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Renormalized magic angles in asymmetric twisted graphene multilayers
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Stacked graphene multilayers with a small relative twist angle between each of the layers have been found
to host flat bands at a series of “magic” angles. We consider the effect that Dirac point asymmetry between the
layers, and in particular different Fermi velocities in each layer, may have on this phenomenon. Such asymmetry
may be introduced by unequal Fermi velocity renormalizations through Coulomb interactions with a dielectric
substrate. It also arises in an approximate way in tetralayer systems, in which the outer twist angles are large
enough that there is a dominant moiré periodicity from the stacking of the inner two layers. We find in such
models that the flat band phenomenon persists in spite of this asymmetry, and that the magic angles acquire a
degree of tunability through either controlling the screening in the bilayer system or the twist angles of the outer
layers in the tetralayer system. Notably, we find in our models that the quantitative values of the magic angles

are increased.
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I. INTRODUCTION

In recent years, the discovery that electronic properties
of twisted stacked graphene multilayers can be controlled
by the twist angle, which modulates the interlayer tunneling
between the graphene layers, has led to the burgeoning field of
“twistronics” [1-5]. A remarkable discovery [6] in the single-
particle physics of these systems is that they host flat bands at
certain “magic” angles, as first shown for the simplest case of
twisted bilayer graphene (TBG). The flatness of these bands
suggests that when interactions are included, they should host
correlated electron states. And indeed, with improving sam-
ple preparation techniques, such states have been observed,
most prominently Mott insulating states and superconductiv-
ity [7,8]. Such exotic correlated electron states are not unique
to TBG [9,10], but are also present in other twistronic systems
including those involving hexagonal boron nitride [11-16],
twisted tungsten selenide and other transition metal dichalco-
genides [17-22], twisted double bilayer graphene [23-35],
twisted trilayer graphene [36—44], as well as other systems
of stacked twisted graphene multilayers [33,45—-48]. They are
even present in systems that do not possess a moiré poten-
tial [49-53] and may also arise in other twisted graphene
structures without flat bands due to low-energy van Hove
singularities and Lifshitz transitions [54].

Theoretical understanding of this system has greatly ben-
efited from the introduction of the Bistritzer-MacDonald
(BM) model [6], in which the graphene sheets are individ-
ually treated in the long wavelength limit as Dirac point
Hamiltonians, while the interlayer tunneling is treated in
a spatially periodic model, represented in a small moiré
Brillouin zone (mBZ). Intriguingly, although there has been
important progress [2,18,26,55-66], a full explanation for the
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band flatness within the mBZ at magic twist angles remains
elusive. One question that this naturally raises is the role
of symmetry in producing flat bands in such models. In ad-
dition to translational and discrete rotational symmetries, a
mirror symmetry operation maps the Kj, and K, points of
the mBZ onto one another [67]. Indeed the eigenstates of
the BM model at the Ky and Kj, points largely reside in
one layer or the other. Moreover, the energy dispersions in
their vicinities are essentially identical, i.e., they have the
same Fermi velocities. The symmetry of these Dirac points
can be broken with a perpendicular electric field [67], in
which case the flatness of the low-energy bands at the magic
angles is not expected to survive. However, the symmetry of
the Dirac points in a mBZ may be broken in more subtle
ways, and whether the flat band phenomenon survives the
lifting of this symmetry in general is, to our knowledge, not
known.

In this work we explore this question by investigating
models in which the symmetry between the Dirac points of
the layers that are tunnel coupled has been broken, in effect
through different Fermi velocities at the two coupled Dirac
points. We consider two concrete situations where this can oc-
cur. The first involves a dielectric screening substrate applied
on only one side of the TBG system. In general, Coulomb
interactions renormalize the Fermi velocity at the Dirac points
of a graphene layer [68], through the effects of high mo-
mentum states on those at low momentum. Because the two
graphene layers are at different distances from the substrate,
screening sets in at different length scales for each of them
and leads to different Fermi velocities at low energies for the
coupled Dirac points. We estimate this effect and show that
it can be considerable for high dielectric substrates, such as
SrTiOs [69].

©2022 American Physical Society
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FIG. 1. The bandwidth of the asymmetric TBG at the Iy, point
of the moiré Brillouin zone as a function of both the twist angle § and
the Fermi velocity asymmetry v, /v,. Locations where the bandwidth
is less than 5 meV are shown in white. Here the tunneling amplitude
w = 110 meV and v, = 0.88x 10° m/s is the Fermi velocity of bare
monolayer graphene.

A second such model involves twisted tetralayer graphene
with three independent twist angles 6, (top pair), 63 (middle
pair), and 634 (bottom pair). By considering situations where
the 0y, and 634 are not too small, we approximate the four-
layer system as two coupled systems comprised of the top
and bottom pairs of layers supporting Dirac points, which are
themselves in turn tunnel coupled with effective twist angle
6,3 between them. Having three independent twist angles is
useful because it allows engineering of the relevant properties
of the system. In our treatment, one finds that in addition to
renormalized Fermi velocities at the Dirac points of the top
and bottom pairs of layers, there are also changes in the pre-
cise form of the tunneling between the two coupled systems.

