =200

white noise \ m = 64 m = 256 m = 64 m = 256
Type I error rate ‘ SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8
Pearson 0.0452  0.0352  0.0503  0.0452  0.0704  0.0704  0.0553  0.0553
dnm 0.0452  0.0452  0.0653  0.0503  0.0553  0.0553  0.0653  0.0603
gtemp 0.0503 ~ 0.0603  0.0653  0.0603  0.0402  0.0352  0.0352  0.0352
dCov-c 0.0653  0.0603  0.0603  0.0603  0.0503  0.0603  0.0704  0.0754
FPCA 0.0503  0.0452  0.0503  0.0452  0.0452  0.0503  0.0452  0.0452
KMSZ 0.0201  0.0101  0.0101  0.0151  0.0201  0.0151  0.0402  0.0251
KMSZ-p 0.0804  0.0905  0.0553  0.0402  0.0302  0.0352  0.0402  0.0352
PSS(X ~Y) 0.0804  0.0754  0.1005  0.0804  0.0653  0.0905  0.0402  0.0955
PSS(Y ~ X) 0.0402  0.0754  0.0704  0.0452  0.0302  0.0754  0.0352  0.0503
PSS(Omnibus) 0.1156  0.1307  0.1558  0.1106  0.0955  0.1407  0.0754  0.1407
FMDD(X ~Y) 0.0553  0.0552  0.0704  0.0653  0.0503  0.0603  0.0553  0.0603
FMDD(Y ~ X) 0.0553  0.0552  0.0553  0.0553  0.0503 ~ 0.0603  0.0503  0.0503
FMDD(Omnibus) | 0.0653  0.0603  0.0704  0.0704  0.0603  0.0704  0.0704  0.0704
wavHSIC 0.0452  0.0352  0.0503  0.0653  0.0302  0.0402  0.0251  0.0251
median{8x } 0.948 0.989 0.983 0.991 0.959 1.000 0.990 1.001
median{gy } 0.671 0.724 0.733 0.741 0.696 0.745 0.747 0.761

Table 2: Empirical powers for all methods under Setting 2 with white noise.

provide the medians of the selected Sx and [y for wavHSIC.

The last rows

Setting 2 with | n = 50 n = 200

white noise | m = 64 m = 256 m = 64 m = 256
Power | SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8
Pearson 0.0854  0.0804  0.0804  0.0804  0.1357  0.1357  0.1357  0.1206
dnm 0.0704  0.0653  0.0704  0.0704  0.1608  0.1558  0.1508  0.1457
gtemp 0.0653  0.0653  0.0804  0.0754  0.0905  0.0854  0.0754  0.0754
dCov-c 0.1106  0.1055  0.0905  0.0804  0.2362  0.2462  0.2714  0.2663
FPCA 0.0854  0.0804  0.0804  0.0804  0.1709  0.1709  0.1859  0.1809
KMSZ 0.4221  0.4925  0.5025  0.5075  1.0000  1.0000  1.0000  1.0000
KMSZ-p 0.7035  0.7889  0.7688  0.7990 ~ 1.0000 ~ 1.0000  1.0000  1.0000
PSS(X ~Y) 0.0955  0.1055  0.0804  0.0905  0.1256  0.0955  0.1106  0.0804
PSS(Y ~ X) 0.0653  0.0653  0.0553  0.0653  0.0804  0.0653  0.0503  0.0503
PSS(Omnibus) 0.1558  0.1658  0.1307  0.1508  0.2060  0.1608  0.1558  0.1206
FMDD(X ~Y) 0.0854  0.0905  0.0905  0.0854  0.1859  0.1960  0.2915  0.2814
FMDD(Y ~ X) 0.0754  0.0804  0.0704  0.0653  0.1407  0.1759 02161  0.2211
FMDD(Omnibus) | 0.0955  0.1005  0.0905  0.0854  0.1960 ~ 0.2211  0.3116  0.3116
wavHSIC 0.9548  0.9849  0.9849  0.9899  1.0000  1.0000  1.0000  1.0000
median{f8x } 0.942 0.987 0.975 0.983 0.955 0.996 0.994 1.001
median{Sy } 0.674 0.720 0.741 0.752 0.693 0.739 0.742 0.762
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Table 3: Empirical powers for all methods under Setting 3 with white noise. The last two

rows provide the medians of the selected Sx and [y for wavHSIC.

Setting 3 with n =50 n = 200

white noise m = 64 m = 256 m = 64 m = 256
Power SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8
Pearson 0.0452 0.0402 0.0603 0.0603 0.0503 0.0503 0.0402 0.0503
dnm 0.0804 0.0804 0.0754 0.0704 0.0704 0.0603 0.0754 0.0754
gtemp 0.0754 0.0804 0.0754 0.0704 0.0704 0.0653 0.0754 0.0704
dCov-c 0.0955 0.1055 0.1005 0.1005 0.0854 0.0905 0.0854 0.0854
FPCA 0.0704 0.0854 0.0955 0.1005 0.0704 0.0704 0.0653 0.0704
KMSZ 0.0101 0.0101 0.0201 0.0251 0.1206 0.1307 0.1206 0.1357
KMSZ-p 0.1106 0.0854 0.1307 0.1357 0.1558 0.1608 0.1407 0.1709
PSS(X ~Y) 0.0754 0.0854 0.0905 0.1055 0.1005 0.0452 0.0553 0.0653
PSS(Y ~ X) 0.0653 0.0553 0.0754 0.0804 0.0603 0.0503 0.0603 0.0704
PSS(Omnibus) 0.1357 0.1307 0.1508 0.1658 0.1558 0.0905 0.1106 0.1256
FMDD(X ~Y) 0.0804 0.0804 0.0804 0.0804 0.0704 0.0704 0.0754 0.0704
FMDD(Y ~ X) 0.0955 0.1005 0.0955 0.1005 0.0804 0.0754 0.0754 0.0754
FMDD(Omnibus) 0.1005 0.1005 0.0955 0.1005 0.0854 0.0804 0.0804 0.0804
wavHSIC 0.2613 0.3618 0.3367 0.407 0.804 0.9347 0.9347 0.9749
median{S8x } 0.948 0.993 0.968 0.979 0.949 0.993 0.981 0.989
median{ Sy } 0.724 0.771 0.773 0.790 0.723 0.769 0.775 0.785

Table 4: Empirical Type I error probabilities for all methods under Setting 1 with correlated

noise. The last two rows provide the medians of the selected Sx and By for wavHSIC.

