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SINGULARITY FORMATION OF COMPLETE RICCI FLOW
SOLUTIONS

TIMOTHY CARSON, JAMES ISENBERG, DAN KNOPF, AND NATASA SESUM

ABSTRACT. We study singularity formation of complete Ricci flow solutions,
motivated by two applications: (A) improving the understanding of the be-
havior of the essential blowup sequences of Enders—Miiller—Topping [EMT11]
on noncompact manifolds, and (B) obtaining further evidence in favor of the
conjectured stability of generalized cylinders as Ricci flow singularity models.
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1. INTRODUCTION

1.1. Motivations. Much is known about Ricci flow in dimensions n = 2,3 and
on compact manifolds. Much less is known about solutions on higher-dimensional
or noncompact manifolds. In this paper, using multiply-warped products, we in-
vestigate various phenomena that occur in singularity formation on complete non-
compact solutions (M, g(t)) of Ricci flow, in arbitrary dimensions. We are most
interested in singularities for which noncompactness plays an essential role in the
precise sense that the metric on any compact subset K C M remains nonsingular.
Our results for solutions of this type are found in Theorem 3, Theorem 4, and
Corollary 5 below.

Our main applications of those results are found in Theorem 6 and Corollary 7.
Briefly, we show that standard sequences of parabolic dilations at a singularity,
which produce predictable subsequential limits on compact solutions, as shown
by Enders—Miiller—Topping [EMT11], can yield unexpected limits for noncompact
solutions unless additional criteria are imposed. We make this statement precise
below. In a second application, Theorem 9, we prove a weak stability result for
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generalized cylinders evolving by Ricci flow, which is motivated by well-known and
much stronger results of Colding—Minicozzi [CM12, CM15] for mean curvature flow.

1.2. Manifolds. Let (B™ g5) be a complete noncompact Riemannian manifold.
For o € {1,...,A < o0}, let (I, g5, ) be a collection of space forms, and let pq
be constants such that pags, = 2Rclgs,]. Given functions u, : B™ — Ry, there
is a warped product metric g on the manifold MN = B" x FJ* x -+ x F4* | where

N=n+ 22:1”047 given by

A
(1) 9=98+ Y Uags,-

a=1

For brevity, we omit the dimensions of the manifold M and its factors 7« in
what follows.

Under Ricci flow, the structure (1) of the multiply-warped product metric is
preserved, and the base metric gg and warping functions u,, evolve by the coupled
diffusion-reaction system

A
(2a) Orgp +2Relgn] = =2 naug 2V (u}/?),

a=1

(2b) (O — A) Uy = — o — uy | Vual?, (v e{l,...,A}).

1. Remark. Throughout this paper, undecorated geometric quantities are computed
with respect to the metric g on M and its Levi—Clivita connection. In particular,
the Laplacian in (2) denotes that of the metric g, i.e., A = Ay, rather than the
Laplacian Ag of the metric gn on the base. Given any smooth function p(z)
depending only on x € B, the two differential operators are related by

A
1 —1
(3) Amp = Asp+ > naug (Vug, Vo),

a=1
as follows easily from Claim 32 of Appendiz A.
If some u,(x,0) is a constant aq, then uq(2,t) = aq — ot is an explicit solution
of (2b) for as long as the flow remains smooth. Since we are interested in studying

perturbations of spatially homogeneous solutions, we set a, = inf,es uq(z,0) and
define v, (+,0) : B — R by

4) Vo (2,0) = uq(z,0) — aq,

for € {1,..., A}. We observe that for as long as a smooth solution of system (2)
exists, the metric has the form

A
(5) g(:v,t)Zgg(x,t)—i—Z{(aa—uat)—i—va(x,t)}gga.
a=1
2. Remark. The construction outlined above ensures that inf,es v,(z,0) = 0.

Because our solutions are not compact, it is not automatic that infep vo(x,t) =0
for t > 0 for which a solution exists. However, this follows from results we prove
below.
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In Appendix A, we compute the curvatures of (M, g). Here, for « € {1,..., A}
and all ¢ > 0 that a Ricci flow solution exists, we define the functions

(6a) Yala,t) = [Voa(z,0)],
(6b) Xa(@,1) = [V?va (2, )2,
(6¢) p(z,t) = |Rmlgz](z, )| ,

where the first set of norms is computed with respect to the metric g(-,¢) on the
total space, but the second and third sets are computed with respect to gg. To
motivate these quantities, we note that it follows from Remark 34 in Appendix A
that there is a universal constant C' depending only on the dimensions such that

A
<C {pW + 3 (wae +ua'x?) } :
a=1

So at points where the quantities v, are small relative to u,, control of p, v, /u2,
and x,/u2 indicates that the curvature is pointwise close to that of an un-warped
product.

A
(M |Rmlg) = > uz! Rmlgs, ]
a=1

g9

1.3. Main results. In this paper, we assume that v,, X, and p are bounded on
our initial data in terms of a constant Ci,;; and functions GG, and H, in a manner
that we call our Main Assumptions and make precise in Section 2.1. (Specifically,
we use G, to bound v, and H, to bound yx,.)

Our first result provides an asymptotic description of all solutions of Ricci flow
originating from initial data that satisfy those assumptions. Specifically, it shows
in a precise sense that the asymptotics of the original data are preserved:

3. Theorem. Let (M, g(t)) be a solution of the Ricci flow system (2) that originates
from initial data satisfying our Main Assumptions and exists for t € [0, Tsman)-

There exists a constant Cy = Cy(n, N, Cinit) such that fort € [0, min{ Tyman, C51}),
the metric can be written as

g(z,t) = (1 + O(l))gg(fﬂ, 0)

We note that the Main Assumptions imply that the terms G (va(z,0)) /v2(z, 0)
are bounded. By those assumptions, those terms bound |V logwv,(z,0)|?, which
in turn implies that the functions v,(-,0) can decay at most exponentially (see
Remark 11 below). In fact, if the functions G, are chosen so that the quantities
Ga(va(z,0))/vi(2,0) are comparable to |V log va (x,0)[2, then G (x,0)/v2 (2, 0)
0 as v (z,0) \ 0 if and only if v, (-,0) decays more slowly than exponentially.

We prove Theorem 3 in the course of proving the following stronger but more
technical result:

4. Theorem. Let (M, ginit) satisfy the Main Assumptions stated in Section 2.1.
Then there exists a constant Cy, = Cy(n, Ny, Cinit) such that the following are true:
A solution

A
g(Ia t) =9B (:E,t) + Za:l {aa — pal + va(xvt)}g-rfa
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of the Ricci flow initial value problem with g(x,0) = ginit(z) exists with curvatures

bounded in space at all times t € [0,T%), where T\ := min{Tying, Cs '}, and Tying is

the (finite) singularity time, i.e., the mazimal ezistence time of a smooth solution.
The v, are uniformly equivalent for t € [0,Ty). Specifically, one has

Fva(x,t) < v (z,0) < Chvg(z,t).
Moreover, for each x € B and t € [0,Ty), one has
(8a) p(x,t) < Cinit (1 4 Cit),
and for a € {1,..., A},

Ga ('Ua(xvt))
<O ol )

(3b) Yol 1) < i (1 !
(8C) Xa (,T, t) < C'imit (1 + C*t) Ha ('Ua(xa t)),

where G, and H,, are functions specified in the Main Assumptions.

We prove Theorem 4 in Section 3.3 below after precisely stating our assumptions
in Section 2.1 and establishing preliminary estimates in Sections 2.2—3.2.

IfC, I < Tiing, then the theorem cannot describe the solution up to the singular
time. However, we can always arrange that it does apply up to Tiing, as we now
explain. A key strength of the theorem is that the constant C, is independent of
the quantities a,. One sees from (7) that the curvature can be very large if some
a, is very small. But even in that case, the bounds (8) persist. This leads directly
to our next result. We let ¢ be such that ac/uc = min{aa/pa: o > 0}. By (5), the
metric on F¢ has the form {(ac — pct) +v¢(z,t) }g7.. By Remark 2, inf v (-,0) =0,
and by Theorem 4, this infimum is preserved. Thus the solution cannot exist past
the formal singularity time Ttorm := ac/pc. Hence we have the following Corollary.

5. Corollary. There exist initial data (M, gl.;;) satisfying the Main Assumptions
stated in Section 2.1 with the same constant Cinig, the same initial values v,, the
same real-valued functions G, and H,, but with changed constants a.,, such that the
conclusions of Theorem 4 hold for the Ricci flow evolution of (M, gl.,;) at all times
[0, Tsing). Moreover, Tging = Ttorm; there are no finite singular points in space; and
the singularity is Type-I and occurs at spatial infinity.

A proof of this Corollary is found in Section 3.3, following the proof of Theorem 4.

A schematic outline of our proof of Theorems 4 is as follows. The proof relies
on two pairs of supporting results, with Propositions 14 and 20 composing the first
pair, and Propositions 21 and 22 composing the second. In the process, we obtain
Theorem 3 as a consequence of the arguments we employ to prove Proposition 21.

Standard short-time existence results give us a smooth Ricci flow solution on
some time interval [0, Tiin], with some curvature bound. Propositions 14 and 20
take as their input a curvature bound on [0, Thin]; they output linear growth es-
timates for p, Vo, Xo on an interval [0,71] C [0, Tmin], albeit with a possibly large
constant that depends on the input curvature bound. As noted below the state-
ment of Theorem 4, we ultimately do not want estimates that directly depend on
the curvature. The fact that we get linear growth estimates for p,vq, Xa, however,
lets us then apply Propositions 21 and 22, which take as their input uniform bounds
on a suitable subinterval [0, 7T2] C [0,7}] and yield the conclusions of the theorem
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on some time interval [0, T3] C [0,T5]. Finally, we use an “open-closed” argument

to show that the supremum of ¢ > 0 such that the Theorem holds cannot be too
small, i.e., that it extends to min{7Tng, C; '}

1.4. Applications.

1.4.1. FEssential blowup sequences on noncompact manifolds. The main application
of Theorem 4 that we have in mind in this paper is to obtain new insights into
blowup limits of singularities on complete noncompact manifolds. We rigorously
explore the phenomena that occur if finite-time singularities form at spatial infinity
on noncompact manifolds. More precisely, we construct complete Ricci flow solu-
tions for which Type-I singularities occur at spatial infinity and which do not have
any Type-I singular points. The existence of such (singly-warped) examples has
been conjectured in [EMT11]. We show that for each of our (doubly-warped) ex-
amples, taking a blowup limit along some essential blow up sequence (see Section 4
for precise definitions) yields a gradient shrinking Ricci soliton in the subsequen-
tial limit, whereas taking a subsequential limit along some other essential blow up
sequence yields a complete ancient solution that is not a soliton. We summarize
these results in the following theorem:

6. Theorem. There exist complete, noncompact, k-noncollapsed Ricci flow solu-
tions (M, g(t)), with M := R x 8P x 8P, that develop Type-1 singularities at spatial
infinity.

On each of these solutions, there exist essential blowup sequences along which
a blowup limit yields a nontrivial gradient shrinking Ricci soliton, and there exist
essential blowup sequences along which no blowup limit can be a gradient shrinking
Ricci soliton.

The key idea is that on noncompact Ricci flow solutions, there can be essential
blowup sequences with no Type-I singular point limit, and these sequences may
or may not have nontrivial gradient Ricci soliton limits. However, one can obtain
soliton limits by imposing another condition. Indeed, we show the following in the
proof of Theorem 6:

7. Corollary. Under the conditions of Theorem 6, a blowup limit of the flow along
a sequence (x;,t;) with |z;] — oo and t; — a. is a nontrivial gradient soliton if
and only if
|Rm(z;, t;)]
i—oc supyg | Rm(-, ¢5)]|

In other words, to obtain a nontrivial gradient shrinking soliton limit, it is both
necessary and sufficient that | Rm(x;, ;)| — supy | Rm(-, ¢;)] as |z;| — oco. Clearly,
the subsequences we construct in Theorem 6 that fail to have soliton limits do not
satisfy this condition.

We obtain a related result for solutions on M = R x 8! x 8?. These are not
k-noncollapsed, hence do not have blowup limits except as étale groupoids, in the
sense considered by Lott [Lott10].

