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The fascinating adhesion of gecko to virtually any material has been related
to surface interactions of myriads of spatula at the tips of gecko feet. Surpris-
ingly, the molecular details of the surface chemistry of gecko adhesion
are still largely unknown. Lipids have been identified within gecko adhesive
pads. However, the location of the lipids, the extent to which spatula
are coated with lipids, and how the lipids are structured are still open ques-
tions. Lipids can modulate adhesion properties and surface hydrophobicity
and may play an important role in adhesion. We have therefore studied the
molecular structure of lipids at spatula surfaces using near-edge X-ray
absorption fine structure imaging. We provide evidence that a nanometre-
thin layer of lipids is present at the spatula surfaces of the tokay gecko
(Gekko gecko) and that the lipids form ordered, densely packed layers. Such
dense, thin lipid layers can effectively protect the spatula proteins from
dehydration by forming a barrier against water evaporation. Lipids can
also render surfaces hydrophobic and thereby support the gecko adhesive
system by enhancement of hydrophobic–hydrophobic interactions with
surfaces.
1. Introduction
Geckos have the fascinating ability to climb nearly every surface in almost any
condition. As a consequence, gecko adhesion has inspired a long list of biomi-
metic applications in adhesion technologies [1–9]. Gecko toepads are equipped
with a hair-like fine structure of setal arrays (figure 1). Each seta is terminated
with bundles of spatula shafts, which are each tipped with a flat spatula at the
end, which makes the adhesive contact to the surface [1,2,10–19] (figure 1). The
setae branches originate from the outer epidermal layer of the gecko pad scales,
the oberhautchen and the beta-layer [1,20]. The setal arrays are mainly
comprised of β-proteins, which provide the tissue rigidity needed for constant
attachment and detachment. Earlier studies have characterized setal proteins as
β-keratins [21–23]. Studies by Alibardi and others found that the proteinaceous
component of setae also consists of corneous β-proteins [22–27].

The mechanism of gecko adhesion has been in the strong focus of biomecha-
nics and material science research for the last two decades. Some studies [2,3]
concluded that the attraction of gecko setae to surfaces is driven by van-
der-Waals interactions, while another showed a prominent role of water13.
Within these scenarios, setae surface chemistry has long been ignored as
likely to be of minor importance. Consequently, the detailed surface chemistry
of gecko toepads is still largely unknown. More recent models of gecko
adhesion now indicate that chemistry cannot be ignored and that chemical
details matter for gecko surface adhesion. Vibrational surface spectroscopy
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Figure 1. Gecko adhesive system and experimental geometry. (a) Photograph of a gecko toepad attached to a glass surface. The setal arrays are visible. (b) SEM
image of the setal arrays. The terminal spatulae shafts and spatula form the contact with the surface. (c) Spatula in contact with a surface. (d ) Experimental
geometry. With a probing depth of 5–10 nm, the recorded images are representative of the spatula surface.
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and nuclear magnetic resonance (NMR) indicate an impor-
tant role of lipids and acid–base interactions for gecko
adhesion [28–30]. As in any adhesion phenomenon, the
outermost molecular structure of the setae defines the mech-
anical and chemical contact during adhesion. Detailed
information about the chemical state of the seta surface can
inform future biomimetic approaches.

Recently, it has been observed that gecko setae arrays
have lipids associated with them [24]. Lipids are known
to reside in the epidermis of reptiles in a ‘brick and mortar’
pattern [28,31]. Lipids have also been observed in gecko foot-
prints [29], within setae [32] and at the surface of setae tissue
[21,28,30]. This led Jain et al. [28] to propose a model, which
stated that, along with a lipid coating leaving a footprint with
each step, lipids are stored inside the setae. Lipids are known
to have an important role in various biological systems,
including the epidermis of mammalian, reptiles and avian
species, where they among other things function as a water
barrier [33–36]. Lipids have also been shown to have a role
in the self-assembly of proteins in mussel byssal threads
and thereby assist the adhesive properties of mussels [37].
Also, insects produce lipid-containing secretions in the
contact region, to enhance adhesion [38–40]. Lipids could
potentially render the proteinaceous setal tissue hydrophobic,
which is often the basis for self-cleaning structures [41–44],
and could thereby support such properties of gecko setae
[45]. Lipids have also been found to be involved in surface
adhesion via acid–base mechanisms [30].