Setting 1 with n = 50 n = 200

correlated noise m = 64 m = 256 m = 64 m = 256
Type I error rate | SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8
Pearson 0.0352 0.0352 0.0452 0.0452 0.0704 0.0553 0.0553 0.0553
dnm 0.0402 0.0452 0.0603 0.0603 0.0553 0.0503 0.0503 0.0503
gtemp 0.0603 0.0553 0.0553 0.0653 0.0553 0.0503 0.0452 0.0553
dCov-c 0.0553 0.0653 0.0603 0.0603 0.0553 0.0603 0.0754 0.0754
FPCA 0.0452 0.0452 0.0452 0.0402 0.0503 0.0452 0.0452 0.0503
KMSZ 0.0151 0.0000 0.0151 0.0151 0.0201 0.0251 0.0251 0.0251
KMSZ-p 0.0804 0.0754 0.0553 0.0452 0.0302 0.0352 0.0352 0.0402
PSS(X ~Y) 0.0452 0.0553 0.0603 0.0955 0.0653 0.0452 0.0452 0.0603
PSS(Y ~ X) 0.0553 0.0704 0.0553 0.0754 0.0452 0.0302 0.0603 0.0452
PSS(Omnibus) 0.1005 0.1156 0.1106 0.1558 0.1005 0.0704 0.1005 0.1005
FMDD(X ~Y) 0.0553 0.0603 0.0653 0.0653 0.0653 0.0603 0.0553 0.0603
FMDD(Y ~ X) 0.0452 0.0452 0.0503 0.0503 0.0553 0.0603 0.0603 0.0603
FMDD(Omnibus) 0.0553 0.0653 0.0704 0.0704 0.0754 0.0804 0.0754 0.0754
wavHSIC 0.0402 0.0402 0.0553 0.0653 0.0352 0.0302 0.0352 0.0302
median{S8x } 1.014 1.020 0.996 0.997 1.024 1.030 1.006 1.008
median{Sy } 0.752 0.765 0.750 0.754 0.774 0.783 0.770 0.772
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Table 5: Empirical powers for all methods under Setting 2 with correlated noise. The last two

rows provide the medians of the selected Sx and [y for wavHSIC.

Setting 2 with n =50 n = 200

correlated noise m = 64 m = 256 m = 64 m = 256
Power SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8
Pearson 0.0854 0.0854 0.0804 0.0804 0.1508 0.1407 0.1256 0.1307
dnm 0.0653 0.0653 0.0754 0.0704 0.1558 0.1608 0.1558 0.1457
gtemp 0.0653 0.0653 0.0905 0.0905 0.0854 0.0804 0.0754 0.0854
dCov-c 0.1005 0.0955 0.0854 0.0854 0.2663 0.2714 0.2714 0.2814
FPCA 0.0854 0.0804 0.0754 0.0804 0.1658 0.1759 0.1809 0.1809
KMSZ 0.5427 0.5628 0.5126 0.5327 1.0000 1.0000 1.0000 1.0000
KMSZ-p 0.8241 0.8141 0.8191 0.8291 1.0000 1.0000 1.0000 1.0000
PSS(X ~Y) 0.0955 0.0653 0.0905 0.1005 0.1156 0.1106 0.1005 0.1156
PSS(Y ~ X) 0.0553 0.0653 0.0704 0.0603 0.0704 0.0653 0.0603 0.0754
PSS(Omnibus) 0.1407 0.1156 0.1558 0.1508 0.1809 0.1457 0.1508 0.1809
FMDD(X ~Y) 0.1055 0.0905 0.0854 0.0854 0.2412 0.2513 0.2714 0.2714
FMDD(Y ~ X) 0.0804 0.0905 0.0704 0.0704 0.2111 0.2111 0.2412 0.2412
FMDD(Omnibus) 0.1106 0.1055 0.0905 0.0905 0.2613 0.2714 0.3166 0.3015
wavHSIC 0.9950 0.9950 0.9899 0.9899 1.0000 1.0000 1.0000 1.0000
median{S8x } 1.011 1.022 0.990 0.995 1.023 1.033 1.011 1.014
median{ Sy } 0.749 0.765 0.757 0.760 0.769 0.781 0.764 0.766

Table 6: Empirical powers for all methods under Setting 3 with correlated noise. The last two

rows provide the medians of the selected Sx and [y for wavHSIC.

Setting 3 with n = 50 n = 200

correlated noise m = 64 m = 256 m = 64 m = 256
Power SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8
Pearson 0.0402 0.0402 0.0603 0.0603 0.0503 0.0503 0.0452 0.0553
dnm 0.0704 0.0653 0.0704 0.0704 0.0653 0.0653 0.0754 0.0754
gtemp 0.0854 0.0804 0.0704 0.0603 0.0553 0.0653 0.0704 0.0804
dCov-c 0.1055 0.1106 0.1005 0.1005 0.0905 0.0804 0.0804 0.0854
FPCA 0.0854 0.0905 0.1005 0.1005 0.0704 0.0653 0.0754 0.0704
KMSZ 0.0151 0.0101 0.0302 0.0352 0.1256 0.1357 0.1357 0.1407
KMSZ-p 0.0905 0.0854 0.1256 0.1256 0.1709 0.1759 0.1809 0.1960
PSS(X ~Y) 0.0905 0.0905 0.0754 0.0754 0.0653 0.0804 0.0503 0.0653
PSS(Y ~ X) 0.0704 0.0653 0.0754 0.0854 0.0503 0.0603 0.0503 0.0402
PSS(Omnibus) 0.1558 0.1558 0.1457 0.1457 0.1156 0.1407 0.1005 0.0955
FMDD(X ~Y) 0.0804 0.0804 0.0905 0.0905 0.0653 0.0754 0.0704 0.0754
FMDD(Y ~ X) 0.1005 0.1005 0.1005 0.0955 0.0754 0.0754 0.0754 0.0754
FMDD(Omnibus) 0.1106 0.1055 0.1005 0.1055 0.0804 0.0854 0.0754 0.0854
wavHSIC 0.4221 0.4472 0.4422 0.4422 0.9849 0.9849 0.9899 0.9899
median{S8x } 1.022 1.030 0.986 0.987 1.019 1.029 0.996 0.998
median{Sy } 0.799 0.810 0.800 0.802 0.801 0.807 0.795 0.798
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7 Real Data Application

We applied our proposed method to study human brain functional connectivity using the
MEG dataset collected by the HCP. MEG measures magnetic fields generated by human neu-
ronal activities with a high temporal resolution. Before source reconstruction, the signals from
all MEG sensors outside head were preprocessed following the HCP MEG pipeline reference
(www . humanconnectome.org/software/hcp-meg-pipelines) and the preprocessed data are
publicly accessible from the HCP website. To obtain the electric activity signals from cortex
regions, we applied the source reconstruction procedure of MEG signals to the cerebral cor-
tex atlas provided by Glasser et al.| (2016) using the linearly constrained minimum variance
beamforming method in the MATLAB package FieldTrip.