Our main result is that magic angles at which flat bands
arise do indeed survive symmetry breaking between Dirac
points even when it is relatively strong. Figure 1 illustrates
a typical result for the asymmetric bilayer system, in which
one sees that engineering the Fermi velocity ratio allows for
controlling the value of the magic angle. The locations of the
magic angle can be predicted to quite a good approximation
by perturbation theory [6], which results in the condition
hko /U102 /W = /3, where v; and v, are the Fermi velocities
associated with the Dirac points in the two coupled layers, w is
the tunneling strength between layers, and ky = 2kp sin(6/2)
is the separation between twisted Dirac points as determined
by the twist angle 6 and kp, the separation between the K
and K’ points of a single graphene sheet. Qualitatively similar
results are obtained for the tetralayer system when the twist
angles for the outer layers are not too small, and again the
values of magic angles can be accounted for by a perturbation
theory analysis. While our basic approach does not include
the effects of incommensuration arising at most sets of twist
angles in this system, an estimate of these using degenerate
perturbation theory suggests that they do not eliminate the
basic flat band phenomenon.

The rest of this article is organized as follows. In Sec. II
we provide an analysis of twisted bilayer graphene with un-

equal Fermi velocities in the layers and describe how such
asymmetry can emerge for a bilayer system with different
dielectric screening in each layer. In Sec. III we focus on an
effective realization of this model in a graphene tetralayer in
which the outer twist angles are unequal and not too small.
We model this system by treating the effects of twisting in
the outer layers via k - p perturbation theory, which essentially
renormalizes the Dirac point velocities, and then numerically
solve for the spectrum in an effective bilayer BM model.
We also provide a perturbative analysis for magic angles in
this system and compare them with numerical results for
representative sets of angles. We conclude in Sec. IV with
a summary and discussion. We present a study of effects
incommensuration between outer and inner twist angles in
the Appendices. Appendix A provides some results that mo-
tivate our treatment of the tetralayer system as an effective
bilayer system, in particular showing conditions under which
incommensuration effects should be very small. Appendix B
provides a degenerate perturbation theory estimate of the ef-
fects of scattering by incommensurate wave vectors from the
outer two twisted layers in our idealization of the tetralayer as
an effective bilayer system.

II. ASYMMETRIC TWISTED BILAYER GRAPHENE

We consider an asymmetric twisted bilayer system with
unequal Fermi velocities, described by the continuum Hamil-
tonian

h T
Hatpg = [TIT h2:|’ (1

where h; = hvjo - [—iV + (—l)’q0/2] is the Hamiltonian of
layer [ = 1,2, with ¢ = (oy, 0,) the vector of Pauli matrices
and V = (9, dy), and the tunneling T = w Z?:o exp(—iQ; -
)7}, with Q; = 4; — o, o = ke(0, —1), q1 = ke(—5, 1),
and q; = ky (*/7§, %) [56]. Note that we have ignored the effect
of the small rotation angle 6 on the Pauli matrices in each
layer and assumed the Dirac points that are tunnel coupled
by T reside in the same valley of their host graphene sheets,

and we are only describing the low-energy bands from those
valleys. The tunneling matrices T; are given by [56]

u 1 u
Iy = [1 u]’ I = [ezm/3

In the situations of interest to us, vy # v, and u # 1 allows
for different tunneling amplitudes between atoms on the same
sublattice and those on different sublattices, which represents
a simple model of lattice relaxation in the layers [57,65,70].
Except where otherwise indicated, in our numerical results
we take the tunneling amplitude to be w = 110 meV, and
the effective ratio of tunneling between sites on the same
sublattice and opposite sublattice to be u = 0.8. This system
hosts magic angles as shown in Fig. 2.

eZni/?)
. } L=T (2)

A. Perturbative estimate of magic angle

The effect of the tunneling 7' on the low-energy dispersion
in each layer can be computed perturbatively as corrections to
poles of the resolvent operator G(E) = (E — Harpg) ™. It is
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FIG. 2. (a) Band spectrum for asymmetric TBG with Fermi
velocity asymmetry v;/v, = 1.33 for twist angle 6 = 1.3°, which
yields nearly flat bands. (b) Detail of low energy band spectrum.

useful to employ the projector F; onto the space of each layer
to define an energy-dependent effective Hamiltonian A$"(E)
in layer /,

E — h"(E) = [PAG(E)P]™", 3)

which then yields
K™E) = hy + T(E — hy)™'T7, (4a)
WYE) =hy + T(E — hy)7'T. (4b)

We next evaluate the matrix elements of 4T in the plane-
wave basis |Kk;), where k; is measured from the Dirac point of
layer [. Then T; only connects states with wave vectors that
differ by q;, so that

Ti[E + hvyo - (K — q)]T;
E? — (hvy|k; — qj])?

(I 15T — By k) = w? ) . (5
J

A similar expression for (k2|h§lcf — hy|k;) is obtained by re-
placing v, with v; and q; with —q;. Since we are interested in
solutions E ~ |Kk;|, we expand

1 142k - q;

T (husky 2

T — +O(ki[*).  (6)

Finally, using the identities

ZTJZ =3(1 4 u?), (7a)
J
Z TioT; = 3u’e, (7b)
J
ZTJ(Gq/)T/ =0, (7C)
J
3 5
Y Tio-q)q;T; = ;W = Do, (7d)
J

the matrix elements up to O(|k|?, w*) simplify to
(k|15 — hy k) ~ =307 [(1 + u*)E + hvo - K1, (8)

where o = w/(fikgv;) and we have denoted opposite layers

byl # [.
Solving for the eigenvalue E of h(E) self-consistently,
we find E = +hv;|k;| with a renormalized Fermi velocity,

v — 3otlgvl-
1430 4 ut)ad

!
i

&)
Therefore, the renormalized Fermi velocities both vanish
when

1 w
o 7 o oy Jorvs”
Thus, within this perturbative analysis, the “magic” angle
persists in the presence of Fermi velocity asymmetry between
the twisted layers and is set by their geometric mean.
We note here that by defining B; = 1+ 3(1 + u?)a?, we
can write (in the plane-wave basis)

K" ~ (1 — B)E + Brhvo -k, (11)

(10)

and the projected resolvent operator takes the form

1

(E -k~ —[E - hvjo- k] (12)

B

The poles of this operator occur at E = £hv|k;| with a

residue 1/8;. The square root of this residue 1/ \/E signifies

the renormalization of the wave function amplitude due to
projection to layer /.