We believe that the arguments we use to prove Theorem 6 could easily be ex-
tended to construct x-noncollapsed examples on R* x 87 x 8P for any p > 2 with
the same properties that (a) their singularities occur at spatial infinity and that
(b) distinct subsequential blowup limits are possible.
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1.4.2. Weak stability of generalized cylinders. Stability of cylinders R* x 8P under
Ricci flow is a subtle question. Even though a round cylinder R* x 8P is expected
to be a stable singularity model in a suitable sense, it is not immediately clear how
to define its stability. In the case of mean curvature flow, it is shown in [CM12]
that the only entropy-stable! shrinkers are spheres, hyperplanes, and generalized
cylinders. Currently, there is no analogue of such a result in Ricci flow. Accordingly,
we adopt the following:

8. Definition. We say a solution g(-,t) of Ricci flow is weakly stable if for every
€ > 0, there exists § > 0 such that for any other Ricci flow solution §(-,t) satisfying
lg(-,0) = G(-,0)||co < &, one has ||g(-,t) — g(-,t)||[co < € for all t > 0 that both
solutions exist.

We prove the following result, which is stated more precisely as Theorem 29 in
the text below.

9. Corollary. Ricci flow of a direct product metric gey1 on RF x 8P is weakly stable
with respect to admissible perturbations of gey1.

Moreover, if g(-,0) is an admissible perturbation of geyi(-,0), then both flows
g(-,t) and gey(-,t) develop a singularity at the same finite time and that they stay
close to each other in the C° norm up to that singular time.

10. Remark. We note that the proof and conclusion of Corollary 9 also apply for
any direct product metric on R* x 8P x 89, for any nonnegative integers p and q,
as long as at least one of them is nonzero.

11. Remark. We further note that part (11b) of the Main Assumptions detailed
in Section 2.1, requires |V log Ua,init|2 to be bounded, which implies that inf uy init
cannot be attained. This means that Theorem 4 is primarily useful in analyzing
singularities that occur at spatial infinity.

Given initial data in which inf u, is attained in a compact set, one could adjust
Qg init downward in order to apply the Theorem. However, its output would not be
sharp in that case, because it then cannot describe the developing singularity all the
way up to the singular time.

2. ASSUMPTIONS AND PRELIMINARY ESTIMATES

2.1. Assumptions. We begin by establishing some notation.
Given a smooth function ¢ : Ry — R4, we define

/ 2 "
sl (s s s
ol = p (1+ 25, 7N
SER+ ‘P(S) ‘P(S)
We caution the reader that this is not a norm. The double bars are a reminder
that || - [|2,mon iS & supremum rather than a pointwise bound. The subscript is a

reminder that ||¢]|2,mon depends on two derivatives of ¢, and that the quantity in
parenthesis is constant if ¢ is a monomial.
Given a smooth function 9 : B x [0,T] — R, we define

(o T

|w|2,exp = 1/) 1/)2

1See definitions (0.5) and (0.6) in [CM12].
2These are understood in the sense of Definition 23, below.
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The single bars in |- |2 cxp are a reminder that it is a pointwise bound, i.e., a function
of z € B rather than a supremum. The subscript is a reminder that |- |2 cxp depends

on two derivatives, and that [Vi|2/4? is constant in space if ¥(x,t) = esn (@)
for some 2" € B, where dg (2, ) represents distance with respect to the metric
g(t).

In Section 2.2, we state some useful properties satisfied by || - ||2,mon and |- |2,exp-

We next define

G
(9) 9—{G:R+—>R+: IGlls = ||Gll2,mon + sup (25) <oo}.
seRy s

We note that s2 € G, so § # (). We again caution the reader that we are once more
using nonstandard notation: the symbol || - ||g defined here is not a norm, and § is
not a vector space.

Any choices of G, € G generate associated functions H, € G defined by

A

(10) Hgls1, ..., 54](sa) = ZGZ(;“ Ga(5a).
B=1

The notation reflects the fact that H, is intended to control the geometry on the
fiber ¥, but inputs information from the functions Gi,...,G4 used to control
the geometry of all fibers F1,...,F 4. For brevity, we write Hy[s1,...,54](54) =
H,(sq) below. The mnemonic theme is that we find it convenient to use G, H, € §
to control gradient and Hessian terms in (11b) and (11c), respectively. We assume
below that our choices of G, satisfy the inequalities |G ||g < C,, for some constants

Co, e {l,...,A}.
Throughout this paper, we assume that our initial data consist of a metric
A
ginit(x) =JgsB ({E, 0) + Za:l {aa + UO‘(I’ O)}gga
on the manifold M = B x F1 x --- x F4 satisfying the following:

Main Assumptions. There exist a constant Cinity and functions G, € G such that
forae{l,... A},

(11a) [Galls < Cinit,

(11b) Ya(2,0) < Cinit Ga (va(z,0)) for all x € B,
(11c) Xa(2,0) < Cinit Ha (va(z,0)) for all x € B,
(11d) p(x,0) < Chnie for all x € B.

We further assume that |V Rm[g(-,0)]|g(.,0) is bounded and that at least one jio >0,
i.e., that at least one fiber is a space form of positive Ricci curvature.

We note that our choices of G, € § may depend on the initial data, and that it
follows from our main results that the choice po > 0 forces a singularity at a time
Tsing < oQ.
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2.2. Basic inequalities. It is not difficult to verify the following useful properties

of [| + [|2,mon and | - [2,exp:
le1 + @2(l2,mon
ll¢162l2,mon
ll¢1 © 2[|2,mon
| 0 Y]2,exp
[Y192]2,exp
|1 + Y2]2.exp

<l
<l
< Jle1l2,monll©2113 mon>

< (10113 mon ¥ l2,exps

< |Y1l2,exp + [¥2]2,0xp5

< 2(|91]2,exp + [12]2,exp)-

We explicitly verify the fourth inequality, whose proof is slightly less straightforward
than the proofs of the others.

Proof. Let ¢ : M x [0,T] = Ry and ¢ : Ry — Ry. Then (p o) = ¢ (¥)h,

Vi(p o) = ¢'(v)Vith, and A(p 0 9) = @' (1) At + ¢ ()| V3>, Thus one has
(0= A)(pod) |V(pow)? _ Y@ (8: — A)yp — " ()| VY[? n (' ()2 Vel
o (poy)? o(¥) (p(2))?
_ W) (0= A) P (W) VY
e(¥) (8 () 2
Yo' () 2|V ?
* { o) } P2
from which it is easy to see that | 0 |2 exp < ||@||%7mon|w|2,exp' u

2.3. Differential inequalities. We now estimate the evolution equations of the
quantities we work with throughout this paper: v, Xa, and p.

12. Lemma. If v,, Xa, and p are as in (6), then there exists a uniform constant
Cy that depends only on the dimension vector N = (n,n,) such that we have the

estimates

1 |V'Ya| Ve
1 - A < —= 22 e,
(13) (01 = M) < —5 6(1% y

1 VXxa
(14) (at_A)Xag | X| +CNLXQ+CNLZ 2’70“
p=1 B

and
(15) (0 — A)p < — |[')O| +COyIP,
where

A 1/2

Xg
2w

The helpful structure here is that we have negative gradient terms in all three
equations. In (13) and (14), we also have what may be regarded as linear terms
with coefficients that can be bounded in terms of the quantities under consideration;
n (14) and (15), we have inhomogeneous terms that may be similarly bounded.

1/2 Z’Yﬁ +

B=1
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Proof. In the proof, we use the same symbol Cn to denote constants that might
differ from line to line but that all depend only on the dimension vector N = (n, ny).
An easy computation (see Appendix C) implies that

A V200 (Va, VUg)

U

|V, |*
ol -

o

((% — A)%[ = —2|V2,|? +2

Using Cauchy—Schwarz and Kato’s inequality (|[V|Vva|| < [V2v4|), we get (13).

To obtain (14), note that in Appendix C we compute that

(615 - A)Xa S —2|V3Ua|33 + 4Rm'B (VQ,UO“ V2Uo¢) + 2”;2’701)01
— 2u3*(VUa, VYa)Va + 4ug 2 (Va, VUg ® Va)

1
- 2“;1<V2vm V27a>g'5 + Nu;27a{ — Xa t Zu;1<v Vo, V7a>}

A
+ CN(Z |V10gua|2) V200 || V200 g -

a=1

An easy computation using results about the Levi-Civita connection I' derived in
Appendix A yields

_ |V |v2v°‘|!27'3 33 - _ |VX°‘ 33 — |VX0¢|2

_ v3 2 <
| Ua"‘”‘ - 2Xa 2Xa 2Xa

and

X3/2 71/2 X1/2
”UJ71<V2UQ7 V27a>g‘3’ <Cn ( + |V3v0t|gf3>

¢ Uq Uq

3/2
<Oy (—X“ 4 —%;QC“) + V32, .

U o

Again using results about the Hessian from Appendix A, we see that
! /2
V2va] < O (xl/g + 5—5 7&”) :

implying that

A
V200 Vvalss < O xa+ Y 25 7% |

p=1 B
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where we use the Cauchy—-Schwarz inequality. Putting these estimates together
yields

|VX |2 12 12 A s
O — A)xa < ——22 + CnXa 18
(0= A)xa < e X |7 +ua Z:fs
xa/ 22 2y
+oy [ ey (W ﬁ) Yo
u u
« ﬁl ﬁ
[V xal? Ax”
L N 3% > z”ﬁ
Xa B=1 Up B=1
VXa
< - | Xl +CNLX0¢+ONLZ 5 Yo
2Xa =1 Ug

as claimed.

Finally, as in Appendix C, denote by H the (integrable) horizontal distribution
of M and by Rmgcgg¢ the restriction

Rmygegac := R |0 peoraasc
Our computation in Appendix C shows that p evolves by
((% - A)p < —2|VRm |§3 + Cp*?
+ 2 i na{ugz Rmg (VQUO“ V2Ua)
— Qu;?’ Rms (V%a, Vi, ® Vva)}

A
+Cx (2 IV logual?) | Rin |y, | Rmseaac |y

a=1

Claim 35 in Appendix C shows that V Rm vanishes if exactly one index is vertical.
Thus by Kato’s inequality for tensors, we have

IVols, |Vp|?
_|VRm|§3S_|V|Rm|9‘B 53:_ pr T P '

Moreover, using our computations of curvature components in Appendix A, we
immediately get

1/2

A A
| Rmgase |y < Cy ZZ—% Z

B=1 B=1
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All of these together imply that

1/2
V|2 A 172 A oV 2x s
(0, — A)p < —MJFCN/F’/MCNZ%jLCNZiﬁ
p U u
B=1 B B=1 B
A 5 A N A X1/2
ovy B (LB
Pl —1Us 5oy us
v 2
< _ﬂ + C'NL37
p
yielding (15). This completes the proof. (Il
3. ANALYSIS

In this section, we prove estimates for solutions of parabolic equations on non-
compact manifolds evolving by Ricci flow. Among the results we obtain below are
Propositions 14, 20, 21, and 22 which, as discussed in the introduction, play a major
role in the proof of Theorem 4.

3.1. A noncompact maximum principle. The goal of our first result, Lemma 13,
is to obtain estimates for a function U in terms of a “comparison function” V and a
“control function” W. For example, we often take U to be a function that we want
to estimate on a short time interval [to, t1], V' to be the same function at the initial
time ¢, and W to be a large constant that depends on bounds for the curvatures
on [tg,t1]. Our proof of the lemma proceeds by applying a noncompact maximum
principle to the quantity U/V, thereby allowing us to bound it suitably from above.
We use Lemma 13 extensively in the proofs below.

13. Lemma. Let (M, g(t)) be a smooth solution of Ricci flow for t € [0,T], and let
UV,W :Mx [0,T] = Ry be smooth functions. Suppose that there exist constants
0 <c<1<C such that
[VU[?

U

(8 =AU < CUW + VW) —c
(0= 2)V] | [vVP?
4 V2
|0 = D)W |+ |[VW|* < CW,
W<,

<CW,

where the Laplacian and norms above are computed with respect to the solution g(t)
of Ricci flow.
Then there exist A = A, C) and T" = T'(c,C,T) € (0,T] such that for all

te0,T"],
(8t—A){%—/\t<1+%) W} <0.

