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WEAKLY ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

PAUL T. ALLEN, JAMES ISENBERG, JOHN M. LEE, IVA STAVROV ALLEN

ABSTRACT. We introduce a class of “weakly asymptotically hyperbolic” ge-
ometries whose sectional curvatures tend to —1 and are C°, but are not neces-
sarily C1, conformally compact. We subsequently investigate the rate at which
curvature invariants decay at infinity, identifying a conformally invariant ten-
sor which serves as an obstruction to “higher order decay” of the Riemann
curvature operator. Finally, we establish Fredholm results for geometric ellip-
tic operators, extending the work of Rafe Mazzeo [20] and John M. Lee [17]
to this setting. As an application, we show that any weakly asymptotically
hyperbolic metric is conformally related to a weakly asymptotically hyperbolic
metric of constant negative scalar curvature.

INTRODUCTION

The mapping properties of elliptic operators on asymptotically hyperbolic man-
ifolds have been studied in [2], [17], [20], [21], among others. These studies have
all required that the metric be conformally compact of at least class C?; indeed in
these works the notion of asymptotic hyperbolicity is defined in terms of confor-
mal compactification. However, it is not clear whether a complete manifold with
asymptotically negative curvature necessarily admits such a compactification; to
our knowledge, the best results available are those of [13] (see also [7],[14]), where
it is shown that if the sectional curvatures of a complete manifold approach —1 to
second order at infinity then the manifold is C*# conformally compact for every
B € (0,1). (In fact, the work [6] presents an example of a manifold for which the
curvature operator approaches the negative identity operator to first order, but
for which no Lipschitz conformal compactification exists.) These works are part
of a body of evidence suggesting that for problems in geometric analysis in the
asymptotically hyperbolic setting, it is desirable to have a theory applicable to
metrics with sufficient “interior” regularity for PDE theory (such as interior elliptic
regularity), but with somewhat limited regularity at the conformal boundary.

Our primary purpose here is to introduce a condition we call “weakly asymp-
totically hyperbolic,” which does not necessarily imply that the geometry is C!
conformally compact, but under which we are nevertheless able to establish Fred-
holm results for geometric elliptic operators; see Theorem 1.6. Roughly, a complete
Riemannian metric is weakly asymptotically hyperbolic if the curvature operator
tends to — Id at infinity, and if the metric is an element of certain weighted Holder
spaces; see §1 below for a formal definition and for additional details. We em-
phasize that the definition is intrinsic in the sense that we do not assume a priori
that the metric is conformally compact, but metrics that are weakly asymptotically
hyperbolic do indeed admit Lipschitz-continuous conformal compactifications, thus
excluding the example in [6]. We further remark that the class of weakly asymp-
totically hyperbolic metrics is considerably larger than, for example, the class of
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asymptotically hyperbolic metrics with smooth conformal compactifications; this is
due to the fact that smooth functions are not dense in the space of Holder contin-
uous functions. (The closure of smooth functions with respect to the C%® norm is
a proper subset of C%% called the “little Holder space.”)

In the first part of our work here we show several properties of weakly asymp-
totically hyperbolic metrics, followed by some results that highlight the importance
of the extrinsic curvature of the boundary, and which are in some sense comple-
mentary to those of [5] and [13]. Under a slightly stronger regularity assumption,
which implies that the metric is C*! conformally compact but not necessarily C2,
we introduce a conformally invariant tensor that agrees with the trace-free extrinsic
curvature along the boundary. We show in Theorem 1.4 that if the scalar curvature
of a weakly asymptotically hyperbolic metric approaches a constant at the “second
order” rate of [13], then the invariant tensor vanishes along the boundary if and
only if the full curvature operator, or its derivative, vanishes along the boundary
at the second order rate.

We then prove Fredholm results for geometric elliptic operators arising from
weakly asymptotically hyperbolic metrics. As an application, we prove that the
Yamabe problem can be solved in this class of metrics, without loss of regularity; see
Theorem 1.7. This extends the results of [5], where the case of smoothly conformally
compact asymptotically hyperbolic metrics is considered.

We conclude this introduction by remarking that the class of weakly asymptoti-
cally hyperbolic metrics includes an important class of smooth metrics whose con-
formal compactifications are not smooth: the polyhomogeneous metrics, for which
the formal expansion along the conformal boundary involves powers of both the
distance to the boundary and its logarithm. Such boundary regularity is, in fact,
a feature typical of problems involving the much more general class of elliptic edge
operators developed in [20], and such metrics arise naturally in a variety of con-
texts; see [4], [10], [12], among others. For completeness, and to display the manner
in which the present work is situated among the existing literature, we include an
appendix containing a self-contained account of the boundary regularity of elliptic
problems in the polyhomogeneous setting. We emphasize that the polyhomogeneity
results are not new, but follow from a straightforward adaptation of results in [20];
see also [4]. As the results in the appendix don’t appear in the literature in the
form presented here, however, we take this opportunity to present a self-contained
exposition.

Acknowledgements. We thank Michael Eastwood for bringing the works [8] and
[11] to our attention. We furthermore thank Eric Bahuaud for helpful conversations.
This work was partially supported by NSF grants PHYS-1306441 and DMS-63431.

1. STATEMENT OF RESULTS

Let M be a smooth, compact (n + 1)-dimensional manifold with boundary, with
n > 1; let M be the interior of M and denote by OM the boundary of M. Let
p: M — [0,00) be a smooth function with p='(0) = OM and dp # 0 on OM;
such a function is called a defining function. A Riemannian metric g on M
is called conformally compact if the metric § := p?g extends continuously to
a (non-degenerate) metric on M. A conformally compact metric g is said to be
asymptotically hyperbolic of class C*P if G is of class C# on M and |dplg =1
on OM. In view of the notion of weakly asymptotically hyperbolic introduced below,
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we henceforth refer to asymptotically hyperbolic metrics of class C4? as strongly
asymptotically hyperbolic.

The definition of strongly asymptotically hyperbolic metrics is motivated by the
fact that if § extends to a metric of class C? on M, then the sectional curvatures of
(M, g) approach —|dp|% as p — 0. To see this, consider the “raised index” version
of the Kulkarni-Nomizu product, defined as follows: For (1,1)-tensor fields v and
v, we define u ® v: A2(TM) — A?(T M) by setting

(u®v)(z Ay) =u(x) Ao(y) —uly) Av(z)
for decomposables, and then extending the map to all of A?2(TM) by linearity. In
coordinates, we have the expressions

ki k, 1 1,k 1,k k,
(u®v); = % (ul U5+ ugv; — wv; —ujvi),

Idf; = (0@ 6)F = 676k — 6Lk, and ((Hessg p)?)] = g7*(Hessg p)ix. Here Id is the
identity of A?2(T'M), considered as a (2,2) tensor, and ¢ is the identity of TM,
viewed as a (1, 1) tensor.

The Riemann curvature operator Riem[g]: A?2(TM) — A%(TM) is related to

that of g by
Riemlg] = —|dp|21d +2p @ (Hessg p)* + p? Riem[g], (1.1)

from which we immediately read off the asymptotic behavior of the sectional curva-
tures. Contraction of (1.1) yields the following expressions for the Ricci operator,
viewed as a (1, 1) tensor, and the scalar curvature:

Riclg] = —n|dp[26 + p(Agp)d + (n — 1)p(Hessg p)* + p* Riclg],  (1.2)
Rlg] = —n(n +1)|dplz + 2np(Agp) + p* R[g). (1.3)

In order to describe the boundary regularity condition in our definition of weakly
asymptotically hyperbolic metrics, we introduce several notations. First, C* (M)
is an intrinsic Holder space of tensors on M, and similarly H*P(M) is an intrinsic
Sobolev space; see §2 for definitions. We also use weighted spaces C’f’a(M ) =
p*CRe (M) and HY'P (M) = p® HE2(M).

There is an alternative characterization of these spaces in terms of Lie derivatives
that helps to shed light on them. Let # = X(M), the space of smooth vector fields
on M, and let ¥, be the subspace of ¥ consisting of vector fields that vanish on
OM. If a metric g € C**(M), then g = p2g € C»*(M), which is equivalent to
saying that Lx, ...Lx,;g € Cgij’a(M) whenever 0 < j < k and X1,...,X; € %.
On the other hand, if g has a C** conformal compactification, then Lx, ... Lx. g€
Cf_j’o‘(M) for any vector fields X;,...,X; € ¥, not just ones that vanish at the
boundary.

The purpose of this paper is to show that much of the theory of elliptic oper-
ators on conformally compact manifolds can be extended to metrics satisfyng the
following boundary regularity condition, which is much weaker than being C?%¢
conformally compact:

geCy*(M) and LxgeCi b (M) forall X € ¥. (1.4)

We remark that these regularity conditions imply that g extends to a Lipschitz
continuous metric on M; see Lemma 2.3(c) below. But even if (1.4) holds for all &,
it need not be the case that g extend to a C! metric on M; see Remark 2.4.
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Our first theorem shows that, just as for C? conformally compact metrics, the
asymptotic behavior of the curvature of a metric satisfying (1.4) is determined by
the value of |dp|; along M.

Theorem 1.1. Let k > 2 and o € [0,1), and let g = p~2g be a Riemannian metric
on M satisfying (1.4). The following are equivalent:

(a) Riem[g] - —1Id as p — 0.

(b) Ric[g] = —nd as p — 0.

(¢) Rlg] = —n(n+1) as p — 0.

(d) |dplg =1 on OM.

For k > 2 we define a metric g on M to be weakly C** asymptotically hy-
perbolic if g is conformally compact and § = p?g satisfies the regularity conditions
(1.4) and one (and hence all) of the conditions (a)—(d) in the above theorem. We
denote by ,///Vﬁcak the collection of all weakly C*® asymptotically hyperbolic met-
rics on M; here the superscript 1 indicates that we have imposed the improved
regularity condition on one derivative of the metric.

Theorem 1.2. Suppose g € A, ejkl for k> 2 and o € [0,1). Then we have the
following:

(a) Riem[g] +1d € CF~2%(M).

(b) Ric[g] +nd € CF~2%(M).

(c) Rlg] +n(n+1) e CF2(M).

(d) [dpl2 =1 € O (M).

(e) For all 1 < j <k — 2, the tensor p?(9V)J Riem|g] extends continuously to
M and is O(p) as p — 0.

Before introducing further results concerning the decay of curvature at infinity,
let us recall the results of Andersson, Chrusciel, and Friedrich [5], which show that
if g € C°°(M) there exist smooth functions ¥, r € C*(M), with ¢ > 0 and ¢ = 1
along OM, such that

R[pY " Vg] = —n(n + 1) + p" 7

They further show that unless » = 0 on dM, it is not possible to make the scalar
curvature approach —n(n + 1) to higher order with a conformal factor in C°°(M).
In particular, the metric g is conformally related to a smoothly conformally com-
pact metric of constant scalar curvature, and thus the Yamabe problem admits a
smoothly conformally compact solution, if and only if » = 0 on dM. As well, they
show that if the dimension of M is three, then r = 0 if and only if the trace-free
part of the second fundamental form induced on OM by g vanishes.

Our next results are somewhat complementary to the results in [5] in that they
highlight the importance of the traceless part of the extrinsic curvature of the
conformal boundary. First, using (1.2) we write (1.1) as

1

Riem[g] + Id = (R[g] + n(n +1)) Tt D Id

#
1
2p¢ Hessg p — ——(Agp)g
+2p ®( €sSg p n+1( gp)g)

4P (Riem[g] - ﬁ R[7] Id) . (15)
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we emphasize that the full contraction of the identity operator is n(n+ 1) and that,
as before, the musical isomorphism is with respect to g.

From (1.5) we see that the rate at which the curvature operator Riem[g] ap-
proaches — Id is governed by the rate at which the scalar curvature R[g] approaches
—n(n + 1), and by the extent to which the trace-free Hessian of p, with respect to
g, vanishes as p — 0.

We are able to obtain more refined results concerning the asymptotic behavior
of the curvature provided we assume slightly more regularity than is provided by
the weakly asymptotically hyperbolic condition. The reason is that for g € ///Vljeikl
one can only conclude that |Riem[§]}ﬁ = O(p~!) as p — 0, but under a stronger
regularity hypothesis we can conclude that the norm of the curvature operator

Riem|[g] is bounded; see Lemma 3.1. Consequently, we introduce the class ///V]:eilf
of metrics g € 4% such that
ge C§7a(M)7 EXlge Cg_lﬂ(M)? £X1£X2§E 05_2)Q(M) (1 6)

for all X;,X, € 7.

We note that if g € ,///“]fézlf, then g extends to a metric of class C1'! on M, but not
necessarily to a metric of class C2. The next theorem gives additional properties

. . k,a;2
of metrics in ;"

Theorem 1.3. Let k > 2 and o € [0,1), and suppose that g € //lvlje‘;f Then the
following are equivalent:

2 “la
(a) |dpl5 =1~ n—_HPAEP € Cy (M),

2
(b) ldpl§ =1 = ——=5pAgp = O(p*) as p = 0.

(c) Rlg]+n(n+1) € Cy>*(M).
(d) Rlg] + n(n+1) = O(p?) as p — 0.

The proofs of Theorems 1.1-1.3 appear in §3.
In §4 below, we define a tensor Hg(p) that is a conformally invariant version of

the trace-free Hessian of p. It follows from Theorem 1.2 that if g is in .#"%", then
the scalar curvature R[g| satisfies R[g] + n(n + 1) = O(p) as p — 0. If we assume
that g € %2 and in addition that R[g] + n(n + 1) € C5~>*(M), we have

wea!

(Agp)g| (1.7)

H?(P)bM = |Hessgp — ol .

see Proposition 4.3. We remark that while we have independently constructed the
tensor Hg(p), it has since come to our attention that a general procedure exists for
constructing such invariants; see [8], [11].

The following theorem shows that if the scalar curvature of a metric in .2
has faster decay, then the tensor Hg(p) serves as an obstruction to faster decay of
the full curvature operator to — Id.

Theorem 1.4. Suppose that g € A2 for k > 2 and a € [0,1). If Rlg] +

weak
n(n+1) € C¥~2%(M), then the following are equivalent:
(a) Riem[g] +1d € C5~2%(M),
(b) Ric[g] +nd € C5~>*(M),
(c) Hg(p) =0 along OM, and
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(d) Hg(p) € 5~ (M).