To study the functional dependency between cortex regions under some motor activities,
we focused on motor task trials where subjects moved their right hands. There were n = 61
subjects in the trials. For each subject, 8,004 signal curves were obtained by denoising and
source reconstruction procedures with around 75 repeated trials. Within each trial, the signals
were recorded about every 2 ms from —1.2 to 1.2 seconds, where the time 0 is the starting time
of the motion. Since the motion in each trial usually lasts no longer than about 0.75 seconds
and typically a subject finished the previous movement and received a new cue between times
—0.25 and 0 of the next trial, we considered the time domain [—0.2521,0.7525] which covers
the time period of interest, with m = 512 sampled time points in total.

We applied the proposed method wavHSIC to perform an independence test for every pair
of the MEG signals. To implement wavHSIC, we chose the CDJV wavelet basis functions
with vanishing moment D = 4 which leads to a = 1.6179. For each signal, the smoothness
parameter [ was selected by the method in Section [5| For comparison, we also provided the
results for the model-based test KMSZ, KMSZ-p and two model-free tests, Pearson and FPCA.
KMSZ, KMSZ-p and FPCA were based on top FPC scores which cumulatively account for 95%

of the variation of each signal. The p-value for testing the independence between each pair of
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signals were obtained by 1,999 permutations for wavHSIC, FPCA and KMSZ-p. We did not
include PSS and FMDD here due to their extended computing times. See Table |7| below for
an illustration.

The empirical cumulative distribution functions for the p-values of the five methods are
given in Figure which shows that wavHSIC is more sensitive to detecting connectivity than
the other methods. To evaluate and compare the five methods at the presence of multiple
testing, we set the same discovery rate at 60% to control the number of edges, or sparsity,
of each brain connectivity network, which is important in evaluating the reliability of brain
network metrics (e.g. Van Wijk et al., 2010} Tsai, 2018)). In this analysis, we focus on sensori-
motor areas 4, 3a, 3b, 1 and 2 on the left and right hemispheres as illustrated in Figure |3|(c)
which are most related to motor task trials (Glasser et al.||2016). With a controlled discovery
rate, we expect an excellent connectivity detection method to identify plenty of edges within

these areas.

0.8

0.6

0.4

Empirical CDF

0.2

0.0

p-value

Figure 1: Empirical cumulative distribution function for the p-values for testing the indepen-
dence between every pair of the 8,004 signals for each method.

Figures |2[ and |3| (a) provide the functional connectivity networks within these sensori-
motor areas obtained by the five methods. The nodes in each area were ordered from the
superio-medial cortex to infero-lateral cortex following the atlas “atlas MMP1.0_4k.mat” in
FieldTrip. Compared with KMSZ, KMSZ-p and wavHSIC, Pearson and FPCA are substan-
tially less sensitive to detecting functional connectivity and their corresponding networks are

less structured (see Figure|2[ (a) and (b)). This demonstrates the superior performances of
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both KMSZ, KMSZ-p and wavHSIC in identifying connectivity patterns within these areas
which are anatomically connected and functionally related to the motion task trials. Different
from the overall homogeneous pattern in the network for KMSZ, several structured dark strips
appear in the network obtained by KMSZ-p and wavHSIC within sensorimotor areas 4, 3a, 3b
and 1 in the right hemisphere (see Figures (c—d) and (a)). These dark strips are much
clearer in Figure (a) than in Figure (d). This indicates that wavHSIC can more clearly

identify two sub-areas in sensorimotor areas 4, 3a, 3b and 1 in the right hemisphere, the top

Left

(a) Pearson

Left Right
(c) KMSZ (d) KMSZ-p
= Area 4 mm Area 3a — Area 3b mm Area 1 — Area 2

Figure 2: Functional connectivity networks of the five sensorimotor areas in the left and right
hemispheres. In the adjacency matrices in (a), (b), (c), (d) obtained by the four methods
respectively, a bright entry indicates significant dependency between the corresponding signal
pairs while a dark one indicates otherwise.
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Left
(a) wavHSIC (b) 8 (c) Brain Cortex

Left X Right

Right
(d) (LF of X, LF of Y) (e) (HF of X, HF of Y) (f) (LF of X, HF of Y)
m Area 4 mm Area 3a ] Area 3b mm Area 1 7 Area 2

Figure 3: Functional connectivity networks of the five sensorimotor areas in the left and right
hemispheres with the same color scheme in Figure[2l The adjacency matrix (a) is obtained by
wavHSIC with the smoothness parameters 3, selected by the method in Section |5} illustrated
in the barplot (b). The black subregion in (c) corresponds to face and eye portions and the
rest of the colored area corresponds to upper limbs, trunk and lower limbs portions in the
right hemisphere. The adjacency matrices in (d), (e), (f) are obtained by applying wavHSIC
to low(< 4Hz) /high(> 4Hz)-pass-filtered signals with the same 3 values in (b) and the same
p-value threshold in (a).

left (TL) and bottom right (BR) corners respectively in these corresponding colored squares
as in Figure (a). The signals within these four TL sub-areas or within these four BR sub-

areas are strongly connected, while the connectivities between these TL and BR sub-areas

are generally weak. According to Glasser et al.| (2016), the four BR sub-areas in the same
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hemisphere correspond to face and eye portions while the four TL sub-areas correspond to
upper limbs, trunk and lower limbs portions. Since the motor task involved in this dataset
is raising the right hand, the connectivity patterns detected by wavHSIC are intuitively and
anatomically interpretable.

Next we illustrate how to identify dependency structures between and within different
frequency bands using wavHSIC. Explicitly, we first split the denoised wavelet coefficients of
each brain signal into two parts, the low-frequency part (LF, j < 3) and high-frequency part
(HF, j > 3), which approximately correspond to the Delta band (< 4Hz) and the Theta to
the Ultra-Gamma bands (> 4Hz) respectively (e.g., Buzsaki, 2006). Then for each pair of
signals (X,Y") as illustrated in Figure [3| (d), (e) and (f), we applied wavHSIC to (LF of X,
LF of Y), (HF of X, HF of Y), and (LF of X, HF of Y') respectively. Their corresponding
functional connectivity patterns are shown in Figure [3[ (d), (e) and (f) respectively. Note
that the results for (HF of X, LF of Y) are included in Figure 3| (f) by switching the roles
of X and Y. Apparently, the network in Figure [3[(e) is very similar to that in F igure (a),
which indicates that the functional dependency induced by this motor task mainly lies at high
frequencies. Moreover, Figure (f) shows that there is essentially no dependency between the
low-frequency and high-frequency signals. Lastly, Figure |3| (d) reveals that some dependency
can be detected at low frequencies, but only within the same hemisphere. This is probably due
to the fact that functional Delta oscillations appear to be implicated in the synchronization
of brain activity with autonomic functions of vegetative nervous system, but is not affected
by a specific task (Knyazev, 2012).