Moreover, if there exist a point ¥’ € B and a constant C' such that one has

U(z,t) < C'ecld;fJ(w/’m)V(x,t) on [0,T"], then fort € [0,T],

< sup 290 oz (a,1) <1 + sup U(y’0)> .

yeM V(yv O)
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Proof. We define X = U/V and compute that

(8, — AU (VU,VV) |VV|? (0r —A)V
#—FH(T—QX V2 - X v
We split the second term on the RHS above as follows:

(VU,VV) (VU,VV) (VU,VV)
In what follows, we denote by C' = C’(¢, C) a constant that may change from line
to line. We use the weighted Cauchy—Schwarz inequality to estimate the first term
on the RHS of (16) by

(0, — A)X =

(16)

(YU, VV)| _ c|VUP? |, |[VV]?
2—c)X < = C X
(2-c) ov 2oy ¢ Tvr
and rewrite the second term as
(VU,VV) _c |VU|2 |VV|2 |VX|2
X uv _2(UV X V2 X)’

obtaining

U @ -2V ve| ewxpe

1
(&:—A)X < v {(&:—A)U-ﬁ-c i v 72 5 X

Thus our assumptions on U and V imply that

cu+vyw o, c|VX|?
— <~ /7 i
(0 —A)X < v +COWX - 5
VX|?
< | '
(17) SCCW(I+X) -5

Now for A = A(¢,C) > 0 to be chosen, we define Y = X — (At)(1 + X)W and
compute that
(0 —A)Y = (1= XW) (0, — A)X — Xt(1+ X) (0 — A)W
A1+ X)W + 2M{VX, VIV).
Ift <Ty:=1/(A\C), then 1 — XtW > 0, so we may apply estimate (17) to the first

term on the RHS above. We then use our assumption on ‘((9,5 — A)W’ to estimate
the second term and apply Cauchy—Schwarz to the last term, obtaining

2
(0 — A)Y < (1 - \W) {C’OW(I +x)- ¢ |V§|

} +OMW(L+ X)

— AW+ X)+ M ('VX * + X|VW|2)

By using our assumption that |[VIW|? < CW, we simplify this to
(0, —A)Y WL+ X){ = A+CC'(1 - MW) +2CAt}
|VX 2

+ {——1—/\tW + At}

Then choosing A = 2C” and using our upper bound for W, we obtain

IVXI (-1

(O =AY < W1+ X)CC'(—1+4Ct) + —— S o (Ce+2)t }
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The RHS is nonpositive provided that ¢t < Ty = % and t < T3 :=
Thus we choose T' = min{T1,T5, T3}.

Finally, we justify applying the weak maximum principle on the noncompact
manifold M in the form detailed in Theorem 12.22 of [CCGO08]. Specifically, since
W is bounded, the assumption that U(z,t)/V (z,t) < Cre o (#2) implies easily
that Theorem 12.22 applies to Y (z,t) — sup, <y Y (y,0), allowing us to conclude

C
3CC (Cct?) "

X(z,t) < MW (z,t)(1 + X (z,t)) + sup X (y,0),

implying that

At

[ —
X(a,t) < 1— MW (z,t)

W(a,t) + sup X (y, 0):

1
1 — )\tW(.f,t) yeEM

We can decrease T" if necessary to make AtW (z,t) small enough for all ¢ € [0,7”]
so that the following holds:

X(z,t) < At(l 2N (2, t)) W(z,t) + (1 + 2)\tW(3:,t)) sup X (y,0)

yeM
= sup X(y,0) + W(x,t) ()\t + 2022 W (, 1) + 2Xt sup X (v, 0))
yeM yeM
< sup X(y,0) + 2\W (z, 1) (1 + sup X(y, 0)).
yeM yeM
This completes the proof. (I

3.2. Main estimates. We now establish two pairs of Propositions that provide
the key results we need to prove Theorem 4.

In Propositions 14 and 20, we obtain bounds for v, x, and p on a solution that is
smooth on a compact time interval [tg,1].> A strength of these results is that they
allow us to extend bounds that hold at to to the entire interval [to, 1], which cannot
be taken for granted because M is noncompact; a weakness is that the constant we
obtain for these bounds depends on an upper bound for the full curvature tensor
on [to, tl].

In Propositions 21 and 22, we show that if the functions v, and their derivatives
satisfy uniform bounds on an interval [0, 7], then those bounds can be improved,
independent of the curvature, at least on an interval [0, T%], with 0 < T\, <T.

14. Proposition. Let (M, ginit) satisfy the Main Assumptions in Section 2.1.
Suppose a solution g(t) of Ricci flow exists for [to,t1], satisfying the initial bounds

p(z,to) < CoCinie and

(18)

Va(2,t0) > 0, val(z,t0) < CoCinit Ga (va(®,t0)), Xal@,to) < CoCinit Ha (va(z,t0)),

along with the uniform bound sSup(, ;e xj1o,,] | Rm(z, )| < C1, for some constants

Co, C.

3In Step 1 of our proof of Theorem 4, we initially apply Propositions 14 and 20 with tg = 0.
In Step 2 however, we need to apply them at some tg > 0.
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Then there exists C' = C'(Cinit, Co, C1) and T' = T'(Cinit, Co, C1) € (to, t1] such
that for all t € [to, T'], one has

) Vo (2, t0)

1+ C'(t—to)
19b) Ya(@, 1) < CoCnit(1 + C' (t — t0)) Ga(valw, to)),
19c) Xa(2,t) € CoCinit(1 4 C'(t — to)) Ha (valz,t0)),
19d) p(z,t) < CoCinit (1 + C'(t — o).

19a) Vo (T, t

Y]

~ o~ o~ o~

Because its proof is lengthy, we prove Proposition 14 in a series of steps that are
contained in Lemmas 15-19. In the course of the proof, we use the same symbols
C’" and T’ for possibly different constants that depend only on Ci,i, Co, and Ci
— with C” allowed to grow but remain finite, and 7" allowed to shrink but remain
positive.

Our first observation is needed because to prove our Main Theorem, we need to
apply Lemma 13 in cases where V may be independent of time, but AV and |[VV/|?
are computed with respect to g(t).

15. Lemma. Suppose that the assumptions of Proposition 14 hold.
Then there are a constant C'(Cipit, Co, C1) and time T'(Cinit, Co, C1) € (o, t1]
such that on [to,T’], we have
|V Rm[g (t)Hg(t =
|Vva(a:,t0)|
va(w,to)2 -
1A gty val®, to)lg()
Vo (I; tO)

Note that the final two collections of inequalities can be summarized as

(20) |’Uo¢($7t0)|2,cxp S O/-

O/

<.

Proof. If ty > 0, our assumed bound on | Rm | at time ¢ = 7 and regularity theory
for Ricci flow imply the stated bound for |V Rm |. If ¢y = 0, we note that the Main
Assumptions outlined in Section 2.1 include an upper bound for |V Rm| at time
t = 0. Then Theorem 14.16 of [CCGO08]) lets us bound |V Rm| on [¢o,T"].

The subsequent inequalities follow because they hold at time ¢g, and because 0;g
and O,I" are controlled by our bounds on |Rm | and |V Rm |. O

16. Lemma. Suppose that the assumptions of Proposition 14 hold.
Then there exist a constant C'(Cipit, Co, C1) and time T'(Cinit, Co, C1) € (to, t1]
so that for all t € [to,T'], estimate (19a) holds.

Proof. First we claim there exists a T” so that vq > 0 on M X [tg, T"].
The Ricci flow equation restricted to the metric on &, is

at(uaga) =—2Rc |a’

where Rc ‘a denotes the Ricci curvature of planes tangent to F,. Using the fact
that g, is independent of time, we can rewrite this as

Ot(log ug)uaga = —2Re |a.
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Since | Rmg(t)]| < Cy on [tg,t1], we get a comparable bound for |Re|, implying
that
yatlogua’ <,
where C’ = C'(C4). Hence for all ¢ € [to,t1], we have
(21) Ua(,t) > e ) (ag — pato).

To prove the claim that v remains nonnegative for a short time, we first show
that given any d > 0, we have v, > —dt on a time interval [tg,T"], where T" could
possibly decrease in the proof but is independent of §.

Equation (21) implies that us > (aa — fato) (1 — C'(t —to)), so

(22) Va(2,t) = Ua — (aa — fat) > —C" (t — to).

We fix T' so that T — t9 < (a — pat1)/(2C1) and let T € [tg, T’] be arbitrary.
Because Cy (1 — to) < C1(T" — t9) < 2 (aq — pt1), we may let

(23) €c (01(7' — to), Ao — uatl)

be arbitrary. Then v, + € > 0 on [to, 7], so each function v, = (vy + €)1 is well
defined on that time interval. Using that v, (z,t) evolves by
Yo
24 O — Nvg = ——,
) (0~ B)ua = - 22

a straightforward computation yields
(0 — A)vac = |V10g Vo c|*vac <“‘* te_ 2> .

Our choice of € implies that

Ua—i—e: Vo + € < Vo + € <1

U Ua+aa_ﬂat_va+aa_ﬂatl_

for all ¢ € [to,T’] and thus that

2
((% — A)U(M < —|V10gva76|2va,€ = —M.
Va,e
Let U(z,t) = va,e(x,t), V(z,t) = va,e(x,t0), and W = C’. Observing that V is
independent of time and using Lemma 15, one sees that
0= A)V] | [WVP _ [Agra(mto)l | [Voal@ bl
(25) v V2 N ’Ua(x, tO) +e€ (UQ(.I, tO) + 6)2
<.

Note in particular that (25) is independent of €. For a sufficiently short time,
Vae < (6 = C'(1 —t9))™! < o0. So U is bounded in space, and the bound (25)
implies |V1og V| is bounded, so V' decays at most exponentially. Thus, Lemma 13
can be applied to U, V, and W as defined above to conclude that

Va,e(m, 1) < (14 C' (t — t0)) Va,e(z, to), t € [to, ],

where C’ = C'(Cinit, Co, C1) is independent of e. Letting e \, C1 (7 — to), which is
the lower bound imposed by (23), we find that

C1 (1 — o) Cu(r — to)
o+ Cilr—to) > -
Vo + C1 (T 0)—1+O/(r—t0)_1+c’(tl_t0>
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Because T € [tg,T'] is arbitrary, this implies that

1
> - - _
Vo = <1 1+ Cl(tl — t0)> Ol (t to)

for all ¢t € [to,T'], which improves (22) by a fixed factor. Repeating this bootstrap
argument k times (which can be done without changing T"), where

1 k
- <
(1 l—l—Cl(tl —to)) Gr=9

proves that v, > —d(t — to) on [to,T']. Because 6 > 0 is arbitrary and 1" is
independent of 4, it follows that v, > 0 on [tg,T’], as claimed.
We next prove a better quantitative lower bound for v,, as long as v, (z,t) > 0
holds, that is, for ¢ € [tg,T"], where T" is some possibly smaller time T"(Ciyit, Co, C1).
The method is very close to that used in the proof of the claim that v, > 0, so
we avoid unnecessary repetition. Let € € (0, a, — pat1) be arbitrary, and again let
Va,e := (va + €)1, Note that in contrast to the previous argument, where (23) is
needed, we have proven that v, > 0 above, hence we know that v, . is well-defined
and bounded by ¢! for all € > 0. Then as in the arguments above, we find that
2
(0 — A)vac < _[Voad®

Va,e

Now let U(x,t) = va.(z,t), V(z,t) = vac(z,to), and W = C’. Again using
equation (25) and the fact that U is bounded, we can apply Lemma 13 to obtain

Va,e(x,t) < (1+C'(t —to)) vae(z, to),
where C’ = C'(Cinit, Co, C1) is independent of €. We let € N\, 0 to conclude that

’UQ(I,to)
— 2 < palx,t
T o=t = Ve

on M x [to, T"]. O
17. Lemma. Under the assumptions of Proposition 14, there exist C'(Cinit, Co, C1)

and T = T'(Cinis, Co, C1) € (to,t1] such that for all t € [to,T'], estimate (19b)
holds.

