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Abstract
Measuring and testing the dependency between multiple random functions is often

an important task in functional data analysis. In the literature, a model-based method

relies on a model which is subject to the risk of model misspecification, while a model-free

method only provides a correlation measure which is inadequate to test independence.

In this paper, we adopt the Hilbert-Schmidt Independence Criterion (HSIC) to mea-

sure the dependency between two random functions. We develop a two-step procedure

by first pre-smoothing each function based on its discrete and noisy measurements and

then applying the HSIC to recovered functions. To ensure the compatibility between

the two steps such that the e↵ect of the pre-smoothing error on the subsequent HSIC is

asymptotically negligible when the data are densely measured, we propose a new wavelet

thresholding method for pre-smoothing and to use Besov-norm-induced kernels for HSIC.

We also provide the corresponding asymptotic analysis. The superior numerical perfor-

mance of the proposed method over existing ones is demonstrated in a simulation study.

Moreover, in an magnetoencephalography (MEG) data application, the functional con-

nectivity patterns identified by the proposed method are more anatomically interpretable

than those by existing methods.
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1 Introduction

In recent decades, functional data analysis (FDA) has developed rapidly due to a huge and

increasing number of datasets collected in the form of curves, surfaces and volumes. General

introductions to the subject may be found in a few monographs (e.g., Ramsay and Silverman,

2005; Ferraty and Vieu, 2006). In many scientific fields, measurements are taken from multiple

random functions per subject and the dependency between these functions is of interest. For

instance, neuroscientists are interested in functional connectivity patterns between signals

at multiple brain regions, which are measured over time in functional magnetic resonance

imaging data. It is thus an important task in FDA to measure their dependency and to

further test the significance of the dependency. Among extensive relevant research endeavors,

most dependency test methods can be categorized as either model-based or model-free.

A model-based method typically infers the dependency between multiple functions by

first assuming a functional regression model (see, e.g., Morris, 2015, for a survey) which

characterizes their structural relationship, and then testing the significance of the assumed

model. See examples of model-based methods by Guo (2002); Huang et al. (2002); Shen and

Faraway (2004); Antoniadis and Sapatinas (2007) for concurrent/varying-coe�cient models

and by Kokoszka et al. (2008); Chen et al. (2020) for function-on-function regression models.

The main disadvantage of a model-based method is its reliance on correct model specification.

If the model is misspecified, the inference is not well grounded and might be inaccurate.

A model-free method can avoid the misspecification issue associated with model-based

methods since it typically quantifies the dependency between random functions by a correla-

tion measure, without assuming any particular model. As a natural extension of the canonical

correlation for multivariate data, the functional canonical correlation is a popular correlation

measure for functional data (e.g., Leurgans et al., 1993; He et al., 2003; Eubank and Hsing,

2008; Shin and Lee, 2015). However, it is plagued by the involvement of inverting a covari-

ance operator, which is an ill-posed problem and often requires proper regularizations. The
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dynamical correlation (Dubin and Müller, 2005; Sang et al., 2019) and temporal correlation

(Zhou et al., 2018) are two functional correlation measures without the aforementioned inverse

problem. The former measures the angle between two random functions in the L2 space. The

latter essentially computes the Pearson correlation between two random functions at each

time point and then averages all pointwise Pearson correlations over the time domain. How-

ever, since uncorrelatedness does not imply independence, these functional correlations are

insu�cient to test independence. Recently a few model-free approaches have been developed

to test mean independence for functional data (e.g., Patilea et al., 2016; Lee et al., 2020), but

they can only test a weaker notion of independence.

In this paper we develop a model-free independence test for functional data. Under the

reproducing kernel Hilbert space (RKHS) framework, we propose to use the Hilbert-Schmidt

Independence Criterion (HSIC, e.g., Gretton et al., 2005, 2008) to measure the dependency

between two random functions. An appealing property is that HSIC endowed with charac-

teristic kernels is zero if and only if the two random functions are independent. However,

the application of HSIC requires fully observed and noiseless functional data, while in prac-

tice functional data are always discretely measured and contaminated by noise. To tackle

this problem, one may perform a two-step procedure: first pre-smooth the data, and then

apply HSIC to the resulting functions. Clearly, pre-smoothing will a↵ect the performance of

HSIC. Indeed, the functional distance with respect to which the asymptotic convergence of the

pre-smoothing procedure is measured is crucial, as HSIC is fundamentally based on a func-

tional distance. Some common pre-smoothing procedures do not have existing convergence

results on the required functional distance, and hence may not be compatible; namely, the

pre-smoothing error may have a profound e↵ect on the subsequent HSIC. See Section 3 for

more discussion. In this work, we carefully design our procedure to ensure that the two steps

are compatible. For the first step, we propose a new wavelet thresholding method while we use

Besov-norm-induced kernels for HSIC in the second step. We can show that these choices in

the two steps are theoretically compatible if the functional data are su�ciently densely mea-
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sured. See Section 4 for details. Our work is motivated by the Human Connectome Project

(HCP, https://www.humanconnectome.org) from which various brain imaging datasets are

publicly accessible. In Section 7, the application of our method to a magnetoencephalogra-

phy (MEG) dataset from HCP is capable of identifying anatomically interpretable functional

connectivity patterns, suggesting a great potential of the proposed method in the study of

functional connectivity between brain regions.

The main contribution of this paper is three-fold. First, we design some suitable kernels

such that the corresponding HSIC can identify the independence of a pair of random functions

of which sample paths belong to Besov spaces, a larger class of functions than Sobolev spaces

which are popular in RKHS modeling. We propose to use the Besov sequence norm for

the wavelet coe�cients of these random functions induce such kernel, which is shown to be

characteristic. Second, for dense functional data, we develop the asymptotic distribution of

the empirical HSIC based on pre-smoothed functions by wavelet thresholding. To theoretically

guarantee the compatibility between the pre-smoothing and empirical HSIC, we propose a new

wavelet thresholding method that can e�ciently reduce the pre-smoothing error measured by

the Besov sequence norm used in the empirical HSIC when the noise is nearly independent.

Since the asymptotic distribution involves many unknown quantities, we suggest a permutation

test in practice and prove that not only can the test control the Type I error probability but

also it is consistent. The theoretical results show that the two steps in our proposed procedure

are compatible. Finally, we propose a data-adaptive approach to tuning the smoothness

parameter for the Besov norm needed to induce the kernel for HSIC. It is numerically shown

that this approach is able to enhance the sensitivity of HSIC to detecting dependencies at

high frequencies.

The rest of the paper proceeds as follows. Section 2 provides a brief introduction to

HSIC. The two-step procedure for the proposed wavelet-based HSIC test is given in Section

3. Its asymptotic properties are presented in Section 4. Section 5 discusses tuning parameter

selection. The numerical performance of the proposed method is illustrated in a simulation
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study in Section 6 and an MEG functional connectivity study in Section 7 where it is also

compared with representative existing methods. Section 8 concludes the paper. The code

to implement the proposed method is publicly available on GitHub (https://github.com/

rui-miao/wavHSIC).

2 Hilbert-Schmidt Independence Criterion

In this section we give a brief introduction to HSIC. Let X and Y be two random functions of

which sample paths belong to function spaces X and Y respectively, and H(X ) and H(Y)

be the RKHS equipped with kernels X and Y defined on X ⇥ X and Y ⇥ Y respectively.

HSIC requires that both X and Y are characteristic, in the sense that two probability

measures P = P 0 if and only if PZ (P ) = PZ (P 0) where PZ (P ) = EP{Z(Z, ·)} for a ran-

dom function Z 2 Z which follows P and (Z,Z) = (X,X ) or (Y,Y). A characteristic kernel

may be induced by a strong negative type semi-metric (see Definition S1 and Proposition S1

in the supplementary material). Denote the joint probability measure of X and Y by PXY and

their marginal probability measures by PX and PY respectively. Since X and Y are char-

acteristic, PX and PY are fully characterized by PX (PX) = EPX{X (X, ·)} and PY (PY ) =

EPY {Y(Y, ·)} respectively. Let PX⌦Y (PXY ) = EPXY {(X ⌦ Y)((X, Y ), (⇤, ·))}, where the

tensor product kernel X⌦Y is defined by (X⌦Y)((x, y), (x0, y0)) = X (x, x0)Y(y, y0), x, x0
2

X , y, y0 2 Y .

Sejdinovic et al. (2013) showed that X and Y are independent, i.e., PXY = PXPY , if

and only if PX⌦Y (PXY ) = PX (PX)PY (PY ), although X ⌦ Y is not characteristic for

all probability measures on H(Y)⇥H(Y). Therefore, to test the independence between X

and Y , it su�ces to study the di↵erence between PX⌦Y (PXY ) and PX (PX)PY (PY ). Since

PX (PX) 2 H(X ), PY (PY ) 2 H(Y) and PX⌦Y (PXY ) 2 H(X ⌦ Y) where H(X ⌦ Y)

is the RKHS equipped with X ⌦ Y , HSIC may be used to measure this di↵erence under the

norm of H(X ⌦ Y).
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Definition 1 (HSIC). Suppose that
R
X
X (x, x)dPX(x) < 1 and

R
Y
Y(y, y)dPY (y) < 1.

The HSIC of PXY is defined by

�(PXY , X , Y) = kPX⌦Y (PXY )�PX (PX)P
Y (PY )k

2

H(X⌦Y )

= 4

Z

X⇥Y

Z

X⇥Y

X (x, x
0)Y(y, y

0)d(PXY � PXPY )(x, y)d(PXY � PXPY )(x
0, y0).

In practice with {(Xi, Yi) : i = 1, . . . , n} which are independently and identically dis-

tributed (i.i.d.) copies of (X, Y ), the sample versions of PX (PX), PY (PY ) and PX⌦Y (PXY )

are defined byPX (Pn,X) = n�1
P

n

i=1
X (Xi, ·), PY (Pn,Y ) = n�1

P
n

i=1
Y(Yi, ·), andPX⌦Y (Pn,XY ) =

n�1
P

n

i=1
{(X ⌦Y)((Xi, Yi), (⇤, ·))}. Obviously PX (Pn,X) 2 H(X ), PY (Pn,Y ) 2 H(Y) and

PX⌦Y (Pn,XY ) 2 H(X ⌦ Y), so we can obtain a sample version of HSIC as follows.

Definition 2 (Empirical HSIC). Under the same setting in Definition 1, the empirical HSIC,

which is an estimator of HSIC, is defined by

�(Pn,XY , X , Y) = kP
X⌦Y (Pn,XY )�PX (Pn,X)P

Y (Pn,Y )k
2

H(X⌦Y )

= 4

Z

X⇥Y

Z

X⇥Y

X (x, x
0)Y(y, y

0)d(Pn,XY � Pn,XPn,Y )(x, y)d(PXY � Pn,XPn,Y )(x
0, y0).

By Sejdinovic et al. (2013), the empirical HSIC can be rewritten as

�(Pn,XY , X , Y) = n�2tr(�XH�YH),

where �X = (X (Xi, Xj))1i,jn and �Y = (Y(Yi, Yj))1i,jn are Gram matrices, and H =

In � n�11n1>

n
is the centering matrix with the n⇥ n identity matrix In and 1n = (1, . . . , 1)>

of dimension n.

3 Methodology

Suppose that bivariate functional data {(Xi, Yi) : i = 1, . . . , n} collected from n subjects are

i.i.d. copies of a pair of random functions (X, Y ), which, without loss of generality, is defined

on the domain [0, 1]⇥ [0, 1]. Let the sample paths of X and Y belong to function spaces X and
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Y respectively. In many applications such as brain imaging analysis, the measurements of each

function are sampled at a discrete and regular grid and subject to noise contamination. Hence

we assume that the observations are {(X̃il, Ỹil) := (Xi(Tl) + eX
il
, Yi(Tl) + eY

il
) : i = 1, . . . , n; l =

1, . . . ,m}, where {Tl = (l � 1)/m : l = 1, . . . ,m} is a regular grid with m = 2J+1 for some

integer J > 0 and the two sets of mean-zero random noise, {eX
il
: i = 1, . . . , n; l = 1, . . . ,m} and

{eY
il
: i = 1, . . . , n; l = 1, . . . ,m}, are independent of each other and of {(Xi, Yi) : i = 1, . . . , n}.

The error terms in each set are further assumed to be identically distributed, independent

across subjects, but possibly dependent within each subject. We defer the discussion on the

error dependence structures to Section 4. Our goal is to formulate an HSIC-based test

for the independence between X and Y via {(X̃il, Ỹil) : i = 1, . . . , n; l = 1, . . . ,m}. For

simplicity we assume that all functions share the same measurement grid and m = 2J+1,

but the proposed method is applicable with minor modifications if the grid is irregular, the

functions are measured at di↵erent grids, or m 6= 2J+1 (see Remark 1).

Due to the success of existing HSIC-based independence tests for multivariate data, it is

tempted to treat the discretized observations as multivariate data and directly apply existing

methods. However, there are two issues with this approach. First, in order to capture enough

information, m should be large enough, which naturally leads to high-dimensional data. With-

out reasonable structure across these m dimensions, HSIC does not perform well. In the FDA

literature, modeling the sample paths with certain form of smoothness has been shown an em-

pirically successful strategy in many applications. It is beneficial to incorporate smoothness

structure during the design of a tailor-made HSIC method. Second, the discretized observa-

tions are contaminated by noise. Hence these raw observations are indeed not “smooth” but

the noiseless ones are.