To compare computing times of these methods together with PSS and FMDD, we randomly
selected one pair of signals and then repeatedly executed each of them 20 times on a Windows
10 desktop with AMD Ryzen7 3800X CPU and 16GB RAM. A summary of their averaged
computing times (in seconds) is given in Table The long computational times of PSS and
FMDD make it difficult to study dependency between every pair and create corresponding

functional connectivity networks, so we did not include them in the analysis above.
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Table 7: Mean computing times (in seconds) based on one randomly selected pair of signals
for the seven methods in comparison. The values in parentheses are standard deviations.

Method ‘ Pearson FPCA KMSZ KMSZ-p wavHSIC PSS FMDD

Time \0.003(0.002) 0.103(0.072)  0.020(0.003)  0.158(0.082)  0.162(0.017)  43.076(0.728)  15.280(0.253)

8 Discussion

In this paper, we propose a model-free wavelet-based independence test for two random func-
tions of which sample paths belong to possibly different Besov spaces. Our method is built
upon HSIC endowed with characteristic kernels, which is zero if and only if the two random
functions are independent. Since the Besov space with wavelet basis functions provides an
effective modeling environment for sample paths with various levels of smoothness, HSIC with
characteristic kernels induced by wavelet coefficients is capable of capturing the dependency
at different frequencies. Therefore, the proposed method is especially powerful when the two
random functions are dependent only at high frequencies, as demonstrated in Section@ If
the dependency is strong at low frequencies, our simulation not presented here shows that the
proposed method is not substantially advantageous over FPCA.

In the application to MEG functional connectivity, the proposed method by construction
is only able to identify the unconditional dependency between two signal curves. Although
metrics that reflect unconditional functional connectivity are still widely used in neuroscience
(see, e.g., Marzetti et al.} 2019, for a review), a conditional independence measure or test will
be more convincing to identify the functional connectivity between two signal curves given all
others in the brain. To address this problem, there have been some advances in functional
graphical models. Most of the existing methods reply on either Gaussianity (e.g., Zhu et al.)
2016; Qiao et al.| 2019, |2020; Zapata et al., |2019; |Solea and Li} |2020; |Zhao et al., 2021)
or regression models (e.g. Lundborg et al.| [2021), while a few exceptions assume additive

structures (e.g., |Li and Solea, 2018} Lee et al.| 2021} |Solea and Dette, 2021). Developing a
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conditional independence test with these assumptions relaxed would be an interesting future

research topic.

SUPPLEMENTARY MATERIAL

The supplementary material includes background materials on distance-induced characteristic

kernels and Besov spaces, technical proofs of Theorems and additional simulations.
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S1 Background Materials

S1.1 Distance-Induced Characteristic Kernels

Characteristic kernels are required to construct HSIC for two random functions under the RKHS
framework. Such a kernel can be generated by a semi-metric of strong negative type.

Definition S1 (Strong Negative Type Semi-Metric). A semi-metric p: Z x Z — [0, 00) defined
on a non-empty set Z is of negative type if > ., 2?21 a;op(zi,zj) <0 forall z,...,2, € Z
and oy, ..., o € R such that Y | a; = 0, n > 2. Furthermore, it is of strong negative type if for
any two probability measures P and P' on Z such that [; p(z,20)dP(2), [; p(z, 20)dP'(z) < o0
for some zy € Z, we have [ [ p(z1,22) d(P — P')(21)d(P — P')(22) = 0 if and only if P = P'.
Proposition[SI|shows that a kernel induced by a strong negative type semi-metric is charac-
teristic.
Proposition S1. Let p be a semi-metric defined on Z and 2y € Z. The induced kernel

Kp(2,2") = p(z,20) + p (¢, 20) — p(2,2), 2,2 € Z, is symmetric and positive definite. More-
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1806063, DMS-1711952 and CCF-1934904.



over, for all probability measures P such that [ p(z,2z0)dP(z) < co for some 29 € Z, k, is

characteristic if and only if p is of strong negative type.

Obviously distance-induced kernels are symmetric. For the proof of Proposition see
Lemma 2.1 of Berg et al.| (1984) for positive definiteness and|Lyons| (2013) and |Sejdinovic et al.
(2013) for the characteristic property. Since the set Z of interest often contains zero, in this
paper we always set zgp = 0 for any distance-induced kernel x, for simplicity and convenience.

S1.2 Besov Spaces and Norms

The Besov space is a generalization of the Sobolev space, which is widely used in nonparametric
regression under the RKHS framework. A Besov space B;"q[O, 1],p,q,a > 0, contains all func-
tions of which Besov norm || - || Bg, Is finite. Explicitly, with any integer > 1, define the rth
order difference of a function f by

M1 =3 () C0rtste k),

k=0

and its rth order modulus of continuity by

wr(f7 t)p = Os<lilzlzt ||A2(f7 ) |[0,1—rh] HLP’

where Aj (f,-) |jo,1—rn) represents Aj(f,-) restricted on [0,1 — rh] and || - ||z is the LP norm.
Then the Besov norm of f is defined by

1
(. (f,t),9dt]«
I3, = 1510 + Pl - where 11y, = | [~ {00472

For the same «, the Besov norms generated by different values of r > « are equivalent when
p > 1 (DeVore and Lorentz,1993). In this paper we always assume p > 1 and r = |« + 1 where
|a] is the greatest integer less than or equal to a.

The Besov norm (semi-norm) generalizes some traditional smoothness measures, such as the
Sobolev semi-norm | - ]WI;IC

1 » 1/p
k
g = ([ [P ae) L 1<p <

where D* is kth order weak-derivative operator.



S2 Technical Proofs

S2.1 Proof of Theorem [1]

We first list two lemmas on some properties of negative type semi-metrics, which will be needed
in the proof of Theorem

Definition S2 (Radial Positive Definite Function). A real function F defined on [0, 00) is called

radial positive definite on the semi-metric space (Z,p) if F is continuous and

>N Flplzi, 2))eicr > 0,

=1 k=1

for all choices of n > 1 points z1,...,2n, € Z. We denote the set of all radial positive definite
functions by RPD(Z).

Lemma S1. The following hold in any semi-metric space Z.

(a) RPD(Z) is never empty.

(b) If Fy, Fy € RPD(Z), then F, - Fy € RPD(Z2).

(c) If F; € RPD(Z) and 0 < ¢; < o0, j =1,...,n, then 37, ¢;F; € RPD(Z).

(d) If F; € RPD(Z),j = 1,2,... and the F; converge point-wise to a continuous limit F, then
F € RPD(Z2).

(e) For space (LP,|| - |lp), (€7, -lp) with 0 < p < 2, then exp(—t*) is RPD for 0 < a < p.

Lemma |S1|is a combination of Theorems 4.4 and 4.10 of /Wells and Williams|(2012).

Lemma S2 (Theorem 4.5, |Wells and Williams| (2012)). In a semi-metric space (Z,p), the

following are equivalent:
(a) p is of negative type;
(b) the function exp(—At) belongs to RPD(Z, p) for A > 0;
(c) (Z,pY?) is isometrically embeddable in a Hilbert space.