B. Realization by asymmetric dielectric screening

We now briefly discuss a mechanism through which differ-
ent Fermi velocities could be generated for the two layers of
a TBG system by exploiting the renormalization of the Fermi
velocity via Coulomb interactions [68]. In particular, we focus
on a situation in which a dielectric layer is present only on one
side of the TBG system, as sketched in Fig. 3, with d; and d,
denoting the distances between the dielectric and each of the
graphene sheets. For concreteness we take d; < d,. We expect
for such geometries d, ~ 2d,.

For wave vectors k with [k| > 27 /d; = A, the dielectric
will have little effect, while for |k| < 27 /d>, = A», dielectric
screening is essentially the same for both layers. We model
the difference in dielectric screening between the layers by an
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FIG. 3. Sketch of the asymmetric TBG system composed of two
layers of twisted graphene with a dielectric applied beneath the
bottom layer. Dirac cones are shown representing the different Fermi
velocities in the two layers.

effective potential that applies only to the layer closer to the
dielectric, of the form

1 1\ 27e?
5V(|k|) = (; - E) K A,y < |k| < Ay,
0

13
, otherwise, (13)

where k is a dielectric constant due to the intrinsic screening
of graphene applying to both layers, and « is the dielectric
constant applied to the layer closer to the dielectric.

Because 6V has a cutoff on the low momentum side, we
can estimate its effect perturbatively through an exchange
self-energy correction ¥ to the Matsubara Green’s function,

G (k. iw) = Gy (k, iw) — B(K), (14)

which to the lowest order in §V and in the zero-temperature
limit (see Fig. 4) has the form [71]

2(q) foo dhe / I’k SV(kDGo(k + q, iw).  (15)

= — | — ,lw).
V=] 27 ] @y ok Tq

Here
lio+ vek - o
i w? + vilk|?
is the unperturbed Green’s function, where we have set the
chemical potential to zero so that we work near the charge-
neutrality point, vr is the bare Fermi velocity, and o =
(0x, o) are Pauli matrices.

Since we are interested in the renormalization of the Fermi
velocity, we consider small values of |q| in Eq. (15) while the
form of §V guarantees that |q| < |k| for nonvanishing values

Go(k, iw) = — (16)

oV (|k|)

—_ s
q k+q q

FIG. 4. Feynman diagram for the asymmetric TBG self-energy.
Because of the presence of the dielectric, an effective potential dif-
ference §V (k) contributes to corrections to the propagator in one of
the layers. Here the solid line with the arrow is the bare propagator
Go(k+q, iw).

FIG. 5. Sketch of the tetralayer graphene system. The angles
between the two layers in the top and bottom bilayer are 6, and
04, respectively, and the angle between the two bilayers is 6,3.

of the integrand. Then, integrating over o first and expanding,
up to O(¢*), 1/|k + gl ~ 1/|k| — k - q/|k|*, we have

1 d’k k+q)-0o
X(q) = 2] anp V(Ikl)w (17a)
~ _‘1'_"/5V(k)dk (17b)
8
e 1 As
S k1 G Ll RS

Using Eq. (14) one sees that the Green’s function retains
its noninteracting form, albeit with a renormalized velocity.
Since this renormalization applies only to the layer closer to
the dielectric substrate, the ratio of effective Fermi velocities
for the two layers becomes

gy =0 A (18)

Us dxkohvp Ay
With A,/A; ~2, a very large value of « (as would be
appropriate for example to SrTiO3; [69]), and a background di-
electric constant of kg = 4, one finds v,/v; ~ 1.1. The Fermi
velocities of the two layers of TBG can thus be made different
by ~10% due to such one-sided dielectric screening. Finally,
note that in these perturbative corrections we are including
a contribution that makes the two Fermi velocities different,
but do not include higher order logarithmic corrections due
to Coulomb interactions, which cause the Fermi velocities to
acquire some momentum dependence [72].

III. ASYMMETRIC TWISTED TETRALAYER

A second platform which approximately realizes the asym-
metric Dirac point models we consider is a graphene tetralayer
with three independent twist angles in which the outer two
are not too small, as sketched in Fig. 5. The idea is that
at such relatively large twist angles, the main effect of the
outer twists is to renormalize the Fermi velocities of the in-
ner layers, which in turn would implement the asymmetric
twisted bilayer discussed above at smaller inner twist angles.
The renormalized Fermi velocity asymmetry found increases
when 0, and 634 are significantly different (while neither one
is too small). For example, taking 6, = 2.5° and 634 = 10°,
we find v5/v) ~ 1.57.
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We shall model this system systematically below and pro-
vide perturbative estimates as well as numerical results for its
spectra.

A. Hamiltonian

The Hamiltonian for the system as a whole may be written
as

H— [HTBG(Glz) (19)

Tr3(r) ]
Ty (r) ’

Hrpg(634)

where Hrpg(0;;) is the Hamiltonian [6] for the bilayer ij with
twist angle 6;;,

Hirs(0) = [Tﬁla) Th(f)}, 20)

with hy = livpo4gr - (—iV F qo/2) the Hamiltonian in each
layer, oy, = e W%/ 4ge? /Y T(r)=w Z?:o exp(—iQ; -
r)T; as before, and T>3 implements tunneling between the two
bilayers by coupling layers 2 and 3.