Proof. Since we have (21), we can find 7" sufficiently small so that
1
(26) uo(z,t) > 3 iﬁfua(-,to) >0 for t € [to, T"].

Recalling that* Rm[gs,] = ca g7, ® g7, and using formula (67), which we derive
in Lemma 33 in Appendix A, one sees easily that the bound |Rm[g(¢)]| < Cy on
[to, t1] implies that

_ 1
oty = 5|V (logug/*)?| < C1.

Combining this with (26) implies the existence of C' = C’(infy; ua (-, t0), C1) such
that
(27) To — 4V (ogul/?)? < '

ua

1See (65) for our normalization of the Kulkarni-Nomizu product .
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for all (x,t) € M X [to, T’]. Using (13) and (27) yields
1 Ve l®
2 Yo

We apply Lemma 13 to (28) with U(z,t) = va(z,t), V(2,t) = Ga(va(z,t0)), and
W(z,t) = C’. To see that all assumptions of Lemma 13 are satisfied, we need to
check that |V|2 exp is bounded by C’. Indeed, by (12) and (20) we have

(29) |V|2,cxp < HGQHQ mon |'Ua(xvt0>|2 exp < C'.

(28) ((% - A)”ya <O Yo —

We also need to check that Ew 3 < 09w @) for ¢ € [to,T"], where z¢ is
some fixed point in B. Indeed, since Vu, = Vu,, (27) implies that for every
t € [to,T"], the function u,(-,t) grows at most exponentially in space and thus, for
every t € [to,T"], U(z,t) = Ya(z,t) grows at most exponentially in space as well.
On the other hand, by (29), |V log V| is bounded, so V(z, t) has at most exponential

decay. Hence,

%(z,t) < @M@ on M x [to, t],

as desired.
We can finally apply Lemma 13 as indicated above to conclude that for ¢ €
[to, T"], we have

(30) Yalz,t) < (1 4+ C" (t —t9)) CoCinitGa (Ve (z, t0)),
as desired. O

18. Lemma. Under the assumptions of Proposition 14, there exist a constant C' =
C'(Cinis, Co, C1) and a time T' = T'(Cinit, Co, C1) € (to,t1] such that for all times
t € [to, T'], estimate (19¢) holds.

Proof. Assume T” € (to,t1] is chosen so that both (19a) and (19b) hold on [to, T”].
Recall that in Lemma 12, we compute that x, evolves by

= (s 1|Vl
(0 = A)Xa < CNLxXa + ONLY |5 | Yo — :
p=1 \ "8 Ao

[\

where L := Zg 1 ZB +Zg 2 uB +p 12 p:=|Rmsg |?, and Cx depends only on

the dimension vector N = (n,ny). The curvature bound | Rm[g(t)]| < C; and (27)
imply that |L| < C" on M X [tg, T’]. Hence we have

A
—A)va < C'va / 8 o — = ————
(O —A)xa < C'xa +C Zu% o5
p=1
y (19a) and (19b), we see that for ¢ € [to, T"],

A
ﬁ Gp(vg(@,t0)) v (0

IF|13>
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Let U(x,1) = Xa(. 1), V(2,1) = Y52y S5 Galva(, t0)) = Ha(va(z.t0)),
and W = C’. We verify that V(x,t) satisfies the hypotheses of Lemma 13. By using
estimate (12), we obtain

Gs(vg(x,tp))
|V|2cxp§’2 B ﬂ

+ |Ga(va(z;t0))]2,exp
et vﬁ x,tp)

2,exp

+ |Ga (’Ua (Ia to))|2,cxp-
2,exp

Note that by (12) and (20), we also have
|Ga(va(xvt0))|2,e><p < HGQH%,mon |Ua($=t0)|2,eXp < Cgcl'

Moreover, we may regard % as a composition of functions ¢g(s) :=
ﬁ k)

and vg(z,to). Then using (12) again, we obtain

Gp(vs(z, b))

< 2 t :
’U% (I, tO) 2.exp — ”SDBHZmon |’UB(.’IJ, 0)|27‘3XP

By (20), we have |vg(x,%0)|2,exp < C'. It is easy to see that

sl s|GR(s)] ~
L 19<Cs5+2
©p Gp(s) g

and

slel _ s?IGE(s) | sIGG(s)l

< +
©p(s) Gp(s) Gp(s)
These imply that

+6 <5Cs +6.

GB(U,@(‘Tv to)) <
U%(.I, to) 2,.exp

and hence that
(31) [Visexp < €.

Recall that in this proof, we choose U = xo = |VVuqalg,. Our assumption
that the curvature is bounded by C; implies in particular (by Remark 34) that
|u=tVVuy — 1/2u,?Vu, ® Vu,| is bounded by C’. Then (27) implies firstly that
luz1VVu,| < €7, and secondly that u, grows at most exponentially in space, so
that x, grows at most exponentially in space. On the other hand, by (31), we have
that V' (z,t) decays at most exponentially in space. These two estimates yield the
bound % < C'eC dgv) (,m0) |

We can now apply Lemma 13 to our choice of U(x,t), V(z,t), and W(z,t) to
conclude

Xa(z,t) < CoCinit (1 + C" (t — to))Ha (va(z, t0)),
where we use the initial condition that x.(z,t0) < CoCinit Ha (va(:t, to)). O
19. Lemma. Under the assumptions of Proposition 14, there exist a constant C' =

C'(Cinit, Co, C1) and a time T' = T'(Cinit, Co, C1) € (to,t1] such that for all times
t € [to, T"], estimate (19d) holds.
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Proof. Recall that in Lemma 12, we compute that p(z,t) = | Rm[gs](x,t)| evolves
by

2
(0 - A)p< oyr? - VA

1/2
where L = Z§:1 Z—g + Z§:1 AR

U

+ p'/2, and Cx depends only on the dimension

vector N = (n,nq). As in the proof of Lemma 18, we conclude that |L| < €’ on
M x [to, t1] and hence that

2
(@ —A)p<c.orr— VoL

By Lemma 17 and Lemma 18, there exist constants C’ and T’ € (to, t1] so that for
all ¢ € [to,T'], we have

A A L1)2

Go(va(z, tp)) H) " (vo(z,to))

L<C AL 2 pt/?
<(; ’ng(xvtO) azzl ’Ua((E, tO) P
< C'(Ca +p'?),

where C' is a bound on sup,_ cp, (ZA Galsa)

A H,(sa) . .
am1 ST T dam1 50 ), d-e., a uniform
constant. Hence,

2
(@ —A)p <l (p+1) - VO

P
We apply Lemma 13 with U(z,t) = p(z,t), V(z,t) = 1, and W(x,t) = C’ to
conclude that for all ¢ € [tg,T"], we have

p(a,t) < CoCinit(1 + C'(t — t0)).

Combining Lemmas 15-19 completes the proof of Proposition 14.

Recall that the estimates (19b) and (19¢) for v4(x,t) and x.(x,t), respectively,

that we prove in Proposition 14 have v, (z, tg) on the RHS. Our next result improves
those by substituting v, (z,t) for v, (z,to).

20. Proposition. Suppose the assumptions of Proposition 1/ hold.
Then there exists C' = C'(Cinit, Co, C1,t1 — to) so that we have

Yoz, t) < (14 C'(t — t9)) CoCinit G (Vo (z, 1)),

Xa(z,t) < (14 C'(t = to)) CoCinit Ha(va(, 1)),
for all t € [to, T'], where T' is the same as in Proposition 1.

Proof. By the chain rule, we have

01 (Ga(va)) = Gi(va) Drva,
which implies that

18,Go(va (1)) = Vo (2, )G, (Vo (2, 1))

Go(va(z,t))

T
< CuGitun(at) (el Rl ),

Vo (2, 1) v2(z,t)

(32)
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By (19a) and (19b), which hold for ¢ € [tg,T"], we have
|Vua|?(z,t) < (14 C' (t —t9))CoCinitCov? (z, to)
< (140" (t—10))*CoCinit Cavl (2,1
for all t € [to, T']. This yields
[Veof*
2

(e

(33) S (1 + C/ (f - to))BCOCinitca for te [to, TI]

To bound %, we note that by (19a) and (19c¢), we have
Xa(-rv t) S (1 + OI (t - tO))COOinitHa(va (I; tO))
< (140 (t—10))CoCinit Cavi(w, o)
<A+ C' (t—t9))>CoCinitCava(z, t)?,
implying that
V20,2

2
Vo

3 _
< (1+O’ (t—to)) CoCimisCay  for t € [to, T,

where C,, is a uniform constant. Combining this estimate with (33) and (32) yields
|0 1og Ga(va(x, 1)) < (14 C' (t — t0))* CoCinitCa,
and hence
(34) Ga(va(z,t)) < (1+C'(t —to)) Galvalz, to))  forall te [to, T].
We combine (19b) and (34) to conclude that for all ¢ € [to, T’], we have
Yoz, t) < (14 C" (t — t9))CoCinit Ga(Va(,t)).
Finally, using (19a), (19¢), and (34) yields
Xa(x,t) < (14 C" (t —t0))CoChmit Ha (va (1))
for all ¢ € [to,T"], as claimed. O

We now prove our second pair of Propositions, which provide control of the
curvatures by a constant that depends only on the initial data. Specifically, in
contrast to Propositions 14 and 20, the constant we obtain below is independent of
the bound sup(, 4ye s x [t0,41] |Rm(z,t)| < Ch.

21. Proposition. Let (M, ginit) satisfy the Main Assumptions in Section 2.1.
Suppose a solution g(t) of Ricci flow exists for [0,T) and satisfies

(35) P < Cinit, Ya(2,0) < CinitGa(va(,0)),  Xa(#,0) < Cinit Ha(va(,0)).
Furthermore, suppose that for t € [0,T], we have vy (x,0) > 0 and

(36a) Ya(@,t) < 2 Cinit Ga (va(z, 1)),

(36D) Xa(2,t) < 2 Cinit Ha (va (2, 1)),

(36¢) p(x,t) < 2 Cipit-
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Then there exists Cy depending only on Ciyyg and N = (n,nq) such that for
t € [0,min{T,C;'}], one has the bounds

Yo, 1) < CinitGo(va(z, 1)) (1 + CitE, (va(x,t))>,

Xa(xat) < Chnit Ha (Ua(fE,t)) (1 + C, t),
p($,t) S Cinit (1 + C* t)7

where
Ga (’Ua (z, t))

Bo(vale,1)) = — s

Proof. The proof is very similar to the proof of Proposition 14. We let C, =
C'(Cinit) be a uniform constant that may increase from line to line, whereas C, is
the final constant that appears in the statement above.

To obtain the desired bound for v,, we recall estimate (13),

Ve 1|V7a|2
CA)a <6 (22} -2
Gl _6<U2)Fy 2 Ya

By (36), we have
Ya(x,t) < 2 CinitGa (va(z, t)),

and hence

1|V7yal®
SR

Our goal is to apply Lemma 13 to U(z,t) = vo(z,t), V(2,t) = Ga(va(z,t)), and
W(z,t) = Eq(va(x,t)). In order to do this, we need to verify that the hypotheses
of Lemma 13 are satisfied. By (12), we have

(at - A)’Ya S C; Ea(va) Yo

|GOZ(UO¢)|27€XP < HGQH%,mon |U0¢|2,eXp < Ci |U0¢|2,6Xp
and

(38) |V |2.0xp = 2Z—§ < O Bo(va).

«

Thus,
|Ga(va)|2,exp S Ci Ea(’l)a).

On the other hand, E,(vy) < ||Gallg < Cy and

|Ea(va>|27CXp < |‘Ea||§,mon|va|2ﬁcxp'

It is easy to see that E,(s) = Gols) < C satisfies IEall2,mon < C% and that

52 =

Es(vq) < C is bounded. Hence we have
|Ea(va)l2,exp < O,
implying that
’(at - A)Ea(va)’ + [VEa(va)[? < C Ea(va).
We can now apply Lemma 13 as indicated above to conclude that there exists
Cl = CL(Cinit, N) and Ty = Ty (Cinit, N) so that for all ¢ € [0, min{T}, T}], we have

(39) Ga(va(fli,t)) < Chnit + O*t (1 + Clnlt) Ea( a( 7t))

< Chnit (1 + Cy t Eq (va(z, t)))
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This yields

Yo (2, 1) < Cinit Go(va (1)) (1 +C tE, (va(:t, t)))
for t € [0, min{T, T.}], as claimed.