Lemma S3 (Theorem 4.7,|Wells and Williams| (2012))). If semi-metric p is of negative type on
Z, then p" is of negative type for any 0 < r < 1.



Proof of Theorem By Proposition it suffices to prove that Pog 18 of strong negative type.
Lemmas (e) and (a) ensure that p;(f,g) := HO; — 0[5, = —1,0,1,... are of negative
type for ¢ <p < 2. By Lemma the function Fj(t) = exp(—2%79t) belongs to RPD(B&;[O, 1]),
where s = a4+ 1/2 — 1/p. For any finite product, by Lemma (b)

n n

1] Fi(pj) =expq = > 2%p; (S1)

j=-1 j=-1
belongs to RPD(Bﬁ:Z [0,1]). Lemma |S1|(d) ensures the continuous sequence limit of , ie.,
exp(—ppa ) € RPD(BE;[O, 1]) as n — oo. Therefore > .- 4 2%14p; is of negative type on

/ , . 1/2

By ,[0,1]. By Lemma (c), the (ng[O, 1], <Zj271 25”,5]) ) is a metric space isometri-
cally embeddable in a Hilbert space. By the same procedure of Remark 3.19 in |Lyons| (2013),

the map
r/2

P | e /B,M S 2995, | (f.9)dP(g)

j=-1

is injective for any r € (0,00)\2N, where N is the set of natural numbers (Linde, [1986). The
result folllows from the fact that (ij_l 25jqﬁj)r/2 is of negative type for any r € (0,2) by
Lemma o

S2.2 Proof of Theorem [2]

Proof of Theorem|2} Here we prove a more general result where 7; and j ﬁ involved in the penalty

pen; (k) = kCz{1+/2(1 + 2¢z) log(rjm;/k)}* in Step 1 are replaced by 7; = TZ22Blz(j7j§)Jr and

ji = (1+(sz+1/2)/B%)/(az+sz+1/2)-logy 6, for any Bz < B, < ay respectively. Apparently
Theorem |2|is a special case where 8, = az.

For notational simplicity, we omit the subscript Z and subject index ¢ in all terms; namely
we replace dz; by d;, 0z by 9, sz by ¢, Cz by C, az by a, Bz by 8 and f, by 3’ respectively.
We further replace o<’ by 0 and Hji by 6; 1 respectively.

We first decompose the loss function by

E(16- 012 16) = > 2*VE (16, - 0, | 6;).
j=-1

By Theorem 11.11 in |Johnstone| (2019), there exist constants a({) and b(¢) that depend on ¢,



and M; = M;(s, ;) that depends on ¢ and 7; such that
E (Héj —0,l5 | 93') < b(Q)&1M;8; + a(C)R;(85,6),
where R;(0;,0;) = mingcgo,.. 2-1} [Zk@( 932',k + 5]2-penj(||0j|]0)}. Therefore,

E (116 - 0l% 1) = ()& ZWM 02 +a() Y 2%7R;(6;.4)),
J
and it suffices to study the upper bounds of (I) = . 2%ij6]2- and (II) = >~ 2%0IR (85, 6;)

respectively.

Bound of (I) By (11.67) in|Johnstone| (2019), M; < 7~ '¢; ,272592720'U=J#)+ where ¢, is a

constant that depends on ¢ and 7. Thus

J#
(1) = Y207 < 7 e 8% | 3 20 22 3T 9
J Jj=-1 I>i#
J#
_ 7'7109752 Z 928j + 92B87% Z 9—2(8"=B)(G—ix)
j=-1 I>g#
226(J#+1) / .
-1 2 | 5—28 283 (B'=B)(5—3d#)
=T c 07 277 + 1 +2 #22 #
228(5—w)?28 /
< 77l 10? <2—2ﬂ + B - —@))
< cc,rﬁ,ﬁ'(SQ(l_wﬁ)’

where w = (a+¢+1/2) 711+ (¢+1/2)/8] and ¢, is a constant that depends on ¢, 7, 3 and 3.

Bound of (IT) According to (11.40) in Johnstone| (2019),

sup  R;(0,0;) < cce ¢ logTiri(Cy,5),
0.0y <C



where C; = 2_O‘j,mj =27, ¢ ,61,c 18 a constant that depends on ¢,&; and ¢, and

c2,if ¢y < gmi”,
ri(Cj, 05) = o
m;63, if C; > &;mi>.

Notice that log7; = log 7 + 28'(log 2)(j — j#)+, so we have

(I1) < eceene {(108; ) Y51 22715(Cy,85) + 26/ (log 2) X050 5, (7 — 1) 22%775(C, 5j)}

= CC,&l,c{(log ) Zj2_1 Qj + 26'(log 2) Zj>j# (4 — j#)Qj}a (S2)

where Q; = 2%%97;(C;,6;). Next we handle (III) = >j>-1Qj and (IV) = Zj>j#(j — ju)Q;
individually.

e (III) = Ej2—1 Qj. We calculate Q) respectively for j > —1. Define j, = (o +¢ +
1/2)" log, (C/6).

1° When j < j,, C; > 5jm;/2, so that

Qj = 22ﬁjmj5j2 — 9(2B+26+1)j 52
o . . 1/2
2° When j > j,, Cj < 5jmj , S0 that
285 2 —2(a—B)j 2
Q=2 BJC], — 9—2(a=B)j2
Combining 1° and 2°, we have

o, | @2, <.
j pr—
Q*2(a=B)i—js), J > s

where Q* = C2(1=7)6%" with r = (a — 8)/(a + ¢ + 1/2). Therefore, (TI1)< ¢;Q*.

o (IV) = Zj>j# (j — j#)Q;. When m is sufficiently large, § < m~'/2 — 0, and jy4 > j. since



1+ (¢+1/2)/8 > 1. Thus for m large enough,

(IV)SZ(]*]* Q] Q 22 )i=3x) <02Q

>« Jj=g*

Hence by , (IN< c3C2(1-1)§2" where the constant ¢ depends on ¢1, 2, ¢, &1,6,7 and 3.

Combining the upper bounds for (I) and (II) respectively, we have

sup B (Hé —0lI3 | 9) < b(Q)é1q 75,5870 ) 4 PTG = O(87),
0:0|,s<C

since

(+(+1/2/)8 _, (1+(+1/2/8)8 a8

l—wf=1- — —
p a+c+1/2 - a+c+1/2 a+¢+1/2

S2.3 Proof of Theorem [3]

We first present a lemma that will be used to prove Theorem

Lemma S4. Let {(X;(-),Yi(:)}i, be i.i.d. fully observed random samples from probability mea-
sure Pxy = Px Py defined on X @ Y. Then as n — o0,

o0 oo
n’y(Pn,XY7 Rx, K‘y ~ Z Z.LL rsa (83)

r=1s=1

where Nys ~ N(0,1),7,s € N are i.i.d. and {p,}, and {vs}o, are eigenvalues of the integral
kernel operators Sy, and Sk,,, respectively. If Pxy # Px Py, then nyY(Po.xy, kx, Ky) — 00 in

probability as n — oo.