We emphasize that conditions (c) and (d) in Theorem 1.4 are manifestly con-
formally invariant. We furthermore note that it is an immediate consequence of
Theorem 1.4 that if the metric g is Einstein, then the tensor H4(p) vanishes at OM.
The proof of Theorem 1.4 can be found in §4.

We also note that the tensor Hg(p) has further applications in general relativ-
ity, where it gives rise to a conformally invariant description of the “shear-free
condition” for asymptotically hyperbolic solutions to the Einstein constraint equa-
tions. In this context, the conformal invariance of Hg(p) is particularly useful
for constructing solutions to the constraint equations via conformal deformation;
construction of shear-free solutions using the tensor Hz(p) is carried out in [1].

One motivation for defining the weakly asymptotically hyperbolic condition is
to establish Fredholm results for geometric elliptic operators arising from a metric
g that is sufficiently regular on the interior M for establishing interior elliptic reg-
ularity results, but whose conformal compactification g is less regular at M than
is typically assumed in the literature. Such metrics include the polyhomogeneous
metrics; see Appendix A for a detailed discussion of polyhomogeneity.

We now consider a linear elliptic operator P acting on sections of a tensor bundle
E having weight r. (The weight of a tensor bundle is the covariant rank less the
contravariant rank.) Following [17], we make the following assumptions on P.

Assumption P. We assume P = Plg| is a second-order linear elliptic operator
acting on sections of a tensor bundle E. Furthermore

(a) We assume that P is geometric in the sense of [17]: In any coordinate
frame the components of Pu are linear functions of u and its derivatives,
whose coefficients are universal polynomials in the components of g, their
partial derivatives, and /det g;;, such that the coefficient of the jth deriv-
atiwe of u involves no more than 2 — j deriwatives of the metric.

(b) We assume that P is formally self-adjoint, and that there is a compact set
K C M and a constant C > 0 such that

lullL2(ary < ClPullp2ary  for all  we CF(MNK). (1.8)

Remark 1.5. It is possible to weaken the hypothesis that P be geometric in the
sense described above. For example, Theorem 1.6 below easily generalizes to opera-
tors P = Plg, p| whose coefficients, in any smooth chart, are universal polynomials
in both p and components of g, and their derivatives.

If (M, g) is strongly asymptotically hyperbolic of class C* for k > 2, then
Lemma 4.1 of [17] shows that operators P satisfying Assumption P are uniformly
degenerate at M, meaning that in background coordinates (see §2) we may write

P = a(pd;)(pd;) + b pd; + c, (1.9)

where the matrix-valued functions a®, b’, ¢ extend continuously to M. If g €
///Vljeikl this remains true; see Lemma 5.4 below.

In the strongly asymptotically hyperbolic setting, it is known that the map-
ping properties of operators P satisfying Assumption P can, to a great extent, be

understood via the mapping properties of the indicial map
L;(P): (E®C)lgy = (E®C)lgn,
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defined for each s € C by

I(P)a = p~*P(p*n)| (1.10)

p=0"
In Lemma 5.4 we show that the indicial map is still well-defined in the case that
P arises from a weakly asymptotically hyperbolic metric, and that in this weaker
setting I5(P) is a C° bundle map.

In [17] it is shown that the characteristic exponents of P, defined as the set
of s € C for which I;(P) has nontrivial kernel at some point on OM, are located
symmetrically around the line Re(s) = n/2 — r, where r is the weight of the tensor
bundle E. Of particular relevance here is the distance between this line and the
closest characteristic exponent, called the #ndicial radius and denoted by R.

The following theorem shows that the affirmative Fredholm results of [17] hold
in the weakly asymptotically hyperbolic setting.

Theorem 1.6. Suppose g € Y s for some 1 > 2 and P satisfies Assumption P.

weak
Then the indicial radius R of P is positive. Furthermore,

(a) if B €[0,1), then
P HYP(M) — Hy > (M)
is Fredholm for 1 <p < oo, 2 <k <l and|5+%—%| < R; and
(b) if B €(0,1), then

P: Cro(M) — C¥2*(M)
is Fredholm for 0 <a <1,2<k+a <1+, and |0 — 5| < R.

In both cases the operators are of index zero, and the kernel is equal to the L? kernel

of P.

The proof of Theorem 1.6 consists of adapting results of [17] to the weakly asymp-
totically hyperbolic setting, and is the content of §5 below.

To further illustrate the utility of the weakly asymptotically hyperbolic con-
dition, we now consider the Yamabe problem, which is the question of whether
an asymptotically hyperbolic metric can be conformally deformed to another such
metric of constant scalar curvature. In the case that g € C°°(M), it is known that
there exists a smooth, positive function ¢ € C°°(M) such that the scalar curvature
of $*/(»=Dg is identically —n(n + 1); see [5, Theorem 1.2], as well as [4]. In the
weakly asymptotically hyperbolic setting, we prove the following.

Theorem 1.7. Suppose g € //lvlsjl’(l for k> 2 and a € (0,1). Then there exists a

(S

unique positive function ¢ with ¢ —1 € Cf"a(M) such that § = ¢* (Vg e M

weak

and R[§] = —n(n + 1). Furthermore, if g € M2, then § € M52, If g is also

weak ’ weak *
polyhomogeneous, then § is polyhomogeneous as well.

The proof of Theorem 1.7, which appears in §6, relies on the identity

R[p"/ Vg = (——fflAm + R[g]¢> g, (1.11)

where our sign convention for the Laplacian is Aj¢ = tryHessy ¢. Thus § =
¢*/ ("= g has constant scalar curvature —n(n + 1) if ¢ satisfies
n—1 n? -1

Ag¢ - T R[g](b = T ¢(n+3)/(n71), ¢|¢9M =1, Qb > 0. (1-12)
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We show the existence of a function ¢ satisfying (1.12) in §6.

Combining Theorem 1.7 with Theorem 1.4, we observe the following: If g €
AME22 ] then the tensor Hz(p) determines whether g is conformally related to a
metric in //lvlje‘;f whose curvature operator tends towards — Id to higher order.

2. REGULARITY CLASSES

In this section we define weighted Holder and Sobolev spaces of geometric tensor
fields on M, and relate them to the construction given in [17]. While the definitions
of these spaces are independent of any Riemannian structure, it is often convenient
to work with equivalent norms defined using a background metric A introduced
below. Some of our results also concern polyhomogeneous tensor fields. We fur-

thermore refer the reader to §A.1 for a careful definition of C’ghg(ﬁ), the class of

polyhomogeneous tensor fields on M which extend to fields of class C* on M.

In order to construct Holder and Sobolev spaces on M, we introduce a collection
of coordinate charts covering a neighborhood of M in M as follows. Choose a
collar neighborhood C of M in M and a diffeomorphism C — dM x [0, p.) whose
last coordinate function is p; for convenience we hereafter implicitly identify C with
OM % [0, p.). For any a € (0, p.], denote by C, the subset OM X [0, a), and define
C =1int(C) =~ OM x (0, ps) and C, = int(C,) =~ IM x (0, a).

Fix a finite collection of coordinate charts for OM such that for each (U, ) in
the collection, 6 extends smoothly to a coordinate chart containing U. For each
(U, 0) we extend 6 to U := U x [0, p.) by declaring it to be independent of p and
define coordinates ©® = (6, p) on U. Following the nomenclature of [17], we refer
to © as background coordinates. For any k € Ny and a € [0,1) we define the
Hélder spaces C*<(M) using these background coordinate charts together with a
finite number of charts covering the complement of C.

We furthermore use the coordinates © to identify & and U := int U with subsets
of the half space R™ x [0,00). These identifications allow one to compare the
geometry of (M, g) near OM to that of hyperbolic space; to make this precise we
use the following construction from [17].

Let (H, g) be the upper half-space model of (n+ 1)-dimensional hyperbolic space,
with coordinates (z,y) = (x',...,2",y) € R" x (0,00) and with the hyperbolic
metric § = y~2((dz')? + - -+ + (dz™)? + dy?). For any r > 0, define B, C H to be
the ball of radius r, with respect to g, centered at (0,...,0,1). Using background
coordinates to identify subsets of U with subsets of R"*! we may for each point
po = (0o, po) € C construct a Mobius parametrization ®: By — M centered at pg
by ®(z,y) = (6o+pox, poy). (The complement of C in M, which is compact, we also
cover by finitely many parametrizations Bs — M, which we include in the collection
of Mébius parametrizations.) We fix countably many Mobius parametrizations ®;
such that {®;(B;1)} covers M and {®;(Bz)} is uniformly locally finite.

We define the Holder norm ||u| k.« (ar;5) of a section u of a tensor bundle £ by

ulloraarz)y = sup | P;ull gr.a(py); (2.1)

the Holder space C%(M; E) is the space of sections for which this norm is finite.
For ¢ € R, we define the weighted Holder spaces by C(I;’O‘(M; E) = p°CH*(M; E)
using the norms

el gogar,zy = o™ ullemmuriy: (2:2)
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The Sobolev spaces H*?(M; E) are defined analogously; for k € Ny and p € (1, 00)
we have

HUHZk,p(M;E) = Z |‘(I)ru”;;1k,p(32)-
i

As defined here, the Holder and Sobolev norms are independent of any Rie-
mannian structure on M. To simplify the analysis below, we fix a smooth (C*°)
background metric h on M such that |dp|z = 1 along M, and let h = p~2h be the
corresponding asymptotically hyperbolic metric on M. Throughout the remainder
of this paper we adopt the following convention:

V and V denote the Levi-Civita connections of h and h, respectively.

A detailed account of Holder and Sobolev spaces, including various embeddings
and equivalent norms that make use of a sufficiently regular asymptotically hy-
perbolic metric and its Levi-Civita connection, is given in Chapter 3 of [17]. In
particular, the background metric i gives rise to the following norm equivalences:

1 )
clulloree < > sup | Viuln + VRl coorp) < Cllullcronne — (2:3)
0<j<k

and
1 .
ulirimy € S0 [ VUV S Claltamy (24
0<j<k VM
Note that [17] contains a small error; see Appendix B for a description of the error
and necessary corrections.

We record the following elementary facts about Holder spaces on M recall that
the weight r of a tensor bundle is its covariant rank less its contravariant rank.

Lemma 2.1 (Lemmas 3.3, 3.6, and 3.7 of [17]). Suppose h is a smooth metric on
M as described above.

(a) If E is a geometric tensor bundle of weight v over (M,h), and if o € (0,1)
and k € Ny, then the following inclusions are continuous

C**(M;E) < CP*(M; E)

O (M; E) — C*(M; E).

Note that the first inclusion holds for oo € [0,1).
(b) Let En, Es be geometric tensor bundles over (M,h). For all o € [0,1),
k € Ny, and 41,09 € R, the pointwise tensor product is a continuous map

Cy(M; By) x Cy® (M3 Ep) — Cy% s (M; Ey @ By).

(c) We have dp € CF*(M; TM*) for all k € Ny and o € [0,1).
(d) The difference tensor D = V —V s in Cg’a(M; T2M*®TM) for all k € Ny
and o € [0,1), and therefore V: C’Z;Jrl’a(M; E)— C’Z;’O‘(M; E®TM*).

The weight of a tensor bundle is important for understanding the behavior of
sections near OM: If u is a section of a tensor bundle £ with weight r, then
|ulp, = p"|ul;. For notational convenience, however, we frequently omit explicit
reference to the relevant tensor bundle, writing |\u|\c§,a(M) for H’UJHC(’;’Q(M;E)’ etc.

We nevertheless encourage the reader to be mindful of the weight of the relevant
bundle.
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In preparation for a discussion of the properties of weakly asymptotically hyper-
bolic metrics, we introduce spaces of tensor fields with additional regularity near
the boundary. Let k > 0, @ € [0,1), and 0 < m < k. By definition, a tensor field u
of weight r is in %’“"”m(M) if for all 0 < j < m we have

Lx,...Lx;u€CE M) foral Xy,...,X; €7.

(Closely related spaces, in which the additional derivatives are taken only with
respect to vector fields tangent to the boundary, have been considered by many
authors, and we use such spaces in Appendix A for proving polyhomogeneity results.
But the spaces we introduce here are novel in that we require additional regularity
in all directions. To the best of our knowledge, this is the first time that a detailed
analysis of elliptic operators has been carried out under the assumption that the
metric has boundary regularity as weak as we require here.)

Lemma 2.2. Letk >0, a €1[0,1), and 0 <m < k.
(a) A tensor field u of weight v is an element of €%*™ (M) if and only if

vjueCf_;j’a(M) for all 0 < j < m.
(b) Endowed with the norm

el = 3 19l (2.5)
=0

the collection €**™ (M) is a Banach space.

Proof. The first claim relies on the formula
Lxu=Vxu+u*xVX, (2.6)

where * represents a contraction of the tensor product. For m = 0 there is nothing
to show. Consider the case m = 1 and suppose that u € €% (M). For any X € ¥,
the tensor VX has weight zero and is smooth on M. Hence VX € C*%(M). There-
fore, (2.6) implies that Vxu € C*¥~12(M) for all X € ¥. Because every vector
field in %5 can be written Y = pX for some X € ¥, this implies Vyu € Cf;lla(M)
for all Y € #;. Using the finite collection of background coordinate charts, we can
choose a finite set of vector fields in %; that contains an orthonormal basis (with
respect to h) in a neighborhood of each point. Therefore Vu € Cf;lla(M) Con-
versely, formula (2.6) implies that if u € C*%(M) and Vu € C’f;ll’o‘(M), then for
any X € ¥ we have Lxu € CK%(M).
Repeated application of (2.6) shows that

le...Lxmule*...*xm*vmwZBl*vlu

<m

for some tensors B;, which are in C*°(M) if X; € ¥. The first claim then follows
by induction.

That €% ™ (M) is complete, and thus a Banach space, follows from the com-
pleteness of the spaces C3* (M). O

The following lemma describes some important properties of the spaces €% ™ (M);
in particular, parts (b) and (c) show that €*!(M) is intermediate between
Ck*(M) and C}(M).
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Lemma 2.3. Suppose o € [0,1) and 0 < m < k.