To obtain the bound for x,, we recall estimate (14), namely

A
(at_A)XQSONLXa‘FCNLZZ_g'Ya__ )
g=1 8
A~ A x5’
where L = 5, é + > 51 jﬂ
N = (n,nq). By the assumptions in (36), we have L < C’, and

+ p'/2, and the constant Cy depends only on

A
> Z—‘; Yo < C Ha(va),
p=1"#

where C! is a uniform constant depending only on Cini. Thus,

1 |Vxal?
(at_A)XQSCNXa+CNHa(Ua)_§| ; | .

We want to apply Lemma 13 to U(z,t) = xa(z,t), V(2,t) = Ha(va(x,t)), and
W(x,t) = C,. By (12), the fact that ||Gall2,mon + || Eall2,mon < C%, (36), and (38),

we have

[Ha(va)|2,exp < | ZEﬂ(UB)|27eXP +1Ga(va)l2.exp
<2 Z |Es(vs)l2,.exp + |Ga(va)l2,.exp

VYo, |?
< O lualoeny = 207 V%01
’Ua
<o Gelte) <o
v

By Lemma 13 applied as above, there exist C, = C",(Cinit, Cn) and Ty = Ti(Cinit, Cn, )
such that for all ¢ € [0, min{T, T }], we have

Xa(z,1) ’
————— < Chniy + C, t (1 + Chnit),
Ha(a(, ) = Cmit 7 Gt (14 Ginie)
which implies that

Xa(.’li,t) S C'imit Ha(’l)a(.’li,t)) (1 + C*t)

To obtain the desired bound for p(z,t), we recall estimate (15),
\V4 2
sz onis T,

where L is as above, and C'y depends only on N= (n,nq). Hence,
[Vp|?

((%—A)pSOLLQ— P
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As in Lemma 19, using (36), we obtain

2
(at—A)psc;(pH)—cN@.

We take U(z,t) = p(z,t), V(z,t) = 1 and W(z,t) = C,, and apply Lemma 13.
It gives us the existence of C., = C%(Cinit, T, Cn) and Ty = Ty (Cinit, T, Cn) such
that for all ¢ € [0, min{T, T\ }|, we have

p(z,t) < Cinit + CLt (1 4 Cinit),
implying that
p(xvt) S Cinit (1 + C* t);
for all ¢ € [0, min{T, T\ }], where C. is a uniform constant.

Finally, we increase C, if necessary so that C,T, > 1. This concludes the proof
of Proposition 21. O

Next, we improve Proposition 14 by showing in a precise sense that the quantities
v are uniformly equivalent for ¢ € [0, min{T, C;1}], where [0, T is the time interval
on which the hypotheses of Proposition 21 hold. As we note in the Introduction,
Theorem 3 follows easily from the arguments that we use to prove Proposition 22.

22. Proposition. Let (M, ginit) satisfy the Main Assumptions in Section 2.1, and
let T and C, be as in the statement of Proposition 21. Then the quantities v, are
uniformly equivalent: for t € [0, min{T, C71}], we have

1
Fva(x,t) < 0 (2,0) < Cyvg(z,t).
Furthermore, if in addition to the Main Assumptions, it is also true that
Ga
(40) () _ 515 5, 0),

s
then for all t € [0, min{T,C;1}],
Va(z,t) = (1 + o(1; va(x,0) \, 0)) va(z,0).
Proof. Tt follows easily from (2b) that there exists Cy = Cn(n,nqo) such that
2 2
Vg <Cn |[VVu,| n Vo Vg v
Ga — Nat + Vo Vo Qo — Nat + Vo ’Ug

By Remark 34 and Proposition 21, there exists C such that the quantity in paren-
theses on the RHS of (41) is bounded in absolute value by

Ho(va(x,t))  Ga(valz,t))
Vo (, 1)2 Vo (z, 1)

(41) Opve = Av, —

(42) c, < C.Gall,

1/2
where we have used that |V2v,| < x(ll/2 +C, E?:l % 7;/2. So by Proposition 21,
we have

1/2
1/2 A 1/2
V204 < X! e o7 vo!
Vo Vg * 5221 vg Vg
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This yields (42). Hence 0;vq < CnCi||Gal| vo. This proves the first claim.

To prove the second claim, we observe that it follows from assumption (40) at
t = 0 and the first claim that for any € > 0, there exists § > 0 such that if
Vo (x,0) < 8, then G (va(w,t)) < evZ(z,t) uniformly for ¢ € [0,T). At any = with
Vo (2,0) < d, one can then bound the quantity in parentheses on the RHS of (41) in
absolute value by

Ho(va(w,t))  Ga(va(z,t))
v (T, 1)? Vo (T, 1)2 se

Hence at such z, one has v, (x,t) < eCn va(x,t). The second claim follows. O

3.3. Proofs of main results. In this section, we prove Theorem 4 and Corollary 5.

Proof of Theorem 4. We define
Tup := sup{T € [0, Tying): the conclusions of Theorem 4 hold on [0,77}.

We prove the theorem in two steps.

Step 1. We claim that Ty, > 0. To see this, we recall that by [Shi89] and [CZ06],
there exists Timin(n, Mo, Cinit) > 0 such that Ricci flow with initial data (M, ginit)
has a unique smooth solution on [0, Tynin]. We first apply Propositions 14 and 20
with tg = 0, t1 = Tmin, Co = 1, and C; = C1(Thin) < 00. They yield a constant C”
and a time T} € (0, Tiin] such that the estimates

S Cinit(l + Clt) Ga (Ua ((E, t))u
S Cinit(l + Clt) Ha (’Uoz(xu t))u

hold on [0,77]. We may then choose Ty € (0,7T7] small enough that C'Ty < 1. This
ensures that the hypotheses of Propositions 21 and 22 are satisfied on [0, T5].

Next we apply Propositions 21 and 22 on [0, T5]. They yield a time T3 € (0, T%]
depending only on {Cinit, 7, 1o } such that the estimates claimed in Theorem 4 hold
on [0, T3]. It follows that Tg,p, > T3 > 0, thus proving the claim.

Step 2. We next claim that Ty,p > min{Tune, C;'}. We prove the claim by
contradiction, so we may suppose that Ty,, < min{Tsing,C*_ 1}. Then because
Tsup < Tsing and the inequalities in Theorem 4 are of the form < rather than <,
they hold on [0, Ts,p] by continuity. So we may apply Propositions 14 and 20 with
to = Tsup; ti1 =11 € (Tsup7 Tsing) arbitrary, OQ = 1+O*Tsup; and Ch7 = C; (Tl) < O0.
They yield a constant C” and a time Ty € (Tsup, 71] such that the estimates

Vg ({E, Tsup) Va (ZE, 0)
ol 1) > = ’
Va (1) 1+ C"(t — Toup) Ci (1 +C"(t - Tsup))

0(337 t) S (1 + O*Tsup) Oinit (1 + O//(t - Tsup))v
'-Ya(xv t) < (1 + O*Tsup) C(init(1 + O//(t - Tsup)) Ga (va(x, t))v
Xa(xv t) < (1 + O*Tsup) C(init(1 + Oll(t - Tsup)) Ha (’Ua(x; t))a

hold on [0, T4]. Because 1+ C, Ty, < 2 by assumption, these estimates let us apply
Propositions 21 and 22 and thus obtain the conclusions of Theorem 4 on [0, T5] for
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some 15 > Tyup. By definition of T, this is a contradiction, which proves the
claim. O

Proof of Corollary 5. We recall that by assumption, at least one fiber is a positively
curved space form, and that we have chosen ¢ so that 2= = min{je : g > 0}
Because the constant C, in Theorem 4 depends only on “our Main Assumptions,
which are independent of ac, we may without creating circular dependencies shrink
ac (where, abusing notation, we continue to denote this quantity by ac) to create
new initial data g/ ;, for which a. = uc/Cy. Note that we do not change v, (-, 0).

Now we apply Theorem 4 to Ricci flow originating from ¢{ ;. The Theorem
controls the evolving metric on [0, min{Zng, C;'}), for the same constant Ci.
Since the v, are uniformly equivalent in time on [0, min{Zying, C; '}), the condition
that inf,es vo(z,t) = 0, which holds at ¢ = 0 by construction (see Remark 2),
also holds on that entire interval. But this means that Ty, can be no larger
than the formal vanishing time Tiorm = ac/pc = Ot This in particular implies
that the conclusion of Theorem 4 holds for all ¢t € [O,Tsing). However, we have
Tsing = Ttorm, because for ¢t € [0,C; 1), Theorem 4 implies positivity of v., hence
that u¢ > ac — pct > 0, and gives control on the remaining curvatures.

Next we prove that solutions originating from initial data satisfying our Main As-
sumptions develop Type-I singularities at spatial infinity. We recall inequality (7):

A A
‘Rm[gl - ug! Rm[g:ra]‘q <cC {p”z + ) (u e + uglxi/z)} :
a=1 :

a=1
Theorem 4 implies that the RHS is bounded by a constant C’ depending only on
C,=0C, (Cinit, N = (N, na)) and Tying. Thus we find that as t 7 Tying,

A
(43) [Rm|=)_ =+,

a=1 "%

where the constants c, depend only on N and the Ricci constants Lo Moreover,
Proposition 22 implies that on any compact set, the functions

Ue (T, 1) = (aq — pat) + vao(z,t)

are bounded from below, and thus the curvature is bounded from above. But by
Remark 2, inf v, (x,0) = 0, and by Theorem 4, this remains true for all ¢ > 0 that
the solution exists. Thus at any such time, the warping function of the fiber
satisfies

sup ug ' (2, 1) = (ac — pt) ™,

z€B

which shows that the singularity is Type-I and forms at spatial infinity, as claimed.
O

4. APPLICATIONS

4.1. Essential blowup sequences on noncompact manifolds. Assume that
a Ricci flow solution (M, g(t)) develops a singularity at some time 7' < co. This
means that limsup, -, R(t) = oo, where R(t) := supy [ Rm[g(t)]|. A Ricci flow
solution (M, g(t)) that becomes singular at T < oo is called Type-I if there exists
a constant C' > 0 such that for all ¢ € [0,7"), one has R(t) < 7.
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If (M, g(t)) is a Type-I Ricci flow solution, then a point p € M is called a Type-1
singular point if there exists an essential blowup sequence (p;,t;) € M x [0,T) so
that lim; .o p; = p and lim;, t; =T. To be an essential blowup sequence means
that there exists a constant ¢ > 0 such that

| Rm[g(t:)]|ge,) (pisti) >

C
T—t;

Because %R(t) < C,R2(t), the curvature of a developing singularity always grows
at least at a Type-I rate, and so such sequences always exist. If M is noncompact,
however, it might be the case that an essential blowup sequence does not limit to
any Type-I singular point in M.

In [EMT11], it is proven that if (M, g(t)) is a Type-I Ricci flow on [0, T), and if p €
M is a Type-I singular point, then for every sequence A; — oo, the corresponding
rescaled Ricci flows (M, g;(¢), p), defined on [—\;T,0) by g;(t) := X\; g(T + A;lt)
subconverge to a normalized nontrivial gradient shrinking Ricci soliton in canonical
form. This is a solution (N, g, f) that exists on a time interval (—oo, T'| and satisfies
1
Re+V2f = 5T =7 and % = |Vf*

The result in [EMT11] applies in the case that (M, g(t)) is a Type-I Ricci flow
on a compact manifold M, or if M is noncompact and p € M is a Type-I singular
point. On the other hand, if M is noncompact and (M, g(t)) is a Type-I flow
with a singularity forming at spatial infinity, then a Type-I singular point may not
exist — see the example suggested in Remark 1.3 of [EMT11]. In this case, the
results of [EMT11] do not preclude the possibility that the limit along some blow
up sequences is a nontrivial gradient shrinking Ricci soliton, while along some other
blow up sequences it is not. Our goal in this section is to use the results we have
proven here to produce an example exhibiting this phenomenon.