Lemma [S4]is exactly Theorem 33 of |Sejdinovic et al.| (2013), which provides the weak con-
vergence result of HSIC for fully observed random functions.

Proof of Theorem[3] According to Lemma it suffices to prove that the difference between
HSIC based on original curves {X;(-), Yi(-)}?_, and HSIC based on denoised curves {X;, ¥;}7,



is 0,(1/n), where {X;, Y;}?_, are obtained by Step 1 in Section [3| By Deﬁnition

_ T i
n ‘v(Pn,xy,K:x,lfy) - V(anyaffx,ﬂy)‘ =n"! ‘HRXHRJ/||?H(W®@) - H"LXH""'JJH?-[(R,\/@ny)‘
=n~"|[lxxHry|| — |kxHAy| s Hryl| +[|RxHAy||
n RxHRY | H(kx®ry) RxHKY|[H(kx®ry) KxHKY || H(sx@ry) KxHRY || H(kx@ry)

—1,.T S TrTa T ~TTe
=n 1”HXHK';V - K-JXHH))”H(K/X®H;)}) (HK’XHKJyHH(nXt@Hy) + HHXHHJJHH(HX@HJ}))

—-1/2

—1/2),.T S Trre T —1y,.T S Trre. |2
<2n / |kxHry — K’XHRJ/HH(NX(X)H;;) Xmn ||’<'XH’<fy”H(nX®ny) +n"||kxHry — &Xqu'y”H(Hx(X)K,y)

where K} = [k (4 X1), .- k(s Xn)], 63 = [ky(5 Y1), s kiy (5 Vo), R = [Mp,fg), . ,M(-,Xn)],
R] = [ny(-,ﬁ),...,@(.,?n) .

By (S3),

0 2K HEY [pgenony) ~ 1| D D tavs N = Op(1), (54)
r=1s=1

so it suffices to prove that ||k}, Hry — ’%}H’%y“ﬁ(n;(@ny) =0p (n1/2) .

Notice that ||k} Hry — I%}Hf%yHH(w(gw) can be bounded by the following inequality:

IkxHey — Ry HRYl3(openy) = K2 H (ky — Ay) + (kx — £x) HED 1300000y
< k2 H (Ky — &) [mrsny) + | (52 — fa) HES 20y
< |KXH (Ky — £3) [1(vsny) T | (B2 — £2) BE [ 2srsny) T | (B2 — f2) H (K — £3) " 210y
=t} (T¥H{ky - Ry, k) = ) ue) H) + trF (T Hiky = fx, kk = £)u(e0 H)

1 N ~ ~ ~
+ tr2 ((F.',X — Ry, KD} — K}>H(,§X)H<K,y — Ky, F.',;;— — R;>H(,§y)H)

1/ R . 1/ . )
tr2 (FX<K,y — Ry, n$ — f<s§>;{(,iy)) + tr2 (I‘Y</4X — Ry, n} - n})H(RX))
1
r2

+ 1t ((RX — R, Ky — RBx)n(na) Hiky — Ry, k) — '%;M(W)H)
1~ 1 ~ N 1~ 1 ~ ~
< trz (TN)tr2 ((ky — Ry, Ky — Ry)(ny)) + tr2(E)tr2 ((ka — Ay, K — A)2(n)) *)
1 N N 1 ~ ~
12 (K — R, K — R p(na) )12 ((Ky — By, K — B3)34(ny)) = 0p(n*/?),

where T'Y = HI'YH and T'Y = HT'Y H are centered Gram matrices.

In we used the fact that for symmetric positive definite matrices A and B,

trAB = vec(A) "vec(B) < ||A||¢||Bl||r = VtrA2trB2 < trAtrB.



The last equation holds due to the facts below with (2, Z,2) = (X, X, z) or (), Y,y):

e tr(T'%) = O,(n) because [z Fz(z,2)dPz(z) < oo which is ensured by the assumptions in
Theorem [2]

o tr(kz — Rz, KL — R H(ks) = Doy I62(- Zi) — Kz (-, ZAi)Hg_[(HZ) = 0p(1), because

lkz(-, Zi) — kz(- Zi )HH = kz(Zi, Zi) + kz(Zs, Zi) — 262(Zs, Z;)

=21|Zillysz + 20 Zillypz 2 (uziu,,ﬂz +1Zillyss = 125 = Zillys) = 21Zi = Zillyos

and || Z; — Zi\|bgz =op(n~1),i=1,...,n ensured by Theoremand in Theorem

O
S2.4 Proof of Theorem [4]
We first introduce a few notations. To perform a permutation test, let S(n) = {o1,...,0m}
be the cyclic group of {1,...,n}. For a permutation o randomly selected from S (n ) let
’y(P"Xf/,/QX,/iy) = 2tr(I‘XHI‘Y( JH), where I‘Y(a) is generated by TV with rows and

columns permuted according to o. Let R be the rank of (P X B ky) in all possible per-
muted HSICs. Then we reject Hy : Pxy = PxPy if pgy = R/n' < «, where p ¢ denotes the
p-value of the permutation test enumerating all permutations and « is the level of significance.

In practice, it is impractical to consider all permutations from S(n). Hence we use a Monte-
Carlo approximation by randomly choosing B permutations o1,...,05 € S(n)\{id} where id
refers to no permutation and calculating ’y(Pn Sy Ry ky), Y(P7 1xy, Kx,Ky)y .-y y(P°? iy, Rx,KYy).
With a notational abuse, let R be the rank of (P X B Hy) and we reJect Hy if pgy =
R/(B +1) < a, where p¢y is the p-value of the permutatlon test enumerating a finite sample
of size B from S(n).

If the value of ¥(P, ¢y, kx, ky) repeats in {v(P° Xy, Kx,Ky)s .-y (P iy, Kx,Ky)} for sev-
eral times with B < n!, the rank R of ’y(Pn, L9 KA ny) is determlned by the following two ways
proposed by |Rindt et al.| (2020).

e Breaking ties at random: R is distributed uniformly on ranks of ~(P? %y R Ky) that

have the same value of ¥(P, ¢y, kx, £y);

e Breaking ties conservatively: R is the largest among ranks of fy(P Xy R Ky) that have
the same value of Y(P, ¢, kx, Ky).

Next we list two lemmas which will be useful to prove Theorem

Lemma S5. For o randomly selected from S(n), ¥(P, x¢,kx, ky) — 0 in probability asn — oco.

Lemma is a direct application of Theorem 3 of |Rindt et al.| (2020)) for d = 2.