(a) €F>m(M) is an algebra under the tensor product, and is invariant under
contraction.
(b) If u € Cffm(M) is a tensor field of weight v, then u € €*™(M). All
tensor fields of weight v in €%*™(M) are in Ck*(M).
(¢) The following inclusions are continuous:
Ch (M) C € ™(M), 0<m<Ek, (2.7)
¢ham(M) C e LY (M), 1<m<k, (2.8)

where C™~ 1Y (M) denotes the space of tensor fields on M with Lipschitz
continuous derivatives up to order m — 1.
(d) If u € €H*™(M) is a tensor field of weight r and

Viulz—>0asp—0, 0<j<m-—1,
then u € C'ffm(M), with ||u||cffm(M) < Ollullly,qom for some constant C
depending only on universal parameters.
(e) If u € €F>™(M), then the functions ufllf;’ describing the components of
u in background coordinates (U, ©) satisfy

(90)?(pde ) ullI" e LoW), |8l <m, 8]+ |y < k.
Furthermore, if ®: By — M is a Mébius parametrization centered at (6o, po)
then

0% (! 7 0 @) crmrota(my) < 2 lullg s O < |B] < m.
e following maps are continuous:
f) The followi ‘
V: EHm(M) — ¢Fbem=1 (M), 1<m <k, (2.9)
pV: G (M) — G 1™ (M), 0<m<k-—1 (2.10)

Furthermore, multiplication by p is a continuous map from €**™(M) to

cgk,a;erl (M)

Proof. The first claim follows from the product rule, and the fact that contraction
preserves the weight of a tensor field. For the second claim, (2.7) follows from
Lemma 2.1(a) and the fact that if u € C*(M) is a tensor of weight r, then Viu
is a tensor of weight r + [ in C*~L*(M). To prove (2.8), it suffices to consider the
case where m = 1. We have |ul; and |V ulz bounded on M. Thus v is uniformly
continuous on M and extends uniquely to a Lipschitz continuous tensor field on M.

For (d), consider first the case m = 1. In the case, we have that Vu € Cf;lla(M)
and that |u|; vanishes along M. Integrating Vgrad pu from p = 0, where u vanishes,
we see that u € CP ;. The desired estimate follows from (2.3) and Lemma 2.1(d).
Iteratively applying this same argument to V'u, 1 <1 < m — 1 yields the desired
result.

The remaining claims follow directly from the definition. O

Remark 2.4. Lemma 2.3(c) is essentially sharp in view of the following example:
Letu = psin (log p). It is easy to see that u € €% (M) for allk > 0 and a € [0, 1).
However, Vu does not extend continuously to M.



12 ALLEN - ISENBERG — LEE - STAVROV ALLEN

Remark 2.5. If u € €%*™(M) with 1 < m < k and u is polyhomogeneous, then

u € Cgf]g(ﬁ); see Lemma A.5.

We now establish the following regularization theorem.

Theorem 2.6. Suppose T is a tensor field of weight r in €% (M) for some
0<m<landp €10,1). Then there exists a tensor T, depending linearly on T, such
that 7 € €™ (M) for all k >0 and 0 < a < 1 and such that T — 7 € Cifm(M)
For each k and o there is a constant C such that [T\, o < ClITI; 5.

The construction of 7 makes use of the group-theoretic convolution operation on
hyperbolic space, which we now describe.

Let H be the (n 4 1)-dimensional upper half-space with coordinates © = (6, p).
Note that H is a group under the multiplication (6, p) - (6’, p') = (6 + pb', pp’), with
identity (0, 1) and inverses given by (6, p)~! = (=6/p,1/p). The hyperbolic metric
g is left-invariant under this group structure. (Geometrically, the group structure
arises from identifying H with the set of isometries of hyperbolic space generated
by dilations and horizontal translations.)

For any bounded integrable functions 7 and 1, at least one of which is com-
pactly supported, we define the group-theoretic convolution 7 % ¢ by (7 % ¢)(q) =
Ji ()1 (p~'q) dVy(p). More explicitly, this is

(r+)(0, p) = / (s o) (9—u

H
The change of variables u’ = 6° + px®, v = py converts this to the alternative form

(T 9)(0,p) = /HT(9 + px, py) (—5 i) y Vgt dady.  (212)

Lemma 2.7 (Properties of Group Convolution). Let U and V be open subsets of
H. Suppose b € C°(V) and T is a bounded integrable function supported in U.
(a) suppT*x» CUV ={pg:p €U and q € V}.
(b) If 7 € €™ (H), then T x 1 € €™ (H) for all k > 0 and 0 < a < 1,
with

) B) v~ gyt du™ do. (2.11)
v

7 * Yl < CUlT o 00m1¥ll iy
for some constant C depending only on k,a, m.
(c) If 7 € €% (H) and fHdJ(q*l)dVg(q) =1, then 7 — 7 x ¢ = O(p).

Proof. Claim (a) follows from (2.12), as does the fact that 7 % ¢ is bounded by a
constant multiple of ||7]| Lo ) ||| Lo (E)-

A direct computation using (2.11) shows that X (7 *¢) = 7% (X¢) if X is one
of the vector fields pd/dp, p0/06*. Note that these are orthonormal vector fields
that form a basis for the Lie algebra of H. Therefore the C** norm of a function
u is equivalent to the supremum of |Xj, --- X; u| over all j-tuples of these vector
fields, 0 < j < k. Since Xj, --- X;,7 is also smooth and compactly supported
in V, it follows that 7 * ¢ remains bounded after any number of applications of
these vector fields, so 71 € C**(H) for all k and all a, with ||7 % ¥||ck.e g <
CliTll e @ l1¥ [l crtr my-

Next assume that 7 € €™%™(H) for some m > 0. If m = 0, there is nothing
more to prove, so assume m > 1. A simple computation using (2.12) shows that

(T x 1) or
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for « =1,...,n. A slightly more involved computation shows
At * ) " or or
A kY 2.14
dp a:l‘%“*w oY (2.14)

where %, 1) are the compactly supported functions defined by

P 0) =~ pwo), 9w v) = o)

Tterating these computations shows that for any multi-index I with |I| < m, we
have

ol (r 1) o' r
—er— = 2 3gi*?’
Py

for some ¢ € C2°(V). The fact that 7 € € %™ (H) with m > |.J| implies that each
derivative 377/007 is bounded, so the argument above shows that 8 (7 x 1) /00! €
Ck-2(H) for all k and all a, and thus 7 x ¢ € €%*™(H), with norm bounded by a
constant multiple of [|[7[|[,,, o.,, [|¥[lcx+1 s this proves (b).

Finally, assume the hypotheses of (c¢) and let 7 = 7 % ¢. The fact that the
first derivatives of 7 with respect to (6, p) are bounded implies that 7 is Lipschitz
continuous in these coordinates, so |7(60+ px, py) —7(0, p)| < Cp(Jz|+|y—1]). Since
|z| and |y — 1| are bounded on the support of ¢ (—x/y,1/y), we have

|7A:(6.7 p) - T(ea p)'

z 1 —(n n
S/H|T(9+pévaﬂy)—T(6’,P)|¢(-;;)y (D) gol . dx dy

z 1

< Cp/ (Jz] + |y — 1) v (——, —) y~ D dgt L da" dy
H yy

= O(p). O

Proof of Theorem 2.6. By means of a partition of unity, we may restrict attention
to a tensor field supported in a single background chart (4, ©), and we may assume
that the background coordinates extend to a larger open set 4’ O U. To further
simplify, we prove the theorem in the case that 7 is a function; applying the same
argument to the components of an arbitrary tensor field in background coordinates
easily yields the analogous result in the higher-rank tensor case. We denote the
background coordinates by © = (6, p), and use them to identify &4’ with an open
subset of the upper half-space H.

We prove by induction on ¢ that for each ¢ = 0,...,m there exists 7, €
¢km (M) such that 7 — 7, € CL#(M) and such that
k,a 4 q
7all, i < CNITHL g

When ¢ = 0, we just set 7, = 0. Then assume, for some 0 < ¢ < m — 1, the

existence of 7, satisfying the above conditions and set w = 7 —7,. Thus u €
¢HFm(M) N CLP (M) and

1 0%u

wi= ——

q! Op1

Let ¢ be a smooth function on H that satisfies [;; ¢(p~") dV;(p) = 1, and that

is compactly supported in a neighborhood V of (0, 1) small enough that UV C U’'.

(gl—q,ﬁ;m—q(M)'
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Let w = w * ¢. By Lemma 2.7 we have w € (1, , EFm=4(M) and D1 g <
Cllwlll,—g.0.m—q- Since m —g > 1, Lemma 2.7(c) implies that w —w = O(p).

We now seek to apply Lemma 2.3(d) to show that v — p?w € Céf1 (M). By
Lemma 2.3(f) applied to @, we have u — pfw € €-#™(M) N CLP(M). Thus it
remains to show that derivatives of u — p?w having order ¢ vanish at p = 0. When
[J[<g—1<m-2,

o7

267
and therefore all such derivatives vanish at p = 0. To handle the derivatives of
order g, note that each such derivative can be expressed in one of the following
forms:

q

(u — pi@) € E202(M) N C>P (M), (2.15)

o o7 ~ 01 _

207 567 (u—plw) or apt (u — plw) (2.16)
for some multi-index J of length ¢ — 1. It follows from Lemma 2.3(c) that the
expression in (2.15) is in C11(M) and vanishes on dM, so the first expression in
(2.16) vanishes on OM as well. Since ¢ < m — 1 and w € €"™%™~4(M), we have

137w /dp? bounded for any 1 < j < m. Thus

01 0% ~
opt (u—plw) = opt —qlw + O(p)
0%
o q'w+ O(p)
= 0(p),

where the second equality comes from w — w = O(p) and the third from the defi-
nition of w. Thus Lemma 2.3(d) implies that u — pfw € Céf1 (M).
We now set 7,11 = 74+ p?w. By Lemma 2.3(f) and the estimates recorded above

we have

P @l amm < Cllwll,aim—q < Clilwll < Clffull

m—q,0;m—q m,0,m?

from which we obtain [[Tg+1/l; 4in < ClITHL gom- O

3. PROPERTIES OF WEAKLY ASYMPTOTICALLY HYPERBOLIC METRICS

Recall that a metric ¢ on M is said to be conformally compact if § = p’g
extends continuously to a nondegenerate metric on M. The next lemma describes
the behavior of the curvature operator Riem[g] (viewed as a (2,2) tensor) of the
conformal compactification in case g is in one of the spaces %™ (M).

Lemma 3.1. Let k > 2 and a € [0,1), and suppose G is a Riemannian metric on
M.

(a) Ifg e €**1(M), then Riem[g] € C*1>*(M).

(b) If g € €**2(M), then Riem[g] € CE~(M).
Proof. Let D[g] = V — (V) be the difference tensor between the Levi-Civita con-
nections of the compactified background metric h and of g; we easily see that D[g]

is the sum of (contractions of) terms of the form p~1(7) ™! ® g ® Vg. Thus Riem][g]
is the sum of (contractions of) terms of the form

A4 =2_ 6 — - _ = _ 3, = _ _
A g eVyg A%GPevVieVg A3@GoeVy A@G; (3.1
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here A"(g) represents a tensor of weight r which, in any coordinate system, is a
smooth polynomial in g and (g)~! with coefficients in C>(M). If g € €%*™ (M),
then (g)~! € %™ (M) and thus the fact that €’%*™ (M) is an algebra implies
that A"(g) € €&*™(M) C Ck*(M). The desired estimates for the final three
terms of (3.1) follow immediately from Lemma 2.3.

We now estimate the first term in (3.1). If g € €%%!(M), then Lemma 2.3(f)
implies pV2g € €F240(M) = CH*(M) and thus V2§ € CE2*(M). If g €
€k2(M) then V2g € C¥~>%(M) and the desired result follows immediately. [

For k > 2,1 <m <k, and o € [0,1) wedeﬁne,///kamtobetheset of

weak
Riemannian metrics g on M such that § = p2g € €%*™(M) extends to a non-
degenerate metric on M, and such that Riem[g] — —Id as p — 0. (Recall that

p is a fixed defining function in C*°(M).) As in §1, metrics in ///ﬁcak are called
weakly cho asymptotically hyperbolic.
The following version of Taylor’s theorem is used below.

Lemma 3.2. Suppose g € ///ﬁcak for some k > 2 and o € [0,1). Then for any
function u € €%2(M) N CP™(M) we have u — p(dp, du)g € Cy~ (M) with

”u - p<dp7 du>§||c§*1*o‘(M) S CH|ulHk,a;2
for some constant C' depending only on ||[g]|, ..o

Proof. The assumptions on u imply that n := (dp, du)y is in €+ 141(M). By
Theorem 2.6 there exists 7j € €% (M) such that n — 77 € CF~*(M). By Lemma
2.3(d) and by the estimate in Theorem 2.6 we have

m— ﬁ”cf*lva(M) < Cln - 77”‘1@71,04;1 < C|H“|Hk,a;2v

where here and throughout the proof C' represents any constant depending on
I

We now seek to apply Lemma 2.3(d) to the function «’' := u — p7j, which is an
element of €’**2(M) by Lemma 2.3(f). Consequently du’ extends continuously to
M; note also that u/ € C¥*(M). Thus at p = 0 both «’ and the restriction of du’
to TOM vanish. Direct computation, using the definitions of u’ and v, shows that

(du', dp), (du, dp); (du, dp); 0.

’6M ’EJM 77’61\/[ ’6M 77’61\/[

Thus we may invoke Lemma 2.3(d) to conclude that u' € C’Q’O‘(M) and that
Hu’|\c§,a(M) < Of[w[ll,q.2- The proof now follows from the identity u—p(dp, du)z =

u' + p(i —n). 0

We are now ready to prove Theorems 1.1-1.3.

Proof of Theorem 1.1. Since g € €% (M), we have Hesszp € C5~"*(M). Thus
(Hessg p)# € C*=1(M) (where the sharp operator is with respect to g = p?g).
Because a (1,1) tensor has weight 0, this implies that |(Hessy p)*|; is bounded by
a constant multiple of |(Hessg p)f|5 = |(Hessg p)*|,, which is bounded.

Lemma 3.1 shows that Riem[g], Ric[g], and R[g] are all O(p~!). Thus the equiv-
alence of parts (a)—(d) of Theorem 1.1 follows immediately from (1.1), (1.2), and
(1.3). O
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Proof of Theorem 1.2. Let f :=1—|dp|2. Since g and dp are in €1 (M), we have
f € €1 (M) as well. The assumption that g is weakly asymptotically hyperbolic
means that f — 0 as p — 0, and thus Lemma 2.3(d) shows that f € C¥*(M); this
is (d). Properties (a), (b), and (c) then follow from (1.1), (1.2), (1.3), respectively,
together with Lemma 3.1.