The proposed method is directly based on the definition of HSIC (Definition 1) when ap-

plied to random functions. Clearly, the application of such HSIC requires the trajectories of

all random functions to be fully observed and noiseless. Thus, with discrete and noisy mea-

surements in practice, a natural idea is to perform pre-smoothing to recover these trajectories
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followed by applying HSIC to random functions. However, the compatibility of these two

steps is generally unclear. Namely, it is non-trivial to know whether the pre-smoothing error

(measured in a certain norm) would have a profound e↵ect on the subsequent HSIC-based test.

For instance, if the sample paths of all random functions are assumed to belong to a Sobolev

space, it is seemingly reasonable to pre-smooth each trajectory by a smoothing spline followed

by the HSIC based on Sobolev-norm-induced kernels. However, the compatibility of the two

steps is unknown since there is no theoretical result to guarantee that the pre-smoothing error

under a Sobolev norm converges to zero, although the corresponding results with respect to

the L2 or empirical norm exist.

To address this compatibility issue, we propose to use HSIC based on Besov-norm-induced

kernels for testing independence under the assumption that the sample paths of all random

functions belong to Besov spaces, a larger class of functions than Sobolev spaces. To recover

each trajectory, we develop a new wavelet thresholding method for pre-smoothing. Its theo-

retical compatibility with the proposed HSIC is given in Section 4. In the rest of this section,

we first introduce wavelets (e.g., Ogden, 1997; Vidakovic, 2009; Morettin et al., 2017) together

with other related results and then the details of the proposed two-step procedure.

3.1 Wavelets and Besov Sequence Norms

Following the Cohen-Daubechies-Jawerth-Vial (CDJV) construction (Cohen et al., 1993), let

father and mother wavelets be �,  2 CR[0, 1] respectively with D vanishing moments (e.g.,

Daubechies, 1992) where CR[0, 1] is the space of all functions on [0, 1] with R-th order continu-

ous derivatives. We consider a Besov space B↵

p,q
[0, 1] with norm k·kB↵

p,q [0,1]
of which smoothness

parameter ↵ satisfies 1/p < ↵ < min{R,D} such that B↵

p,q
[0, 1] can be embedded continuously

in C[0, 1]. Formal definitions of B↵

p,q
[0, 1] and its norm k · kB↵

p,q [0,1]
are given in Section S1.2 in

the supplementary material. Then for any function f 2 B↵

p,q
[0, 1] \ L2[0, 1] and a fixed coarse

scale L, we have the following decomposition
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f(t) =
2
L
�1X

k=0

⇠k{2
L/2�(2Lt� k)}+

X

j�L

2
j
�1X

k=0

✓j,k{2
j/2 (2jt� k)}, t 2 [0, 1]. (1)

Denote ✓j,k = ⇠2j+k, 0  j < L, 0  k < 2j and ✓�1,0 = ⇠0. Based on the wavelet coe�cients

of f , ✓f = ((✓f

�1
)>, (✓f

0
)>, . . . , (✓f

L
)>, (✓f

L+1
)>, . . . )> where ✓f

j
= (✓j,0, ✓j,1, . . . , ✓j,2j�1)

> and

✓f

�1
= ✓�1,0, the Besov sequence norm k · kb↵p,q (e.g., Donoho et al., 1995; Johnstone and

Silverman, 2005) is defined by

k✓f
kb↵p,q =

 
X

j��1

2jsqk✓f

j
k
q

p

!1/q

, s = ↵ + 1/2� 1/p, (2)

where k · kp refers to the `p-norm for vectors. Denote the corresponding space by b↵
p,q

= {a :

kakb↵p,q <1}. Note that the two norms k · kB↵
p,q

and k · kb↵p,q are equivalent (e.g., DeVore and

Lorentz, 1993; Donoho et al., 1995) and obviously b↵
p,q
⇢ b�

p,q
if �  ↵. In practice, if f is

observed at m = 2J+1 dyadic time points {0/m, 1/m, . . . , (m � 1)/m}, the discrete wavelet

transformation can be used to calculate the wavelet coe�cients ✓f with ✓f

j
= 0 when j > J .

Then we can denote ✓f = ((✓f

�1
)>, (✓f

0
)>, . . . , (✓f

J
)>)>.

We can show that some Besov sequence norm can induce a characteristic kernel, which is

required by HSIC.

Theorem 1. For 0 < q0 < q  p  2, 0  ↵  ↵0 and ↵0 > 1/p, let the semi-metric

⇢b↵p,q(f, g) = k✓
f
�✓g
k
q
0

b↵p,q
for f, g 2 B↵

0
p,q
[0, 1], where ✓f and ✓g are the wavelet coe�cients of f

and g respectively. The function induced by ⇢b↵p,q , which is  (z, z0) = ⇢b↵p,q(z, 0) + ⇢b↵p,q (z
0, 0)�

⇢b↵p,q (z, z
0), z, z0 2 B↵

0
p,q
[0, 1], is a characteristic kernel.

The proof of Theorem 1 is given in Section S2.1 in the supplementary material. By

Theorem 1, we can define HSIC properly based on kernels induced by Besov sequence norms.

For simplicity, hereafter we focus on popular choices of p = q = 2 and q0 = 1. Accordingly we

abbreviate B↵

2,2
[0, 1] and b↵

2,2
to B↵ and b↵ respectively, and the kernel functions are

Z(z1, z2) = k✓
z1k

b
�Z + k✓z2k

b
�Z � k✓

z1 � ✓z2k
b
�Z , z1, z2 2 Z, 0  �Z  ↵Z ,

for (Z,Z) = (X,X ) and (Y,Y).
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3.2 Two-Step Procedure

Let Z = X or Y . Under the setting in Section 3.1, we assume Z 2 B↵Z where 1/2 < ↵Z <

min{R,D}. Note that B↵Z ⇢ B�Z for 0 < �Z < ↵Z so Z 2 B�Z as well. To test the

independence between X and Y based on their discretely measured and noisy observations,

we propose to first denoise each function and then apply HSIC to the recovered functions.

The two-step procedure is explicitly stated as follows:

Step 1 By the decomposition (1) and the resolution limitation due to a finite number of

measurements m = 2J+1 taken for each subject, we obtain the initial wavelet coe�cient

estimates for each Zi, denoted by ✓Z̃i = ((✓Z̃i
�1
)>, (✓Z̃i

0
)>, . . . , (✓Z̃i

J
)>)>, via the discrete wavelet

transformation with the coarse scale LZ . The coarse scale LZ may be selected by cross-

validation or domain knowledge. We propose to denoise ✓Z̃i and accordingly obtain ✓Ẑi =

((✓Ẑi
�1
)>, (✓Ẑi

0
)>, . . . , (✓Ẑi

J
)>)> as follows. First, we let ✓Ẑi

j
= ✓Z̃i

j
for j = �1, . . . , LZ � 1.

Moreover, we apply the following penalized least squares to obtain ✓Ẑi
j
, j = LZ , . . . , J :

✓Ẑi
j

= argmin
✓j

n
k✓Z̃i

j
� ✓jk

2

2
+ �2

Z,j
pen

j
(k✓jk0)

o
, j = LZ , . . . , J, (3)

where k·k2 denotes the Euclidean norm, k·k0 denotes the number of non-zero elements, �Z,j =

2&Zj�Z is the noise standard deviation at the resolution level j with �Z > 0, and the penalty

pen
j
(k) = k⇣Z{1 +

p
2(1 + 2&Z) log(⌧jmj/k)}2 that depends on ⇣Z > 1, &Z > �1/2, mj = 2j,

and ⌧j = ⌧Z2
2↵Z(j�j

Z
#)+ with ⌧Z > e and jZ

#
= (1 + (&Z + 1/2)/↵Z)/(↵Z + &Z + 1/2) · log

2
��1

Z
.

The proposed procedure in (3) is capable of denoising a certain type of correlated noise

(see technical assumptions in Theorem 2 in Section 4). Compared to the penalty (12.34) in

Johnstone (2019), we employ a di↵erent ⌧j in the penalty in (3) such that the pre-smoothing

error measured by the Besov sequence norm used in the empirical HSIC in Step 2 below

converges to zero if m diverges to infinity (see Theorem 2 in Section 4). This can guarantee

the compatibility between this and the next steps.

Similar to Johnstone and Paul (2014), to obtain the estimate ✓Ẑi
j
, LZ  j  J , defined in
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(3), one may apply the level-wise hard thresholding as follows: For each level LZ  j  J ,

let |✓Z̃i
j,(k)

| be the k-th term after the elements of ✓Z̃i
j

are sorted in a decreasing order of their

absolute values, namely |✓Z̃i
j,(0)

| � |✓Z̃i
j,(1)

| � · · · � |✓Z̃i

j,(2j�1)
|. Then the hard threshold at level j

is �Z,j

q
pen

j
(k̂j)� pen

j
(k̂j � 1), where k̂j = argmin

k�0

nP
k0�k

|✓Z̃i
j,(k0)|

2 + �2
Z,j

pen
j
(k)
o
. De-

tailed steps of solving (3) are summarized in Algorithm 1. The discussion of tuning parameter

selection is deferred to Section 5.

Step 2 Since the wavelet coe�cient estimates ✓X̂i 2 b↵X ⇢ b�X and ✓Ŷi 2 b↵Y ⇢ b�Y ,

i = 1, . . . , n, for �X < ↵X and �Y < ↵Y , we may apply HSIC to the denoised functions where

the kernels X and Y are induced by ⇢
b
�X and ⇢

b
�Y respectively as defined in Theorem 1.

Explicitly, we have �(P
n,X̂Ŷ

, X , Y) = n�2tr(�X̂H�ŶH), where

�X̂ =
⇣
k✓X̂ik

b
�X + k✓X̂jk

b
�X � k✓

X̂i � ✓X̂jk
b
�X

⌘

1i,jn

, and

�Ŷ =
⇣
k✓Ŷik

b
�Y + k✓Ŷjk

b
�Y � k✓

Ŷi � ✓Ŷjk
b
�Y

⌘

1i,jn

.

By adopting ⇢
b
�X and ⇢

b
�Y where �X < ↵X and �Y < ↵Y to construct kernels, we are

able to make the pre-smoothing step theoretically compatible with the HSIC. As revealed in

Theorems 2 and 3 in Section 4 below, if the observations of all functions are su�ciently dense,

the denoising error is asymptotically negligible in the asymptotic distribution of the HSIC.

This is a key benefit of using wavelets and Besov norms for pre-smoothing.

In Section 4, the asymptotic distribution of �(P
n,X̂Ŷ

, X , Y) is developed in Theorem 3

under the independence hypothesis. Despite its theoretical appeal, the asymptotic distribution

unfortunately involves many unknown quantities. Therefore, we suggest using permutations

to perform the independence test which, as shown in Theorem 4, can control the Type I error

probability and is also consistent.

Remark 1. Since denoising is performed separately for each function and subject, the proposed

method is applicable when the functions of di↵erent subjects are not measured at the same grid.

For m 6= 2J+1 at possibly irregular and uncommon designs, linear interpolation may be applied
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if the original measurement resolution is su�ciently high (e.g., Kovac and Silverman, 2000).

We demonstrate the satisfactory performance of this strategy via a simulation study, and the

corresponding results are given in Section S3 of the supplementary material.

Algorithm 1: Solving (3) by wavelet thresholding.

Input : {✓Z̃i
j

: j = LZ , . . . , J};

fixed tuning parameters ⇣Z > 1, ⌧Z > e, &Z > �1/2, �Z > 0.

Output: {✓Ẑi
j

: j = LZ , . . . , J}.

1 for j  LZ to J do

2 |✓Z̃i
j,(0)

| � |✓Z̃i
j,(1)

| � · · · � |✓Z̃i

j,(2j�1)
|  sort {|✓Z̃i

j,k
|}

2
j
�1

k=0
in descending order;

3 ✓Thresh

j
 �Z,j

q
pen

j
(k̂j)� pen

j
(k̂j � 1), where

k̂j = argmin
k�0

nP
k0�k

|✓Z̃i
j,(k0)|

2 + �2
Z,j

pen
j
(k)
o
;

4 for k  0 to 2j � 1 do

5 ✓Ẑi
j,k
 ✓Z̃i

j,k
I(|✓Z̃i

j,k
| � ✓Thresh

j
)

6 end

7 end

Remark 2. In Step 1, the time complexity for the discrete wavelet transformation is O(m)

for each subject (Cohen et al., 1993) and so is that for denoising. In Step 2, the time com-

plexity for calculating Gram matrices is O(mn2) and so is that for calculating the empirical

HSIC. Therefore, the permutation test based on B permutations requires O(Bmn2) of time.

In addition to the time complexity analysis, we report the computing time for the proposed

method when applied to the MEG data in Section 7.

4 Asymptotic Theory

In this section we show that the proposed two-step procedure can lead to an asymptotically

valid test, which addresses the compatibility issue raised in Section 3. Explicitly, we first

12



provide the rate of convergence for the denoising error involved in Step 1 in Theorem 2, then

the asymptotic distribution of HSIC �(P
n,X̂Ŷ

, X , Y) in Step 2 in Theorem 3, and finally the

asymptotic properties of the permutation test in Theorem 4. Hereafter, the kernels X and Y

are induced by ⇢
b
�X and ⇢

b
�Y respectively. For the noise terms {eZ

il
: i = 1, . . . , n; l = 1, . . . ,m}

where Z = X or Y , we assume that eZ
il
= eZ

i
(Tl), l = 1, . . . ,m where {eZ

i
: i = 1, . . . , n} are

i.i.d. copies of a stationary stochastic process eZ .