We here used partial electron yield (PEY) near-edge X-ray
absorption fine structure (NEXAFS) imaging (figure 1) to
explore the chemical structure of the setae lipid coating of
the tokay gecko (Gekko gecko). For NEXAFS spectroscopy,
the surface is irradiated with X-rays at photon energies near
an ionization edge [46]. The emitted electrons are detected.
When the incident photon energy is in resonance with a tran-
sition of core level electrons into unoccupied molecular
orbitals near the ionization edge, the electron yield is
enhanced. The intensity is also dependent on the relative
orientation of the incoming X-rays and the respective tran-
sition dipole moment, which allows the molecular
alignment and orientation to be probed [47]. In this study,
we probed molecular orbitals near the carbon K-edge and
the nitrogen K-edge.

Onlyelectrons aboveacertain thresholdenergyaredetected,
which come from molecules near the material surface and
NEXAFS spectroscopy is therefore a very surface sensitive
method with a probing depth of approximately 5–10 nm [48].
For the imaging modality of NEXAFS spectroscopy we use
here, the X-ray beam is widened to the size of the sample
using a dithering mirror. The position of the electron emission
is registered with a CCD camera coating (experimental pro-
cedures are outlined in the electronic supplementary
material). Regular NEXAFS spectroscopy is challenging for
charging and rough surfaces such as sum materials and
especially animal surfaces. The NEXAFS microscopy used
here is unaffected by charging and surface curvature. The
NEXAFS microscope has been used previously to map the sur-
face chemistries of car tires and multiplexing the analysis of
surface coatings [49–51]. For this reason, NEXAFS imaging is
also ideally suited to study complex surfaces such as animal sur-
faces and has been used to investigate the surface chemistry of
snake scales, beetle cuticle and springtail surfaces [19,31,52,53].
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Figure 2. NEXAFS spectra of setae arrays and reference gecko tissue. (a) NEXAFS image of the PEY integrated over the entire nitrogen K-edge. The image shows the different
types of tissue glued to the sample holderwith copper tape. The imagewas recorded at a NEXAFS incidence angle of 30°. A full NEXAFS spectrum can be extracted from each pixel
within the image. The ROI for the extraction of spectra for the setae array and other tissues for comparison (dorsal scales of the body, dorsal scales of the foot and eyelid scales) are
indicated as boxes in black and white. (b) Carbon K-edge NEXAFS spectra were extracted from NEXAFS images of the setae arrays as well as the gecko scale tissue. (c) Nitrogen K-
edge NEXAFS spectra extracted from the same ROIs as the carbon spectra. (d,e) NEXAFS C K-edge spectra of adhesive pads before and after lipid removal were extracted from
images recorded with 80° (near-normal) and 30° (glancing) X-ray incidence angles. The difference spectra are representative of the lipid coating. ( f ) Difference spectrum of the
difference spectra are shown in (a) and (b). The spectrum shows the angle dependence of the difference spectra in (a) and (b) and provides information about the orientation of
lipids. (g) Schematic of a spatula and the lipid orientation determined from the spectrum shown in ( f ). Flat protein sheets (yellow) are covered and infused with lipids (grey).
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2. Results and discussion
The carbon K-edge and nitrogen K-edge NEXAFS spectra of
gecko setae arrays and three types of reference tissues (dorsal
scales of the body, dorsal scales of the foot and eyelid scales)
are shown in figure 2. The tissue samples have been attached
to the sample holder using copper tape and then imaged
using a NEXAFS microscope. The advantage of using the
imaging modality of NEXAFS spectroscopy in the context
of tissue analysis is that the microscope is based on a mag-
netic solenoid transmission of the special electron yield and
channel plate imaging for electron detection, which provides
a method to probe curved, non-conducting samples without
spectral distortion [49].

The NEXAFS spectra displayed in figure 2bwere extracted
from the imaging data by plotting the PEY against the photon
energy for four regions of interest (ROIs). The spectra for the
different types of tissue are similar. All spectra exhibit an ali-
phatic σ* resonance near 292 eV as well as C=C and C=O π*
resonances near 285 eV and 288 eV, respectively. These spectral
features are expected for gecko skin samples containing com-
plex biomolecules and the spectral shapes resemble those of
lipids and proteins [54,55]. When comparing the composition
of lipids and proteins, classes of biomolecules expected at
setae surfaces, proteins have a larger C=O content compared
with lipids. The larger protein C=O content is also reflected
in a higher C=O intensity in literature NEXAFS spectra
[55–57]. For the gecko tissue samples, the C=O intensity is
somewhat smaller at the setae surface, indicating a slightly
larger amount of lipids covering the protein structure com-
pared with the other tissue samples (see electronic
supplementary material, figure S1 for intensities).