Assume that (M, g(¢)) is a complete noncompact Type-I Ricci flow that develops
a singularity at spatial infinity at some time 7' < co. That is, there exist sequences
p; € M, t; € [0,T), and a uniform constant ¢y > 0 such that (p;,t;) — (00, T) as
j — o0, and

€0
T—t;
This in particular implies that (p;,¢;) is an essential blow up sequence for the
singularity developing at spatial infinity at time 7. If A; is a sequence such that
lim; oo Aj = 00 and if g;(-,t) := A g(-, T + tA;l), then a blowup limit of the flow
along the sequence p; is a pointed subsequential limit of (M, g;(-,T), p;), if it exists.

|Rm |(p;,t;) >

We now explore what blowup limits are possible for a particular family of non-
compact Ricci flow solutions of the type considered in this paper.

23. Definition. Let gguc denote the Euclidean metric on R¥. A family of functions
Sa(r) : R¥ = R, specifies an admissible perturbation of ¢ = gruc + 22:1 Ao Ggno
on RF x Fm x ... x Fna 4f lim| ;|00 0 (7) = 0 and there exist functions Go € G
satisfying

Ga((sa(x)) — o(1: r
Colbelt)) — o1:6,(0) \e0)
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such that the metric
A

(44) Jinit = YEucl + Z (aa + 6(1 (.’L’)) gFna

a=1

satisfies the Main Assumptions.”

We define the set
(45) A :={04(z) : R* = Ry : d,(x) is admissible in the sense of Definition 23}.
24. Lemma. For any manifold R* x 8P x 89, the set A is nonempty.

Proof. In polar coordinates on RF, choose rotationally-symmetric warping func-

3
tions 61(r) = d2(r) = H%’ along with control functions G1(s) = Ga(s) = 1.
Then it is straightforward to verify that the Main Assumptions are satisfied for the
metric (44), because

2
(1) = V80 () = oz < sy < 5Galdalr),
and
9 1 rd
Xa1) = 1998, < ot (o + (e )
< (1:;_'17“;;)4 < CinitHa (6(7)).

Here we use the fact that Hq (94 (1)) > 2(T1r2)47 which is easy to check. We also
have p = 0 for the Euclidean metric. Thus we conclude that 1,02 € A. O

For the purpose of the applications that we discuss in this subsection, it suffices
to consider a doubly-warped product. Thus we fix kK = 1, A = 2, and spherical
fibers F™ = F"2 = 8 (p > 2) in the remainder of this subsection.

To prove Theorem 6, we consider M = R x 8 x 8P (p > 2), with initial metric

(46) ginit = (dz)* + (ax + v1(2,0)) gsr + (ax + v2(,0)) gse,
where gsr is the round metric scaled so that 2Rc,, = gsr, and v1(z,0) = §1(x)
and va(z,0) = dz(x), where 1,02 € A are functions such that
)
L) _ e R, (0,1},

|z|— 00 0o (ac)
We require 1 > 0 to ensure that §; and 2 remain comparable, so that we may take
appropriate limits. We further require that n # 1 to demonstrate the existence of
sequences that cannot limit to nontrivial gradient shrinking Ricci solitons.

A slight modification of the construction in this section shows that there exist
noncompact Ricci flow solutions that develop Type-I singularities for which there
can be no blowup limits (Mso, goo). Indeed, if we consider M = R x 8! x 8P with
an initial metric that is not x-noncollapsed,

Ginit = (d2)? + 01 (2)(dB)? + (as + 62(2))gse,
where d1,d2 € A, then our work in proving Theorem 6 goes through, mutatis

mutandis, and establishes the following:

5We note that by Remark 11, satisfying the Main Assumptions forces the functions do to be
strictly positive everywhere.
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25. Remark. There exist complete, noncompact, collapsed Ricci flow solutions
(M,g(t)) that develop Type-I singularities at spatial infinity. For each of these
solutions, Type-I blowups have no Cheeger—Gromov limits.

As we note in the introduction, blowup limits may exist as étale groupoids, in
the sense considered in [Lott10].

Proof of Theorem 6. By the proof of Corollary 5, we may choose a, > 0 sufficiently
small so that the estimates of Theorem 4 hold for the solution originating from
initial data (46) up to the singular time Tsing = 0+, at which time it encounters a
Type-I singularity. For as long as it exists, the Ricci flow solution has the form

(47) g(z,t) = da® + (as — t + vi(2,t)) gsv + (ax — t +v2(2,1)) gse.
By the second part of Proposition 22, we have
(48) val@,1) = (14 o{1; 84(x) \, 0)) da ()

for all t € [0, ax).
Initially, we consider any sequence (z;,t;) — (00, a.) for which
Sl
(49) im 22 e 0,00),  (a=1,2).
=00 Gy —
Then our curvature estimates above easily imply that there exists a uniform con-
stant ¢y > 0 such that |Rm(z;,t;)] > —=—. Let A\; — oo be any sequence such

ax—1;
that limsup;_, (T — ;) A\j < oo, and let g;(t) = A; g(a« + tA;l). This rescaling
ensures that each g; exists up to ¢ = 0; indeed, because we have shown that the
singularity is Type-I, it immediately follows that

(50) [ Runfg; (1)) < &

for a uniform constant C'. Note that in our discussion of convergence below, we
always mean in the sense of subsequential convergence, even if we do not explicitly
pass to subsequences.

We rewrite g;(t) = dy? + u1; gsr» + u2j gs», where
Uaj (Y, 1) = Ajua(zj + y)\j_l, ay + t)\j_l)
= (—t) + A\jva(z; + yA;l, ay + tA;l).
Because our manifold is M = R x 87 x 8§ with p > 2, the metrics g; are x-
noncollapsed. Hence by (50), a pointed sequence of Ricci flow solutions (M, g;(¢), ;)

smoothly converges in the Cheeger—Gromov sense to an ancient Ricci flow solution
(Moo, goo(t), 0) that exists for t € (—o0,0).

26. Claim. There exist smooth limits Uaco(y,t) of Ua;(y,t) as j — oco.
Thus the limit of the convergent subsequence (M, g;(t), ;) is Moo = R x 8P x 8P
with the metric

Goo(y, 1) = dy® + U100 (Y, 1) gsr + oo (Y, 1) gso.
Proof. Recall that by Theorem 4, we have
i ba(mj + YA, 0) S valzy + YA ae + A1) < Cudala; +yA; 1, 0)
for uniform constants c,, Cx. Putting y = 0 = o as above, this yields
c:Aj0a(z,0) < vqj(0,8) < CuXjda(zj,0).
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dalz;) —

Because lim;_, PRy

ca € (0,00) and 0 < limsup;_, ., A\j(T —t;) < oo, we
immediately get
(51) co < a;(0,1) < Co

for all t € (—axAj,0), for uniform constants 0 < ¢y < Cp < 0.
On the other hand, by Theorem 4, we also have

|Vva(z, t)]? < Co G(va(z,t)) forall ¢ €10,a.),
where C is another uniform constant. This in particular implies that
(52) |V log u(,t)|? < |Vioguva(z,t)|? < Co on M x [0, ay).

Estimates (51) and (52) imply that va;(y,t) converges uniformly to vaeo(y,t) on
compact sets of M x [—a,);,0) as j — 0o, in a C%* norm, for some u € (0,1). This
together with a smooth Cheeger-Gromov convergence implies the claim. O

27. Claim. For o € {1,2} and every t € (—00,0), both uaso(y,t) are constant in
space.

Proof. We fix any t € (—00,0), and let t; = a. + t/\;1. Then we observe that
estimate (52) scales as follows:

N2V,

Taking j — oo and using the smooth convergence of the metrics proves that log uqeo
is constant in space. (I

2
g (t;) loguaj| S Oo.

To finish the proof of the first part of Theorem 6, we need to show that the limit
(M, goo (-, ), 0) cannot be a gradient shrinking Ricci soliton if

. 0i(x)
A @ e

and if the spacetime sequence (z;, ;) is such that the constants lim;_, i“ (fg) = Cq
* J

defined in (49) satisfy ¢; = con with € R1\{0, 1}. Using Proposition 22 and (47),
we have

u1; (0, —(ax —t5)N;)  wi(zy, t))

u2; (0, —(ax —t;)A;)  wua(z),t;)

ety (1 oL, 81 (a5) N 0) 81(w)
(53) ax —t; + (1+o(1,62(x;) "\ 0) 02(;)
01 (x;
1+(1 +o(1 81(z5) \a 0)) Gz
- 5o (z5)
L (1+ 01, dx(;) N, 0)) 22
Recall that lim;_,o(ax — t;)A; = —to € (0,00). We let j — oo in (53) to obtain
uloo((),to) _ 1+C277 # 1
’U,QOO(O,to) 1+co
In particular, by Claim 27, we have
(Y, t 1
(54) 10y, to) _ lroenm #1 for all y € R.

U200(y,t0)  1+c2
28. Claim. At no time t € (—00,0) is goo(,t) a gradient shrinking Ricci soliton.
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Proof. Recall that a gradient shrinking soliton is a metric g that satisfies
—2Rc+Lx(g) = Ag,

where X is the gradient vector field of a potential function and A < 0. It is shown
in [AK19] that a metric

9= (dy)* + ¢1(y)*gse + 2(y)*gr-

on a doubly-warped product R x 8P* x 8P2 is a gradient shrinking soliton with vector
field X = f(y) 8% if and only if the functions f, 1, p2 satisfy the ODE system

(350) fy=p By, P
1 P2
1— 2
(55b) (¢1)yy —(p — 1) (;Pl)y — o (¢1)y(p2)y + (‘Pl)yf Y
1 $1 P1p2 #1
1— 2
(55¢) (‘P;zyy = (pa—1) ;52)‘” -pi (%;j‘;ﬁz)y + (‘f;)y F4A
2
The only solutions of this system with ¢1 and @2 constant in space are
pr—1 p2—1
f(y) = _)‘yu (P% = 1_—)\7 and 903 = 2_—)\

S0 if goo = dy? + U100 gsr + U200gs» Were a gradient shrinking Ricci soliton at some
t € (00,0), then the constants uieo and uss would have to be equal. But this
contradicts (54). O

We now prove the remainder of Theorem 6 and Corollary 7 by obtaining neces-
sary and sufficient conditions for a limit to be a gradient shrinking soliton.
If A; — oo is such that lim; o A\j(ax —t;) = —to > 0, estimate (53) implies that

Uloo(o, t())

56 =1

(56) U200 (0, to)

if and only if (x;,¢;) is a sequence converging to (0o, a.) such that
da(z;

(57) im 22 _ o o aeqio),

J—00 Oy — tj

in contrast to (49).

If (57) holds, then Claim 27 implies that for every ¢ € (—o0,0), we have
U100 (Y, t) = Uaeo(y,t) = u(t), where u depends only on time. Thus u100 = Uzee =
—A(p — 1) and f(y) = —Ay satisfy the system (55), implying that the metric
Goo = dY? + U1oo Gsp + Uaeo gsr is a gradient shrinking Ricci soliton.

Finally, since we have the bounds p—|—22:1 Uy Xatus2ve < Cp forallt € [0, a.),

the curvature estimate (7) implies that
Ha _ Ho
20— Dua  2(p = 1(ax — 1)
Note that to obtain the last identity, we use Proposition 22 and the fact that
lim| 4|0 0o (x) = 0. On the other hand, Proposition 22 also implies that

valzs,t;) = (1 +0(1;8a(25) \o 0)) Jal(z;).

(58) sup | Rm[g(t)]| = sup
M M
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Combining this with (7), we find that
(1+ o1)) f
@ =t a(p—1) (14 (1 + o(15da(z;) \ 0) 222 )

ax—tj

(59) [Rm(z;,t;)| =

+0(1).