Theorem 2. Assume that �Z < ↵Z, k✓
Z
kb↵Z  CZ for a constant CZ > 0, and ✓e

Z

=

(✓e
Z

j,k
)�1jJZ ;k=0,...,2j�1, the discrete wavelet coe�cients of eZ, satisfy ✓e

Z

j,k
= 2&Zj�Zzj,k where

&Z > �1/2 and z = (zj,k)�1jJZ ;k=0,...,2j�1 is a zero mean Gaussian random vector that is

weakly correlated, i.e., its covariance matrix ⌃ satisfies ⇠Z
0
I � ⌃ � ⇠Z

1
I where I is the identity

matrix, 0 < ⇠Z
0
 1  ⇠Z

1
< 1 are constants, and A � B means that B � A is positive

semidefinite. Then for ✓Zi obtained by (3), we have

sup
k✓Zi

kb↵Z CZ

E
⇣
k✓Ẑi � ✓Zik

2

b
�Z | ✓Zi

⌘
= O(�2r

Z
) = O(m�r), uniformly for i = 1, . . . , n,

as m!1, where r = (↵Z��Z)/(↵Z+ &Z+1/2). This implies that k✓Ẑi�✓Zik
2

b
�Z

= Op(m�r)

uniformly for i = 1, . . . , n as m!1.

The proof of Theorem 2 is given in Section S2.2 in the supplementary material. Theorem

2 shows that the pre-smoothing error under the Besov sequence norm b�Z converges to zero

uniformly for all subjects if m diverges to infinity. This theoretical guarantee is achieved due

to the new penalty in the proposed wavelet thresholding method (3). The assumption on

the noise ✓e
Z

j,k
= 2&Zj�Zzj,k where z = (zj,k)�1jJZ ;k=0,...,2j�1 is weakly correlated Gaussian is a

generalization of the Gaussian white noise model by allowing correlation among noise terms

to some extent. First, the assumption encompasses both short- and long-range dependences

of the noise process when it is a stationary and Gaussian (Johnstone and Silverman, 1997).

For the short-range dependence case where &Z = 0, there is no variance inflation with the

increase of level j. For the long-range dependence case where �1/2 < &Z < 0, the process
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em
i
(t) = m�1

P
bmtc

l=1
eZ
il
can be approximated by a fractional Brownian motion �2�2H

Z
BH(t),

H = 1/2� &Z (Taqqu, 1975), which is widely used for modeling long-range dependence. Then

the convergence rate (with �Z replaced by �2�2H

Z
= �1+2&Z

Z
in (2)) is asymptotically minimax

up to a constant. When �Z = 0 in particular, this rate coincides with those of Wang (1996)

and Johnstone and Silverman (1997). Second, when &Z > 0, &Z captures noise amplification

as reflected in the noise level �Z,j = 2&Zj�Z , which is common in the linear inverse problem

(Abramovich and Silverman, 1998; Johnstone and Paul, 2014), e.g., &Z = 1/2 for the two-

dimensional Radon transformation (Donoho, 1995).

Since the HSIC is constructed based on the kernels induced by ⇢
b
�X and ⇢

b
�Y , the same

norms used to evaluate the denoising error as in Theorem 2, the compatibility between the

pre-smoothing by wavelet soft-thresholding and HSIC is theoretically guaranteed. As shown in

Theorem 3, the e↵ect of the denoising error on the distribution of the HSIC is asymptotically

negligible for dense functional data.

To develop the asymptotic distribution of �(P
n,X̂Ŷ

, X , Y), we further define the centered

kernel for X by ̌X (X,X 0) = hX (X, ·)�PX (PX), X (X 0, ·)�PX (PX)iH(X ). Furthermore

define an integral kernel operator S̌X : H(X )! H(X ) by S̌X (g) =
R
X
̌X (x, ·)g(x)dPX(x)

for any g 2 H(X ). An integral kernel operator S̌Y for Y can be similarly defined.

Theorem 3. Under the same assumptions of Theorem 2, if m satisfies

m�(↵Z��Z)/(2↵Z+2&Z+1) = o(n�1), (4)

for both Z = X and Z = Y , then

n�(P
n,X̂Ŷ

, X , Y) 

8
><

>:

P
1

u=1

P
1

v=1
µu⌫vN2

uv
, if X and Y are independent,

1, otherwise,

where “ ” represents weak convergence, Nuv ⇠ N(0, 1), u, v � 1 are i.i.d. and {µu : u � 1}

and {⌫v : v � 1} are eigenvalues of S̌X and S̌Y respectively.

The proof of Theorem 3 is given in Section S2.3 in the supplementary material. The
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asymptotic distribution of �(P
n,X̂Ŷ

, X , Y) in Theorem 3 is the same as that for fully observed

{(Xi, Yi) : Xi 2 B�X , Yi 2 B�Y , i = 1, . . . , n} (Sejdinovic et al., 2013). The requirement (4)

ensures that the error due to the denoising procedure is asymptotically negligible under b�Z

norm if the measurements are su�ciently dense. In general, for fixed ↵Z , �Z and &Z , the order

of m should be higher than n1/r where r = (↵Z � �Z)/(2↵Z + 2&Z + 1) which, for example, is

n10/3 if (↵Z , �Z , &Z) = (2, 1/2, 0) and n4 if (↵Z , �Z , &Z) = (3, 1, 1/2).

Since the asymptotic reference distribution of �(P
n,X̂Ŷ

, X , Y) when X and Y are assumed

independent involves many unknown quantities, in practice we perform the test by permuta-

tion. As shown in Theorem 4, the permutation test can control the Type I error probability

and is also consistent.

Theorem 4 (Permutation Test). Let the level of significance be ↵ 2 (0, 1). If the null hypoth-

esis that X and Y are independent is true, the permutation test of �(P
n,X̂Ŷ

, X , Y) based on

a finite number of permutations rejects the null hypothesis with probability at most ↵. If the

alternative hypothesis that X and Y are dependent is true and the assumptions of Theorem 2

and (4) hold, the permutation test of �(P
n,X̂Ŷ

, X , Y) based on B � 1/↵� 1 permutations is

consistent, i.e., P (p̂
X̂Ŷ
 ↵)! 1 as n!1, where p̂

X̂Ŷ
is the p-value.

The proof of Theorem 4 is given in Section S2.4 in the supplementary material. Theorem

4 shows that the proposed permutation test is also theoretically compatible with the proposed

wavelet thresholding method in Step 1.

5 Tuning Parameter Selection

In this section, we discuss the selection of tuning parameters involved in the two-step procedure

proposed in Section 3. They include ⇣Z , ⌧Z , &Z and �Z in Step 1 and �Z in Step 2, where

Z = X or Y .

First, to guarantee ⇣Z > 1 and ⌧Z > e, we suggest ⇣Z = 1.0001 and ⌧Z = 1.0001e which
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are slightly larger than their respective lower bounds, unless domain knowledge is available.

Second, for &Z which captures noise amplification and �Z which reflects the noise level,

we adopt crude estimates for them based on the top two levels of the wavelet coe�cients

(Johnstone and Silverman, 1997). Explicitly, we obtain &̂Z = log
2
(�̂Z,J/�̂Z,J�1) and �̂Z =

�̂Z,J/2&̂ZJ , where �̂Z,j = median
n
p
m✓Z̃i

j,k
: k = 0, . . . , 2j � 1

o
/median(|W |) for j = J � 1, J ,

and W is a standard normal random variable.

Finally, for the smoothness parameter �Z , we will first discuss its role in dependency

detection and then propose a data-adaptive selection method for it.

In Section 4, Theorem 2 seems to imply that given ↵X and ↵Y , the best choice is �X = �Y =

0 because the corresponding denoising error attains the best rate of convergence. However,

this choice of �X and �Y may result in a poor dependency detection especially when the

dependency of X and Y originates from their high frequency bands.

For illustration, by Definition 1 and (2), we consider the first-order approximation (Chakraborty

and Zhang, 2019, Theorem 5.1)

�(PXY , X , Y) ⇡ c�1

XY

X

jX��1

X

jY ��1

�
⇣
PXY , 2

2�XjX(jX)

X
, 22�Y jY (jY )

Y

⌘
, (5)

where (jZ)

Z
(z, z0) = k✓z

j
k
2

2
+ k✓z

0

j
k
2

2
� k✓z

j
� ✓z

0

j
k
2

2
for jZ � �1, with (z, Z,Z) = (x,X,X ) or

(y, Y,Y) and Euclidean norm k·k2, and cXY = 4
p

EkX �X 0k
2

b
↵XEkY � Y 0k

2

b
↵Y withX 0 and Y 0

being the independent copies ofX and Y , respectively. Apparently �
⇣
PXY , 22�XjX(jX)

X
, 22�Y jY (jY )

Y

⌘

measures the dependency contribution to the HSIC at jX and jY of X and Y respectively,

which is zero if and only if X and Y are independent at jX and jY . If �X = �Y = 0, the

scaling factors 2�XjX = 2�Y jY = 1 for all jX � �1, jY � �1 and it will be very di�cult to

detect the dependency between X and Y at high frequencies since the dependency contri-

butions contained at high frequencies are very likely to be overwhelmed by the independent

signals at low frequencies. Therefore, we aim to select �X and �Y such that the dependency

contributions at high frequencies, if any, are detectable.

The idea of the proposed tuning method is to balance the dependency contributions to
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HSIC at all frequency scales such that they are approximately the same. To lessen the compu-

tational burden, a marginal selection algorithm is proposed in the sense that the optimal �X

is selected only based on X without reliance on Y . Note that, by Appendix A in Sejdinovic

et al. (2013) and the properties of distance covariance, the dependency contribution at each

jX , jY � �1 satisfies

�
⇣
PXY , 2

2�XjX(jX)

X
, 22�Y jY (jY )

Y

⌘
 22(�XjX+�Y jY )

q
�(PX , 

(jX)

X
)�(PY , 

(jY )

Y
),

where �(PZ , 
(jZ)

Z
) = kP

(jZ )
Z ⌦

(jZ )
Z (PZZ)(⇤, ·) � P

(jZ )
Z (PZ)(⇤)P

(jZ )
Z (PZ)(·)k2

H(
(jZ )
Z ⌦

(jZ )
Z )

, jZ �

�1, is essentially a distance variance (Székely et al., 2007) with (z, Z,Z) = (x,X,X ) or

(y, Y,Y) (Sejdinovic et al., 2013). Thus we propose to select �X by balancing 22�XjX

q
�(PX , 

(jX)

X
)

at all jX � �1. If 22�XjX

q
�(PX , 

(jX)

X
) ⇡ C where C > 0 is a constant, then 2�XjX +

1

2
log

2
�(PX , 

(jX)

X
) ⇡ log

2
C, so �X may be selected as the estimated slope of the linear regres-

sion on (�2jX , log2 �(PX , 
(jX)

X
)/2).

In practice, we could estimate �(PX , 
(jX)

X
) by �(P

n,X̂
, (jX)

X
) for each jX � �1, but its

accuracy is poor for very high frequencies due to noise contamination. Thus we only consider

jX up to j
X
= maxjX�LX{�(Pn,X̂

, (jX)

X
) � �(Pn,êX , 

(jX)

X
)} where êX = X̃ � X̂ is the residual,

such that the distance variances of all jX  j
X

are not smaller than that of the residual. If

a known frequency band is of interest in the context of a study, e.g., the alpha band of brain

signals, one may alternatively select �X by balancing 22�XjX

q
�(PX , 

(jX)

X
) over that frequency

band. Last, we remark that the computational benefit of the proposed marginal approach for

tuning parameter selection is substantial when many tests have to be performed, such as in

the functional connectivity analysis (Section 7).

6 Simulation

In this section we evaluate the numerical performance of our proposed wavelet-based HSIC

method wavHSIC in both controlling the Type I error probability and statistical power. We
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also compare it with a few representative existing methods, including

(a) Pearson Correlation (Pearson). It is a one-sample t-test based on Fisher-Z transformed

correlation coe�cients of all subjects. The correlation coe�cient for each subject is

obtained by applying the Pearson correlation formula to the bivariate time series of the

subject, without adjusting for any possible dependence within the time series. It is a

popular functional connectivity measure in neuroscience (e.g., He et al., 2012).

(b) Dynamical Correlation (dnm, Dubin and Müller, 2005). It is defined as the expectation

of the cosine of the L2 angle between the standardized versions of two random functions.

(c) Global Temporal Correlation (gtemp, Zhou et al., 2018). It is the integral of the Pearson

correlation obtained at each time point.

(d) Bias-Corrected Distance Covariance (dCov-c, Székely and Rizzo, 2013). It is a t-test

designed to correct the bias of distance covariance for high-dimensional multivariate

data. We apply it by treating the discrete measurements of two random functions

as multivariate data. If the bias is not corrected, it is equivalent to wavHSIC with

�X = �Y = 0.

(e) Functional Principle Component Analysis (FPCA) Based Distance Covariance (FPCA,

Kosorok, 2009). The distance covariance (Székely et al., 2007) is applied to top Func-

tional Principle Component (FPC) scores which cumulatively account for 95% of the

variation of each random function. When all FPC scores are used, it is equivalent to

wavHSIC when �X = �Y = 0.

(f) Functional Linearity Test (KMSZ, Kokoszka et al., 2008). It is an approximate chi-

squared test for the nullity of the coe�cient function by assuming a functional linear

model between the two random functions. The model fitting requires a satisfactory

approximation of each random function by its top FPC scores and we select those which

cumulatively account for 95% of variation of each random function.
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(g) Permutation-Based Functional Linearity Test (KMSZ-p). It is the same as KMSZ except

that the p-value is obtained by permutation. Such a modification can be regarded as a

finite-sample correction of KMSZ.