The C=C π* resonances are relatively strong at the dorsal
foot-related locations and weaker at the eyelid and the dorsal
body scale, which could suggest that proteins in the dorsal
foot scales and setae consist of a larger amount of aromatic
amino acids (e.g. tyrosine). Studies by Rizzo et al. [20]
showed the presence of tyrosine in the setae using Raman
spectroscopy, but no similar studies have been conducted
on the scales of the body, the foot and the eyelid.

The corresponding pre-edge normalized nitrogen K-edge
NEXAFS spectra can be seen in figure 2c. The nitrogen spec-
tra contain an amide π* resonance near 401 eV, typically
found in protein spectra, along with σ* resonances above
405 eV, related to N–C and N–H containing groups in the
backbone and side chains of proteins [54,58,59]. Lipids can
also contain nitrogen species and certain lipids, such as
sphingomyelin also contain amide groups, could interfere
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with the protein amide spectra. Therefore, in order to identify
the specific contribution of lipids within the nitrogen spectra,
reference measurements were collected from samples, which
were de-lipidized using published procedures (see electronic
supplementary material, figure S2). Samples with lipids
removed showed no significant difference compared with
the native gecko tissue and, therefore, a significant lipid con-
tribution to the amide signal can be excluded. As a result, the
spectral features are likely related to β-proteins within the
gecko tissue. At the specific PEY electron retardation voltage
of −50 V used in our NEXAFS experiments, the NEXAFS
sampling depth can be expected to be 5 nm [48,60]. Since a
nitrogen signal is detected, NEXAFS is evidently probing
through the lipid layer into the spatulae protein matrix
(figure 1 for illustration of the sampling depth relative to
the tissue setal structures). This implies that the layer of
lipids at the surface of the spatulae must be thinner than
the sampling depth and therefore only up to 5 nm thin. The
protein signal is strongest for the dorsal body scales, slightly
lower for the dorsal foot scales and eyelid scales and lowest
for the adhesive pad. In view of the already thin lipid coating
on the setal arrays, the dorsal foot and eyelid tissue may have
very few lipids at their surfaces.

Assuming the lipids are maintained as a functional layer
in between shedding cycles, the question arises, how the lipid
layer is replenished during locomotion. Hsu et al. [29] have
reported lipids within gecko footprints using sum frequency
generation spectroscopy. The detection limit of this methods
is on the order of single molecular layers so one can assume
the at least a monolayer of lipids can be found within each
footstep. Based on the NEXAFS results, this is on the same
order as the coating of the setal array, which means the
lipid layer must be replenished with every step. At a step
rate of 10 Hz for a running gecko, the surface of the spatula
must be recoated within 100 ms. To coat the surface area of
the spatula of approximately 2 × 105 nm2 via surface diffusion
across the spatula shaft with a diameter of 100 nm and a
diffusion coefficient of approximately 10−8 cm2 s−1, based
on lipid surface diffusion in lipid bilayers, [61] the replace-
ment would require approximately 250 ms, which would
be too slow for replenishment of the spatula lipid coating.
Replenishment of lipids between detachment and re-
attachment via bulk diffusion through the volume of the
setal tissue would also be in agreement with recently pub-
lished NMR data, which indicated that lipids are also
present within the setae tissue [28]. There are large uncertain-
ties involved in the estimation of the surface diffusion
coefficient since only limited theoretical and experimental
diffusion data are available and most of the available diffusion
coefficients have been determined for phospholipid diffusion
within lipid bilayers andmonolayers. A detailed understanding
of lipid replenishment will therefore require measurements of
the surface diffusion constants of the lipids across proteinaceous
surfaces for the lipids identified on setae surfaces. In this sense,
based on our data we cannot rule out surface diffusion as an
important mechanism. It is also possible, that both surface
and bulk diffusion processes play a role and provide a robust
mechanism for lipid replenishment for the gecko adhesive
system. Particularly given the strong dependence of the diffu-
sion process on additional environmental factors such as
temperature and spatula dynamics, the high melting point of
lipids involved, which can severely impede lipid transport
across the spatula shaft surface.
Both the structure and orientation of the lipid coating can
be identified using angle-resolved NEXAFS spectroscopy. For
these experiments, we compare native setae with samples,
which have been de-lipidized as reference using established
procedures. To record spectra of the lipid coating, the refer-
ence spectrum was subtracted from the native spectra.
Samples and references were mounted on the same sample
holder and imaged together. The spectra extracted from the
ROI covering the native and de-lipidized setae are shown
in figure 2d for NEXAFS sample angles of 80° (near-normal,
electric field in sample plane). Figure 2e displays spectra for
the native and de-lipidized setae recorded at 30° (glancing,
electric field near perpendicular to sample plane). The differ-
ence (blue) of the spectra related to the native (black) and
de-lipidized (red) samples for each angle are representative
of the lipids coating of the spatula. As seen for the other
tissue samples, resonances related to aromatic groups,
carbon double bonds as well as alkyl chains and carboxyl
moieties are all visible.