To prove (e), note that (a) implies (YV)/ Riem[g] is a tensor of weight j in
C¥=7%(M), and the h-norm of such a tensor is O(p=7+1). O

Proof of Theorem 1.3. Equation (1.3) can be written
Rlg] +n(n+1) = —n(n + 1) f + p* R[7], (3.2)

where

2
_ 2
= |dpl5 — 1P Aap (3.3)

Lemma 3.1 shows that p?R[g] € C¥~>%(M), and it follows immediately that (a)
= (c) = (d) = (b).
We complete the proof by showing that (b) implies (a). Assume therefore that
f = O(p?). Since g € €**2(M), we have (g)~! € €**2(M). Thus the function
= |dpZ — 1 is in €2 (M) and, due to Theorem 1.2(d), u € CF*(M). There-
fore, by Lemma 3.2, we can write u = p(dp, du)y + v, for some v € ClC L.
Consequently,

2
f=pl{dp,du)g — i’ Agp + v.
On the other hand, the fact that g € //lv];e o1 also implies

= (dp, du)g — Agp € €1 (M),

2

+1
and the assumption that f = O(p?) implies w = O(p). Therefore, Lemma 2.3(d)
implies w € CF~1*(M), from which it follows that f = pw +v € C5~>*(M). O

Remark 3.3. The proof of Theorem 1.3 above invokes both Lemma 2.3(d) and
Lemma 3.2 in order to establish that f € C'k b (M) under the hypothesis that
R[g] + n(n + 1) = O(p?). The estimates in those lemmas imply that g — Rlg] +
n(n+ 1) is locally Lipschitz continuous, viewed as a map taking metrics in ,///“]fczf
satisfying Rlg] + n(n + 1) = O(p?) to functions in Cx~>*(M).

4. THE TENSOR Hg(w)

Let (M,g) be a (n + 1)-dimensional Riemannian manifold and let w: M — R be
any C? function. Then the vector field |dwlz 2 gradzw is conformally invariant in
the sense that for any positive function 6 we have

|dw|eg gradg; w = |dw|— grads w.

Let Dy be the conformal Killing (or Alhfors) operator, taking vector fields to
symmetric tracefree covariant 2-tensor fields, defined by

1 . —
D§X = EXg — ?(leaX)g
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The operator Dy transforms under conformal changes of g as follows: For any
positive C'! function § we have

DQEX = 9 DﬁX
Thus the map
w |dw|§D§(|d¢u|§_2 grad; w)
is a conformally invariant operator taking the function w to a symmetric tracefree
covariant 2-tensor field.

Another such operator can be constructed as follows. Observe that the p-
Laplacian

divg [|dw|§ grad; w}
is conformally invariant for p = n — 1, in the sense that
|dw|9_§(n+1) diveg |d(,u|g§_1 grady; W} = |dw|§_("+1) divy [|dw|g_1 gradg; w
Multiplying by
1
dw ® dw — ——|dw|2g

yields a conformally invariant operator taking a function w to a symmetric tracefree
covariant 2-tensor field.

We now combine the two conformally invariant operators above, first multiply-

ing by powers of |dw|g in order to avoid negative powers and in order to achieve
homogeneity in w, and define the tensor Hz(w) by

1
e 6 —2 2
Hg(w) = |dwlg Dg(ldw|; ~ gradgw) + Ag(w) (dw ® dw — n—H|dw|gg) , (41
where
1 3—n 3: n—1
Az(w) := ﬁ|dw|§ divg [|dw|§ gradgw} .

We remark that this definition of the tensor field Hg(w) makes sense for manifolds
with or without boundary.
One may readily verify by direct computation that

1 _
Hy(w) = |dwls (Hessgw - n—ﬂ(Aﬁu)g)

_ 1 _
_ |dw|§ (9V)gwdgw {dw ® dw — ] |dw|§g]

+ Ag(w )(dw@dw——|dw|2 ) (4.2)

where (V) is the Levi-Civita connection associated to g.
The following basic properties of Hz(w), which are immediate from the definition,
show that it is a conformally invariant version of the trace-free Hessian.

Proposition 4.1.

(a) Hg(w) is symmetric and trace-free.

(b) Hg(w)(gradgw, ) =0.
(c) Hg(ew) = *Hg(w) for all constants c.
d) Ifg = g for a strictly positive function 0, then Hgz(w) = 0 *Hgz(w) and

f
Ag(w) = 072 Ag(w).
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In the asymptotically hyperbolic setting, we make use of Hg(w) with w replaced
by the defining function p. We first note the following regularity properties.

Lemma 4.2. Let g € ///Vljeikl be a weakly asymptotically hyperbolic metric on M
fork>1 and a € [0,1), and let g = p?g. Then Hg(p) € CE=Le ().
If furthermore g € M¥:%% and k > 2, then VHg(p) € Cy (M) and thus

wea!

divg Hg(p) € CT~2(M).
Proof. Observe that Hg(p) consists of terms which are contractions of
@ @@ te@ teogedpedpedpedp (IV)(dp). (4.3)

Noting that dp € CY*(M), Vdp € C5* (M), V3dp € C¥*(M), and observing that
the difference tensor (V) — V consists of contractions of (§)~! ® Vg, the lemma
follows from direct computation. O

We now show that Hz(p) agrees with the trace-free Hessian of p along OM if the
scalar curvature decays to —n(n + 1) as O(p?).

Proposition 4.3. Suppose g € ///éfjf fork>2anda €[0,1). IfR[g]+n(n+1) €

e

CE=2%(M), then Hz(p) extends continuously to M and satisfies

1 _ —lLa
(o) — (Hossyp — = (Bqolg) € 44 a). (4.4
n+1
In particular (1.7) holds.
Proof. From Theorem 1.3 we have
2 k—1,«
|dplg —1 - n—HP(Aﬁp) € Cy N (M). (4.5)

Note that, as in the proof of Lemma 4.2, we have (V) — V € CF (M) and
V(EV)-V) € CE=2%(M); consequently, d(Agp) € CF~3%(M). Taking the dif-
ferential of (4.5) we find

Hessg p(gradg p, -) — (Agp)dp € C3~>(M).

n+1

Since (EV)gmd_ p

computation verify that

dp = Hessg p(grad;p,-) and dp € Cf’a(M), we may by direct

_ 1 o
(gv)gradip dp ® dp - n—_H|dp|§g:|
2 1 2 — k—2,«
= = (8g) |dp @ dp— ——ldpl2g| +CA 20D (146)
and
_ 2 k—2,a
Ag(p) = T(Aﬁp) + O (M),
Inserting this information into the expression for Hg(p) we obtain
1 _ 2,0
(o)~ (Hessg o~ 5 (Agplg ) € € an) (47)
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On the other hand, the facts that Hz(p) consists of terms of the form (4.3) and
that g € €%2(M) imply that

_ 1 3 Coa
7 (ot (1tessy — —(8gnig) ) € 72 an), (18)
Claim (4.4) is immediate from (4.7) and (4.8), together with Lemma 2.3(d). O
We now present the proof of Theorem 1.4.

Proof of Theorem 1.4. We first recall Lemma 3.1, which implies that the ultimate
term in (1.5) is a (2,2) tensor field of class C5~2*(M). We proceed by showing (a)
= (b) = (c) = (d) = (a).

The condition (a) immediately implies (b). Note that if & is a (1, 1) tensor field
then the contraction of first upper and first lower indices of § ® h is 251 h+ 4 (tr h)d.
Thus supposing that (b) holds, we may take a contraction of (1.5), and then contract

with g, to conclude that
(Fessgp— - (Aqplm ) < C472(an),

In view of Proposition 4.3, this implies (c).

To see that (c) implies (d) we note that g € %2 implies Hz(p) € C5~ " (M)
and VHz(p) € CE2%(M); see Lemma 4.2. Thus applying Lemma 2.3 (d) with
u = Hg(p) gives the desired implication.

Finally, assuming (d) we may use Proposition 4.3, together with (1.5), to deduce

(a). O

n+1

5. FREDHOLM RESULTS

The proof of Theorem 1.6 consists of adapting the arguments in [17] to the
weakly asymptotically hyperbolic setting. The arguments in [17] rely on the fact
that a strongly asymptotically hyperbolic metric g of class C*# satisfies

sup||®;g — dllcrspy) <C  and  sup[[(®}g) ' gllco(s,) < C. (5.1)

An important observation is that (5.1) holds under the hypothesis that g € ///‘fwii,
the first estimate is a consequence of g € Cé”@ (M), while the second follows from
()~ € C°(M). The estimates (5.1) are a key ingredient in the proof of the

following elliptic regularity estimates for geometric operators.

Lemma 5.1 (Lemma 4.8 of [17]). Suppose that g satisfies (5.1), and let P satisfy
part (a) of Assumption P.
(a) Suppose that B € [0,1), 6 € R, 1 < p < o0, and 2 < k < I. For each
u € Hg’p(M) with Pu € H§72’p(M), we have u € H(?’p(M) with

lll gt ary < C (IPull gsoogary + Il gooar) ) -

(b) Suppose that f € (0,1), e R, 0<a <1, and 2 < k+«a <1+ 3. For each
u € CY(M) with Pu € C§_2’Q(M), we have u € Cg’a(M) with

lull o qary < € (IPull iz qary + lullogean) -

The regularity estimates above can be improved if P is semi-Fredholm, meaning
that the kernel of P is finite-dimensional and the image of P is closed.
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Proposition 5.2. Suppose that g satisfies (5.1), and let P satisfy part (a) of
Assumption P.

(a) Suppose B €[0,1),0 € R, 1 <p<oo, and2 <k <I. If P: HY"(M) —
H(?_Q’p(M) 1s semi-Fredholm, then there exist a compact set K C M and a
constant C' such that for each u € H(?’p(M) we have

HUHH?P(M) <C (||PUHH§*2W(M) + ”u”HkvP(K)) . (5'2)

(b) Suppose that 8 € (0,1),d e R, 0 <a <1, and2 <k+a <Il+p8. I
P Cg’a(M) — C’giz’o‘(M) is semi-Fredholm, then there exist a compact
set K C M and a constant C such that for each u € CZ;’O‘(M) we have

lulgeqary < € (IPullgr-seqan + Nl xe ) - (5.3)

Remark 5.3.
(a) In the Sobolev case it follows from (5.2) that

||U||Hg,p(M) < C”PUJHH?P(M)

for all uw € CP(M N K), which is equivalent to P being semi-Fredholm. If
the estimate also holds with p replaced by p* = p/(1 — p) and 0 replaced by
—4, then P is in fact Fredholm; see [17, Lemma 4.10].

(b) The estimates (5.2) and (5.3) are related, but not equivalent, to the “strong
reqularity intervals” of [4].

(¢) The only properties of P used in the proof of Proposition 5.2 are the semi-
Fredholm property and boundedness in the appropriate spaces. Thus for any
compact operator K: HYP(M) — HY >P(M), the estimate (5.2) holds with
P replaced by P + K. Similarly, for any compact operator K: C?’O‘(M) —
C§_2’Q(M), the estimate (5.3) holds with P replaced by P + K.

Proof of Proposition 5.2. We prove only the Holder norm estimate (5.3). The
Sobolev estimate follows from analogous reasoning; see also [17, Lemma 4.10].

We first show that sections of E supported near the boundary can be estimated
by their distance to the kernel of P. Since P is semi-Fredholm there exists ¢ > 0
such that no non-trivial element of ker(P) N C?’O‘(M ) vanishes identically on the
compact set K = M~C.. As all norms on a finite-dimensional vector space are
equivalent, we see that there exists ¢ > 0 such that

< v (5.4)

C_lHU”cg’a(K) ||C§"1(M) < CHU”Q’;’Q(}()

for all v € ker(P) N Cy*(M).

Let Y be a topological complement of ker(P) in Cg"o‘(M ) so that each u €
C?’O‘(M) may be uniquely written as u = ug + uy with ug € ker(P) and uy €
Y. The open mapping theorem implies that P: Y — ran(P) C C§_2’O‘(M) is a
bijection with bounded inverse. In particular there exists C’ > 0 such that for all
u=1uy+uy € C(’;’O‘(M) we have

[y | ge gy < C NPl g2y (5.5)
S (an) k=20 ()
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Now suppose that (5.3) fails. Then, setting K,, = M \Cy/,, there exists a
sequence U, € Cg’o‘(M ) having unit norm and such that

1= Jumllopeqar 2 m (I1Pumller-son + lumllepop,) - (56)

Writing wy, = U, + Um,y, With um,y € Y and vy, in ker(P), we conclude from (5.5)
and (5.6) that

Hum1Y|‘C§,a(M) S Cl||PumHC§72,a(M) S C'//m (57)

Thus from the reverse triangle inequality we have, for sufficiently large m, that

1
||vaC§’Q(M) > 1= ”um,YHc(’;’Q(M) > 3 (5-8)

For sufficiently large m, K C K,,, and hence the C(I;’O‘(Km) norm dominates the

C?’O‘(K) norm. For such m the norm equivalence (5.4), together with (5.6) and
(5.7), imply that

”vaC(’;’Q(M) < C””m“c(’;’a(K)
< C”vm”cg’a(Km)
= c||um — um,yHC?a(Km)
< cllumllcre s,y + ellumyllore
c
<—(1+0C).
<fa+o)

However, this contradicts (5.8). O

We now turn to the proof of Theorem 1.6, and assume that g € ///vlvfai for
some [ > 2 and 8 € [0,1). We first verify that P is indeed a uniformly degenerate
operator, and that the indicial map I;(P), defined in (1.10), is a C° bundle map.
Lemma 5.4 (Lemmas 4.1 and 4.2 of [17]). Suppose g € ,///Vlvfli forl>2and g €

[0,1), and let P satisfy part (a) of Assumption P. Then in background coordinates
we may write

P = a(pd;)(pd;) + b'(pd) + ¢, (5.9)

where the matriz-valued functions a, b*, ¢ extend continuously to M.
Furthermore, the indicial map I;(P): (EC)’aM — (EC)‘{)M is a C° bundle map
for each s € C.

Proof. The proof in the strongly asymptotically hyperbolic setting, as presented in
[17], relies on the fact that p?g extends to a C*# metric on M. Here we present those
modifications necessary to adapt the arguments in [17] to the weakly asymptotically
hyperbolic setting.