(h) Projection-based Mean Independence Test (PSS, Patilea et al., 2016). For a functional

response Y and a functional predictor X, PSS aims to test the conditional mean in-

dependence of Y given X, i.e., E(Y | X) = E(Y ), a.s. PSS is a model-free test that

does not specify a model for E(Y | X). It requires a finite-dimensional projection of X

and uses wild bootstrap to find critical values. To implement PSS, we used the R pack-

age fdapss 1, which is publicly available at http://webspersoais.usc.es/persoais/

cesar.sanchez/.

(i) Functional Martingale Di↵erence Divergence Based Mean Independence Test (FMDD,

Lee et al., 2020). FMDD is also a model-free mean independence test. It measures

the conditional mean independence using the metric of functional martingale di↵erence

divergence and uses wild bootstrap to find critical values. To implement FMDD, we used

the R code publicly available at https://publish.illinois.edu/xshao/files/2019/

06/CodeCMDexample1.txt.

The first five (a-e) in comparison are model-free methods. KMSZ is one of the most

popular model-based methods in the FDA literature, but it can only test for linearity. PSS

and FMDD can handle nonlinear e↵ects of the functional predictor, but only on the mean of

the functional response, so they can only test a weaker notion of independence. Hereafter,

for bivariate random functions (X, Y ), PSS(Y ⇠ X) denotes testing E(Y | X) = E(Y ), a.s.

using PSS. Moreover, PSS(Omnibus) denotes the omnibus test which takes the smaller p-

value between those obtained by PSS(Y ⇠ X) and PSS(X ⇠ Y ) respectively. FMDD(Y ⇠

1
The package is only for Windows platform. For the user-chosen parameters required by this package, we

followed the recommendation in Section 4.1 of Patilea et al. (2016) and set the bandwidth h = n�2/9
, penalty

coe�cient ↵ = 2, grid size nq = 50 and number of FPCs which cumulatively account for 95% of the variation

of the functional predictor.
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X), FMDD(X ⇠ Y ) and FMDD(Omnibus) are similarly defined. To obtain p-values, 1,999

permutations were used for wavHSIC, dnm, gtemp, FPCA and KMSZ-p while 1,999 bootstrap

samples were used for PSS and FMDD. We declare statistical significance in each simulated

data based on the level of significance 0.05.

We generated 199 simulated datasets, where the number 199 is chosen to prevent em-

pirical Type I and Type II error probabilities from coinciding with the level of significance

0.05. In each simulated dataset n = 50 or 200 independent subjects with bivariate func-

tions {(Xi(t), Yi(t)) : t 2 [0, 1], i = 1, . . . , n} were generated where for the i-th subject,

Xi(t) =
P

16

k=1
⌘ik�k(t) and Yi(t) =

P
16

k=1
⇣ik�k(t+ 0.2) with �2k�1(t) =

p
2 cos(2⇡kt), �2k(t) =

p
2 sin(2⇡kt) for k = 1, . . . , 8. We considered three settings with di↵erent dependency struc-

tures of the bivariate functional data which are controlled by the FPC scores {(⌘ik, ⇣ik) : k =

1, . . . , 16; i = 1, . . . , n}.

• Setting 1. We generated ⌘ik ⇠ N(0, k�1.05), k = 1, . . . , 16 and ⇣ik ⇠ N(0, k�1.2), k =

1, . . . , 16 independently.

• Setting 2. With ⇢ = 0 for k = 1, . . . , 8 and ⇢ = 0.6 for k = 9, . . . , 16, we generated
2

4⌘ik
⇣ik

3

5 ⇠ N

0

@

2

40

0

3

5 ,

2

4 k�1.05 ⇢k�1.125

⇢k�1.125 k�1.2

3

5

1

A .

• Setting 3. For k = 1, . . . , 8, ⌘ik ⇠ N(0, k�1.05) was generated independently of ⇣ik ⇠

N(0, k�1.2). For k = 9, . . . , 16, ⌘ik ⇠ N(0, k�1.05) and ⇣ik = ⌘2
ik
� E⌘2

ik
.

Apparently X and Y are independent in Setting 1 and dependent in Settings 2 and 3.

In Setting 2, the FPC scores of X and Y are linearly correlated but only at high spectral

frequencies, while in Setting 3 they are linearly uncorrelated but dependent only at high

spectral frequencies, so it is more di�cult to detect dependency for all methods in Setting 3

than Setting 2.

Both functions are measured at m = 64 or 256 equidistant points on the time domain

[0, 1]. We added Gaussian noise to all measurements with signal-to-noise ratio SNR = 4
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or 8, which is the variance of all measurements over the noise variance. The noise terms

were generated independently across subjects. Within each subject, we experimented with

both independent (white noise) and dependent (correlated noise) settings. For the dependent

setting, the Gaussian noise was generated by di↵erencing the fractional Brownian motion with

Hurst exponent 0.7.

Since all methods in comparison require noiseless functions, we used the same denoising

procedure in Step 1 for all of them for fairness. We chose the CDJV wavelet basis func-

tions with vanishing moment D = 10 for both X and Y , which leads to ↵X = ↵Y ⇡ 2.902

(Daubechies, 1992). The tuning parameters �X and �Y were selected by the method in Section

5. The results are given in Tables 1–6.

Tables 1 and 4 show that all methods are almost always able to control type I error prob-

abilities except for PSS(X ⇠ Y ) and the two omnibus tests when the two random functions

are truly independent. Relatively, KMSZ is very conservative in many cases and KMSZ-p

corrects its p-values to some extent. However, KMSZ-p seems more likely to detect spurious

dependency when (n,m) = (50, 64), so does dCov-c when (n,m) = (200, 256).

Tables 2, 3, 5 and 6 show that the statistical powers of all methods typically improve

when one of n, m and SNR increases under Setting 2, but unnecessarily under Setting 3

except for KMSZ, KMSZ-p and wavHSIC. This demonstrates the di�culty of Setting 3 in

detecting dependency to some extent. Except wavHSIC, all model-free methods have very low

powers in all scenarios under either Setting 2 or 3, which indicates their poor performances in

detecting linear dependency in high frequencies or nonlinear dependency. The performance

of KMSZ is satisfactory for n = 200 under Setting 2 when the relationship between X and

Y is truly linear. KMSZ-p improves the statistical power of KMSZ further for n = 50 under

Setting 2 by permutation. However, both KMSZ and KMSZ-p are poor at testing nonlinear

dependency in Setting 3. The performances of PSS and FMDD, which can detect nonlinear

mean dependency, are comparable with those of dCov-c and FPCA in Settings 2 and 3, but

worse than those of KMSZ and KMSZ-p in Setting 2 where X and Y are linearly dependent.
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Tables 2, 3, 5 and 6 also demonstrate the appealing performance of wavHSIC. It is always

the most powerful method, and substantially better than the other methods. Only the powers

of KMSZ and KMSZ-p are comparable with those of wavHSIC when the sample size n = 200 is

large and the linearity assumption is valid under Setting 2. For fixed (n,m, SNR), the medians

of the selected parameters �X and �Y for wavHSIC are always similar between Settings 2 and

3 since they were tuned marginally regardless of the dependency structure. On average, both

�X and �Y were considerably away from zero, which confirms the need and benefit of choosing

them properly to enhance the detection sensitivity of wavHSIC.

We also performed an additional simulation study described in Section S3.2 of the supple-

mentary material, which follows the same settings in Section 1.2 of the supplementary material

of Lee et al. (2020). The results also demonstrate the superiority of wavHSIC.

Remark 3. It is worth noting that the development of the asymptotic distribution of wavHSIC

as in Theorem 3 requires the number of measurements per curve m to be large compared to the

sample size n (see (4)), but the simulation results here show that the finite sample performance

of wavHSIC is still satisfactory, even when m is small relatively to n. However, this is not

entirely surprising. First, under the null hypothesis that X and Y are independent, a poor

pre-smoothing due to a relatively small m does not inflate the empirical Type I error probability

since the remaining noise does not enhance the dependency between X and Y and the critical

value is obtained by permutation. Second, under the alternative hypothesis that X and Y are

dependent, as long as m is su�ciently large such that the dependency signals can captured by

the wavelet coe�cients, wavHSIC can still detect dependency, but its power may be worse if

(4) is not satisfied.
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Table 1: Empirical Type I error probabilities for all methods under Setting 1 with white noise.
The last two rows provide the medians of the selected �X and �Y for wavHSIC.

Setting 1 with n = 50 n = 200

white noise m = 64 m = 256 m = 64 m = 256

Type I error rate SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8

Pearson 0.0452 0.0352 0.0503 0.0452 0.0704 0.0704 0.0553 0.0553

dnm 0.0452 0.0452 0.0653 0.0503 0.0553 0.0553 0.0653 0.0603

gtemp 0.0503 0.0603 0.0653 0.0603 0.0402 0.0352 0.0352 0.0352

dCov-c 0.0653 0.0603 0.0603 0.0603 0.0503 0.0603 0.0704 0.0754

FPCA 0.0503 0.0452 0.0503 0.0452 0.0452 0.0503 0.0452 0.0452

KMSZ 0.0201 0.0101 0.0101 0.0151 0.0201 0.0151 0.0402 0.0251

KMSZ-p 0.0804 0.0905 0.0553 0.0402 0.0302 0.0352 0.0402 0.0352

PSS(X ⇠ Y ) 0.0804 0.0754 0.1005 0.0804 0.0653 0.0905 0.0402 0.0955

PSS(Y ⇠ X) 0.0402 0.0754 0.0704 0.0452 0.0302 0.0754 0.0352 0.0503

PSS(Omnibus) 0.1156 0.1307 0.1558 0.1106 0.0955 0.1407 0.0754 0.1407

FMDD(X ⇠ Y ) 0.0553 0.0552 0.0704 0.0653 0.0503 0.0603 0.0553 0.0603

FMDD(Y ⇠ X) 0.0553 0.0552 0.0553 0.0553 0.0503 0.0603 0.0503 0.0503

FMDD(Omnibus) 0.0653 0.0603 0.0704 0.0704 0.0603 0.0704 0.0704 0.0704

wavHSIC 0.0452 0.0352 0.0503 0.0653 0.0302 0.0402 0.0251 0.0251

median{�X} 0.948 0.989 0.983 0.991 0.959 1.000 0.990 1.001

median{�Y } 0.671 0.724 0.733 0.741 0.696 0.745 0.747 0.761

Table 2: Empirical powers for all methods under Setting 2 with white noise. The last rows
provide the medians of the selected �X and �Y for wavHSIC.

Setting 2 with n = 50 n = 200

white noise m = 64 m = 256 m = 64 m = 256

Power SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8

Pearson 0.0854 0.0804 0.0804 0.0804 0.1357 0.1357 0.1357 0.1206

dnm 0.0704 0.0653 0.0704 0.0704 0.1608 0.1558 0.1508 0.1457

gtemp 0.0653 0.0653 0.0804 0.0754 0.0905 0.0854 0.0754 0.0754

dCov-c 0.1106 0.1055 0.0905 0.0804 0.2362 0.2462 0.2714 0.2663

FPCA 0.0854 0.0804 0.0804 0.0804 0.1709 0.1709 0.1859 0.1809

KMSZ 0.4221 0.4925 0.5025 0.5075 1.0000 1.0000 1.0000 1.0000

KMSZ-p 0.7035 0.7889 0.7688 0.7990 1.0000 1.0000 1.0000 1.0000

PSS(X ⇠ Y ) 0.0955 0.1055 0.0804 0.0905 0.1256 0.0955 0.1106 0.0804

PSS(Y ⇠ X) 0.0653 0.0653 0.0553 0.0653 0.0804 0.0653 0.0503 0.0503

PSS(Omnibus) 0.1558 0.1658 0.1307 0.1508 0.2060 0.1608 0.1558 0.1206

FMDD(X ⇠ Y ) 0.0854 0.0905 0.0905 0.0854 0.1859 0.1960 0.2915 0.2814

FMDD(Y ⇠ X) 0.0754 0.0804 0.0704 0.0653 0.1407 0.1759 0.2161 0.2211

FMDD(Omnibus) 0.0955 0.1005 0.0905 0.0854 0.1960 0.2211 0.3116 0.3116

wavHSIC 0.9548 0.9849 0.9849 0.9899 1.0000 1.0000 1.0000 1.0000

median{�X} 0.942 0.987 0.975 0.983 0.955 0.996 0.994 1.001

median{�Y } 0.674 0.720 0.741 0.752 0.693 0.739 0.742 0.762
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Table 3: Empirical powers for all methods under Setting 3 with white noise. The last two
rows provide the medians of the selected �X and �Y for wavHSIC.