Solving for the spectrum of the full Hamiltonian H in gen-
eral is very challenging, in particular because for an arbitrary
set of twist angles the system is not spatially periodic. For
our purposes we are interested in parameter regimes in which
there is approximate spatial periodicity, and in which the twist
angles 6}, and 634 are exploited to create Dirac points with dif-
ferent velocities, which can be coupled together to form an ap-
proximate moiré lattice. We note that in principle there are de-
viations from perfect discrete translational symmetry because,
for general twist angles, tunneling may be accompanied by
scattering by many different discrete wave vectors. Reference
[6] demonstrated that for a single twisted graphene bilayer, the
scattering involved is dominated by just two wave vectors and
their linear combinations, so that the resulting bands fall in a
two-dimensional Brillouin zone. In the four-layer systems we
consider, the outer two layers have relatively large twist angles
compared to their neighbors, so that their single particle states
near zero energy are well approximated by a single plane
wave. This allows us to adopt the BM strategy for tunneling
between the two middle layers. We discuss in more detail
below the justification for this, and in Appendix B estimate
the effect of retaining plane-wave states not included in our
basic approach. Indeed, we find their effect to be quite small
provided the outer twist angles are not too small.

In general, the Hamiltonians Hypg(612) and Hypg(634) in
Eq. (19) host Dirac points associated with each of their val-
leys, and the two degenerate states of those Dirac points reside
mostly in one of the two members of the bilayer. Out of
the four Dirac points hosted by (a single valley) of the two
bilayers, we focus on those with the most weight in layers
2 and 3, respectively, and model the diagonal components of
Eq. (19) using a k - p approximation. Note that the remaining
two Dirac points are remote in wave vector from low energy
states in the opposite bilayer, and so are largely decoupled
from states of the two Dirac points we retain. This yields a
simple linearly dispersing mode near each Dirac point with
some Fermi velocity, as well as wave functions associated
with eigenstates. We can then use these dispersive states to
create a model for tunneling between the bilayers, as we now
explain.

B. Interbilayer tunneling

To formulate the interbilayer tunneling, in analogy with
Ref. [6] we begin by calculating the matrix element
(ku|H|K w1’y where k is the wave vector for an electron state
and p and w’ are indices labeling positive and negative energy
states of a Dirac cone in bilayer 12 and 34, respectively. To
compute these matrix elements we need wave functions for
the states in the uncoupled bilayers, which in the BM model
take the approximate form

ay(g)

] bM(g)ei(g+k)~rl ]
12, ig-r 1 ik-r
P, (r) Eg € alzl(g)e—i(g+k)-r2 e, (2D

bh(g)

for the 12 bilayer, and similarly for the 34 bilayer. In this
expression, a;‘ denotes an amplitude on the A sublattice of
sheet j = 1, 2, and b‘; is the corresponding amplitude on the
B sublattice. The wave vectors g depend on the twist angle and
are in general different for the 12 and 34 bilayers. The values
of a;‘ (g) and b’; (g) are determined by numerically solving the
BM model for the isolated twisted bilayer. Finally, the vectors
71 and 7, denote the separations of different sublattice atoms
within a unit cell of sheet j of the bilayer. Note that for the 12
and 34 bilayers, our tunneling matrices are those in Ref. [56],
which correspond to choices of 7; and 7, that lead to AA
stacking in the zero twist angle limit.

Within this model, the tunneling matrix element takes the
form

QC ’ ! ’ ’
(KulHK ') = = tR-R)Y (g g kK)

RR 54

% e—i(k+g)-Rei(k’+g/)-R’ , (22)

where R, R’ are Bravais lattice sites for sheets 2 and 3, re-
spectively, €2, is a primitive unit cell area for the graphene
Bravais lattice, and €2 is the system area. A tunneling am-
plitude #(R — R’) has been introduced, which is assumed to
depend only on the lateral separation R — R’ between points
in different sheets [6], and

(g g k. K) = [af (@), b (8)e ™™, aj (g)e " ET™,
d (@)

b (e K0
a (e
by (g)
Here g and g’ are reciprocal lattice vectors for the 12 and 34
bilayers, respectively, and M is a 4x4 matrix that describes
the tunneling between bilayers 12 and 34. Following Ref. [6],

we express the amplitude ¢ in terms of its Fourier transform,
and after summing over the lattice sites one finds

kulHK W) =YY tk+g+G)f*"(g.g .k k)
G,G gg

b (g)]'M (23)

X Sk+g+G K +g'+G' - (24)

Here the vectors G and G’ correspond to the reciprocal lattice
vectors of the two inner graphene sheets 2 and 3, respectively.
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We next adopt two simplifications which limit the values of
twist angles for which our analysis gives a reasonable approx-
imation. First, we note that when the angles 6, and 634 are not
too small, the overlaps f** (g, g, k, k') are sharply peaked at
g = g = 0. This is discussed in more detail in Appendix A.
Exploiting this feature allows one to set g = g’ = 0. This is
a crucial simplification because retaining further values of
g, g’ spoils the spatial periodicity of the system, rendering it a
quasicrystal [36].