Thus (58) and (59) imply that
| Rm(z;, t;)|
i—oc supyg | Rm(:, ;)]
if and only if (57) holds. We have seen above that (57) is equivalent to (56), and

that by Claim 27, (56) is equivalent to g, being a gradient shrinking Ricci soliton.
This concludes the proof of Theorem 6 and verifies Corollary 7. O

=1

4.2. Weak stability of generalized cylinders under Ricci flow. Stability of
generalized cylinders R* x 8P under Ricci flow is a subtle question. Even though
a round cylinder R¥ x 8P is expected to be a stable singularity model in some
sense, it is not immediately clear how to define this stability. One reason for
this is the following example. Start with a cylindrical metric gey1 = (dz)? + gs»
on R x 8 with p > 2. Let T denote the time at which the spherical fibers
vanish. Now consider an e-perturbation of the initial data gcy1: an initial metric
ge = (dz)? + (1 +¢€) gsr with |e| < 1. Ricci flow originating from g, will also become
singular but at a different singularity time. If we rescale the perturbed flow by
ﬁ, then the rescaled perturbed solution will encounter a singularity before Ty if
€ < 0 or will become infinitely large as t / Tp if € > 0. In other words, no matter
how small a perturbation is, if we chose a cylinder of a different radius, it will not
naturally converge after rescaling to the solution originating at gey.

Now let ggue denote the flat Euclidean metric on R*, and let 8P be a round
sphere scaled so that 2Reg,, = gs». We take as initial data gcy1(0) = gruc + a+gsr.
Then gey1(t) = gruel + (ax — t) gsr is a generalized cylinder that solves Ricci flow
up to time a, > 0. Consider perturbed initial data

(60) 9(2,0) = ggua + u(x, 0)gs»,
where u(z,0) = a. + §(z), with 6(z) € A as defined in (45).
29. Theorem. Let g(z,t) be a Ricci flow solution on R* x SP with initial metric

g(x,0) given in (60). Then there exists a constant C depending only on a, so that
for all z € R* and all t € [0,a.), one has

1 1
a 6($) - a |g($, O) - gCy1(0)|gcyl(0)

(61) < sup [9(z,1) = Gey1(D)]gey (0)
te[0,a)

< Cilg(2,0) = gey1(0)[ gy (0) = C 6(2),
and
sup |g(z,t) — QCyl(t)|gcy1(0) = (1 +o(1;6(z) N\ 0)) lg(z,0) — 90y1(0)|gcy1(0)
(62) t€[0,ax)
= (14 o(1:6(2) \ 0)) 8(a),

which implies that the goy(0)-distance between a perturbed solution g(x,t) and an
evolving generalized cylinder goy(t) approaches zero as |x| — oo, uniformly in time



32 TIMOTHY CARSON, JAMES ISENBERG, DAN KNOPF, AND NATASA SESUM

t € [0,a.). Moreover, the flow g(x,t) develops a Type-I singularity at spatial infinity
ast  ay.

30. Remark. We say that a solution g(x,t) on RF x 8P stays in a 6(x)-neighborhood
of gey1 if there exists a uniform constant C. so that supcio q,) 19(7,t) = gey1(t)| gy (0)
is bounded by C. for all x € R and all t € [0,a.). Note that for the admissible
perturbations that we consider in Theorem 29, the constant C, is universal: inde-
pendent of the perturbation. Note also that Theorem 29 implies that for admissible
perturbations, the perturbed solution never leaves the 0(z)-neighborhood of gey.

On the other hand, (61) implies that no matter how small §(x) > 0 may be, after
performing a Type-I rescaling by ﬁ of both flows g(x,t) and geyi(t), the rescaled
solutions § and Gey1, respectively, have the property that §(-,7) does not converge
t0 Gey1(T) as T — oo, where T = —log(asx — t). This behavior is consistent with the
example discussed in the opening paragraph of this subsection.

Proof of Theorem 29. By Proposition 22, if g(z,t) = a. —t + v(z,t), then there
exists a constant Cy(a.) such that v(z,t) < C, 6(z) and

v(z,t) = (1 +o(1;8(z) \, 0)) §(x)

for all t € [0, a.). This implies (61) and (62). This further implies that the distance
between the perturbed solution g(z,t) and an evolving cylinder gey1(t) approaches
zero as || — oo, uniformly in time ¢ € [0, a).

Arguments exactly like those that prove Theorem 6 establish that the perturbed
solution g(z,t) has the same singular time a. as the generalized cylinder geyi(t);
the singularity is Type-I; and it occurs at spatial infinity. O

APPENDIX A. CURVATURES OF MULTIPLY-WARPED PRODUCTS

We begin by recalling classical formulas for the curvatures® of a simple warped
product B x,, F. Let (B, ) and (F,§) be complete Riemannian manifolds. In this
Appendix, unlike the rest of this paper, we do not assume that F is a space form.
Let u: B — R4 be a smooth function. To facilitate working in local coordinates,
we denote the metric on B X, F by g = § + ug.

We begin by working in local coordinates, using lowercase Roman indices (e.g.,
i,7,k,£) on the base B, lowercase Greek indices (e.g., o, 7, v,w) on the fiber F, and
allowing capital Roman letters to range over both sets. We denote the Christoffel
symbols of g by

1
Iy = QQKL(‘?IQJL +0y91L — OLg1.),
and those of § and g by ffj and f‘(’;T, respectively. We follow the same convention for

other geometric quantities, including curvatures. We order the Christoffel symbols
by the number of vertical (Greek) indices that appear (in order: 0,1,2,3) and

6Throughout this paper, we follow the curvature conventions detailed in Sections 5-6 of [CK04].
Briefly, R(X,Y)Z = V2Z(X,Y) — V2Z(Y, X) for the (3, 1)-tensor, and we lower the raised index
into the fourth position so that, say, Ri221 > 0 on the round 2-sphere.
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calculate that

k _ tk
(63a) i =1,
kE _ 1k _1v _
(63Db) Ly =T =17=0,
1
(63c) FI;’T = 9 gkfu—l Oeu (ugor)
1
(63d) Iy = 3 ut Ou Y,
1
(63e) Ly = B utOjud,
(63f) ry, =17

Given a function f: B — R, there is a natural function f:B Xy F — R defined
by f(z,y) = f(z). We wish to compare the covariant Hessian of f with respect to
g with that of f with respect to g.

31. Claim. If f and f are as above, then

VVf=VVf+{(V(ogu'?),Vf) (ugs).

Proof. This is a straightforward application of (63). We can write

ViV f=ViVif+(V=V)Vsf
=ViVif+gx(V =V VS

Since V£, is horizontal, the only quantity from (63) that appears in the last term
above is (63e¢), which proves the claim. O

We now compute the curvatures of g at the origin of a coordinate system that
is normal for ¢ and §, but not necessarily so for g. That is to say, we may assume
that ffj =0 and fZT = 0 at the origin, hence that 0;g;x = 0 and 05§, = 0 there,
but we must use the full formula

Rijxkr = grp (5IP§K - 0,7k + FfQF?K - FfQFfQK)
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to calculate the (4,0)-Riemann curvature tensor of g. Again ordering formulas by
the number of vertical indices that appear (in order: 0,1,2,3,4), we compute that

Rijre = Rijre,
Rojike = Rire = Rijue = Rijrw =0,

RUTkE = 07
Riﬂ/f = Gpt (8ZF£V - Fgwr‘iuu)

1 1
= (ugﬂ,)( — §u_1 V:Veu + 1 uwIVu Vgu),

RGTVZ = 07

Raruw = Juwx (qu-y + I‘gml—‘::/ - Fimrzrnu)

= URUTLM - iu72|Vu|2( (UQUw) (UQTV) - (UQTw) (UQUlf) )

For use below, we note that the curvature operator vanishes if a horizontal plane
is paired with a plane spanned by two vertical vectors, as follows easily from the
observations

(64) 0= R, gje = Rorkj = Rijor and 0= Rijor g™ = R},

There is a more concise way to write these formulas. Recall that the Kulkarni—
Nomizu product of symmetric (2, 0)-tensors ®, ¥ is given by

(65) (DY) rsrr =LYy +PyxVir — Crx VL — 50V 1k.

With this normalization, the (4,0)-curvature tensor Rm of a metric g of constant
sectional curvature x is given by Rm = %FL g @ g. Noting that

. 1 . 1
w2V (ul/?) = §u*1VVu — Zu”Vu ® Vu

and using the identity u=2|Vu|> = 4|V (logu'/?)|?, one sees that the curvature
formulas above are equivalent to

(66) Rm = Rm + uRm — %‘V(log u1/2)‘2(ug) D (ug) —2ug ® (u_l/QWVul/Q).

We now analyze the curvatures of multiply-warped products of the form (1) on
a manifold M =B x F1 x --- x F4. As above, given a function f : B — R, there is
a natural function f: M — R defined by f(z, y1,...,y4) = f(x).

32. Claim. If f and f are as above, then

A
VVF=VVf+> (V(ogul/?),Vf) (uags.)-

a=1
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Proof. This follows by induction on the number of fibers in the multiply-warped
product, using Claim 31 as the base case. In the induction step, we regard the
multiply-warped product with A fibers as a singly-warped product over a base that
is a multiply-warped product with A — 1 fibers. O

Our next result provides the curvature formulas we need for this paper. We show
below that it also leads directly to estimate (7). In stating it, we write formula (67)
in terms of u2 Rm[gs_ ] and ungs, because, for fixed g, these have constant norms
with respect to g if we vary uq.

33. Lemma. The (4,0)-tensor Rm of the metric (1) on the multiply-warped product
M is given by

A
(67a) Rm(g] = Rm[gs] + Y ug" (u’ Rm[gs,])
1 ) a=1
(67Dh) ~5 Z (log u1/2 )2 (U,ag:}‘a D uagga)
P
(67c) -3 Z (V(logul/?), V(log u}f®)) (uags. ® usgs,)
(67d) ~2 Z ta g5 O (ug"?V g, V(ug/?)).

Proof. This follows by an induction argument similar to that in Claim 32. The
induction hypothesis is that the claim holds for a metric with A — 1 fibers, which
we denote by ga—1) := g —|—Zg;11 Ua g7, . We denote the curvature and connection
of g(Aa-1) by Rm(A_l) and V(A—l)-

We may apply formula (66) for the curvature of a singly warped product to write
the curvature of g = g(4_1) + uags, in terms of Rm(4_1), obtaining

Rm[g] = Rm(4_1) +ua Rm[gs ,]

1 2
— 3V oz uy{®)|*(wags.) ® (uags,)

— QUAggA @ (u;1/2V(A,1)V’u114/2).

Using Claim 32, we rewrite the Hessian term in the last line above as

A-1
u21/2V(A,1)Vu}4/2 = I/QV%V Y2y Z <V10gu;/2, Vloguz/2>(uﬂgyﬁ).
p=1

This completes the induction step.
In summary, this induction argument shows that adding an additional fiber to a
multiply-warped product adds an additional term to each (outer) sum in (67). O

34. Remark. [t follows easily from Lemma 33 that there exists a universal constant
C depending only on the dimensions such that

A
Ry < |Rmlga]ly, +C > (uz|ud Rmgs, Jly + uz? Voal2 + 1z [VVvaly, ).

a=1
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Furthermore, one sees readily that

A
<C {p1/2 +Y (ungya + uglxi”)} :
)

A
Rm(g] — > u,' Rm[gs,]
a=1

a=1

where p, Yo, Xa are defined in (6). This is estimate (7).

To conclude, we calculate the components of the Ricci tensor. We obtain

Rij = g"" Risk;
A 1 1
(68) = Rij — Z Ny (§u;1vivj‘ua — Zu;QViuanua) N
a=1

and on each fiber &,
RTV = Rﬁw + RZTV
1 1 1<
= (Roz)‘ru - §A'Buo¢ - 5“’;1|vu0¢|2 + 5 Z np <uou VIOgu;}/2> (ga)ru'
=1
In the last formula, the Laplacian on the RHS is computed with respect to the metric
gs on the base. To match the convention used elsewhere in this paper, we rewrite

the expression in terms of the Laplacian A = Ay computed with respect to the
metric g on the total space M. Using (3), we obtain

. 1
(69) Roy = (Ra)ry = 5 (Bt = 5! [Vtal?) (Ga) -

Formulas (68) and (69) directly imply the system (2) of evolution equations that
results if one evolves the metric g on the total space by Ricci flow.