Setting 3 with n = 50 n = 200

white noise m = 64 m = 256 m = 64 m = 256

Power SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8

Pearson 0.0452 0.0402 0.0603 0.0603 0.0503 0.0503 0.0402 0.0503

dnm 0.0804 0.0804 0.0754 0.0704 0.0704 0.0603 0.0754 0.0754

gtemp 0.0754 0.0804 0.0754 0.0704 0.0704 0.0653 0.0754 0.0704

dCov-c 0.0955 0.1055 0.1005 0.1005 0.0854 0.0905 0.0854 0.0854

FPCA 0.0704 0.0854 0.0955 0.1005 0.0704 0.0704 0.0653 0.0704

KMSZ 0.0101 0.0101 0.0201 0.0251 0.1206 0.1307 0.1206 0.1357

KMSZ-p 0.1106 0.0854 0.1307 0.1357 0.1558 0.1608 0.1407 0.1709

PSS(X ⇠ Y ) 0.0754 0.0854 0.0905 0.1055 0.1005 0.0452 0.0553 0.0653

PSS(Y ⇠ X) 0.0653 0.0553 0.0754 0.0804 0.0603 0.0503 0.0603 0.0704

PSS(Omnibus) 0.1357 0.1307 0.1508 0.1658 0.1558 0.0905 0.1106 0.1256

FMDD(X ⇠ Y ) 0.0804 0.0804 0.0804 0.0804 0.0704 0.0704 0.0754 0.0704

FMDD(Y ⇠ X) 0.0955 0.1005 0.0955 0.1005 0.0804 0.0754 0.0754 0.0754

FMDD(Omnibus) 0.1005 0.1005 0.0955 0.1005 0.0854 0.0804 0.0804 0.0804

wavHSIC 0.2613 0.3618 0.3367 0.407 0.804 0.9347 0.9347 0.9749

median{�X} 0.948 0.993 0.968 0.979 0.949 0.993 0.981 0.989

median{�Y } 0.724 0.771 0.773 0.790 0.723 0.769 0.775 0.785

Table 4: Empirical Type I error probabilities for all methods under Setting 1 with correlated
noise. The last two rows provide the medians of the selected �X and �Y for wavHSIC.

Setting 1 with n = 50 n = 200

correlated noise m = 64 m = 256 m = 64 m = 256

Type I error rate SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8

Pearson 0.0352 0.0352 0.0452 0.0452 0.0704 0.0553 0.0553 0.0553

dnm 0.0402 0.0452 0.0603 0.0603 0.0553 0.0503 0.0503 0.0503

gtemp 0.0603 0.0553 0.0553 0.0653 0.0553 0.0503 0.0452 0.0553

dCov-c 0.0553 0.0653 0.0603 0.0603 0.0553 0.0603 0.0754 0.0754

FPCA 0.0452 0.0452 0.0452 0.0402 0.0503 0.0452 0.0452 0.0503

KMSZ 0.0151 0.0000 0.0151 0.0151 0.0201 0.0251 0.0251 0.0251

KMSZ-p 0.0804 0.0754 0.0553 0.0452 0.0302 0.0352 0.0352 0.0402

PSS(X ⇠ Y ) 0.0452 0.0553 0.0603 0.0955 0.0653 0.0452 0.0452 0.0603

PSS(Y ⇠ X) 0.0553 0.0704 0.0553 0.0754 0.0452 0.0302 0.0603 0.0452

PSS(Omnibus) 0.1005 0.1156 0.1106 0.1558 0.1005 0.0704 0.1005 0.1005

FMDD(X ⇠ Y ) 0.0553 0.0603 0.0653 0.0653 0.0653 0.0603 0.0553 0.0603

FMDD(Y ⇠ X) 0.0452 0.0452 0.0503 0.0503 0.0553 0.0603 0.0603 0.0603

FMDD(Omnibus) 0.0553 0.0653 0.0704 0.0704 0.0754 0.0804 0.0754 0.0754

wavHSIC 0.0402 0.0402 0.0553 0.0653 0.0352 0.0302 0.0352 0.0302

median{�X} 1.014 1.020 0.996 0.997 1.024 1.030 1.006 1.008

median{�Y } 0.752 0.765 0.750 0.754 0.774 0.783 0.770 0.772
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Table 5: Empirical powers for all methods under Setting 2 with correlated noise. The last two
rows provide the medians of the selected �X and �Y for wavHSIC.

Setting 2 with n = 50 n = 200

correlated noise m = 64 m = 256 m = 64 m = 256

Power SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8

Pearson 0.0854 0.0854 0.0804 0.0804 0.1508 0.1407 0.1256 0.1307

dnm 0.0653 0.0653 0.0754 0.0704 0.1558 0.1608 0.1558 0.1457

gtemp 0.0653 0.0653 0.0905 0.0905 0.0854 0.0804 0.0754 0.0854

dCov-c 0.1005 0.0955 0.0854 0.0854 0.2663 0.2714 0.2714 0.2814

FPCA 0.0854 0.0804 0.0754 0.0804 0.1658 0.1759 0.1809 0.1809

KMSZ 0.5427 0.5628 0.5126 0.5327 1.0000 1.0000 1.0000 1.0000

KMSZ-p 0.8241 0.8141 0.8191 0.8291 1.0000 1.0000 1.0000 1.0000

PSS(X ⇠ Y ) 0.0955 0.0653 0.0905 0.1005 0.1156 0.1106 0.1005 0.1156

PSS(Y ⇠ X) 0.0553 0.0653 0.0704 0.0603 0.0704 0.0653 0.0603 0.0754

PSS(Omnibus) 0.1407 0.1156 0.1558 0.1508 0.1809 0.1457 0.1508 0.1809

FMDD(X ⇠ Y ) 0.1055 0.0905 0.0854 0.0854 0.2412 0.2513 0.2714 0.2714

FMDD(Y ⇠ X) 0.0804 0.0905 0.0704 0.0704 0.2111 0.2111 0.2412 0.2412

FMDD(Omnibus) 0.1106 0.1055 0.0905 0.0905 0.2613 0.2714 0.3166 0.3015

wavHSIC 0.9950 0.9950 0.9899 0.9899 1.0000 1.0000 1.0000 1.0000

median{�X} 1.011 1.022 0.990 0.995 1.023 1.033 1.011 1.014

median{�Y } 0.749 0.765 0.757 0.760 0.769 0.781 0.764 0.766

Table 6: Empirical powers for all methods under Setting 3 with correlated noise. The last two
rows provide the medians of the selected �X and �Y for wavHSIC.

Setting 3 with n = 50 n = 200

correlated noise m = 64 m = 256 m = 64 m = 256

Power SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8

Pearson 0.0402 0.0402 0.0603 0.0603 0.0503 0.0503 0.0452 0.0553

dnm 0.0704 0.0653 0.0704 0.0704 0.0653 0.0653 0.0754 0.0754

gtemp 0.0854 0.0804 0.0704 0.0603 0.0553 0.0653 0.0704 0.0804

dCov-c 0.1055 0.1106 0.1005 0.1005 0.0905 0.0804 0.0804 0.0854

FPCA 0.0854 0.0905 0.1005 0.1005 0.0704 0.0653 0.0754 0.0704

KMSZ 0.0151 0.0101 0.0302 0.0352 0.1256 0.1357 0.1357 0.1407

KMSZ-p 0.0905 0.0854 0.1256 0.1256 0.1709 0.1759 0.1809 0.1960

PSS(X ⇠ Y ) 0.0905 0.0905 0.0754 0.0754 0.0653 0.0804 0.0503 0.0653

PSS(Y ⇠ X) 0.0704 0.0653 0.0754 0.0854 0.0503 0.0603 0.0503 0.0402

PSS(Omnibus) 0.1558 0.1558 0.1457 0.1457 0.1156 0.1407 0.1005 0.0955

FMDD(X ⇠ Y ) 0.0804 0.0804 0.0905 0.0905 0.0653 0.0754 0.0704 0.0754

FMDD(Y ⇠ X) 0.1005 0.1005 0.1005 0.0955 0.0754 0.0754 0.0754 0.0754

FMDD(Omnibus) 0.1106 0.1055 0.1005 0.1055 0.0804 0.0854 0.0754 0.0854

wavHSIC 0.4221 0.4472 0.4422 0.4422 0.9849 0.9849 0.9899 0.9899

median{�X} 1.022 1.030 0.986 0.987 1.019 1.029 0.996 0.998

median{�Y } 0.799 0.810 0.800 0.802 0.801 0.807 0.795 0.798
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7 Real Data Application

We applied our proposed method to study human brain functional connectivity using the

MEG dataset collected by the HCP. MEG measures magnetic fields generated by human neu-

ronal activities with a high temporal resolution. Before source reconstruction, the signals from

all MEG sensors outside head were preprocessed following the HCP MEG pipeline reference

(www.humanconnectome.org/software/hcp-meg-pipelines) and the preprocessed data are

publicly accessible from the HCP website. To obtain the electric activity signals from cortex

regions, we applied the source reconstruction procedure of MEG signals to the cerebral cor-

tex atlas provided by Glasser et al. (2016) using the linearly constrained minimum variance

beamforming method in the MATLAB package FieldTrip.

To study the functional dependency between cortex regions under some motor activities,

we focused on motor task trials where subjects moved their right hands. There were n = 61

subjects in the trials. For each subject, 8, 004 signal curves were obtained by denoising and

source reconstruction procedures with around 75 repeated trials. Within each trial, the signals

were recorded about every 2 ms from �1.2 to 1.2 seconds, where the time 0 is the starting time

of the motion. Since the motion in each trial usually lasts no longer than about 0.75 seconds

and typically a subject finished the previous movement and received a new cue between times

�0.25 and 0 of the next trial, we considered the time domain [�0.2521, 0.7525] which covers

the time period of interest, with m = 512 sampled time points in total.

We applied the proposed method wavHSIC to perform an independence test for every pair

of the MEG signals. To implement wavHSIC, we chose the CDJV wavelet basis functions

with vanishing moment D = 4 which leads to ↵ ⇡ 1.6179. For each signal, the smoothness

parameter � was selected by the method in Section 5. For comparison, we also provided the

results for the model-based test KMSZ, KMSZ-p and two model-free tests, Pearson and FPCA.

KMSZ, KMSZ-p and FPCA were based on top FPC scores which cumulatively account for 95%

of the variation of each signal. The p-value for testing the independence between each pair of
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signals were obtained by 1,999 permutations for wavHSIC, FPCA and KMSZ-p. We did not

include PSS and FMDD here due to their extended computing times. See Table 7 below for

an illustration.

The empirical cumulative distribution functions for the p-values of the five methods are

given in Figure 1, which shows that wavHSIC is more sensitive to detecting connectivity than

the other methods. To evaluate and compare the five methods at the presence of multiple

testing, we set the same discovery rate at 60% to control the number of edges, or sparsity,

of each brain connectivity network, which is important in evaluating the reliability of brain

network metrics (e.g. Van Wijk et al., 2010; Tsai, 2018). In this analysis, we focus on sensori-

motor areas 4, 3a, 3b, 1 and 2 on the left and right hemispheres as illustrated in Figure 3 (c)

which are most related to motor task trials (Glasser et al., 2016). With a controlled discovery

rate, we expect an excellent connectivity detection method to identify plenty of edges within

these areas.
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Figure 1: Empirical cumulative distribution function for the p-values for testing the indepen-
dence between every pair of the 8,004 signals for each method.

Figures 2 and 3 (a) provide the functional connectivity networks within these sensori-

motor areas obtained by the five methods. The nodes in each area were ordered from the

superio-medial cortex to infero-lateral cortex following the atlas “atlas MMP1.0 4k.mat” in

FieldTrip. Compared with KMSZ, KMSZ-p and wavHSIC, Pearson and FPCA are substan-

tially less sensitive to detecting functional connectivity and their corresponding networks are

less structured (see Figure 2 (a) and (b)). This demonstrates the superior performances of
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both KMSZ, KMSZ-p and wavHSIC in identifying connectivity patterns within these areas

which are anatomically connected and functionally related to the motion task trials. Di↵erent

from the overall homogeneous pattern in the network for KMSZ, several structured dark strips

appear in the network obtained by KMSZ-p and wavHSIC within sensorimotor areas 4, 3a, 3b

and 1 in the right hemisphere (see Figures 2 (c–d) and 3 (a)). These dark strips are much

clearer in Figure 3 (a) than in Figure 2 (d). This indicates that wavHSIC can more clearly

identify two sub-areas in sensorimotor areas 4, 3a, 3b and 1 in the right hemisphere, the top

(a) Pearson (b) FPCA

(c) KMSZ (d) KMSZ-p

Area 4 Area 3a Area 3b Area 1 Area 2

Figure 2: Functional connectivity networks of the five sensorimotor areas in the left and right
hemispheres. In the adjacency matrices in (a), (b), (c), (d) obtained by the four methods
respectively, a bright entry indicates significant dependency between the corresponding signal
pairs while a dark one indicates otherwise.
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(a) wavHSIC (b) � (c) Brain Cortex

΢

Ρ

(d) (LF of X, LF of Y )

΢

Ρ

(e) (HF of X, HF of Y )

΢
Ρ

(f) (LF of X, HF of Y )

Area 4 Area 3a Area 3b Area 1 Area 2

Figure 3: Functional connectivity networks of the five sensorimotor areas in the left and right
hemispheres with the same color scheme in Figure 2. The adjacency matrix (a) is obtained by
wavHSIC with the smoothness parameters �, selected by the method in Section 5, illustrated
in the barplot (b). The black subregion in (c) corresponds to face and eye portions and the
rest of the colored area corresponds to upper limbs, trunk and lower limbs portions in the
right hemisphere. The adjacency matrices in (d), (e), (f) are obtained by applying wavHSIC

to low( 4Hz)/high(> 4Hz)-pass-filtered signals with the same � values in (b) and the same
p-value threshold in (a).

left (TL) and bottom right (BR) corners respectively in these corresponding colored squares

as in Figure 3 (a). The signals within these four TL sub-areas or within these four BR sub-

areas are strongly connected, while the connectivities between these TL and BR sub-areas

are generally weak. According to Glasser et al. (2016), the four BR sub-areas in the same
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hemisphere correspond to face and eye portions while the four TL sub-areas correspond to

upper limbs, trunk and lower limbs portions. Since the motor task involved in this dataset

is raising the right hand, the connectivity patterns detected by wavHSIC are intuitively and

anatomically interpretable.