As P is geometric, the operator Pu is obtained from contractions of tensors
formed from p/(9V)’u, (p(9V))? Riem[g], g, (g)~', and p"*1dV,; see Chapter 4
of [17]. Tt follows from the definition of .#Z"%! that g, (7)~', p"*'dV,, and

weak

(p(9V))7 Riem|[g] extends continuously to M, and that
[(p(°V))’ Riem[g][;; = O(p) ~ as p— 0.
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Thus we focus our attention on p? (9V)’u, and let (9D) = (9V) —V be the tensor
describing the difference between the Levi-Civita connections of g and h. Note that
p(9D) is a tensor field of weight 1 which is a sum of contractions of

p(@ ' ®Vg and (7)' ©g®dp; (5.10)

the first term is in Céfl’ﬁ(M) C C%(M) and is O(p) as p — 0, and the second term
is continuous on M.

We claim for 1 < j <1 —1 that the tensor (p(9V))?[p(¢D)] extends continuously
to M and satisfies

[(p("%)) [p(°D)]|;- = O(p)  as p — 0.

To see this, note that applying p(?V) to the first term in (5.10) yields a tensor field
in CLP (M) C CO(M) that is O(p) as p — 0. Applying p(9V) to the second term
in (5.10) yields contractions of

p(@) @@ 'ege (Vg @dp and p(g) ' ®7ge Vdp,

both of which are in Cé_l’ﬂ (M). The claim regarding higher derivatives follows by
induction.

The proof of the lemma now follows exactly as in the proofs of Lemmas 4.1 and
4.2 in [17]. O

We now extend the results in Chapter 6 of [17], in which a parametrix for P
is constructed, to the weakly asymptotically hyperbolic setting. The construction
relies on an estimate for the metric using boundary Mébius parametrizations, which
we now describe.

Recall from §2 that we identify a collar neighborhood €, of the boundary with

OM x [0, p.). For each point p = (6,0) € M, let 0= (8, p) be local coordinates,
related to the background coordinates © by an affine transformation of the half
space R™ x [0, 00), such that at p the O coordinate representation of the metric g is
di; and p corresponds to 0= (0,0). The coordinates O are uniformly equivalent to
the coordinates ©. For sufficiently small r > 0, we define the boundary Mobius
parametrization V,.: Y — M by (0,p) = V,.(z,y) = (ra,ry), where Y is the
rectangle Y = {(z,y) | |z| < 1,0 < y < 1} C H. For any choice of r > 0, there
exists a finite number of boundary Mébius parametrizations such that the {¥,(Y)}
cover the open set C,, = M x (0,r) and are uniformly locally finite; this uniformity
is independent of the choice of r.

The following estimate of the difference U}g — g, with respect to the intrinsic
Holder norm on Y C H, plays the role of Lemma 6.1 in [17].

Lemma 5.5. Suppose g € ///‘fwii and let U, be a boundary Mobius parametrization

as described above. Then there is a constant C > 0, independent of p, and a
sufficiently small r, such that

1959 — gllcreyy < O (5.11)

Proof. 1t suffices to consider a Mobius parametrization ®: By — H centered at
some (o, o) € H and to estimate

(Wr0®)g—g
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in C#(B,). Note that (6, p) = (¥, o ®)(z,y) = (rzo + ryox, ryoy), and therefore

S . O © dOI
(¥ 0@)"g=(g;; 0¥, 0 q’)in .

Note also that y is bounded above and below, and that & is an isometry of (H, §).
Let f be any of the component functions g;; — d;; in © coordinates. We seek to
show

1o (¥, 0®)|crep,) < Or.

Since f vanishes at 0= (0,0), the CY estimate follows from the boundedness of
059;; and the mean value theorem. The Hélder estimates of derivatives of f o(W,.0P)
follow from Lemma 2.3(e). O

With (5.11) established, the parametrix construction of [17] follows using Lemma
5.5 in place of [17, Lemma 6.1]. In particular, we obtain improved regularity of
solutions to Pu = f.

Lemma 5.6 (Lemma 6.4 of [17]). Suppose g € MEPL et P osatisfy Assumption

weak ’

P, and let R be the indicial radius of P as defined in §1.

(a) Suppose that § € [0,1), 1 <p < o0,2 <k <1, |0+n/p—n/2] <R,
and [0 +n/p—n/2| < R. Then for each u € Hg’p(M;E) with Pu €
H§,72’p(M; E) we have u € HEP(M; E).

(b) Suppose 8 € (0,1), 0 < a<1l,2<k4+a<I+0 16 —n/2] <R, and
|6/ —n/2| < R. Then for each u € CY(M; E) with Pu € C(’;,_Q’O‘(M;E) we
have u € C*(M; E).

Subsequently, the proofs of Proposition 6.5, Theorem 6.6 and the affirmative
portion of Theorem C in [17], which corresponds to Theorem 1.6 above, proceed
with no further modifications. We have not pursued the possibility of extending the
negative portion of Theorem C to the weakly asymptotically hyperbolic setting.

6. THE YAMABE PROBLEM

We now address the solvability of (1.12). In fact, we construct positive solutions
to the more general Lichnerowicz-type equation appearing in general relativity (see,
for example, [9]):

n—1

Ay = Rlgl¢

— AgGntD/(n=1) _ gy-(n+D)/(n=1) n24_ 1¢(n+3)/(n71), (6.1)
where A, B are non-negative functions. Solutions to (1.12) can then be obtained
by taking A =0 and B = 0.

In order to address the solvability of (6.1) we first use Theorem 1.6 to establish
an existence result for linear scalar equations. We remind the reader that our sign
convention for the Laplace operator is opposite to that of [17].

Proposition 6.1. Suppose that g € ///Vlvedi forl>2and B € (0,1). Let k € N and
a € (0,1) satisfy 2 < k+ a < 1+ B. Suppose also that k € C*=2%(M) for some
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o >0, and that c is a constant satisfying ¢ > —n?/4 and ¢ — k > 0. Then so long
as

\5——]< L (6.2)
the map
Ay —(c—r): G (M) — C5~>(M)

1s invertible. L L
Furthermore, if p*g € C3,, (M), p=" f € Oy, (M) for some v > n/2—+/n?/4 +c,

and k is a polyhomogeneous function (which necessarily vanishes on OM), then the
unique function u € C'(?’Q(M) such that
Agu+ (k=—cu=f (6.3)
is polyhomogeneous and satisfies the following boundary regularity conditions:
o Ifv>n/2+\/n2/4+c, then p~ /2~ V" /Atey ¢ C’ghg(ﬁ).
o Iflv—n/2| < /n?/4+c, then p~"u € Cghg(ﬁ).
o Ifv=n/24+/n?/4+c, then p~Hu € Cghg(ﬁ) for all p < v.
Proof. Since x € C*=2:%(M), multiplication by p~?k is a continuous map
CE=2(M) = CF 2 (M). (6.4)

By the Rellich Lemma [17, Lemma 3.6(d)], multiplication by p” is a compact op-
erator

CE (M) — CF>*(M). (6.5)

Thus multiplication by k, as the composition of a continuous operator and a com-
pact operator, is a compact operator

Cy™(M) — C¥>(M). (6.6)
The Laplacian A, is well known to be a formally self-adjoint elliptic geometric

operator. From Corollary 7.4 of [17] we have that the indicial radius of A, — ¢ is
n2/4 + c¢. Hence

Ay —(c—K): CP*(M) — C5 (M) (6.7)
is Fredholm of index zero so long as (6.2) holds. To show that A, — (¢ — k) is
invertible, it is sufficient to verify that the kernel is trivial. Suppose, therefore, that

v is in the kernel; by Lemma 5.6 we have v € Cé’B(M) for all § satisfying (6.2). In
particular, v has sufficient decay that we may integrate by parts to conclude

0= / (|dv|§ + (e— A)v2) vy,
M

from which we deduce that v = 0. Note that in the case ¢ — x = 0, we must have
¢ =0 and thus é > 0 by (6.2); since the only constant function in C’Z;’O‘(M) is the
zero function, we find v = 0.

Suppose now that p?g € Cghg(ﬁ). If f is a polyhomogeneous function with

pVf e Cghg(ﬁ), then f € C*(M) for all k € Ny and a € [0,1). Thus (6.3) has
a unique solution u € C?’O‘(M) for all 0 < § < v satisfying (6.2), and for all k > 2.
Theorem A.14 ensures that the solution u is polyhomogeneous.

The boundary regularity follows from inserting the expansion (A.2) of u into
(6.3) and carrying out a formal asymptotic computation using Lemma A.7: If v is
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in the Fredholm range, then u has the same behavior as f, but if f asymptotically
decays as p/?TV"?/4¢ there is a resonance, leading to terms with logarithms.
Finally, if f decays faster than p™/?*V7*/4t¢ then the leading behavior of u is
P2tV n?/4+e as such terms are annihilated by the indicial operator of A,. ([l

In order to construct solutions to (6.1), it is useful to first make a conformal
change of the metric so that it has negative scalar curvature.

Lemma 6.2. Suppose that g € ///‘fv‘ii forl>2 and B € (0,1). Then there exists a
positive function 1 with p—1 € Ci’B(M) such that the scalar curvature of p* (=g
is strictly negative.

Furthermore, if p?g € Cghg

(M), then v € Cghg(ﬁ).

Proof. Since g is weakly asymptotically hyperbolic, Theorem 1.2 implies that the
scalar curvature satisfies Rlg] + n(n + 1) € Ci_2’ﬂ (M). Using a smooth cutoff
function, we may construct a function R such that R + n(n+1) € Ci_z’ﬁ, such
that R < min (R[g] — p3,—1) on M, and such that R[g] — R € CL~2(M). Applying
Proposition 6.1 with £ = ((n—1)/4n)(R — R[g]) and ¢ = 0, we obtain the existence
of a function u € C-? (M) satisfying

n—1 ~ n—1 ~

1 (Rlgl = Rju = ——(R[g] - R).

Thus ¢ = 1+ u satisfies Ayip = ((n — 1)/4n)(R]g] — R)¢. AsR[g]—R > p? >0
on M and 1|,,, = 1, the strong (Hopf) maximum principle implies ¢ > 0. Thus
from (1.11) we have

R[y* ("~ Vg] = (—

In the case that p?g € C’ghg(ﬁ), the regularity of ¢ follows from the latter part of

Proposition 6.1. O

Agu —

4n
n—1

Ayt + R[g]w) @~ (/=) — Ryy=4/(n=1) <. (6.8)

Remark 6.3. Ifge ///‘fv’fa’i forl1>2 and B € (0,1) and v is a positive function
with Y —1 € Ci’ﬁ(M), then ¢4/ (=g e ///Vlv’ﬁ;l as well.

eak

We now address the solvability of (6.1), following the standard method of super-
and subsolutions [15]; see [5] and [4] for a related discussion in the asymptotically
hyperbolic setting; see [9], and the references therein, for analogous treatments in
the compact and asymptotically Euclidean settings.

Proposition 6.4. Suppose that g € ,///l’ﬂ;ll forl > 2 and B € (0,1). Suppose

wea.
furthermore that A, B € Ci_Q’B(M) are nonnegative functions. Then there exists a

unique positive function ¢ with ¢ — 1 € Ci’B(M) satisfying (6.1).
Furthermore:
(a) If g € M52 with Rlg] + n(n + 1) € Cy 2P (M) and A, B € CL P (M),

wea!

then ¢ —1 € Cé’B(M) and thus ¢* (Vg e '//l‘i,falf

(b) If p?g € Cghg(ﬂ) and p2A,p72B € Cghg(ﬁ), then ¢ € Cghg(ﬁ) and thus
p?¢* (Vg e CF (M).

We remark that if g is smoothly conformally compact, the solution ¢ may nev-
ertheless be polyhomogeneous, rather than smooth, on M; see [4].
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Proof. Tt follows from Lemma 6.2 that there exists a positive function ¥ with ¢y —1 €
CHP (M) such that R[p* ("D g] < 0, and from Remark 6.3 that ¢4/ ("1 g e 7521

weak *
Setting v = ¥/ (Vg q = =2t/ (=1 4 and b = =22/ (=D B we easily
verify that a function 6 satisfies
n—1

A0 =F(0) = ™ R[]0 — ag~ G0/ (n=1)

—mi)/ 1) 4 2 =1 nis) o)
) + (6.9)

if and only if ¢ = 90 satisfies (6.1); we further require 6|,,, = 1 and § > 0. Note
that while F': M x (0,00) — R, we suppress explicit dependence on M. Note also
that any function v with v =1 4+ O(p) satisfies F(v) = O(p) as p — 0.

We show that there exists a solution to (6.9) by constructing barriers. We first
note that there exists a constant C' > 0 such that

—CSR[”y]S—% and 0<a,b<C.

Thus there exists a constant u, € (—1,0) with F(1 4+ u,) <O0.

Without loss of generality, we may assume that A,p < 0 on M; see the con-
struction in [16, Section 4.1]. Since R[y] = —n(n + 1) + O(p) and R[y] is strictly
negative, there exists a constant N > 0 sufficiently large so that

— 4(n=1) o "=
(1=Np) < n(n+1)

R[y] when p< N7%

Thus
A,(1=Np)>0>F(1- Np) when p < N71.
A similar argument shows that we may furthermore choose N > 0 such that

Ay(1+Np) <0< F(1+ Np) on M.

Since (z,u) — F(1+u)(x) and (x,u) — %F(l +u)(z) are continuous functions on
M x [, max s (14N p)] we can choose A > 0 sufficiently large so that F(1+u) < Au
and %F(l + u) < A on that domain.

Define G(u) = F(1 + u) — Au; note that G(u) is monotone decreasing in u and
that (6.9) is satisfied by = 1 + u if and only if u satisfies

Aju— Au = G(u), ulyy =0, u>—1. (6.10)
Fix 6 € (1/2,1) and note that if v € C(?"@(M), then G(v) € C?’B(M). Thus
by Proposition 6.1 we may define a sequence of functions {u;}5°, C C(?”Q (M) with
up = Np and
A.Y’U,lqu — Aui+1 = G(UZ), 1 € Np.
Since
(Ay = A)(Np) <G(Np) and (A, — A)u) > G(u.)
and G is monotone decreasing, the maximum principle implies that
Np > Ui 2 Uig] > Us i € Np. (611)
If p < N~! then we have (A, —A)(—Np) > G(—Np). Using the maximum principle,
together with the lower bound in (6.11), we conclude that
Np > u; > max (—Np, u.) (6.12)
for all 7 € Ng.



WEAKLY ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 27

For any p > n/(1—J), we have p € H(?’p(M) for all k € N; see [17, Lemma
3.2]. Thus the u; are uniformly bounded in H;"”(M). The monotonicity of G then
implies that G(u;) is uniformly bounded in Hg’p (M) as well. Thus we may apply
elliptic regularity to conclude that the u; are uniformly bounded in H(?’p (M).