The second simplification is commonly made for the BM
model. In the expected situation where the distance between
layers is larger than the graphene lattice constant, #(q) van-
ishes very rapidly for |q| larger than the inverse of the spacing
between the two sheets. Moreover, we are interested in the
bands near zero energy, for which the values of k, k' lie in the
vicinity of Dirac points of the 2 and 3 layers. We thus focus on
values of k + G = kK’ + G’ in the vicinity of K,, the K point
of layer 2, which (assuming small 6,3) are also near K3, a K
point of layer 3. On the scale of the Brillouin zone of a single
graphene sheet, the set of wave vectors coupled together by
(ku|H K ') in the low energy bands are very close together,
so we ignore the small wave vector variations in #(k + G), and
retain only values of G such that k 4+ G is near a Dirac point
for the two inner layers, and for which K; + G has the small-
est possible value. There are three such choices for G, and for
all of them #(K; 4+ G) has the same value ¢; other choices of
G yield values for #(k 4+ G) which are negligibly small. Thus
in our reciprocal lattice sum we retain only G = Gy ; 2, with

Go=0,G; = kp(—2,*2), G, = kp(3, *2). In other words,
we take ¢t (k + G) ~ t(G). Furthermore, because the recipro-
cal lattice vectors of a single sheet are very large compared
to the scale of a small-angle twisted bilayer mBZ, for each
G;,j=0,1,2, we retain only a single G} = G; + Q;: the
other combinations couple together states with very large sin-
gle particle energy differences, which will have little effect on
the bands near zero energy. A sketch of the geometry with the
relevant wave vectors is shown in Fig. 6.

With this reasoning, the tunneling matrix element we adopt
takes the form

t ,
(e |H K ') = Zf’”‘ (0,0, K> + G, K3 + G))8ii.q, -

J
(25)
The resulting system is now formally very similar to the BM
model.

Finally, we must choose a concrete form for the matrix
M entering the f** factors. To do this, we first note that
tunneling between remote sheets is much smaller in amplitude
that that between neighboring sheets, so we retain nonzero
matrix elements only for the 2 x?2 block that connects sheets 2
and 3. A natural choice is then M»3 = 1 + o, since there is no
distinction between atoms of the two sublattices in graphene
beyond their locations in the unit cell, which are explicitly
taken into account in the wave functions, Eq. (21). With this
choice, we arrive at our model for tunneling between the
bilayers,

’ t !
kulHK ) = =3 f" dcwa, (26)

J

FIG. 6. Geometry of reciprocal lattice vectors relevant to tunnel-
ing matrix elements in the tetralayer graphene system. The angle
between the two bilayers (6,3) is enlarged for clarity; for the small
angles 6,3 we consider in this work, |G;| > |Q;| for all 7, j.

where
0" =[O + B O] [a ©) + b5 )],
= [a (0)e™® + b (0)] [ (0) + B (0)e®],  (27b)
1 = [ab(0)e™ + b5 (0)][ak (0) + bA (0)e ],
with ¢ = 277 /3. The constants a4 (0), b5 (0), ... are found by
numerically obtaining the bilayer wave function by diagonal-
izing the Bistritzer-MacDonald model Hamiltonian [6] for the
individual 12 and 34 bilayers at their Dirac points.

Thus, in terms of the matrices f; defined in Egs. (27), we
have

(27a)

(27¢)

2
T(r) = w ) fjexp(—iQ; - 1). (28)

j=0

Note that in the limit where layers 2 and 3 are coupled to
one another but not to layers 1 and 4, the matrices f; become
precisely the same as the tunneling matrices 7, in Ref. [6],
which differ slightly from what was used for the (12) and (34)
bilayers as described above [56]. This corresponds to adopting
values of 7; ;, the displacements of the two atoms in sheets i
and j that are tunnel coupled, which differ in the two cases:
in the zero twist angle limit, the 12 and 34 displacements cor-
respond to AA stacking, while in the 23 case they correspond
to AB stacking. However for nonzero twist angles, the local
alignment varies among all possibilities, so that other possible
choices for untwisted layer alignment should not qualitatively
change our results.

C. Perturbation theory

In this section we use a low-energy perturbation theory
in the interlayer tunneling to estimate the Fermi velocity at
a Dirac point of the mBZ in our tetralayer model, and look
for situations in which it vanishes, as an indicator for the flat
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bands [6]. For the tetralayer system, our starting Hamiltonian
has the form
h T, O 0
T, h Tz O
0 Ty hy Tul|
0 0 T, M

H= (29)

where h; are the Hamiltonians for layer / and 7;; are the
tunneling matrices between layers [ and [!’. Projecting the
resolvent operator into the subspace of layers 2 and 3, we can
write energy-dependent effective Hamiltonians in the vicinity
of the Dirac points at K, and K3, respectively, in the forms

WYE) = ha(E) + Tos[E — h3(E)] 7' T}, (30)

WYE) = h3(E) + TL[E — ha(E)] ™ T, @31

where fiy = hy + T)5g1Ti» and hi3 = hy + TaugaTy,.
Following the derivation in Sec. Il A we may write

hy(E) = (1 = BIE + il (32)

hy(E) ~ (1 — B4)E + Puliy, (33)

where ), = hivjo - k, for k, measured from the K, and 7 =
hvjo - k3 for k3 measured from the K3. Here §; = [1 4+ 3(1 +
u?)a?] and the renormalized Fermi velocities in layers 2 and 3
are v = (1 — 3a})vr/Bi, v5 = (1 — 3a3)vr/Bas. This yields

WYE) ~ (1 — BE + il + By ' Tngs (E)T),,  (34)

W' (E) ~ (1 = BE + Bally + B ' Tysgh(E)Ts, (35)
where g,(E) = (E — hy) ™" and gy(E) = (E — hy)~".