Lemma S6. Suppose that the alternative hypothesis Hy : Pxy # PxPy is true and noises

are i.i.d. Let {t\(D) > --- > t" (D)} be ordered values of HSIC computed on all permutations
of denoised curves {~(P XY,/{;(,/{);) . (PJ&Y,&X,KJ;)}. Let a = |nla] for any level of

significance o € (0,1). Then t%(D) — 0 in probability as n — co.

Lemma is a direct application of Theorem 4 of |Rindt et al.| (2020)) for d = 2.

Proof of Theorem Denote the fully observed dataset by D = {(X;,Y;) : ¢ = 1,...,n} and
the denoised dataset by D = {(X;,Y;) : i = 1,...,n}. For a permutation o € S(n), denote
the permuted datasets by o(D) and o(D), resulting in permuted HSIC ~(P o Xy ka, ky) and

V(P? 40 kx, Ky) respectively.

If Hy: Pxy = PxPy is true, then for any o € S(n), D and o(D) have the same distribution
and D and a(f)) have the same distribution due to the facts that the noise across subjects are i.i.d
and that the denoising procedure in Section is separately for each subject. For B permutations
o1,...,0p randomly selected from S(n)\{id}, (D,o1(D),...,o5(D)) is an exchangeable vector,
and thus (’Y(Pm)h;,li)(,fﬁy) ~(P? ;(Yﬂix,ﬁy),u- ~v(P E;(y,li)(,fiy)) is exchangeable.

By breaking ties at random, each entry is equally likely to have any given rank, so the rank
of V(Pn,XY’ Kx,Ky) is uniformly distributed in {1,..., B}. Therefore the type I error rate can

be controlled for any level of significance o € (0,1). Breaking ties conservatively can result in

an even smaller Type I error rate.

If Hi : Pxy # PxPy is true, then by the definition of #4(D) in Lemma[S6] we reject
Hy: Pxy = PxPy if y(P, XY R Ky) > t%(@) For any a € (0,1),

lim P(pgy < a) > lim P(y(P, gy, kx, ky) > t2(D)) = 1,

n—00 n—00 n,

since y(P, ¢y, kx,ky) — 7(Pxy,kx,ky) > 0 in probability as n — oo by the proof of Theorem
Bl
For a finite number B of permutations, the p-value p¢y = (1 +U)/(B + 1) where U ~

Binomial(B,p¢y-). If U = 0, then pgy = 1/(B + 1) < a and we reject the null hypothesis.

10



Since P(pgy < €1) > 1 — e for some €1, €2 > 0. For n large enough, we have

P(pgy) 2 P(Pgy =1/(B+1) | pgy < €1)Ppgy < €e1)

> (1 — 61)B(1 - 62).

Then the consistency of the permutation test is proved by letting €1, e — 0. ]

S3 Additional Simulation

S3.1 Performance of wavHSIC for Irregular Design

In this section, we present the results of a simulation study where subjects are not measured at
the same regular grid with m = 2% for some integer J.

Similar to Section@ we had 199 simulation runs and in each simulation run {(X;(¢), Y;(?)) :
t€[0,1],5=1,...,n} where n = 50 or 200 were generated under Settings 1-3. For each subject

i, ¢ = 1,...,n, the numbers of measurements per subject, mZX and mZY, were both sampled
from either DiscreteUnif{50,...,70} or DiscreteUnif{220,...,280}. Given m;X and m), the
measurement times {T;X : 1 =1...,m;*} and {T}} :1=1...,m)} were sampled independently

on ContinuousUnif]0, 1]. Since the number of measurements per subject and measurement times
may be different across subjects, their notations here have an additional subscript “i” compared
to those in Section [3] We added white Gaussian noise to all measurements with signal-to-noise
ratio SNR=4 or 8. Therefore, the observed data were {X;(T:X) = Xi(T; ) +ef :1=1,...,m¥}
and {Vi(TY) = Y(TY) + e} i1=1,...,m) }.

Before the two steps in Section we performed the linear interpolation method by |Kovac
and Silverman| (2000)) to interpolate data onto a common and regular grid of [0,1] with m =
27+ for some integer J. When m;X,mz/ ~ DiscreteUnif{50, ...,70}, we chose m = 64; when
mZX,mzf ~ DiscreteUnif{220, ...,280}, we chose m = 256. The results are given in Table
Compared with Tables [1|- |3} wavHSIC now performs slightly worse in controlling the Type 1
error rate and achieving a high power, but it is overall satisfactory.

Table S1: Rejection rates of wavHSIC when subjects are not measured at the same dyadic grid

with m = 2771, Medians of selected Sy and By are provided for each setting.
| n = 50 n = 200
| m~50-70 m ~ 220 — 280 m ~ 50 — 70 m ~ 220 — 280
‘ SNR=4 SNR=8 SNR=4 SNR=8 ©SNR=4 SNR=8 SNR=4 SNR=8
Type I error rate | 0.0553  0.0503  0.0955  0.0905  0.0452  0.0452  0.0402  0.0603
Setting 1 median{8x } 1.066 1.126 0.972 0.988 1.072 1.131 0.990 1.005
median{By } 0.791 0.866 0.723 0.745 0.807 0.871 0.742 0.764
Power 0.8291  0.9296  0.9648  0.9598  1.0000  1.0000  1.0000  1.0000
Setting 2 median{8x } 1.059 1.124 0.979 0.994 1.073 1.133 0.989 1.009
median{By } 0.788 0.860 0.723 0.745 0.801 0.870 0.738 0.758
Power 0.1859  0.2563  0.2814  0.2714  0.5578  0.7739  0.8291  0.8040
Setting 3  median{8x} 1.074 1.133 0.961 0.981 1.066 1.124 0.974 0.995
median{By } 0.830 0.906 0.777 0.794 0.830 0.896 0.769 0.789
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S3.2 Simulation Settings in Lee et al. (2020, Supplementary Material)

In this section, we run an additional simulation study under the same settings in|Lee et al.| (2020|
Supplementary Material, Section 1.2) to compare our method wavHSIC with PSS and FMDD.
We also include KMSZ, KMSZ-p, dCov-c and FPCA here due to their competitive performances
shown in Section @ Here we use the same strategies for tuning parameters as in Section@ For
wavHSIC in following examples, we perform linear interpolation method by Kovac and Silverman
(2000) to interpolate data onto a regular grid of [0, 1] with m = 2771 = 64.