Note that if we also choose p such that p > (n+1)/(1 — /), then we have
HYP(M) C C3P(M); see [17, Lemma 3.6(c)]. Thus luill 1.5 (ppy 1 uniformly
bounded in ¢ and the Rellich Lemma [17, Lemma 3.6(d)] ilflplies that for any
choice of ¢’ € (1/2,0) we may pass to a subsequence, which we also denote {u;},
that converges to some u € Cg,’ﬁ (M). From (6.12) we have u € CY(M). The elliptic
estimate of Lemma 5.1 implies

s = will gz ary < € (I1F(5) = F )l ooy + lus = will o ap) ) 3

thus {u;} is Cauchy in C(?,"B(M), whence u € C?}B (M).
For any smooth, compactly supported test function w we have

/ (uAyw — F(1 4+ w)w) dV,
M
= lim (widyw — F(1 4 u;)w) dV,
11— 00 M

= lim (Ayu; — F(1 4 w;)) wdV,

ioo Sy
:zliglo (A(u; —ui—1) + F(1+uim1) — F(1 4+ w;)) wdV,
=0. "
Thus u € CZ° (M) N CY(M) is a weak, and hence strong, solution to (6.10).
To see that u € C’i’ﬁ(M) we note that
Ayu—(n+1lu=f
where

= n4;1 (RY] + n(n+1)) (1 +u) — a(1 4 u)~ G/ (=D

— (1 4 u) "D/ D)

2

4 n—lu

Since &' > 1/2 we have f € C?(M). Thus Lemma 5.6 implies that u € C-?(M).
Consequently, ¢ = ¢ (1 + u) satisfies (6.1) and ¢ — 1 € Ci’ﬂ(M).
In the case that g € ,///‘i,falf and R[g] + n(n+1) € CL 2P (M) we set w = ¢ — 1

and note that w € Ci’B(M) and that w satisfies
Ayw—(n+ 1w = f,
where

r_ n4_ 1 (Rlg] +n(n+1)) 1+w) — A1 + w)—(3n+1)/(n_1)
n

2
-1
— B(1 +w)"(+D/=1) L T - (1 4 w)™ 3/ (=1 _ 1

n+3
— w
n—1
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If A, B € CL"%%(M) then f’ € CL7%# (M) and hence we conclude that w € C5? (M)
as desired. _

To show uniqueness we follow the argument in [9]: Suppose that ¢, ¢ both
satisfy (6.1) and ¢ — 1,6 — 1 € CLP(M). Setting 7 = ¢¥/ (Vg 6 = ¢~ ¢,
a= q~5’4("+1)/(”71)A, and b = (;NS’Q("H)/(”*DB, we have

~ ~ - -1 o~
A0 —1) = F(@) = "4 R[F]0 — @6~ Grt/(n=1)
n
2
_ 3t/ -1 L P Lgni3)n-1)
4

- g (§—<3n+1>/<n—1> _ 1) 3 (§—<n+1>/<n—1> _ 1)

2
n ”T—l (§<n+3>/<n—1> _ 1) 7

(6.13)

where in the second line we have used (6.8) and the fact that ¢ satisfies (6.1). Since
6 > 0, for any real number r we have

0 —1=(0-1f

for some function f, with the same sign as r. Therefore, we may express (6.13) in
the form

A1)~ (c—R)@-1) =0,
where ¥ is a Cifl’ﬁ(M) function and ¢ = (n+1)(n+3)/4 is a constant with ¢ > K.

Thus we may apply Proposition 6.1 to conclude that § — 1 = 0.

Suppose now that p*g € C2 (M) and p~2A,p™°B € C}, (M). Then 1 €
Cghg(ﬁ) and iteratively applying the elliptic regularity estimates of Lemma 5.1
implies that ¢ — 1 € C§°(M). From Proposition A.18 we have that 6, and thus ¢,
is polyhomogeneous. It readily follows from a straightforward asymptotic compu-
tation that ¢ € Cghg(ﬁ). O

k,a;2 k,a;2

In the case that g € Proposition 6.4 only implies ¢*/("*~Vg € A

weak ? weak
under the condition that Rlg] +n(n+ 1) € C5~ >*(M). To remove this condition,
and thus complete the proof of Theorem 1.7, we use the following lemma.
Lemma 6.5. Suppose g € ///Vljeikz with k > 2 and o € [0,1). Then the confor-
*2 such that R[] +n(n+1) €
05_2’O‘(M). Furthermore, g can be chosen so that g — ¢ is a locally Lipschitz map

k,a;2 k,a;2
Mgl — A,

weak *

mal class of g contains a representative g € ///ﬁé

Proof. Let g € 42 for k > 2 and a € [0,1). We seek a positive function

weak
0 € €**2(M) such that 0|,,, = 1 and R[2g] + n(n + 1) € C5~>*(M). Due to
Theorem 1.3, it suffices to show that
2 “1a
F(0) := |d(6p) [ — 1 = ——=—(0p) A (0p) € C3~ (M),

Note that F(1) = f, where f is defined by (3.3), and that g — f is locally
Lipschitz continuous as a map //1&313 — ¢F~1*2(M). By Theorem 2.6, there
exists f € €52 such that f — f € C;C_l’a(M); furthermore, g — f is locally

. . . k,a;2 k,o;2
Lipschitz continuous as a map .#_ " — € .
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Let x: R — [0,1] be a smooth cutoff function with x = 1 on (—1/3,00) and
supp x C (—2/3,00). Define

1.
@ = —”4‘; foand  w= (@),
and set # = 1 4+ w. Direct computation using Lemma 3.2 shows that
2(” B 1) k—1,«
F(9)=f+2w+n7+1p<dp,dw>§+02 (M)
4dn
(M
+1 (M)
€ Cy (M)

as desired. Finally, as * ~ 272 is Lipschitz continuous on [1/3,00), the map

g+~ 072g is locally Lipschitz continuous as claimed. O

Corollary 6.6. Suppose g € Y for some k > 2 and a € (0,1). Then there

weak

exists a positive solution ¢ to (6.1) such that A= ,///“]f o2

eak *

Proof. From Lemma 6.5 there exists positive function 1 € %2 such that g =
YA/ (=g ¢ ///ﬁfk and such that R[g] + n(n —1) € CE=2e (.

Setting A = 4D/ (=1 g and B = o2 +2)/(n=1) B we easily verify that a
function gb satisfies

Ago =

n—1 ~
RS

n®—1~
2 a(n3)/(n—1)
1 ¢

if and only if ¢ = ¢ satisfies (6.1). From Proposition 6.4(a) there exists ¢ €
14C%*(M) satisfying this equation and such that ¢%/ (=1 g = /(=17 ¢ M2
([l

_ Ag-Bn+D/(n=1) _ Ba-(n1)/(n=1) 4

Proof of Theorem 1.7. Suppose that g € //lvlje o1 and let ¢ be the unique solution
to (1.12) provided by Proposition 6.4. As ¢ — 1 € ClC Y(M), we have ¢ € ¢Fl
and thus g = ¢/("~Vg e ///Vljeil’(l and R[§] = —n(n + 1).

In the case that g € 4, ke&k , the result is a consequence of Corollary 6.6. Finally,
in the case that g is polyhomogeneous, the polyhomogeneity of ¢, and hence g,
follows from Proposition 6.4(b). O

APPENDIX A. POLYHOMOGENEITY AND BOUNDARY REGULARITY

Our purpose in this appendix is to give a self-contained account of the boundary
regularity of solutions to equations of the form

Pu=f (A1)

in the polyhomogeneous setting; here P is a linear geometric operator acting on
sections of tensor bundle E arising from a metric g that is polyhomogeneous in the
sense defined below. We further assume that P satisfies Assumption P. Many of
the methods employed here have been used elsewhere to obtain related results; we
note in particular [5], [19], [20], [22], and [23].
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A.1. The conormal and polyhomogeneous spaces. We first define conormal-
ity classes for tensor fields on M using the collection #, of smooth vector fields on
M tangent to the boundary OM. In background coordinates © = (6%, p), a vector
V € ¥, can be expressed as V9 + V*pd, where V¢, V* are smooth functions
on M. Define A(M) to be the class of smooth tensor fields u on M satisfying
Ly, ... Ly,u € L>®(M) for any finite set {V1,...,Vi} C %,.

Remark A.1. Direct computation shows that v € A(M) if and only if in any
background coordinate chart (U, ©) the functions expressing u in terms of the ‘nor-
malized’ background coordinate frame {pdeon} and associated dual frame {p~*dOH}
extend to elements of A(M).

For 6 € R we set As(M) = ;o5 p"AM) and A_o(M) = User As(M). We
emphasize that p? A(M) is a proper subset of As(M); see Remark A.4 below. Sec-
tions of class A_., are called conormal; classes analogous to A, As, and A_
have been employed elsewhere; see e.g. [19], [20], [22], [23].

We now define an important subset of A_, (M), the polyhomogeneous sections.
First, we consider functions on a background coordinate chart (U, ©). We say a
complex-valued function f is polyhomogeneous on U if

(a) there exist sequences s; € C and p; € Ny with Re(s;) non-decreasing and
diverging to +o0 as i — 00,

(b) there exist smooth functions 7@(9)7 p=0,...,p;, defined on an open neigh-
borhood of U, and

(c) for each k € N there exists N € N such that

N pi

F=>23 r"(logp) T, € pFAQ),

i=0 p=0
where we extend each Tip to functions on U that are independent of p.

In this case we write
oo Pi

F~Y0D ot (log p)Pfp-
i=0 p=0
Denote by Aphg (i) the collection of polyhomogeneous functions on ¢/. We remark
that this definition is somewhat more general that those used in [3], [4], [16], where
s; are assumed to be real; see [20].

We call a smooth section u of tensor bundle £ on M polyhomogeneous if in each
background coordinate chart (U, ©) the functions that describe the components of
u with respect to the normalized background coordinate frame (see Remark A.1)
are in Apng(U) and if the sequences {s;}, {p;} are the same in each chart. Thus in
each background coordinate chart, we may write

o Pi
w~ > > p T (log )Py (A.2)
=0 p=0
for some matrix-valued functions %;,; here r is the weight of the bundle E. Note that
in fact these matrix-valued functions are the expression in coordinates of smooth
sections of El,,,.

Let Apng(M) denote the collection of polyhomogeneous tensor fields. Note that

Aphg(M) C A_oo(M); see Lemma A.5 below.



WEAKLY ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 31

It is sometimes convenient to restrict attention to polyhomogeneous fields with
exponents s; in a particular set; thus for S C C we denote by Af)hg(M) those
elements of Apng(M) for which the expansion (A.2) has {s;} C S.

We set C}f}’f‘g(ﬁ) = C* (M) N Aphg(M).

Remark A.2. The factor of p~" in (A.2) is motivated by the fact that if the tensor
bundle E has weight v then sections u satisfy |u|qg = p”|ulg. This convention implies
that if a tensor u has expansion (A.2) then |ul, behaves as pe(=0)(log p)Po for p
small; see part (a) of Lemma A.5 below. We further note that u € ASI"(M)

phg
precisely if the functions describing u in any background coordinate chart (U, O)

are in Aghg(bl).
Remark A.3.

(a) It follows directly from the definition that if u € Apng(M) then for any
§ € R one may choose a finite set S C C such that u = u/™ 4 u™™ with
ufn € Aghg(M) and v € As(M).

(b) Observe that polyhomogeneous expansions are unique in the sense that if
u = uPhe 4y with uPP® € Apng(M) and u™™ € As(M) for some § € R,
then the tensors U, of the terms p* (log p)Pt;p with Re(s;) < ¢ are uniquely
determined.

Remark A.4. It is helpful to have some examples to distinguish the various regu-
larity classes above.
(a) If s € C then for any | € N we have p*(log p)' € As(M) if § = Re(s), but
p*(log p)! is not in p° A(M).
(b) If'urthermore, p*(log p)! is polyhomogeneous, but is in CS‘E(M) only if Re(s) >
+ a.
(¢) Finally, if ¢ > 0 and v € C*>(M) is not constant along OM, then the
function p sin (vlog p) is an element of both A.(M) and C&*(M) for all k
and «a, but is neither in p* A(M) nor in Apng(M).

The following lemma records several important relationships among these regu-
larity classes.

Lemma A.5.

(a) If u € Apng(M) with leading exponent so in expansion (A.2), then u €
As(M) for § = Re(so); thus

Apng(M) € Ao (M).
(b) If « € 0,1) and § € R then for tensor fields of weight r we have
Apng(M) 0GR (M) € 7 A(M) 1 g8~y ().
(¢) If k € No, a €]0,1), and &' < 6, then
As(M) C p” A(M) C Cy*(M).
(d) If k € Ny and o € [0,1) then for tensor fields of weight r we have
€8, (7T) € Ch2 (1)
(e) Ifue Cghg(ﬁ) then there exists v € (0,1) such that u € C}f}’jg(ﬁ).
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Proof. The first claim follows from Remarks A.4 and A.3.

To prove the remaining claims, first observe that in the image of a M6bius param-
etrization @, the defining function p is comparable to po = p(po) and |5 u(x,y)| =
polu(fo + pox, poy)|; thus for scalar functions |0,®; f(z,y)| ~ |p8pf|q>(x7y), etc.
Claim (b) then follows by noting that the weight § places restrictions on the leading
exponent of the polyhomogeneous expansion; Holder continuity implies that there
can be no “leading log term” and thus p~%*"u extends continuously to M. The third
claim follows from the definitions of the spaces involved, while direct computation
shows that CO%(M) C C%*(M) and the fourth claim follows from considering
Mobius parametrizations as above.

The final claim is due to the discreteness of the sequence {s;} appearing in the
polyhomogeneous expansion of u. O

The following is an immediate consequence of Lemma A.5(b,d) and Proposition
1.2.

Corollary A.6. Suppose that § € Cgﬁg(ﬁ) is a Riemannian metric on M for
some m > 1, and that |dpl; = 1 along OM. Then g = p=2g € ///vljc‘;km for all
k> m and for all a € [0,1).

Conversely if g € ///V]s’a;m

o eak
Chig(M).

for some m > 1 and g € Apng(M), then g = p?g €

A.2. Analysis of the indicial operator. We now restrict attention to the case
where g € //lwkeif N Apng(M), and thus g = p?g € C’ghg(ﬁ), and investigate the
boundary regularity of solutions u to (A.1).