The analysis may be straightforwardly generalized to ex-
amine situations in which the tunneling amplitude between
layers 2 and 3 is different from that between the other layers.
Assuming T3 has the same form as the tunneling in the
BM model with a multiplicative factor z and solving for the
eigenvalue E self-consistently, we find

et — B1Bavh — 322 (a)* ) 36)
2T BB+ 31+ 1) ()
eff .31,34Ué - 312(06)27)/2 (37)

P BB+ 3+ ) ()
with o = w/(fike,,v5) and o = w/(fiks,, v5). Both of these
effective Fermi velocities vanish when

ww/y/Bifs 1 (38)

hk923 v Ué Ué ‘/§
The structure of this condition can be understood intuitively
as follows. The factor z is the ratio of the bare tunneling am-
plitude between layers 2 and 3 with w, which is the tunneling
amplitude in the bilayers 12 and 34. The effective tunneling
between layers 2 and 3 is modified by the wave function
renormalization factors 1/4/B; and 1/+/Bs, which generically
reduce it due to the projection of the wave functions to layers
2 and 3, respectively. Because of the renormalizations, the
final magic angle is dependent on all three twist angles. The
dependence on 6,3 is explicit, and by varying 6, or 634 one

will change the v} and v}, respectively. We note that Eq. (38)
may be rewritten as

/ 1
2 2 272 —
0‘1 +a4 +z a23 - \/—» (39)
3

where a3 = w/(hky,,vr), with vr the Fermi velocity of a
single graphene sheet. This magic-angle condition holds for
both positive and negative twist angles.

‘We observe that the Fermi velocity drops to zero within the
perturbative analysis for both Dirac points simultaneously, so
that one does not end up with two closely spaced angles with
approximately flat bands. Given that the Fermi velocities of
the two uncoupled Dirac points are different, it is not obvious
that this should happen, and as discussed in Appendix B,
inclusion of incommensuration effects may change this result.

D. Numerical results

We begin by showing numerical band structure results for
a representative triplet of twist angles 6,5, 6,3, and 634 in
Fig. 7(a). The calculations are performed by expanding Eq. (1)
in plane waves, with h; and h, taken as the k - p approxi-
mations to the Hamiltonians near the relevant Dirac points
of the 12 bilayer and 34 bilayer, respectively (obtained by
numerically solving the BM model for each of these bilayers
individually), and the off-diagonal tunneling operator is given
by Eq. (28). In all these calculations, the tunneling parameter
w is taken to be 110 meV between each pair of neighboring
layers, which is equivalent to z = 1 in the perturbative anal-
ysis above. Notice that because 61, # 634 there is asymmetry
between the two valleys. Nevertheless, magic angles still oc-
cur in our model of the twisted tetralayer graphene system,
and they manifest themselves in a qualitatively similar way to
TBG, see Figs. 7(b) and 7(c).

An interesting feature of this model is that, analogously
to the unequal Fermi velocity system discussed above, the
system hosts flat bands for 6,3 at different magic values, de-
pending on the angles 61, and 634. This is in contrast to TBG,
for which the twist angle for the primary magic angle is fixed
at 8 ~ 1.08°. Figures 7(b) and 7(c) show examples of this:
the combinations of the twist angles are different for the pairs
of figures, yet both sets of parameters produce flat bands. In
general, magic angles will occur when 6,3 is somewhat larger
than the TBG magic angle, but for large 6, and 634 the first
magic angle for 6,3 converges to the TBG magic angle 1.08°.
A band structure corresponding to this situation is shown in
Fig. 7(d).

Figure 8 shows a plot of the bandwidth of the lowest energy
bands for the special case where 6;, = 10°. Here we define the
bandwidth as half the gap between the states of positive and
negative energy closest to zero at the 'y, point (I" point of the
mBZ), which typically has the widest separation between the
two flat bands. As can be seen from the plot, the bandwidth is
minimized for a continuum of twist angles. An important fea-
ture of this system in general, and in this example in particular,
is the perfect swapping symmetry between 6y, <> 634: Fig. 8
appears identical when 634 is fixed at 3° and 6, is varied over
the same region of the parameter space. More generally, we
find that when 6, and 634 are not too small, the values of the
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FIG. 7. Band spectra for twisted tetralayer graphene for combi-
nations of angles that (a) do not yield flat bands, and (b)—(d) do
support flat bands. For sufficiently large 6, and 63, the magic 6,3
approaches 1.08°, the magic angle of TBG.
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FIG. 8. Locations of the magic angles for twisted tetralayer
graphene at fixed 6, = 10° and 634 € (3°, 10°), 63 € (1°, 2°). Lo-
cations where the bandwidth is less than 10 meV are shown in white.
The solid pink line shows the theoretical prediction given by Eq. (39),
and the dashed pink line shows the magic angle result for the trilayer
case as discussed in Ref. [36].

angles at which we find flat bands adhere to Eq. (39) relatively
well.

Additionally, it is worthwhile to notice that in the limit
that either 0, or 634 becomes very large, the results approach
that of twisted trilayer graphene as formulated in Ref. [36].
This can be understood by recalling that as the twist angle
12 or 034 becomes large the corresponding «; or a4 becomes
small and, as a result, one of the layers essentially decouples
from the other three in this limit. With a relatively large twist
angle 0, the Dirac point coming from this bilayer has little
renormalization, so that it can be viewed as coming from an
isolated graphene sheet. The two relevant twist angles are then
6»3 and 6034. One can see in Fig. 8 that for large 634 the flat
band occurs when 6,3 approaches the magic angle of a single
twisted bilayer, while for smaller values of 034, we find the
flat band condition moves to larger values of 6,3, precisely as
found in Ref. [36]. Moreover, in the trilayer one loses the flat
band behavior when both angles are smaller than ~3°, which
is precisely the situation in which we find results in our own
approach to become unreliable.