As evident from the negative polarity of the resonance
near 286.7 eV for both angles, in relation to the total carbon
content, there are fewer C−H groups present in the lipid coat-
ing than in the underlying keratin layer, while C=O and C−C
are higher in intensity on the native sample. The relative
amounts of C−H and C=O binding agrees well with the
hypothesis that lipids are removed as lipids have a higher
relative number of C−H groups and a lower number of
C=O groups compared with proteins.

The orientation and ordering of molecular bonds can be
determined by following changes in the X-ray absorption as
we change the angle of the sample with respect to the inci-
dent X-rays. By taking the difference of the difference
spectra in figure 2a,b, we can specifically determine the
angle dependence, i.e. the NEXAFS dichroism, of the lipid
layer. The dichroism spectrum of the lipid layer is shown in
figure 2f. By considering the relative orientations of the
incoming X-rays and the molecular orbitals, as shown in
the supporting information, the orientation of the lipids can
be determined. The difference spectrum of the lipid layer in
figure 2f exhibits a positive dichroism for the π*(C=C) and
σ*(C−H) resonances. The π* resonance related to C=O
bonds and the σ*(C−C) features are negative. The difference
spectrum demonstrates a high degree of ordering of alkyl
chains and carboxyl moieties at the surface, as expected for
an ordered lipid layer. For this specific experiment, only the
outermost section of the adhesive pad is sampled, which is
coated with lipids. Therefore, the dichroism can be used to
determine the orientation of the lipids based on the polarity
of the difference peaks. As evident from the orientation of
the bonds relative to the alkyl chains (see supporting infor-
mation for a schematic drawing of bonds), a positive
dichroism for C=C and C–H bonds with a negative dichroism
for C=O and C–C bonds is the signature of an upright
orientation of the lipid alkyl chains.

A schematic model of the lipid structure relative to the
geometry of the protein backbone proposed in [19] is
shown in figure 2g. Based on the upright lipid orientation,
an average length of lipid of about 2 nm and a maximum
layer thickness of 5 nm, we can estimate that the lipid film
consists of three lipid layers. The exact thickness cannot be
inferred from the data and is therefore depicted only schema-
tically in figure 2g. However, thickness and orientation
estimates are very close to what Singla et al. have proposed
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based on sum frequency generation experiments of setae
attached to sapphire [30].
oyalsocietypublishing.org/journal/rsbl
Biol.Lett.18:20220093
3. Conclusion
While, at this point, we can only speculate about the function
of the lipid layer, interfacial lipids could have several poten-
tial advantages for adhesion. Singla et al. recently proposed
that lipids could support adhesion to sapphire surfaces by
an acid–base mechanism [30]. The lipid layer may also be
involved in keeping the proteins of setae and spatulae
hydrated by enclosing the proteinaceous tissue and thereby
reducing water evaporation. It has previously been shown
that dried out gecko setae adhere stronger when they are
under high humidity (hydrated) conditions [13]. This might
be due to the lower elasticity modulus of setae in hydrated
condition, which leads to the enhancement of the contact for-
mation with the nanoscale roughness. This effect may be
similar to the role of lipids at insect setae, where lipids pre-
vent the drying out of resilin (rubber-like protein with
hydrogel properties, which is present at the setal tips) [38].

The polarity of a surface can play an important role for
adhesion and lipids can render the proteinaceous spatula sur-
faces hydrophobic. Hydrophobic–hydrophobic interactions
with the substrate can be rather strong, and many substrates
for tokay gecko are relatively hydrophobic, including the vast
majority of plant surfaces. Also, hydrophobic array of seta
may lead to de-wetting of substrates covered by fluid water
by using trapped air bubbles between setae [9,41]. The self-
cleaning property of setae, [44,45] especially in the case of
hydrophilic dust particles, and their ability to rapidly
remove water from wet toe pads might be supported by the
hydrophobic properties of the setal arrays.

In summary, we find that gecko setae are covered with a
nanometre-thin layer of ordered lipids. The lipids are
oriented upright, which indicates high density and align-
ment. The replenishment and function of the lipid coating
remain open questions, which could be addressed by future
experiments combining spectroscopy with functional studies.

Data accessibility. NEXAFS imaging data are available for download on
figshare.com under doi:10.6084/m9.figshare.19825246. The imaging
data can be accessed using the LDF software, which can be obtained
from Synchrotron Research, Inc. A license from Synchrotron Research
is required to use the software.

The data are provided in the electronic supplementarymaterial [62].
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