Next we illustrate how to identify dependency structures between and within di↵erent

frequency bands using wavHSIC. Explicitly, we first split the denoised wavelet coe�cients of

each brain signal into two parts, the low-frequency part (LF, j  3) and high-frequency part

(HF, j > 3), which approximately correspond to the Delta band ( 4Hz) and the Theta to

the Ultra-Gamma bands (> 4Hz) respectively (e.g., Buzsaki, 2006). Then for each pair of

signals (X, Y ) as illustrated in Figure 3 (d), (e) and (f), we applied wavHSIC to (LF of X,

LF of Y ), (HF of X, HF of Y ), and (LF of X, HF of Y ) respectively. Their corresponding

functional connectivity patterns are shown in Figure 3 (d), (e) and (f) respectively. Note

that the results for (HF of X, LF of Y ) are included in Figure 3 (f) by switching the roles

of X and Y . Apparently, the network in Figure 3 (e) is very similar to that in Figure 3 (a),

which indicates that the functional dependency induced by this motor task mainly lies at high

frequencies. Moreover, Figure 3 (f) shows that there is essentially no dependency between the

low-frequency and high-frequency signals. Lastly, Figure 3 (d) reveals that some dependency

can be detected at low frequencies, but only within the same hemisphere. This is probably due

to the fact that functional Delta oscillations appear to be implicated in the synchronization

of brain activity with autonomic functions of vegetative nervous system, but is not a↵ected

by a specific task (Knyazev, 2012).

To compare computing times of these methods together with PSS and FMDD, we randomly

selected one pair of signals and then repeatedly executed each of them 20 times on a Windows

10 desktop with AMD Ryzen7 3800X CPU and 16GB RAM. A summary of their averaged

computing times (in seconds) is given in Table 7. The long computational times of PSS and

FMDD make it di�cult to study dependency between every pair and create corresponding

functional connectivity networks, so we did not include them in the analysis above.
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Table 7: Mean computing times (in seconds) based on one randomly selected pair of signals
for the seven methods in comparison. The values in parentheses are standard deviations.

Method Pearson FPCA KMSZ KMSZ-p wavHSIC PSS FMDD

Time 0.003(0.002) 0.103(0.072) 0.020(0.003) 0.158(0.082) 0.162(0.017) 43.076(0.728) 15.280(0.253)

8 Discussion

In this paper, we propose a model-free wavelet-based independence test for two random func-

tions of which sample paths belong to possibly di↵erent Besov spaces. Our method is built

upon HSIC endowed with characteristic kernels, which is zero if and only if the two random

functions are independent. Since the Besov space with wavelet basis functions provides an

e↵ective modeling environment for sample paths with various levels of smoothness, HSIC with

characteristic kernels induced by wavelet coe�cients is capable of capturing the dependency

at di↵erent frequencies. Therefore, the proposed method is especially powerful when the two

random functions are dependent only at high frequencies, as demonstrated in Section 6. If

the dependency is strong at low frequencies, our simulation not presented here shows that the

proposed method is not substantially advantageous over FPCA.

In the application to MEG functional connectivity, the proposed method by construction

is only able to identify the unconditional dependency between two signal curves. Although

metrics that reflect unconditional functional connectivity are still widely used in neuroscience

(see, e.g., Marzetti et al., 2019, for a review), a conditional independence measure or test will

be more convincing to identify the functional connectivity between two signal curves given all

others in the brain. To address this problem, there have been some advances in functional

graphical models. Most of the existing methods reply on either Gaussianity (e.g., Zhu et al.,

2016; Qiao et al., 2019, 2020; Zapata et al., 2019; Solea and Li, 2020; Zhao et al., 2021)

or regression models (e.g. Lundborg et al., 2021), while a few exceptions assume additive

structures (e.g., Li and Solea, 2018; Lee et al., 2021; Solea and Dette, 2021). Developing a
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conditional independence test with these assumptions relaxed would be an interesting future

research topic.

SUPPLEMENTARY MATERIAL

The supplementary material includes background materials on distance-induced characteristic

kernels and Besov spaces, technical proofs of Theorems 1–4 and additional simulations.
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S1 Background Materials

S1.1 Distance-Induced Characteristic Kernels

Characteristic kernels are required to construct HSIC for two random functions under the RKHS
framework. Such a kernel can be generated by a semi-metric of strong negative type.

Definition S1 (Strong Negative Type Semi-Metric). A semi-metric ⇢ : Z⇥Z ! [0,1) defined

on a non-empty set Z is of negative type if
Pn

i=1

Pn
j=1

↵i↵j⇢(zi, zj)  0 for all z1, . . . , zn 2 Z

and ↵1, . . . , ↵n 2 R such that
Pn

i=1
↵i = 0, n � 2. Furthermore, it is of strong negative type if for

any two probability measures P and P 0
on Z such that

R
Z
⇢(z, z0)dP (z),

R
Z
⇢(z, z0)dP 0(z) < 1

for some z0 2 Z, we have
R
Z

R
Z
⇢(z1, z2) d(P � P 0)(z1)d(P � P 0)(z2) = 0 if and only if P = P 0

.

Proposition S1 shows that a kernel induced by a strong negative type semi-metric is charac-
teristic.

Proposition S1. Let ⇢ be a semi-metric defined on Z and z0 2 Z. The induced kernel

⇢ (z, z0) = ⇢(z, z0) + ⇢ (z0, z0) � ⇢ (z, z0), z, z0 2 Z, is symmetric and positive definite. More-

∗The research of Xiaoke Zhang is partially supported by National Science Foundation grant DMS-1832046.
†The research of Raymond K. W. Wong is partially supported by National Science Foundation grants DMS-

1806063, DMS-1711952 and CCF-1934904.
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over, for all probability measures P such that
R
Z
⇢(z, z0)dP (z) < 1 for some z0 2 Z, ⇢ is

characteristic if and only if ⇢ is of strong negative type.

Obviously distance-induced kernels are symmetric. For the proof of Proposition S1, see
Lemma 2.1 of Berg et al. (1984) for positive definiteness and Lyons (2013) and Sejdinovic et al.
(2013) for the characteristic property. Since the set Z of interest often contains zero, in this
paper we always set z0 = 0 for any distance-induced kernel ⇢ for simplicity and convenience.

S1.2 Besov Spaces and Norms

The Besov space is a generalization of the Sobolev space, which is widely used in nonparametric
regression under the RKHS framework. A Besov space B↵

p,q[0, 1], p, q, ↵ > 0, contains all func-
tions of which Besov norm k · kB↵

p,q
is finite. Explicitly, with any integer r � 1, define the rth

order di↵erence of a function f by

�r
h(f, x) =

rX

k=0

✓
r

k

◆
(�1)r�kf(x+ kh),

and its rth order modulus of continuity by

!r(f, t)p = sup
0ht

k�r
h(f, ·) |[0,1�rh] kLp ,

where �r
h(f, ·) |[0,1�rh] represents �r

h(f, ·) restricted on [0, 1 � rh] and k · kLp is the Lp norm.
Then the Besov norm of f is defined by

kfkB↵
p,q

= kfkLp + |f |B↵
p,q

, where |f |B↵
p,q

=

Z
1

0

⇢
!r(f, t)p

t↵

�q dt

t

� 1
q

.

For the same ↵, the Besov norms generated by di↵erent values of r > ↵ are equivalent when
p > 1 (DeVore and Lorentz, 1993). In this paper we always assume p > 1 and r = b↵c+1 where
b↵c is the greatest integer less than or equal to ↵.

The Besov norm (semi-norm) generalizes some traditional smoothness measures, such as the
Sobolev semi-norm | · |Wk

p

|f |Wk
p
=

✓Z
1

0

���Dkf
���
p
dx

◆1/p

, 1  p  1,

where Dk is kth order weak-derivative operator.
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S2 Technical Proofs

S2.1 Proof of Theorem 1

We first list two lemmas on some properties of negative type semi-metrics, which will be needed
in the proof of Theorem 1.

Definition S2 (Radial Positive Definite Function). A real function F defined on [0,1) is called

radial positive definite on the semi-metric space (Z, ⇢) if F is continuous and

nX

j=1

nX

k=1

F (⇢(zj , zk))cjck � 0,

for all choices of n � 1 points z1, . . . , zn 2 Z. We denote the set of all radial positive definite

functions by RPD(Z).

Lemma S1. The following hold in any semi-metric space Z.

(a) RPD(Z) is never empty.

(b) If F1, F2 2 RPD(Z), then F1 · F2 2 RPD(Z).

(c) If Fj 2 RPD(Z) and 0  cj < 1, j = 1, . . . , n, then
Pn

j=1
cjFj 2 RPD(Z).

(d) If Fj 2 RPD(Z), j = 1, 2, . . . and the Fj converge point-wise to a continuous limit F , then

F 2 RPD(Z).

(e) For space (Lp, k · kp), (`p, k · kp) with 0 < p  2, then exp(�t↵) is RPD for 0 < ↵  p.

Lemma S1 is a combination of Theorems 4.4 and 4.10 of Wells and Williams (2012).

Lemma S2 (Theorem 4.5, Wells and Williams (2012)). In a semi-metric space (Z, ⇢), the

following are equivalent:

(a) ⇢ is of negative type;

(b) the function exp(��t) belongs to RPD(Z, ⇢) for � > 0;

(c) (Z, ⇢1/2) is isometrically embeddable in a Hilbert space.

Lemma S3 (Theorem 4.7, Wells and Williams (2012)). If semi-metric ⇢ is of negative type on

Z, then ⇢r is of negative type for any 0 < r < 1.

3



Proof of Theorem 1. By Proposition S1, it su�ces to prove that ⇢b↵p,q is of strong negative type.

Lemmas S1 (e) and S2 (a) ensure that ⇢̄j(f, g) := k✓f
j � ✓g

jk
q
p, j = �1, 0, 1, . . . are of negative

type for q  p  2. By Lemma S2, the function Fj(t) = exp(�2sjqt) belongs to RPD(B↵0
p,q[0, 1]),

where s = ↵+ 1/2� 1/p. For any finite product, by Lemma S1 (b)

nY

j=�1

Fj(⇢̄j) = exp

8
<

:�
nX

j=�1

2sjq⇢̄j

9
=

; (S1)

belongs to RPD(B↵0
p,q[0, 1]). Lemma S1 (d) ensures the continuous sequence limit of (S1), i.e.,

exp(�⇢b↵p,q) 2 RPD(B↵0
p,q[0, 1]) as n ! 1. Therefore

P
j��1

2sjq⇢̄j is of negative type on

B↵0
p,q[0, 1]. By Lemma S2 (c), the

✓
B↵0

p,q[0, 1],
⇣P

j��1
2sjq⇢̄j

⌘1/2◆
is a metric space isometri-

cally embeddable in a Hilbert space. By the same procedure of Remark 3.19 in Lyons (2013),

the map

P 7!

0

B@f 7!
Z

B↵0
p,q [0,1]

0

@
X

j��1

2sjq⇢̄j

1

A
r/2

(f, g)dP (g)

1

CA

is injective for any r 2 (0,1)\2N, where N is the set of natural numbers (Linde, 1986). The

result folllows from the fact that (
P

j��1
2sjq⇢̄j)r/2 is of negative type for any r 2 (0, 2) by

Lemma S3.

S2.2 Proof of Theorem 2

Proof of Theorem 2. Here we prove a more general result where ⌧j and jZ
#
involved in the penalty

penj(k) = k⇣Z{1+
p

2(1 + 2&Z) log(⌧jmj/k)}2 in Step 1 are replaced by ⌧j = ⌧Z2
2�0

Z(j�jZ#)+ and

jZ
#
= (1+(&Z+1/2)/�0

Z)/(↵Z+&Z+1/2)·log2 ��1

Z for any �Z < �0

Z  ↵Z respectively. Apparently

Theorem 2 is a special case where �0

Z = ↵Z .

For notational simplicity, we omit the subscript Z and subject index i in all terms; namely

we replace �Z,j by �j , �Z by �, &Z by &, CZ by C, ↵Z by ↵, �Z by � and �0

Z by �0 respectively.

We further replace ✓eZi by ✓ and ✓
eZi
j,k by ✓j,k respectively.

We first decompose the loss function by

E
⇣
k✓̂ � ✓k2b� | ✓

⌘
=

X

j��1

22�jE
⇣
k✓̂j � ✓jk2 | ✓j

⌘
.

By Theorem 11.11 in Johnstone (2019), there exist constants a(⇣) and b(⇣) that depend on ⇣,

4



and Mj = Mj(&, ⌧j) that depends on & and ⌧j such that

E
⇣
k✓̂j � ✓jk22 | ✓j

⌘
 b(⇣)⇠1Mj�

2

j + a(⇣)Rj(✓j , �j),

where Rj(✓j , �j) = minK✓{0,...,2j�1}

hP
k/2K ✓2j,k + �2jpenj(k✓jk0)

i
. Therefore,

E
⇣
k✓̂ � ✓k2b� | ✓

⌘
= b(⇣)⇠1

X

j

22�jMj�
2

j + a(⇣)
X

j

22�jRj(✓j , �j),

and it su�ces to study the upper bounds of (I) =
P

j 2
2�jMj�2j and (II) =

P
j 2

2�jRj(✓j , �j)

respectively.