Figure 9 shows corresponding results for a situation in
which the twist angle which is being held constant is much
smaller than in Fig. 8. The result is that the perturbative result
is less faithful in matching the numerics. This is unsurprising
since we expect our method to become increasingly unreliable
as the two outer twist angles are made smaller and smaller.

IV. SUMMARY AND DISCUSSION

In conclusion, we have introduced a model of twisted
bilayer graphene in which the Fermi velocities of the Dirac
points of each layer may be different. We have demonstrated
that generically this asymmetry does not spoil the magic flat
band phenomenon. We argued that such models are relevant
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FIG. 9. Locations of the magic angles for twisted tetralayer
graphene at fixed 0y, = 3° and 034 € (3°, 10°), 653 € (1°,2°). Loca-
tions where the bandwidth is less than 10 meV are shown in white.
The pink line shows the theoretical prediction given by Eq. (39).

for systems with asymmetric screening, for which there are
unequal interaction renormalizations of the Fermi velocities,
and for tetralayer systems, when the main effect of the outer-
most layers is a slowing of the Fermi velocities of the Dirac
points associated with the two inner layers. This situation is
realized when the outermost twist angles 61, and 634 are not
too small. A perturbative analysis for the Fermi velocity of
the Dirac points of the fully coupled systems explains the
locations of the flat bands under certain conditions, and inter-
estingly shows that for both Dirac points this vanishes at the
same twist angle (6,3 for the tetralayer). Our numerical results
also support the existence of a single minimum bandwidth as
a function of twist angle for this system.

For the tetralayer system, open questions remain on the
impact of the formal incommensuration between the moiré
lattices of the outer pairs of layers relative to the moiré lattice
associated with the inner pair. In Appendix B we study the
impact of retaining a subset of the incommensurate reciprocal
lattice vectors g and g’ that define the outer moiré lattices.
Specifically we use degenerate perturbation theory to calcu-
late the correction to the energy (accurate to first order in
the tunneling amplitude) at the I'y; and M), points of the
lowest energy bands to obtain an estimate of their bandwidth.
The analysis indicates that the change in bandwidth is very
small for most twist angles, but can become significant at
the magic angles, perhaps not surprising as the degeneracy
without the extra plane-wave states coupled in is very nearly
exact. Interestingly, we find within our estimation procedure
that the magic angle breaks up into two closely spaced angles
of maximal flatness, suggesting that our observation of a sin-
gle magic angle found even with differing Dirac point Fermi
velocities may not be precisely the case for the tetralayer
realization of this system. Beyond this, we find that when the
outer twist angles (612, 034) are small enough, the change in
bandwidth becomes sufficiently large as to indicate that g and
g’ with larger magnitudes should not be ignored (see Fig. 10
in Appendix A and related discussion). For larger outer angles

1
—e—g =0
08" —=—first 6 nonzero g's
' —v—rest of g's

0.6
047

02 %

0 2 4 6 8 10

FIG. 10. Overlap f as a function of the twist angle 6, = 634 = 0
for three different sets of momenta. The dashed lines indicate the
90% g = 0 cutoff for f and its corresponding angle. In all three
curves, g’ = 0.

we believe our simpler treatment (in which incommensuration
is ignored) correctly predicts that this system still hosts magic
angles, and gives a good estimate of what these angles are.

One possible direction for future work is to treat the sys-
tems discussed in this work using a tight-binding model in
order to investigate how well the continuum model approxi-
mation holds. For the ATBG system, this can be accomplished
with a twisted bilayer graphene system where the nearest
neighbor tunneling is different in the two layers. An appli-
cation to the tetralayer system is less obvious, because one
needs commensuration of all four lattices to define a unit
cell. Finding sets of such commensurate angles represents an
interesting challenge.

Because of the change in Fermi velocities, the magic angles
of the system acquire a certain level of tunability. In principle
this broadens the set of circumstances under which interaction
effects can lead to collective phases such as Mott insulators
and superconductivity, and possibly others with broken spin
or valley symmetries. In this sense the system we have studied
in this work adds to the possible richness of physics in twisted
graphene systems.
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APPENDIX A: WAVE VECTOR DEPENDENCE
OF THE OVERLAP ELEMENT f, ./ (g, g’, k, k')

In Sec. IIIA we mentioned that the overlap element
(g, g, k, k') is much larger for g = g’ = 0 than for other
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FIG. 11. Estimate of correction to the energy of the states nearest
zero energy at I'y, point due to scattering by g} # 0 in the moiré
reciprocal lattice of bilayers A = 12, 34 for 6y, = 63, = 10°, with
u = 0.8. Inset: Detail of the correction near the magic angles.

values of g, g’. To demonstrate this, we we define the quantity

2
f=o T

up' j=0

; (A)

with f** defined in Eq. (27) in the main text, and plot contri-
butions to f from different g as a function of twist angle 6 in
Fig. 10. As can be seen in the figure, at large enough twist an-
gles only the g = 0 component is non-negligible. As the twist
angle is made smaller, f begins to find some support on the
smallest magnitude nonzero reciprocal lattice vectors. There
are six such vectors that all share the same magnitude; these
six are summed together to generate the red curve marked
with crosses in the figure. As 6 is turned down still further,
f spreads out to larger magnitude wave vectors which are all
summed together to give the blue triangle curve.