Example S1. (Lee et al., (2020, Supplementary Material, Example 1) We generated functional

response Y by a quadratic form of covariate X,
Yi(t) = c- {Xi(t)* — 1} + (1),

where X; and ¢;, i = 1,...,n are independent Brownian motion and Brownian bridge, respec-
tively. X is independent of Y when ¢ = 0, while the alternative is satisfied when ¢ = 0.5.
Sampling points are t = 1/200,3/200, . ..,199/200, with sample size n = 40 or 100. The results
are given in Table[S2

Table shows that KMSZ, PSS(Y ~ X), FMDD(Y ~ X) perform essentially the same
as that in |Lee et al. (2020| Supplementary Material, Table 1). Even the tests PSS(X ~ Y)
and FMDD(X ~ Y') with the response and covariate switched can control type I error rates
when ¢ = 0, but when ¢ = 0.5 their powers are much lower than that of PSS(Y ~ X) and of
FMDD(Y ~ X) respectively. Two omnibus tests PSS(Omnibus) and FMDD(Omnibus) cannot
control type I error probabilities when ¢ = 0. For two distance covariance methods, dCov-c
cannot control type I error rate well when o = 0.05,0.01, while FPCA has an accurate size for
any combination of (o,n) when ¢ = 0. When ¢ = 0.5, the powers of these two methods are
uniformly better than or comparable with PSS and FMDD. Our wavHSIC can almost always
control the type I error rates when ¢ = 0 and is uniformly more powerful than all the other
methods for all (a,n) when ¢ = 0.5.

Example S2. (Lee et al.,|2020, Supplementary Material, Example 2) We generate

4
Xi(t)== Y Zsin(2rkt),
g k=1,3,...,.21
4
Yi(t)== > Z}sin(2rkt) + 4e(t),
g k=3,5,7,9

where Z i, k=1,...,21,i=1,...,n are i.i.d. N(0,1) random variables and €;(t), i=1,...,n
are standard Brownian bridges on [0,1]. Sampling points are t = 1/200,3/200,...,199/200,
with sample size n = 40 or 100. The results are given in Table .
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Tableshows that KMSZ, PSS(Y ~ X)), FMDD(Y ~ X) perform almost the same as those
in |Lee et al.| (2020, Supplementary Material, Table 2). Permutation based KMSZ-p performs
better than KMSZ when the sample size n is small, but for small nominal levels a = 0.05 or
0.01, the powers of KMSZ-p are not as good as those of KMSZ for n = 100. Similar to Table
the tests PSS(X ~ Y) and FMDD(X ~ Y') have much lower powers than PSS(Y ~ X)
and FMDD(Y ~ X) respectively. Between the two distance covariance based methods, FPCA
performs better than dCov-c. FPCA performs better than other model-based methods for n = 40,
and its powers lie between PSS and FMDD when n = 100. Our proposed method wavHSIC has
uniformly higher powers than the other methods. Interestingly, the median of 8x are always 0
by our tuning parameter selection strategy, which indicates that the distance variances across
low to high frequencies for X (¢) are successfully detected as equally distributed.

Table S2: Rejection rates of six test methods for Example S1. For wavHSIC, medians of selected
Bx and By are provided for each setting.

c=0 a=0.1 a = 0.05 a=0.01

Type I errorrate | n=40 n=100 n=40 n=100 n=40 n =100
dCov-c 0.1106 0.0955  0.0804 0.0653  0.0251 0.0553
FPCA 0.1055 0.0955  0.0452 0.0603  0.0101 0.0101
KMSZ 0.0352 0.0754  0.0101 0.0302  0.0000 0.0050
KMSZ-p 0.1156 0.0854  0.0553 0.0452  0.0000 0.0151
PSS(Y ~ X) 0.1407 0.1005  0.0704 0.0402  0.0402 0.0050
PSS(X ~Y) 0.0854 0.1106  0.0302 0.0503  0.0050 0.0000
PSS(Omnibus) 0.2060 0.2010  0.1005 0.0905  0.0452 0.0050

FMDD(Y ~ X) 0.1005 0.0905  0.0653 0.0653  0.0151 0.0151
FMDD(X ~Y) 0.1206 0.0704  0.0603 0.0452  0.0101 0.0151
FMDD(Omnibus) | 0.1256 0.1005  0.0804 0.0653  0.0151 0.0201

wavHSIC 0.1055 0.0955 0.0352 0.0553 0.0050 0.0101
median{Sx } 0.957 0.958 0.957 0.958 0.957 0.958
median{By } 1.624 1.629 1.624 1.629 1.624 1.629
c=0.5 a=0.1 a = 0.05 a=0.01

Power n=40 n=100 nmn=40 n=100 n=40 n =100
dCov-c 0.8141 1.0000  0.7286 0.9950  0.5477 0.9950
FPCA 0.9598 1.0000  0.8995 1.0000  0.5678 0.9899
KMSZ 0.2362 0.3015 0.1256 0.2261 0.0352 0.0754
KMSZ-p 0.3719 0.3367  0.2412 0.2714  0.1055 0.1055
PSS(Y ~ X) 0.4925 1.0000 0.3417 1.0000  0.1608 0.9347
PSS(X ~Y) 0.1005 0.0955 0.0553 0.0452 0.0101 0.0201
PSS(Omnibus) 0.5327 1.0000 0.3719 1.0000  0.1709 0.9347

FMDD(Y ~ X) 0.6734 1.0000  0.3970 0.9799  0.0704 0.6332
FMDD(X ~Y) 0.1709 0.0955  0.0854 0.0553  0.0201 0.0101
FMDD(Omnibus) | 0.6734 1.0000  0.3970 0.9799  0.0704 0.6332

wavHSIC 1.0000 1.0000  1.0000 1.0000  0.8492 1.0000
median{8x } 0.957 0.958 0.957 0.958 0.957 0.958
median{By } 1.278 1.266 1.278 1.266 1.278 1.266
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Table S3: Rejection rates of six test methods for Example S1. For wavHSIC, medians of selected
Bx and Py are provided for each setting.

a=0.1 a=0.05 a=0.01
Power n=40 n=100 m=40 mn=100 n=40 n =100
dCov-c 0.3266 0.7035  0.2362 0.5980  0.1407 0.3719
FPCA 0.5779 0.9045 0.4573 0.8392  0.2864 0.6281
KMSZz 0.1910 0.0804  0.1910 0.3317  0.0955 0.2211
KMSZ-p 0.3568 0.3668  0.2563 0.2764  0.1055 0.1307
PSS(Y ~ X) 0.0352 0.5477 0.1256 0.6734 0.1910 0.7487
PSS(X ~Y) 0.0151 0.0050  0.0603 0.0503  0.1156 0.1005
PSS(Omnibus) 0.0503 0.5528  0.1759 0.6834  0.2714 0.7638

FMDD(Y ~ X) 0.5528 0.9950  0.3568 0.9598  0.1055 0.5980
FMDD(X ~Y) 0.1709 0.1357  0.1005 0.0905  0.0151 0.0201
FMDD(Omnibus) | 0.5528 0.9950  0.3568 0.9598  0.1055 0.5980

wavHSIC 0.9598 1.0000 0.8844 1.0000 0.6131 0.9950

median{,BX} 0.000 0.000 0.000 0.000 0.000 0.000

median{ﬁy} 0.618 0.579 0.618 0.579 0.618 0.579
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