Bound of (I) By (11.67) in Johnstone (2019), Mj  ⌧�1c⇣,⌧2�2&j2�2�0
(j�j#)+ , where c⇣,⌧ is a

constant that depends on ⇣ and ⌧ . Thus

(I) =
X

j

22�jMj�
2

j  ⌧�1c&,⌧�
2

0

@
j#X

j=�1

22�j + 22�
0j#

X

j>j#

2�2(�0
��)j

1

A

= ⌧�1c&,⌧�
2

0

@
j#X

j=�1

22�j + 22�j#
X

j>j#

2�2(�0
��)(j�j#)

1

A

= ⌧�1c&,⌧�
2

0

@2�2� +
22�(j#+1) � 1

22� � 1
+ 22�j#

1X

j=1

2�2(�0
��)(j�j#)

1

A

 ⌧�1c&,⌧�
2

✓
2�2� +

22�(��w)2�

22� � 1
+ (��w)2�/(1� 2�2(�0

��))

◆

 c&,⌧,�,�0�2(1�w�),

where w = (↵+ & +1/2)�1[1+ (& +1/2)/�] and c⇣,⌧ is a constant that depends on &, ⌧, � and �0.

Bound of (II) According to (11.40) in Johnstone (2019),

sup
✓j :k✓kb↵C

Rj(✓j , �j)  c⇣,⇠1,& log ⌧jrj(Cj , �j),
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where Cj = 2�↵j ,mj = 2j , c⇣,⇠1,& is a constant that depends on ⇣, ⇠1 and &, and

rj(Cj , �j) =

8
><

>:

C2
j , if Cj  �jm

1/2
j ,

mj�2j , if Cj � �jm
1/2
j .

Notice that log ⌧j = log ⌧ + 2�0(log 2)(j � j#)+, so we have

(II)  c⇣,⇠1,&
n
(log ⌧)

P
j��1

22�jrj(Cj , �j) + 2�0(log 2)
P

j>j#
(j � j#)22�jrj(Cj , �j)

o

= c⇣,⇠1,&

(
(log ⌧)

P
j��1

Qj + 2�0(log 2)
P

j>j#
(j � j#)Qj

)
, (S2)

where Qj = 22�jrj(Cj , �j). Next we handle (III) =
P

j��1
Qj and (IV) =

P
j>j#

(j � j#)Qj

individually.

• (III) =
P

j��1
Qj . We calculate Qj respectively for j � �1. Define j⇤ = (↵ + & +

1/2)�1 log2(C/�).

1� When j  j⇤, Cj � �jm
1/2
j , so that

Qj = 22�jmj�
2

j = 2(2�+2&+1)j�2.

2� When j � j⇤, Cj  �jm
1/2
j , so that

Qj = 22�jC2

j = 2�2(↵��)jC2.

Combining 1� and 2�, we have

Qj =

8
><

>:

Q⇤2(2�+2&+1)(j�j⇤), j  j⇤,

Q⇤2�(↵��)(j�j⇤), j � j⇤,

where Q⇤ = C2(1�r)�2r with r = (↵� �)/(↵+ & + 1/2). Therefore, (III) c1Q⇤.

• (IV) =
P

j>j#
(j� j#)Qj . When m is su�ciently large, � ⇣ m�1/2 ! 0, and j# > j⇤ since

6



1 + (& + 1/2)/�0 > 1. Thus for m large enough,

(IV) 
X

j�j⇤

(j � j⇤)Qj = Q⇤
X

j�j⇤

2�(↵��)(j�j⇤)  c2Q
⇤.

Hence by (S2), (II) c3C2(1�r)�2r where the constant c3 depends on c1, c2, ⇣, ⇠1, &, ⌧ and �0.

Combining the upper bounds for (I) and (II) respectively, we have

sup
✓:k✓k

b�
C

E
⇣
k✓̂ � ✓k2b� | ✓

⌘
 b(⇣)⇠1c&,⌧,�,�0�2(1�w�) + c3C

2(1�r)�2r = O(�2r),

since

1� w� = 1� (1 + (& + 1/2)/�0)�

↵+ & + 1/2
� 1� (1 + (& + 1/2)/�)�

↵+ & + 1/2
=

↵� �

↵+ & + 1/2
= r.

S2.3 Proof of Theorem 3

We first present a lemma that will be used to prove Theorem 3.

Lemma S4. Let {(Xi(·), Yi(·)}ni=1
be i.i.d. fully observed random samples from probability mea-

sure PXY = PXPY defined on X ⌦ Y. Then as n ! 1,

n�(Pn,XY , X , Y) 
1X

r=1

1X

s=1

µr⌫sN
2

rs, (S3)

where Nrs ⇠ N(0, 1), r, s 2 N are i.i.d. and {µr}1r=1
and {⌫s}1s=1

are eigenvalues of the integral

kernel operators S̌X and S̌Y , respectively. If PXY 6= PXPY , then n�(Pn,XY , X , Y) ! 1 in

probability as n ! 1.

Lemma S4 is exactly Theorem 33 of Sejdinovic et al. (2013), which provides the weak con-
vergence result of HSIC for fully observed random functions.

Proof of Theorem 3. According to Lemma S4, it su�ces to prove that the di↵erence between

HSIC based on original curves {Xi(·), Yi(·)}ni=1
and HSIC based on denoised curves {X̂i, Ŷi}ni=1

7



is op(1/n), where {X̂i, Ŷi}ni=1
are obtained by Step 1 in Section 3. By Definition 1,

n
����(Pn,XY , X , Y)� �(Pn,X̂Ŷ , X , Y)

��� = n�1

���k>

XHYk2H(X⌦Y )
� k̂>

XH̂Yk2H(X⌦Y )

���

=n�1

���k>

XHYkH(X⌦Y ) � k̂>

XH̂YkH(X⌦Y )

���
⇣
k>

XHYkH(X⌦Y ) + k̂>

XH̂YkH(X⌦Y )

⌘

n�1k>

XHY � ̂>

XH̂YkH(X⌦Y )

⇣
k>

XHYkH(X⌦Y ) + k̂>

XH̂YkH(X⌦Y )

⌘

2n�1/2k>

XHY � ̂>

XH̂YkH(X⌦Y ) ⇥ n�1/2k>

XHYkH(X⌦Y ) + n�1k>

XHY � ̂>

XH̂Yk2H(X⌦Y )

where >

X
= [X (·, X1), . . . , X (·, Xn)], >

Y
= [Y(·, Y1), . . . , Y(·, Yn)], ̂>

X
=
h
X (·, X̂1), . . . , X (·, X̂n)

i
,

̂>

Y
=
h
Y(·, Ŷ1), . . . , Y(·, Ŷn)

i
.

By (S3),

n�1/2k>

XHYkH(X⌦Y )  

vuut
1X

r=1

1X

s=1

µr⌫sN2
rs = Op(1), (S4)

so it su�ces to prove that k>

X
HY � ̂>

X
H̂YkH(X⌦Y ) = op

�
n1/2

�
.

Notice that k>

X
HY � ̂>

X
H̂YkH(X⌦Y ) can be bounded by the following inequality:

k>

XHY � ̂>

XH̂YkH(X⌦Y ) = k>

XH (Y � ̂Y) + (X � ̂X )H̂>

YkH(X⌦Y )

 k>

XH (Y � ̂Y) kH(X⌦Y ) + k (X � ̂X )H̂>

YkH(X⌦Y )

 k>

XH (Y � ̂Y) kH(X⌦Y ) + k (X � ̂X )H>

YkH(X⌦Y ) + k (X � ̂X )H (Y � ̂Y)
> kH(X⌦Y )

= tr
1
2

⇣
�
X
HhY � ̂Y ,

>

Y � ̂>

Y iH(Y )H

⌘
+ tr

1
2

⇣
�
Y
HhX � ̂X ,

>

X � ̂>

X iH(X )H

⌘

+ tr
1
2

⇣
hX � ̂X ,

>

X � ̂>

X iH(X )HhY � ̂Y ,
>

Y � ̂>

Y iH(Y )H

⌘

= tr
1
2

⇣
�̌
XhY � ̂Y ,

>

Y � ̂>

Y iH(Y )

⌘
+ tr

1
2

⇣
�̌
Y hX � ̂X ,

>

X � ̂>

X iH(X )

⌘

+ tr
1
2

⇣
hX � ̂X ,

>

X � ̂>

X iH(X )HhY � ̂Y ,
>

Y � ̂>

Y iH(Y )H

⌘

 tr
1
2 (�̌X)tr

1
2 (hY � ̂Y ,

>

Y � ̂>

Y iH(Y )) + tr
1
2 (�̌Y )tr

1
2 (hX � ̂X ,

>

X � ̂>

X iH(X )) (*)

+ tr
1
2 (hX � ̂X ,

>

X � ̂>

X iH(X ))tr
1
2 (hY � ̂Y ,

>

Y � ̂>

Y iH(Y )) = op(n
1/2),

where �̌
X = H�

X
H and �̌

Y = H�
Y
H are centered Gram matrices.

In (*) we used the fact that for symmetric positive definite matrices A and B,

trAB = vec(A)>vec(B)  kAkF kBkF =
p
trA2trB2  trAtrB.

8



The last equation holds due to the facts below with (Z, Z, z) = (X , X, x) or (Y, Y, y):

• tr(�̌Z) = Op(n) because
R
Z
̌Z(z, z)dPZ(z) < 1 which is ensured by the assumptions in

Theorem 2.

• trhZ � ̂Z ,>

Z
� ̂>

Z
iH(Z) =

Pn
i=1

kZ(·, Zi)� Z(·, Ẑi)k2H(Z)
= op(1), because

kZ(·, Zi)� Z(·, Ẑi)k2H(Z)
= Z(Zi, Zi) + Z(Ẑi, Ẑi)� 2Z(Zi, Ẑi)

=2kZikb�Z + 2kẐikb�Z � 2
⇣
kZikb�Z + kẐikb�Z � kZi � Ẑikb�Z

⌘
= 2kZi � Ẑikb�Z ,

and kZi � Ẑikb�Z = op(n�1), i = 1, . . . , n ensured by Theorem 2 and (4) in Theorem 3.

S2.4 Proof of Theorem 4

We first introduce a few notations. To perform a permutation test, let S(n) = {�1, . . . , �n!}
be the cyclic group of {1, . . . , n}. For a permutation � randomly selected from S(n), let

�(P �
n,X̂Ŷ

, X , Y) = n�2tr(�X̂
H�

Ŷ (�)H), where �
Ŷ (�) is generated by �

Ŷ with rows and

columns permuted according to �. Let R be the rank of �(Pn,X̂Ŷ , X , Y) in all possible per-
muted HSICs. Then we reject H0 : PXY = PXPY if pX̂Ŷ = R/n!  ↵, where pX̂Ŷ denotes the
p-value of the permutation test enumerating all permutations and ↵ is the level of significance.

In practice, it is impractical to consider all permutations from S(n). Hence we use a Monte-
Carlo approximation by randomly choosing B permutations �1, . . . , �B 2 S(n)\{id} where id
refers to no permutation and calculating �(Pn,X̂Ŷ , X , Y), �(P

�1

n,X̂Ŷ
, X , Y), . . . , �(P

�B

n,X̂Ŷ
, X , Y).

With a notational abuse, let R be the rank of �(Pn,X̂Ŷ , X , Y) and we reject H0 if p̂X̂Ŷ =
R/(B + 1)  ↵, where p̂X̂Ŷ is the p-value of the permutation test enumerating a finite sample
of size B from S(n).

If the value of �(Pn,X̂Ŷ , X , Y) repeats in {�(P �1

n,X̂Ŷ
, X , Y), . . . , �(P

�B

n,X̂Ŷ
, X , Y)} for sev-

eral times with B  n!, the rank R of �(Pn,X̂Ŷ , X , Y) is determined by the following two ways
proposed by Rindt et al. (2020).

• Breaking ties at random: R is distributed uniformly on ranks of �(P �
n,X̂Ŷ

, X , Y) that

have the same value of �(Pn,X̂Ŷ , X , Y);

• Breaking ties conservatively: R is the largest among ranks of �(P �
n,X̂Ŷ

, X , Y) that have

the same value of �(Pn,X̂Ŷ , X , Y).

Next we list two lemmas which will be useful to prove Theorem 4.

Lemma S5. For � randomly selected from S(n), �(Pn,X̂Ŷ , X , Y) ! 0 in probability as n ! 1.

Lemma S5 is a direct application of Theorem 3 of Rindt et al. (2020) for d = 2.
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Lemma S6. Suppose that the alternative hypothesis H1 : PXY 6= PXPY is true and noises

are i.i.d. Let {t1n(D̂) � · · · � tn!n (D̂)} be ordered values of HSIC computed on all permutations

of denoised curves {�(P �1

n,X̂Ŷ
, X , Y), . . . , �(P

�n!

n,X̂Ŷ
, X , Y)}. Let a = bn!↵c for any level of

significance ↵ 2 (0, 1). Then tan(D̂) ! 0 in probability as n ! 1.

Lemma S6 is a direct application of Theorem 4 of Rindt et al. (2020) for d = 2.

Proof of Theorem 4. Denote the fully observed dataset by D = {(Xi, Yi) : i = 1, . . . , n} and

the denoised dataset by D̂ = {(X̂i, Ŷi) : i = 1, . . . , n}. For a permutation � 2 S(n), denote

the permuted datasets by �(D) and �(D̂), resulting in permuted HSIC �(P �
n,XY , X , Y) and

�(P �
n,X̂Ŷ

, X , Y) respectively.