We first construct from the indicial map I (P), defined in (1.10), a differential
operator which, in the polyhomogeneous setting, approximates P in the p direction;
see Lemma A.7 below. Following [20], we define the indicial operator I(P) to be
the unique dilation-invariant operator on M x (0, 00) satisfying p~*I(P)(p°u) =
I,(P)u for all smooth sections u of El,,,.

In background coordinates © = (6, p), in which P takes the form (1.9), we have
by direct computation that

I,(P)= (s’a+sb+7e), (A.3)

where we have set @ = a”| _,, b= 0|
is given by

p—0» and € = ¢| _,. Thus the operator I(P)

I(P) =a(pd,)? + b(pd,) +¢. (A.4)

We emphasize that the coeflicient matrices @, b, ¢ are the expressions in coordinates
of endomorphisms of E|,,, and thus are functions only of #; we furthermore note
that the ellipticity of P implies that @ is invertible.

Identifying, as above, the collar neighborhood C with 9M x (0, p,) we extend I(P)
to an operator Z(P) on M by choosing a smooth cutoff function ¢: (0,00) — [0, c0)
satisfying ¢ = 1 on (0, 3p.] and ¢ = 0 for p > 2p, and setting Z(P) = ¢ I(P).
We furthermore define R := P — Z(P). The operator Z(P) approximates P in the
following sense.

Lemma A.7. Suppose that g € ///j’aﬁﬂAphg(M), and that P satisfies Assumption

eak

P. There exists v € (0,1] such that if u € As(M) for some § € R, then Ru €
A5+’Y(M>'
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Proof. Tt suffices to work in that portion of a background coordinate chart (U, ©)
where Z(P) = I(P). The claim then follows from carefully examining the back-
ground coordinate expression (1.9) of P, which is a sum of

(a) terms of the form p f (pap)kaéll .0, where 1 < Iy 4 -+ 41, and [, +
ooty +k<2and f € AU), and
(b) the operator a”?(pd,)* + b°(pd,) + c.
Operators of the first type clearly map As(U) to Asi1(U). The polyhomogeneity
of g, and thus of the coefficients of P, implies that for some v € (0, 1] we can write

o =a+p%a, W =b+pb, c=c+pF

with @,b,¢ € AU) and @,b,¢ as in (A.3). Thus a””(pd,)? + b(pd,) + ¢ = I(P) + J,
where J takes As(U) to Asi(U) for all 6 € R. O

Remark A.8. We remark that if {s;} is the sequence of exponents appearing in the
polyhomogeneous expansion of the coefficients of P, then the constant v appearing
in the lemma is simply a lower bound on the “first gap” in the sequence {Re(s;)}.

The previous lemma suggests that the boundary behavior of solutions to (A.1)
can be understood by studying Z(P). We proceed by first showing that on the
collar neighborhood C of M, Z(P) is comparable to the corresponding operator
in hyperbolic space. To this end, denote by E the tensor bundle over (H, g) corre-
sponding to the same representation of O(n + 1) as E, and define P = P[j] to be
the geometric operator on E given in coordinates by the same formula as P. The
operator P is invariant under isometries of (H, g); thus the indicial map I (75) is
translation-invariant along {y = 0}. Consequently the characteristic exponents of
P and their multiplicities, as well as the coefficients (in Cartesian coordinates) of

9

the indicial operator I(P), are constant as well.

Lemma A.9. Suppose g € ///k’af and P satisfies Assumption P.

wea

(a) The characteristic exponents of P and their multiplicities are constant along
OM , and agree with those of P.

(b) Assume that gly,, € CY OM). Then for each of the finitely many coordinate
charts (U,0) on OM wused to construct the background coordinate charts there
exists an invertible matriz S € CY(U) such that on U we have

I,(P) = S~ (P)S.

(c) Assume that |y, € CH(OM), and let (U,0) and S be as in point (b) above.
Then the restriction of I(P) to U x (0,00) satisfies

I(P) = S'I(P)S.

Proof. The first claim is the content of Lemma 4.3 of [17], the proof of which we
summarize here. First, fix p € U C M and use 6 to identify U with an open subset
of R" = {y = 0} C H. Through an affine change of coordinates 6, we may arrange
that p corresponds to the origin and that g;; = d;; there.

The proof of the first claim follows by showing that I, (P) = I,(P) at the origin.
This, in turn, is obtained by carefully examining the various types of terms which
may appear in a geometric operator and showing that for each type the difference
between a term arising from ¢ and the corresponding term arising from ¢ has
vanishing indicial map. For example, the difference tensor V — V has components
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E;k = p10;p(3" G, — 6%k1) + O(p), and thus the fact that g;; = 0ij at the origin
implies that the map v — pVu — p@u vanishes there.

The second claim relies on observing that the aforementioned affine change of
coordinates is based on the Gram-Schmidt algorithm and therefore consists of ra-
tional functions of the components of gl|,,,. Thus at each point the matrix taking
the background coordinate frame to the standard Cartesian coordinate frame is as
regular as the metric gl,,,.

The third claim follows from the coordinate expressions for the indicial map
(A.3) and for the corresponding indicial operator (A.4). O

The previous lemma allows us to understand, in the polyhomogeneous setting,
solutions to Z(P)u = f if f vanishes near the boundary. Let C' C C be the (finite)
collection of characteristic exponents of P.

Lemma A.10. Suppose g € ///Vljeikz N Apng(M), and suppose that P satisfies As-
sumption P. If w € C*>(M) satisfies Z(P)w = f with f vanishing on the collar

neighborhood C, for some a € (0, ps), then w € AS]:;T(M), where 1 is the weight of
w.

Proof. Tt suffices to work in that part of the background coordinate chart (U, ©)
where Z(P) = I(P) and f = 0. Working in coordinates, we view w as a matrix-
valued function; note that this involves a shift by r in the set of exponents in
polyhomogeneous expansion of w that we construct; see Remark A.2.

In view of Lemma A.9, we have that I(P)w = 0 precisely if v = Sw is a solution
to

I(P)v = a(pd,)*v + Bpapv +cév=0. (A.5)

Note that the polyhomogeneity of g implies that g|,,, € C°°(0M) and thus S is
smooth.

We now analyze (A.5), expressing it as the first order system

pO,v = Av (A.6)

by introducing the auxiliary variable w = pd,v and setting v = (v, w)’; here A is
the matrix of constants given by

0 1
A= (—d‘lé —a—lz?)'

The eigenvalues of A are precisely the characteristic exponents of P which, in
view of Lemma A.9, agree with those of P. All solutions to (A.6) take the form
v = exp(Alog p)vg, where vo = vo(0) is free. The entries of the matrix exponential
exp(A log p) are easily seen to be linear combinations of p*(log p)* with s € C and
non-negative integers k less than the dimension of E; this follows from analyzing
the exponential of the Jordan form of A (see, for example, Chapter 3 of [24]).
Consequently, if the free data vg is smooth in 8 then the corresponding homogeneous
solution lies in Aghg(U). Finally, note that v, the first component of v, satisfies
I(P)v =0, and thus w = S~ v € Aghg(l/{) is the corresponding solution to I(P)w =
0. Adapting the expansion to the normalized background coordinate frame yields
the result; see Remark A.2. O

We now define an operator G which we use below to study solutions to Z(P)u = f.
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Proposition A.11. Suppose g € //lk’af N Aphg(M), and suppose that P satis-

wea.
fies Assumption P and has characteristic exponents C C C. Then there exists an

operator G: C°(M) — C°°(M) such that
(a) for a € (0, p«/2) we have that

(Z(P)o g)(f)|ca = f|ca )
(b) for any § € R we have that f € As(M) implies G(f) € As(M), and
(c) for any S C C we have that f € Aghg(M) implies G(f) € Agﬁg(cw) (M),
where r is the weight of tensor field u.

Proof. Let ¢ be the same cutoff function used to define Z(P). Restrict f € C°°(M)
to C, which we identify with OM x (0, p.), and extend ¢ f to f, smoothly defined on
OM x (0,00), by f=0for p> p,; note that f agrees with f on C, for all a < P/ 2.

We now consider I(P)u = ]7 as a second-order linear ordinary differential equa-
tion in p. Existence of a unique, smooth solution u, defined for all p > 0, satisfying
ul,_, =0 and 8pﬂ|p:p* = 0 is guaranteed by the classical Cauchy-Lipschitz-
Picard-Lindel6f theorem.

Note that w = 0 for all p > %p*. Thus restricting u to C and then extending
trivially we obtain u € C°°(M) such that

I(P)“|Ca = f|ca
forall0 <a < %p*. Defining G by f — u = G(f), the first claim of the proposition
holds by construction.

In order to verify the remaining claims, it suffices to study the behavior of G(f)
in that portion of a background coordinate chart (U, ©) where Z(P) = I(P). To
this end, with U = U x (0, p.), we study I(P)i = f on U x (0,00).

As in the proof of Lemma A.10, it suffices to study the model problem I(P)v = f,
where v = St and f = Sf for smooth S = S(0). We write the model as the first
order system

pO,v =Av +f (A7)
with v and A as before, and f = (0,a~*f)t. The solution to (A.7) corresponding
to ¥ must satisfy v| pep. =0 and thus is given by

v(0,p) = exp (Alogp) /p exp (—Alogo)f (6, O’)é do. (A.8)

In order to establish the second claim it suffices to consider the derivatives 0g: v
and pd,v, as well as higher-order derivatives (pd,)!(9p)™v. That these are bounded
by the corresponding derivatives of f follows from the translation invariance of A
and a, and the identity pd,v = Av +f.

In the polyhomogeneous setting it suffices to understand the structure of (A.8)
in the case that A is a single Jordan block sI + N, where s an eigenvalue of A and
N is nilpotent, and that S is finite. In this case exp (A7) is an upper-triangular
matrix with e™® along the diagonal and entries of the form e™*p(7), with p some
polynomial, above the diagonal. Taking 7 = logp it is straightforward to verify
that if f € A% (M), and hence f € A% (U), then v € ASPE(U). The third claim
follows from adapting the expansion to a normalized frame. O

Remark A.12. Lemma A.10 and Proposition A.11 imply that if Z(P)u = f, then

u=G(f)+w, where w € ASF (M) and Z(P)w € As(M) for all § € R.
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Remark A.13. Asis evident from the proofs of Lemma A.10 and Proposition A.11,
the presence of logarithms in expansions of solutions to Z(P)u = f is a consequence
of the algebraic structure of P, and the exponents appearing in the expansion of f.
In particular, logarithms appear either if two characteristic exponents differ by an
integer, or in the resonant case, if the expansion of f includes a characteristic
exponent.

A.3. Boundary regularity. In this subsection we prove the following boundary
regularity theorem.

Theorem A.14. Suppose that g € ///jc(;ﬁ N Apng(M), P satisfies Assumption P,

and that f is polyhomogeneous. Suppose a € (0,1) and [0 — 5| < R, where R

is the indicial radius of P. If u € C(?’O‘(M) is a solution to Pu = f, then u is
polyhomogeneous.

We divide the proof of Theorem A.14 into two steps, showing first that w« is
conormal and subsequently that it is polyhomogeneous. Conormality is established
by showing that, for V' € %, Lyu is in the same weighted Holder space as u. As
TM has weight —1, commuting Ly into the equation Pu = f leads to a loss of
weight; this loss can be recovered using Proposition 5.6 if the indicial radius R is
greater than 1/2; see e.g. [5, 19]. Here we follow an alternate approach, obtaining
bounds on Ly by estimating difference quotients via Proposition 5.2; cf. [4].

For V € ¥, denote by 1y (¢) : M — M the diffeomorphism obtained by flowing
along integral curves of V for time €. Since V is tangent to OM, and since M
is compact, for each V' € ¥ there exists some €, > 0 such that ¢y (¢) is defined
when |e| < e,. Define the difference operator, acting on a tensor field u, by Aj,u =
Yy (e)*u — u; thus

Lyu= dila [Wy (e) u]._, = lim [A‘%,u] .

e—0 £
We record some elementary facts regarding difference operators; while stated for
V € ¥, they hold for any vector field V, provided Aj, is well-defined.
Lemma A.15. For each V' € ¥}, there exists . > 0 such that we have the following.

(a) For each k > 1 there exists a constant C such that for all u € CF(M) we
have

HA%/u”ct’;*l(M) < EC”‘CVUHQ’;*(M)

for all e € (0,e.].
(b) For any k > 1 and for any compact set K C M there exists a constant C
such that if u € C¥(M), then we have

”A%/UHCL’;*l(K) < €C||u||0§(M)
for all e € (0,e.4].

Proof. For any tensor field w, we may integrate Ly w along the flow associated to
V', obtaining

b= [ ooy Cvwds (A.9)

This implies that [|Ajw|lcory < €Cl|Lvwl|lcoary. The first claim then follows
from differentiating (A.9) in background coordinates and observing that |Aj p| =
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O(e), while the second claim is a consequence of p|, being uniformly bounded
away from zero. O

The following commutator estimates rely essentially on V' being in %;.

Lemma A.16. Suppose that (M, g) and P satisfy the hypotheses of Theorem A.14,
and that V € ¥,. Furthermore, let k > 2.

(a) Let e, >0 be as in Lemma A.15. Then for any u € C¥(M) we have
1P, Ay ull g2y < eCllullexar

for all e € (0,e.4].
(b) The commutator [P,Ly] is a uniformly degenerate operator and thus for
any u € C¥(M) we have [P, Lyv]u € C¥2(M) and

1P £ululleg-2ary < Cllullozoan
Furthermore, if k > 3 and Wu € Cy (M) for all W € ¥, then
1w P, Lolulls-sgar) < Cllulles -
Proof. In background coordinates (©*) we have
|07 = dutv ()| = O(e),  18,0uv ()| = Oe),

etc.; see the proof of Theorem D.5 in [18]. Directly inspecting the background
coordinate expression of

[P, AV]Iu =P (Yv(e)u) — v (e)* (Pu)

leads to the first estimate.
The second claim follows from direct inspection of the commutator term, together
with fact that the coefficients of P are polyhomogeneous, and thus conormal. [

We now use difference operators to establish conormality of solutions to Pu = f.

Proposition A.17. Suppose that g € ///Vlj’o‘;z N Apng(M) and that P satisfies

eak

Assumption P. Suppose furthermore that a € (0,1) and that |6 — 5| < R, where R
is the indicial radius of P. Finally, suppose u € C'(?’Q(M) satisfies Pu = f, with f
polyhomogeneous. Then v € As(M); i.e. u is conormal.