Taken together, this figure shows that as long as the
interbilayer twist angles 6;, and 634 are not too small, re-
taining only the g = 0 wave vectors for the overlap element
f* (g, g k,K') is acceptable as a simplifying assumption.
To make this concrete we demand that f must contain at
least 90% of its weight in the g = 0 wave vector. This cutoff
occurs at a twist angle of about 2.4°. Accordingly, none of the
numerics discussed in Sec. III D involve a bilayer twist that is
less than 2.4°.

Discussion of the error associated with this approximation
is discussed further in Appendix B.

APPENDIX B: EFFECT OF g, g’ # 0 ON
TETRALAYER BANDWIDTH

In Sec. IIT A we develop a simple model of a twisted four
layer system in which the outer twist angles are well above
magic angles, so that we can model the system as a pair of
Dirac systems with different Fermi velocities that are coupled
by an effective twisted bilayer tunneling term. In so doing
we ignore the effective moiré periodicity of the two outer
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FIG. 12. Estimate of correction to the energy of the states nearest
zero energy at Iy, point due to scattering by g* # 0 in the moiré
reciprocal lattice of bilayers A = 12, 34 for 6;, = 6° and 634 = 4°,
with u = 0.8. Inset: Detail of the correction near the magic angles.

bilayers; including this formally renders the system aperiodic.
In this Appendix we consider the impact of including the
principle wave vectors that cause this aperiodicity. In partic-
ular, we develop an estimate of their impact on the flat-band
phenomenon in the tetralayer system.

We begin by writing the total four-layer Hamiltonian H as
a sum of five individual operators,

H =Hy* + H)” + Hy' + H}' + HP. (B1)

In this expression, Hé’ represent Dirac Hamiltonians near the
K points of layers [ and [ and HY is the tunnel coupling
between them. In the absence of HZ® the bilayer Hamiltonians
for A = 12, 34 can be diagonalized individually

H* = H} + H} (B2)
=D ) lwrk)es (k) (w) (k). (B3)
n keBZ,

where the ket |w}(K)) represents a state with crystal momen-
tum K in band . In general, such a state contains wave vector
content at all values of k + g where g is moiré a reciprocal
lattice vector of bilayer A.

We now divide each of the TBG wave functions into two
parts, |wX(k)) = |[w*°(k)) + [Sw?(K)), where |w’°(k)) con-
tains plane waves with wave vector k, and [§w}(K)) contains
wave vectors k + g with g} # 0. Finally, we project to the
two bands closest to zero energy, denoted by n = +.

The approximation scheme adopted in the main text in-
volves dropping the terms containing |[Sw’(k)) from H.
Denoting this as Hy, we can also write

Ho=) Y le®EP W) ®)]. B4
k m
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FIG. 13. Estimate of correction to the energy of the states nearest
zero energy at My, point due to scattering by g} # 0 in the moiré
reciprocal lattice of bilayers A = 12, 34 for 0;, = 6° and 634 = 4°.
Note the absence of a minimum in the separation of the two low
energy bands at the second magic angle, which is also a feature of the
unperturbed band structure. The energy separation at that location in
the Brillouin zone is quite small over a large range of angles. Inset:
Detail of the correction near the magic angles.

Here E? (k) is our approximation for the energy levels of the
four-layer system, and |g0,(,?)(k)) are the corresponding wave
functions.

We wish to estimate the error incurred by dropping the
|sw’(Kk)) terms from the Hamiltonian, particularly for n = +
bands whose states, as one approaches a flat band condition,
become nearly degenerate. Our approach is to reintroduce
the largest of the Hamiltonian terms that were dropped, and
diagonalize the resulting Hamiltonian within a relatively man-
ageable subspace of the full Hilbert space. Our analysis is
essentially a form of degenerate perturbation theory, and so we
expect results that are correct to linear order in the tunneling

amplitude w. We thus write the Hamiltonian in the approxi-
mate form

6
H=Ho+Y 3 3 Y {|swik—ghekk)

n=% k A=12,34 i=1

x (wh@Kk)| + He.} + Ow?), (BS)

and diagonalize this Hamiltonian within a subspace of
{lp9(k))}, retaining k = ko and k = ko + g* for the six
shortest g for each of A = 12 and 34. All the bands generated
in our numerical diagonalization of Hy are retained. Note that
if one represents the band structure of Hj in an extended zone
scheme, this procedure for estimating the effects of scattering
through the g! vectors amounts to retaining a small subset
of states in each of the higher order Brillouin zones. Here
the dimension of the Hilbert space is 244 corresponding to a
cutoff radius of v/61. ko. When more wave vectors are included
in the calculation, the results do not noticeably change.

Figures 11-13 illustrate representative results for the sep-
aration between the two bands nearest zero energy at Iy, and
My, the I and M points of the 23 moiré Brillouin zone. (Note
that for the first magic angle, for a single twisted graphene
bilayer the I'y; point is the location of greatest bandwidth.)
While in general the correction due to the coupling of states
by the g vectors is small, we see it becomes the same order
of magnitude as the bandwidth at the magic angles. Neverthe-
less, we see that the band flattening survives their inclusion.
Interestingly, near but just away from the magic angles, the
correction can actually cancel away the small bandwidth at
the magic angle, in such a way that the angle of narrowest
separation between the two low energy bands at 'y, splits into
two closely spaced magic angles. It is unclear if this small
scale structure would survive the inclusion of further plane-
wave states coupled by the g vectors. However, the result
is suggestive of the possibility that introducing asymmetry
between the Dirac points coupled through the 23 interface
using twisted outer layers could introduce extra structure not
present in the single bilayer system.
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