APPENDIX B. LAPLACIANS OF TENSOR SEMINORMS

For use in Appendix C below, we here compute and estimate the Laplacians of
various tensor seminorms. We continue the conventions of Appendix A, using low-
ercase Roman indices (e.g., i, j, k, £) for horizontal vectors, lowercase Greek indices
(e.g., o,T,v,w) for vertical vectors, and allowing capital Roman letters to range
over both sets of indices. We continue denoting g by § when working in local
coordinates.

Before treating Laplacians of seminorms, we establish some preliminary results
for first derivatives of tensor fields.

35. Claim. If T is an (m,0)-tensor field such that T(Uy,Us,...,Uy) vanishes if
exactly one Uy, is vertical, then

i =V, (T‘ ).
TMR(TB)™ (TB)™
Proof. In the proof, we denote horizontal vector fields by Hy, Hs,... and vertical
vector fields by V, V'. For simplicity, we illustrate the idea of the proof with m = 3.
The generalization to arbitrary m is clear. The key fact is that the only components
of the connection in (63) that differ from those of a direct (i.e., non-warped) product
are those that exchange horizontal and vertical vectors. Specifically, we have

VT(V,Hy, Ho, Hs) = —VoUL,(H{ HHY T, jy, + Hi HYHY Ty + HiH) HiTjr ) = 0.
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Hence VT'(U, Hy, H2, H3) can be nonzero ounly if U = Hy is horizontal.
We note that the assumption that Hy, Ho, H3 are horizontal is necessary: indeed,
similar reasoning shows that terms like VT'(V, Hy, Ha, V') are nonzero in general.
O

36. Claim. If T is a symmetric (2,0)-tensor field with no nonzero horizontal-
vertical components, then all components of VT for a warped product are the same
as those for a direct product (i.e., a metric with u constant) except

Vilyr = _uilviu Tor,
1 : 1
vo’ﬂr = VUTTi = iu_leU‘Tji Jor — iu_lviu TG’T7
which do not vanish in general.
Proof. Direct computation using (63). O

We note for use below that Claim 36 implies easily that all components of Vgg
vanish identically except

1
(7()) Vagir = Vggq-i = §’UJ_1V1"UJ 9or-

For clarity, before deriving an estimate for multiply-warped products, we first
perform an exact calculation for a singly-warped product. We continue to assume
that T is a symmetric (2,0)-tensor field with no nonzero horizontal-vertical com-
ponents. Then we have

VolTl2, =2(Vei"™ )" TrsTrr + 20" 37" (VoT15) Tk L
(71) = 2" 9" (VoT1) Tk,
because
(Vpg"™ g T1 Tk = Vo i §7T;Tre = 0
by assumption. Thus we obtain
AT =297V {g"" " (VoT1)TkL}
= 29799 g (VYT Tk + 29795 §"H(V pT1) (VT L)
+4g"(Vpg")g (VT Tk L
Writing this invariantly, we have
AIT|Z, =2(AT,T)g, +2|VT|2, +42[T],
where
ZIT) = g" (Vg™ )"  (VoTr)TkL
= 9°%Vod )T (VQT15)Tre + 979 (Vo i) 5 (V QT The
= 9°%(Voi"" )7 (VQT;)The
= —%u*gﬂ(vkuTu)(VTTTj).
Note that we use (70) in the final step. We expand the divergence factor, obtaining

di - 1 N
VTTTJ- = %(g:)uilvluTij — §uilvju(trT),
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where t1T := ¢g°"T,, denotes the trace of the vertical components of T. Combining
factors, we write Z[T] invariantly as

dim(F)
4

1 .
2T = Zu*z(trT) (T, Vu® Vu)g, — u?|T(Vu)l?

9B’

where in the second term, we regard T as an endomorphism of the tangent bundle.
This work proves:

37. Lemma. If T is a symmetric (2,0)-tensor field with no nonzero horizontal-
vertical components on a warped product, then

—AIT|]2 = —2(AT,T),, —2|VT|2,

+dim(F) w2 |T(Vu) 2, —u (TN T, Vu @ Vg, -

2
|9'B

Generalizing this to the multiply-warped products we study in this paper, one
readily obtains:

38. Corollary. If T is a symmetric (2,0)-tensor field with no nonzero horizontal-
vertical components, then there exists a constant C depending only on the dimension
vector N = (n,ng) such that

A
SATE, < =2(AT,T)y, =2V, +C( Y IV1ogual?)TIIT]y, .
a=1

We now proceed to estimate —A| Rm |§ ,, on amultiply-warped product. Because
the details are so similar to the previous case, we merely sketch the proof. First,
Claim 35 shows that V Rm vanishes if exactly one index is vertical. Thus we see
by (70) that

Vs|Rm |2, =29""g"X¢"Y §"?(VsRrsxL)Rwxyz,
exactly as in (71). Thus we find that
A|Rm |’ =2(ARm,Rm), +2|VRm|? +8Z[Rm],
where
(72) Z[Rm] := ¢ (V,§7) 5" 5" 3" (Vo Rrjre) Ruayz-
39. Claim. The (5,0)-tensor field VRm satisfies
VoRrjke = T Rijre + 5 Rejoy — TRy jrw.
Proof. Using equations (63), (64), and the fact that R, ;e = 0, we compute that
VoReje = —TL Rpjpe — F(IURTIM — Tl Ryjre —TL, Rt
= —T, Rije — T Revke — U5 Rejue — Ty Rejiko
= —T, Rijie + T Rejow — TR
([l

We denote by H the (integrable) horizontal distribution of M and by Rmgggc
the restriction
Rmjcggc := Rm ‘H@TM@TM@:H’
i.e., only those components of Rm having the form R;ji¢. Then equation (70),
equation (72), and Claim 39 immediately imply the following;:
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40. Corollary. There exists a constant C' depending only on the dimension vector
N = (n,ngy) such that

—A|Rm [}, < —2(ARm,Rm)y, —2[VRm|,
A
+ C(Z |V10gua|2)|Rm|gg|Rm;H®g{ g

a=1

APPENDIX C. CURVATURE EVOLUTION EQUATIONS AND ESTIMATES

We continue the convention of Appendix A, using lowercase Roman indices (e.g.,
1,7, k, ) for horizontal vectors, lowercase Greek indices (e.g., o, 7, v, w) for vertical
vectors, and allowing capital Roman letters to range over both sets of indices. We
assume that the metric g is evolving by the Ricci flow system (2).

C.1. The evolution of p. Under Ricci flow, the (4,0)-Riemann curvature tensor
evolves by (see, e.g., Corollary 6.14 of [CK04])

(0y — A)Riskr = 979 (RY) pRuorL — 2RY k Rigur + 2RPIMLR%K)
— (RYRpykr + RYRiprr + RER1ypL + RYRrkp).

For simplicity, we again begin with an exact calculation for a singly-warped
product and generalize this below to an estimate for multiply-warped products.
We start by computing the evolution of the curvature tensor acting on horizontal
vectors, finding that
(73a) (0 — A) Rijie = g (RS

ija

Repke — 2RG; Rjver + 2Raice Rjyy)

(73b) + 977 (Rjo Boyrit = 290m Ry, Rif7y + 2Roine 1))
(73c) — (R Rpjie + R Ripre + Ry, Rijpe + Ry Rijip).

We note that (73a) consists of the terms one would see if the base alone were
evolving by Ricci flow, while (73c) consists of terms that are cancelled by derivatives
of g~1 in our calculation of the evolution of p = | Rm |§B below. So we need only to
examine the three additional terms in (73b).

By (64), the first term in (73b) vanishes. To evaluate the second and third terms
in (73b), we can apply the formulas derived in Appendix A directly, obtaining

Gem R R = Gor (iu_lvivkuvngu - %u_2vivkuvjquu
— %u_2VnguViquu + %u_BviuvjuV;@uVﬂO
and
Roiye R}, = 9¢ RgiéRij
= Gor (iu—lviwuvjvku - %u*vivguvjuvku

1 1
— gUiQVijuViquu + TGufgviuVjququu).
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Combining terms and tracing by ¢°”, we conclude that

(8 = A)Rijre = 9°°(RSj Revie — 2RGix Rjver + 2Raice RSy,
dim(F
+ %() {02(ViVeuV; Viu - ViViuV,; V)

(74) + -u 3 (Vi ViuVjuVeu + V;VeuVuViu

N~

— V,ViuViauVou — VnguVjquu)}
— (RfRijl + RfRiPke + R;fRijPe + RfRijkP)-

We now estimate the evolution of p(z,t) = | Rm(z, t)|jB for a multiply-warped
product. We note that in the case of a multiply-warped product, the only possible
nonzero terms in (73b) occur where the vertical coordinates o and 7 are tangent to
the same fiber. Thus we obtain a sum of derivatives of u, in (74), and using our
estimate derived in Corollary 40, we recover the standard estimate for the evolution
of the curvature norm (see, e.g., Lemma 7.4 of [CK04]) modified by additional terms
coming from the warped-product structure, namely

(0 —A)p < —2|VRm|§B + Cpp*/?
A
+2 Z na{u;2 Rmg (VZ0,, VZ0,)
a=1
- 2u;3 Rmg (Vzva, Vo ® Vva)}

A
+C( Y [Vlogual®)| Ry, | Rimscasc .

a=1

where n, = dim(F,), Rmg denotes the curvature tensor of gg, and C' is a constant
depending only on the dimension vector N = (n,ny).

C.2. The evolution of ~,. We next consider the evolution of the curvature tensor
acting on vertical vectors in an arbitrary fiber &F,. It follows from (67a) and (67b)
that for a multiply-warped product with space-form fibers, it suffices to calculate
the evolution of v, = |[Vua|? = |[Vua|*

As elsewhere in this Appendix, we omit the fiber index for convenience in the
computations below. We note that ((% — A)u is given by (2b). It also follows
from (2b) that

Ay = 2{(VAv,Vv) — u” NV, Vo) + u7272} + 2Re(Vu, Vo),

where Rc denotes the Ricci tensor of g acting on horizontal vectors, as in (68).
Recalling that Ay = 2(AVv, Vv) + 2|VV|?, we commute covariant derivatives
and conclude that

(76) (0 — A)y = =2|VVu[> — 2u™(Vy, Vo) + 2u™ 24>,

Observing that (V, Vo) = 2V2v(Vo, V), we obtain the formula used in Lemma 12.
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C.3. The evolution of x,. We move on to controlling xo = |VVva|g,. By
Remark 34, this is the last quantity needed to control the full curvature tensor. For
simplicity, we again fix a fiber and omit subscripts.

We denote the heat operator with the Lichnerowicz Laplacian of the metric g by
(8 — A) .. Using the standard formula (see, e.g., Lemma 2.33 of [CLNO06])

((% — A)LV]VJU =ViVy, ((% — A)v,
we compute this heat operator acting on the covariant Hessian of v as follows:
((3,5 — A)L (V2v))U =u"3(V;V0)y —2u3(VoV )y
+u 3(VoVy + ViyVa) —u ViV,

Now using the identity —A = —A+2 Rm x—2 Rc *, where Rm and Rc are those
of the metric g, we convert this formula to one using the standard heat operator:

((3,5 —A) Vzv) =u"3(ViVu)y — 2um3(VivV, o)y
ij

+u? (Viij”y + nyVjv) — uilviVﬂ
+ 2R V¥V — RV Vv — RFV, Vv

1 1
+ Nu_27( — 5V¢Vj’v + ZviUVjU),

where N := Z?:l dim Jp is the total dimension of the fibers. We obtain the last
line above by simplifying 2R;,-; V7 V"0 using the identities

1 1 1
Rigrj = uilgm( - Evivjv + Zuflvivvjv) and V7V7v = Euflﬂyg‘”.

Finally, we apply Corollary 38 to conclude that
(0 — A)x < —2|V%0[2, + 4Rmp(VZv, V0) + 2u"%yx
—2u™3(Vv, Vy)y + du”2(VZ0, Vo @ V)

1
(77) = 2u” V20, V*y)gy + Nu™?y{ = x + 7u"{(V v, V) }

A
+C (3 [Vlogual?) V20| V20],.
a=1

where Rms again denotes the curvature tensor of g3, and C'is a constant depending
only on the dimension vector N = (n,n,).
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