Proof. We first note that f = Pu € Cg’a(M) N Aphg(M); thus by Lemma A.5 we

have f € Cg’o‘(M) for all k. Lemma 5.6 implies that u € Cg’o‘(M) for all k as well.
Fixing V' € ¥, we see that Aj,u satisfies

P(Au) = [P, AV ]u+ AY f.
Using Proposition 5.2 we have, for any k > 2 and « € (0, 1), that
1ASullor i < 18Tl b,
< C (I[P, A¢ull 2o
HIAG fller-2oan + 18 ulgtor)  (A10)
< (1P, Apullgr—r an

1A% Fller-san + 185l g )
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for some compact set K C M. Using Lemma A.15(a) we have ”A%/f”C(’;’l(M) =
O(e). Furthermore, Lemma A.15(b) implies that HA‘%,uHC?ﬂ(K) = O(ge), while
Lemma A.16 implies that || [P, Af] UHC(I;—I(M) = O(e). Consequently, from (A.10)
we have [|Aj ul|gx(as) = O(e) and hence Lyu € CK(M) for all k.

Proceeding by induction, we assume for some integer ! that for any {V1,...,V;,,} C
¥ we have w,, = Ly, -+ Ly, u € CE¥(M) for all k > 0. Fixing V € ¥, we see that
A w,y, satisfies

P(AVwn) = [P, AV wm + A (Lv, ... Ly, f) + A ([P, Ly, .. Ly, ] ).
Using Lemma A.16, we see that
[P,Lv; ... Ly, ue CEM),
Ly [P,Ly, ...Ly,]uc CEM)
for all £ > 0. We now invoke Proposition 5.2, obtaining estimates analogous to

(A.10) for A%, w,,. Proceeding as above, we find Lyw,, € C¥(M) for all k > 0.
Thus by induction on m we obtain u € As(M). O

Proof of Theorem A.14. In view of Proposition A.17, we have that the solution u
to (A.1) is conormal; thus u € As(M) for some ¢ € R.

Using Lemma A.7, we write P = Z(P) + R and fix v as in that lemma. We
proceed inductively, constructing a sequence of approximate solutions uy such that
up € Agﬁg(M) N As(M) for some finite sets Sy C C, and such that fr = f —
Puy, € Asqiy(M). We further arrange that ry := v — up € Asyiy (M) and that
Tht1 — Tk € Asqry (M) for sufficiently large k.

When k& =0 we set ug = 0 and, as f = Pu € As;(M), we have nothing to prove.
For convenience, we set So = C' + r, the finite collection of characteristic exponents
of P, shifted by the weight r of u (see Remark A.2).

Suppose now that u = wug + ri satisfies the inductive hypothesis above. The
remainder 7 satisfies

P’I"k = fk. (A.ll)

Using Remark A.3, we can write fy = fi"+ fre™ where fi* € A;‘)F]’;g(M)ﬁAHM (M)
for some finite set

T, C{s€C|d+ky<Re(s) <o+ (k+1)7}
and fi™ € Asq(k+1)y(M). We rewrite (A.11) as

Z(P)re = fi" + fi™ — Rry.
Invoking Remark A.12, we have ry = ri41 + vk + wg, where
Thel = g(f;ﬁcm + RTk) € Ast (k1) (M),
v = g( ;Zm) € Agﬁ;(CM)(M) N As iy (M),

and wy € AS}E (M).

We set ug41 = up + v + wi so that u = ugy1 + 7e41. Let Spp1 = Sk U T
so that ugtq € Agﬁgl(M). Since 7y, k41, and vy are in Asiiy (M), we have
wg € Asyry(M) and therefore ugy1 — uy is in the same space. This ensures that
neither the exponents nor the log terms accumulate.
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Finally, note that
fre1 = fi = Z(P)vr — Z(P)wi — R(vk + wi).-
By construction (see Proposition A.11), we have
I(P)vk — fr € Ast(hr1)y(M).

The remaining terms in fi 11 are easily seen to be in A (441), (M), which completes
the proof. O

A.4. Boundary regularity for nonlinear equations. The methods above can
also be used to study the boundary regularity of solutions to many nonlinear elliptic
equations. Here we illustrate this by showing that solutions to the Lichnerowicz
equation (6.1) are polyhomogeneous when the metric and coefficient functions are
polyhomogeneous; see e.g. [4, 5, 10, 19, 20] for other results of this nature.

We suppose that g € .#Z2% with p2g € C2(M) and that the functions A, B

weak
appearing in (6.1) are in nghg(M). Let ¢ be the solution to (6.1) guaranteed by
the first part of Proposition 6.4. Note that u = ¢ — 1 € C¥(M) for all k.

Setting P = A, — (n + 1), we see that u satisfies an equation of the form
Pu = f(u) (A.12)

for some function f. Since u vanishes near OM, there exists some p, > 0 such that
on the collar neighborhood of the boundary C,, the function f may be represented
by a uniformly and absolutely convergent series

flu)=>>"an! (A.13)
=0

with coefficient functions satisfying

(M), and a;€C°

ong (M), 1>2. (A.14)

0
ap,a, € pC'phg

The polyhomogeneity of u, and hence ¢, is a consequence of the following.
Proposition A.18. Suppose that g € //lvzveikl with p2g € C’ghg(ﬁ), that u satisfies
(A.12) and u € CF(M) for all k > 0, and that f is a function satisfying (A.13) and
(A.14) in a collar neighborhood of the boundary. Then u is polyhomogeneous.

Proof. We divide the proof in to two parts, first showing that the solution is conor-
mal and subsequently showing that it is polyhomogeneous.

In order to show u is conormal, we adapt the proof of Proposition A.17. For any
V € %, we see that Lyag, Lya € nghg(M) and Lya; € Cghg(ﬁ) iftl>2 1If
w € CF(M) we have Lyw € CE~1(M); since f(u) € CF(M) by (A.13) and (A.14)
it follows that Ly f(u) € CF¥~1(M). Consequently, fixing V € ¥, we find that
(A.10) holds with § = 1 and f replaced by f(u). The subsequent argument shows
that Lyu € CF(M) for all k > 0.

Proceeding inductively, we assume that for any {Vi,...,V,,} € ¥, we have
W = Ly, - Ly, u € CE(M) for all k > 0. Fix V € %, The properties (A.14)
imply that

LyvLy, Ly, f(u) € CF (M)

for all k£ > 0, and thus we may proceed exactly as in the proof of Proposition A.17,
establishing that u is conormal.
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To see that w is polyhomogeneous, we adapt the proof of Theorem A.14, con-
structing inductively an approximating sequence uy € Agﬁg(M )N A (M) for finite
Sk C C, such that fr = f(ur) — Pur € Ai41py(M) and such that r, = u —uy €
Aiypy (M) with rpp1 — 1% € Argay(M) when k is large. We may assume that
~v € (0,1].

Setting ug = 0, the properties (A.14) imply that there is nothing to prove; as
before, we set Sy = C, the set of characteristic exponents of P.

Working under the inductive hypothesis, we see that the remainder ry = u — uy
satisfies

Pri. = fr + f(u) — f(ur).
Since uy, € Agﬁg(M) N A1(M) we have f € Apng(M). Furthermore, by inductive
assumption we have fi, € Ajyx(M). Thus we may write f, = fin + frem where
fin e ATk (M) N Ay 4y (M) for some finite set

phg
Tp C{s|1+ky<Re(s) <1+ (k+1)y}

and fi™ € Ay (k41), (M).

We now analyze the difference f(u) — f(ug). By assumption, r, = u — uy, €
Ai1ky (M), and thus a1(u — ur) € Ayy(ps1),(M). For | > 2 we have u' —u} €
A4 (k+1)y(M), and therefore f(u)— f(ur) € A1y (kt1)y(M). Rewriting the equation
as

I(P)rk = fi™ + f(u) = f(ur) — Rry
and applying Remark A.12 we obtain ry = rg1 + vk + wg, where

Thil = g( e+ f(u) = fluk) — RTk) € Ay (kr1)y (M),

ve=G(ff") € AT (M) N Avyi (M),

phg
and wy € Aghg(M).
Proceeding as in the proof of Theorem A.14 completes the argument. O

APPENDIX B. CORRECTIONS TO [17]
As pointed out to us by David Maxwell, Lemma 3.4(a) in [17] is incorrectly
stated. The following corrections need to be made to [17]:

Page 16: The formula displayed in Lemma 3.4(a) should be replaced by

1/p

— 1 P
Z Hp vJuHO,p;U
0<j<k

Page 17: Inequality (3.6) should be replaced by

O S po) | @pul <l 5 < O plo) @l
7 7

k,p;B;"

The proof of Lemma 3.5 can then be readily corrected by inserting the
exponent p in appropriate places.
Page 25: Two of the formulas near the top of the page need to be changed
as follows:
(¢) urru® pg;
(d) u—u®p gL
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Page 29: Each term in the first series of inequalities should be raised to the
pth power.

Page 30: Each term in the first series of inequalities should be raised to the
pth power; the second inequality is then justified by using the elementary
inequality (a + b)? < 2P~ 1(aP + bP).

Page 48: Lines 7-12 should be replaced by the following:

Then Lemma 6.1 implies that P; is close to P in the following sense: For
each d e R, 0 < a <1, 1< p< oo, and k such that m < k < [ and
m < k4 a <1+, there is a constant C' (independent of r or i) such that
for all compactly supported u € C**9 (v, E),

1P = Plli—m.as < Crllullk.as, (6.5)
and for all compactly supported u € H*?9 (Y7, E),
1Ps = Pllk-mps < Crllullgp,s. (6.6)

Page 49: On line 13 from the bottom, “Proposition 5.8” should be “Propo-
sition 5.6”; and on line 11 from the bottom, “(6.5) implies (6.8)” should be
“(6.6) implies (6.8).”

REFERENCES

Paul T. Allen, James Isenberg, John M. Lee, and Iva Stavrov. The shear-free condition and
constant-mean-curvature hyperboloidal initial data. To appear in Classical and Quantum
Gravity. arXiv:1506.06090.

Lars Andersson. Elliptic systems on manifolds with asymptotically negative curvature. Indi-
ana Univ. Math. J., 42(4):1359-1388, 1993.

Lars Andersson and Piotr T. Chrusciel. On “hyperboloidal” Cauchy data for vacuum Einstein
equations and obstructions to smoothness of scri. Comm. Math. Phys., 161(3):533-568, 1994.
Lars Andersson and Piotr T. Chrusciel. Solutions of the constraint equations in general
relativity satisfying “hyperboloidal boundary conditions”. Dissertationes Math. (Rozprawy
Mat.), 355:100, 1996.

Lars Andersson, Piotr T. Chrusciel, and Helmut Friedrich. On the regularity of solutions to
the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s
field equations. Comm. Math. Phys., 149(3):587-612, 1992.

Eric Bahuaud. Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics. Pa-
cific J. Math., 239(2):231-249, 2009.

Eric Bahuaud and Romain Gicquaud. Conformal compactification of asymptotically locally
hyperbolic metrics. J. Geom. Anal., 21(4):1085-1118, 2011.

Paul Baird and Michael Eastwood. On functions with a conjugate. Ann. Inst. Fourier,
65(1):277-314, 2015.

Yvonne Choquet-Bruhat. General relativity and the Einstein equations. Oxford Mathematical
Monographs. Oxford University Press, Oxford, 2009.

Piotr T. Chrusciel, Erwann Delay, John M. Lee, and Dale N. Skinner. Boundary regularity
of conformally compact Einstein metrics. J. Differential Geom., 69(1):111-136, 2005.
Michael G. Eastwood and C. Robin Graham. Invariants of conformal densities. Duke Math.
J., 63(3):633-671, 1991.

Charles Fefferman and C. Robin Graham. Conformal invariants. Astérisque, (Numero Hors
Serie):95-116, 1985. The mathematical heritage of Elie Cartan (Lyon, 1984).

Romain Gicquaud. Conformal compactification of asymptotically locally hyperbolic metrics
IT: weakly ALH metrics. Comm. Partial Differential Equations, 38(8):1313-1367, 2013.

Xue Hu, Jie Qing, and Yuguang Shi. Regularity and rigidity of asymptotically hyperbolic
manifolds. Adv. Math., 230(4-6):2332-2363, 2012.

James Isenberg. Constant mean curvature solutions of the Einstein constraint equations on
closed manifolds. Classical Quantum Gravity, 12(9):2249-2274, 1995.



42

[16]

(17]
(18]
(19]
20]
(21]

(22]

23]

[24]

ALLEN - ISENBERG — LEE - STAVROV ALLEN

James Isenberg, John M. Lee, and Iva Stavrov Allen. Asymptotic gluing of asymptotically
hyperbolic solutions to the Einstein constraint equations. Ann. Henri Poincaré, 11(5):881—
927, 2010.

John M. Lee. Fredholm operators and Einstein metrics on conformally compact manifolds.
Mem. Amer. Math. Soc., 183(864):vi+83, 2006.

John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathemat-
ics. Springer, New York, second edition, 2013.

John M. Lee and Richard Melrose. Boundary behaviour of the complex Monge-Ampére equa-
tion. Acta Math., 148:159-192, 1982.

Rafe Mazzeo. Elliptic theory of differential edge operators. I. Comm. Partial Differential
Equations, 16(10):1615-1664, 1991.

Rafe R. Mazzeo and Richard B. Melrose. Meromorphic extension of the resolvent on complete
spaces with asymptotically constant negative curvature. J. Funct. Anal., 75(2):260-310, 1987.
Richard B. Melrose. Transformation methods for boundary value problems. In Singularities
in boundary value problems (Proc. NATO Adv. Study Inst., Maratea, 1980), volume 65 of
NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., pages 133—168. Reidel, Dordrecht-Boston,
Mass., 1981.

Richard B. Melrose. Transformation of boundary problems. Acta Math., 147(3-4):149-236,
1981.

Gerald Teschl. Ordinary differential equations and dynamical systems, volume 140 of Grad-
uate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.



	Introduction
	Acknowledgements

	1. Statement of results
	2. Regularity classes
	3. Properties of weakly asymptotically hyperbolic metrics
	4. The tensor Hg()
	5. Fredholm results
	6. The Yamabe problem
	Appendix A. Polyhomogeneity and boundary regularity
	A.1. The conormal and polyhomogeneous spaces
	A.2. Analysis of the indicial operator
	A.3. Boundary regularity
	A.4. Boundary regularity for nonlinear equations

	Appendix B. Corrections to Lee-FredholmOperators
	References