If H0 : PXY = PXPY is true, then for any � 2 S(n), D and �(D) have the same distribution

and D̂ and �(D̂) have the same distribution due to the facts that the noise across subjects are i.i.d

and that the denoising procedure in Section 3 is separately for each subject. For B permutations

�1, . . . , �B randomly selected from S(n)\{id}, (D, �1(D), . . . , �B(D)) is an exchangeable vector,

and thus
⇣
�(Pn,X̂Ŷ , X , Y), �(P

�1

n,X̂Ŷ
, X , Y), . . . , �(P

�B

n,X̂Ŷ
, X , Y)

⌘
is exchangeable.

By breaking ties at random, each entry is equally likely to have any given rank, so the rank

of �(Pn,X̂Ŷ , X , Y) is uniformly distributed in {1, . . . , B}. Therefore the type I error rate can

be controlled for any level of significance ↵ 2 (0, 1). Breaking ties conservatively can result in

an even smaller Type I error rate.

If H1 : PXY 6= PXPY is true, then by the definition of tan(D̂) in Lemma S6, we reject

H0 : PXY = PXPY if �(Pn,X̂Ŷ , X , Y) > tan(D̂). For any ↵ 2 (0, 1),

lim
n!1

P (pX̂Ŷ  ↵) � lim
n!1

P (�(Pn,X̂Ŷ , X , Y) > tan(D̂)) = 1,

since �(Pn,X̂Ŷ , X , Y) ! �(PXY , X , Y) > 0 in probability as n ! 1 by the proof of Theorem

3.

For a finite number B of permutations, the p-value p̂X̂Ŷ = (1 + U)/(B + 1) where U ⇠

Binomial(B, pX̂Ŷ ). If U = 0, then p̂X̂Ŷ = 1/(B + 1)  ↵ and we reject the null hypothesis.
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Since P (pX̂Ŷ  ✏1) � 1� ✏2 for some ✏1, ✏2 > 0. For n large enough, we have

P (p̂X̂Ŷ ) � P (p̂X̂Ŷ = 1/(B + 1) | pX̂Ŷ  ✏1)P (pX̂Ŷ  ✏1)

� (1� ✏1)
B(1� ✏2).

Then the consistency of the permutation test is proved by letting ✏1, ✏2 ! 0.

S3 Additional Simulation

S3.1 Performance of wavHSIC for Irregular Design

In this section, we present the results of a simulation study where subjects are not measured at
the same regular grid with m = 2J+1 for some integer J .

Similar to Section 6, we had 199 simulation runs and in each simulation run {(Xi(t), Yi(t)) :
t 2 [0, 1], i = 1, . . . , n} where n = 50 or 200 were generated under Settings 1–3. For each subject
i, i = 1, . . . , n, the numbers of measurements per subject, mX

i and mY
i , were both sampled

from either DiscreteUnif{50, . . . , 70} or DiscreteUnif{220, . . . , 280}. Given mX
i and mY

i , the
measurement times {TX

il : l = 1 . . . ,mX
i } and {T Y

il : l = 1 . . . ,mY
i } were sampled independently

on ContinuousUnif[0, 1]. Since the number of measurements per subject and measurement times
may be di↵erent across subjects, their notations here have an additional subscript “i” compared
to those in Section 3. We added white Gaussian noise to all measurements with signal-to-noise
ratio SNR=4 or 8. Therefore, the observed data were {X̃i(TX

il ) = Xi(TX
il )+ eXil : l = 1, . . . ,mX

i }
and {Ỹi(T Y

il ) = Yi(T Y
il ) + eYil : l = 1, . . . ,mY

i }.
Before the two steps in Section 3.2, we performed the linear interpolation method by Kovac

and Silverman (2000) to interpolate data onto a common and regular grid of [0, 1] with m =
2J+1 for some integer J . When mX

i ,mY
i ⇠ DiscreteUnif{50, . . . , 70}, we chose m = 64; when

mX
i ,mY

i ⇠ DiscreteUnif{220, . . . , 280}, we chose m = 256. The results are given in Table S1.
Compared with Tables 1 - 3, wavHSIC now performs slightly worse in controlling the Type I
error rate and achieving a high power, but it is overall satisfactory.

Table S1: Rejection rates of wavHSIC when subjects are not measured at the same dyadic grid
with m = 2J+1. Medians of selected �X and �Y are provided for each setting.

n = 50 n = 200

m ⇠ 50� 70 m ⇠ 220� 280 m ⇠ 50� 70 m ⇠ 220� 280

SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8 SNR=4 SNR=8

Type I error rate 0.0553 0.0503 0.0955 0.0905 0.0452 0.0452 0.0402 0.0603

Setting 1 median{�X} 1.066 1.126 0.972 0.988 1.072 1.131 0.990 1.005

median{�Y } 0.791 0.866 0.723 0.745 0.807 0.871 0.742 0.764

Power 0.8291 0.9296 0.9648 0.9598 1.0000 1.0000 1.0000 1.0000

Setting 2 median{�X} 1.059 1.124 0.979 0.994 1.073 1.133 0.989 1.009

median{�Y } 0.788 0.860 0.723 0.745 0.801 0.870 0.738 0.758

Power 0.1859 0.2563 0.2814 0.2714 0.5578 0.7739 0.8291 0.8040

Setting 3 median{�X} 1.074 1.133 0.961 0.981 1.066 1.124 0.974 0.995

median{�Y } 0.830 0.906 0.777 0.794 0.830 0.896 0.769 0.789
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S3.2 Simulation Settings in Lee et al. (2020, Supplementary Material)

In this section, we run an additional simulation study under the same settings in Lee et al. (2020,
Supplementary Material, Section 1.2) to compare our method wavHSIC with PSS and FMDD.
We also include KMSZ, KMSZ-p, dCov-c and FPCA here due to their competitive performances
shown in Section 6. Here we use the same strategies for tuning parameters as in Section 6. For
wavHSIC in following examples, we perform linear interpolation method by Kovac and Silverman
(2000) to interpolate data onto a regular grid of [0, 1] with m = 2J+1 = 64.

Example S1. (Lee et al., 2020, Supplementary Material, Example 1) We generated functional

response Y by a quadratic form of covariate X,

Yi(t) = c ·
�
Xi(t)

2 � 1
 
+ ✏i(t),

where Xi and ✏i, i = 1, . . . , n are independent Brownian motion and Brownian bridge, respec-

tively. X is independent of Y when c = 0, while the alternative is satisfied when c = 0.5.

Sampling points are t = 1/200, 3/200, . . . , 199/200, with sample size n = 40 or 100. The results

are given in Table S2.

Table S2 shows that KMSZ, PSS(Y ⇠ X), FMDD(Y ⇠ X) perform essentially the same
as that in Lee et al. (2020, Supplementary Material, Table 1). Even the tests PSS(X ⇠ Y )
and FMDD(X ⇠ Y ) with the response and covariate switched can control type I error rates
when c = 0, but when c = 0.5 their powers are much lower than that of PSS(Y ⇠ X) and of
FMDD(Y ⇠ X) respectively. Two omnibus tests PSS(Omnibus) and FMDD(Omnibus) cannot
control type I error probabilities when c = 0. For two distance covariance methods, dCov-c
cannot control type I error rate well when ↵ = 0.05, 0.01, while FPCA has an accurate size for
any combination of (↵, n) when c = 0. When c = 0.5, the powers of these two methods are
uniformly better than or comparable with PSS and FMDD. Our wavHSIC can almost always
control the type I error rates when c = 0 and is uniformly more powerful than all the other
methods for all (↵, n) when c = 0.5.

Example S2. (Lee et al., 2020, Supplementary Material, Example 2) We generate

Xi(t) =
4

⇡

X

k=1,3,...,21

Zi,k sin(2⇡kt),

Yi(t) =
4

⇡

X

k=3,5,7,9

Z2

i,k sin(2⇡kt) + 4✏i(t),

where Zi,k, k = 1, . . . , 21, i = 1, . . . , n are i.i.d. N(0, 1) random variables and ✏i(t), i = 1, . . . , n

are standard Brownian bridges on [0, 1]. Sampling points are t = 1/200, 3/200, . . . , 199/200,

with sample size n = 40 or 100. The results are given in Table S3.
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Table S3 shows that KMSZ, PSS(Y ⇠ X), FMDD(Y ⇠ X) perform almost the same as those
in Lee et al. (2020, Supplementary Material, Table 2). Permutation based KMSZ-p performs
better than KMSZ when the sample size n is small, but for small nominal levels ↵ = 0.05 or
0.01, the powers of KMSZ-p are not as good as those of KMSZ for n = 100. Similar to Table
S2, the tests PSS(X ⇠ Y ) and FMDD(X ⇠ Y ) have much lower powers than PSS(Y ⇠ X)
and FMDD(Y ⇠ X) respectively. Between the two distance covariance based methods, FPCA
performs better than dCov-c. FPCA performs better than other model-based methods for n = 40,
and its powers lie between PSS and FMDD when n = 100. Our proposed method wavHSIC has
uniformly higher powers than the other methods. Interestingly, the median of �X are always 0
by our tuning parameter selection strategy, which indicates that the distance variances across
low to high frequencies for X(t) are successfully detected as equally distributed.

Table S2: Rejection rates of six test methods for Example S1. For wavHSIC, medians of selected
�X and �Y are provided for each setting.

c = 0 ↵ = 0.1 ↵ = 0.05 ↵ = 0.01
Type I error rate n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

dCov-c 0.1106 0.0955 0.0804 0.0653 0.0251 0.0553

FPCA 0.1055 0.0955 0.0452 0.0603 0.0101 0.0101

KMSZ 0.0352 0.0754 0.0101 0.0302 0.0000 0.0050

KMSZ-p 0.1156 0.0854 0.0553 0.0452 0.0000 0.0151

PSS(Y ⇠ X) 0.1407 0.1005 0.0704 0.0402 0.0402 0.0050

PSS(X ⇠ Y ) 0.0854 0.1106 0.0302 0.0503 0.0050 0.0000

PSS(Omnibus) 0.2060 0.2010 0.1005 0.0905 0.0452 0.0050

FMDD(Y ⇠ X) 0.1005 0.0905 0.0653 0.0653 0.0151 0.0151

FMDD(X ⇠ Y ) 0.1206 0.0704 0.0603 0.0452 0.0101 0.0151

FMDD(Omnibus) 0.1256 0.1005 0.0804 0.0653 0.0151 0.0201

wavHSIC 0.1055 0.0955 0.0352 0.0553 0.0050 0.0101

median{�X} 0.957 0.958 0.957 0.958 0.957 0.958

median{�Y } 1.624 1.629 1.624 1.629 1.624 1.629

c = 0.5 ↵ = 0.1 ↵ = 0.05 ↵ = 0.01
Power n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

dCov-c 0.8141 1.0000 0.7286 0.9950 0.5477 0.9950

FPCA 0.9598 1.0000 0.8995 1.0000 0.5678 0.9899

KMSZ 0.2362 0.3015 0.1256 0.2261 0.0352 0.0754

KMSZ-p 0.3719 0.3367 0.2412 0.2714 0.1055 0.1055

PSS(Y ⇠ X) 0.4925 1.0000 0.3417 1.0000 0.1608 0.9347

PSS(X ⇠ Y ) 0.1005 0.0955 0.0553 0.0452 0.0101 0.0201

PSS(Omnibus) 0.5327 1.0000 0.3719 1.0000 0.1709 0.9347

FMDD(Y ⇠ X) 0.6734 1.0000 0.3970 0.9799 0.0704 0.6332

FMDD(X ⇠ Y ) 0.1709 0.0955 0.0854 0.0553 0.0201 0.0101

FMDD(Omnibus) 0.6734 1.0000 0.3970 0.9799 0.0704 0.6332

wavHSIC 1.0000 1.0000 1.0000 1.0000 0.8492 1.0000

median{�X} 0.957 0.958 0.957 0.958 0.957 0.958

median{�Y } 1.278 1.266 1.278 1.266 1.278 1.266
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Table S3: Rejection rates of six test methods for Example S1. For wavHSIC, medians of selected
�X and �Y are provided for each setting.

↵ = 0.1 ↵ = 0.05 ↵ = 0.01
Power n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

dCov-c 0.3266 0.7035 0.2362 0.5980 0.1407 0.3719

FPCA 0.5779 0.9045 0.4573 0.8392 0.2864 0.6281

KMSZ 0.1910 0.0804 0.1910 0.3317 0.0955 0.2211

KMSZ-p 0.3568 0.3668 0.2563 0.2764 0.1055 0.1307

PSS(Y ⇠ X) 0.0352 0.5477 0.1256 0.6734 0.1910 0.7487

PSS(X ⇠ Y ) 0.0151 0.0050 0.0603 0.0503 0.1156 0.1005

PSS(Omnibus) 0.0503 0.5528 0.1759 0.6834 0.2714 0.7638

FMDD(Y ⇠ X) 0.5528 0.9950 0.3568 0.9598 0.1055 0.5980

FMDD(X ⇠ Y ) 0.1709 0.1357 0.1005 0.0905 0.0151 0.0201

FMDD(Omnibus) 0.5528 0.9950 0.3568 0.9598 0.1055 0.5980

wavHSIC 0.9598 1.0000 0.8844 1.0000 0.6131 0.9950

median{�X} 0.000 0.000 0.000 0.000 0.000 0.000

median{�Y } 0.618 0.579 0.618 0.579 0.618 0.579
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