
J
H
E
P
0
3
(
2
0
2
2
)
1
5
0

Published for SISSA by Springer

Received: October 26, 2021
Revised: February 17, 2022

Accepted: March 4, 2022
Published: March 23, 2022

2d N = (0, 1) gauge theories and Spin(7) orientifolds

Sebastián Franco,a,b,c Alessandro Mininno,d,e Ángel M. Urangad and Xingyang Yuf
aPhysics Department, The City College of the CUNY,
160 Convent Avenue, New York, NY 10031, U.S.A.

bPhysics Program,
The Graduate School and University Center, The City University of New York,
365 Fifth Avenue, New York NY 10016, U.S.A.

cInitiative for the Theoretical Sciences,
The Graduate School and University Center, The City University of New York,
365 Fifth Avenue, New York NY 10016, U.S.A.

dInstituto de Física Teórica IFT-UAM/CSIC,
C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain

eII. Institut für Theoretische Physik, Universität Hamburg,
Luruper Chaussee 149, 22607 Hamburg, Germany

fCenter for Cosmology and Particle Physics,
Department of Physics, New York University,
726 Broadway, New York, NY 10003, U.S.A.
E-mail: sfranco@ccny.cuny.edu, alessandro.mininno@desy.de,
angel.uranga@csic.es, xy1038@nyu.edu

Abstract: We initiate the geometric engineering of 2d N = (0, 1) gauge theories on D1-
branes probing singularities. To do so, we introduce a new class of backgrounds obtained as
quotients of Calabi-Yau 4-folds by a combination of an anti-holomorphic involution leading
to a Spin(7) cone and worldsheet parity. We refer to such constructions as Spin(7) ori-
entifolds. Spin(7) orientifolds explicitly realize the perspective on 2d N = (0, 1) theories
as real slices of N = (0, 2) ones. Remarkably, this projection is geometrically realized
as Joyce’s construction of Spin(7) manifolds via quotients of Calabi-Yau 4-folds by anti-
holomorphic involutions. We illustrate this construction in numerous examples with both
orbifold and non-orbifold parent singularities, discuss the role of the choice of vector struc-
ture in the orientifold quotient, and study partial resolutions.

Keywords: Field Theories in Lower Dimensions, Supersymmetric Gauge Theory, D-
Branes

ArXiv ePrint: 2110.03696

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2022)150

mailto:sfranco@ccny.cuny.edu
mailto:alessandro.mininno@desy.de
mailto:angel.uranga@csic.es
mailto:xy1038@nyu.edu
https://arxiv.org/abs/2110.03696
https://doi.org/10.1007/JHEP03(2022)150


J
H
E
P
0
3
(
2
0
2
2
)
1
5
0

Contents

1 Introduction 1

2 2d N = (0, 1) field theories 2
2.1 Constructing 2d N = (0, 1) gauge theories 2
2.2 Anomalies 3
2.3 Triality 5

3 N = (0, 2) field theories in N = (0, 1) formalism 5

4 2d N = (0, 1) theories and orientifolds 8
4.1 Spin(7) cones and Spin(7) orientifolds from CY4 8
4.2 Spin(7) orientifolds in the field theory 9
4.3 Orientifold projection of the quiver 12
4.4 Anti-holomorphic involutions from the mesonic moduli space 17

5 C4 and its orbifolds 19
5.1 C4 19

5.1.1 The orientifold theory 21
5.2 A universal involution 23
5.3 C4/Z2 24

5.3.1 Universal involution 26
5.3.2 Beyond the universal involution: an SO(N)×USp(N) theory 27

6 Choice of vector structure 29
6.1 Vector structure in type IIB orientifold construction 29
6.2 C4/Z2 revisited: an orientifold without vector structure 30

7 Beyond orbifold singularities 31
7.1 D3 31
7.2 H4 34

7.2.1 Phase A 35
7.2.2 Phase B 37
7.2.3 Vector structure explanation 39

8 Partial resolution and Higgsing 41
8.1 General idea 41
8.2 Partial resolution and the universal involution 42
8.3 Beyond the universal involution: C4/Z2 × Z2 → SPP×C 42

9 Conclusions 43

– i –



J
H
E
P
0
3
(
2
0
2
2
)
1
5
0

A C4/Z2 × Z2 and SPP×C 44
A.1 C4/Z2 × Z2 44
A.2 SPP×C 47

1 Introduction

Engineering gauge theories in string or M-theory provides alternative perspectives, often
geometric, on their dynamics. Such realizations typically lead to a deeper understanding of
the theories at hand, suggest natural generalizations, and even contribute to the discovery
of new results.

Our understanding of 2d N = (0, 2) gauge theories has significantly progressed in
recent years. The new results include c-extremization [1, 2], N = (0, 2) triality [3] and
connections to gauge theories in higher dimensions [2, 4–7]. These discoveries have fueled
a renewed interest in the stringy engineering of such theories. A possible scenario involves
realizing them on the world volume of D1-brane probing singular Calabi-Yau (CY) 4-folds.1
Following the pioneering work of [10], a new class of brane configurations, denoted brane
brick models, was introduced in [11]. Brane brick models fully encode the 2d N = (0, 2)
gauge theories probing toric CY 4-folds, to which they are connected by T-duality. Further-
more, they have significantly simplified the map between geometry and the corresponding
gauge theories (see [12–18] for further developments).

As usual, it is desirable to investigate theories with less supersymmetry. The next step
corresponds to 2d N = (0, 1), namely minimally supersymmetric, theories. Such models
are particularly interesting because while they are still supersymmetric, they no longer
have holomorphy. While considerably less is known about them, new results about their
dynamics have appeared in [19], including the proposal of a new 2dN = (0, 1) triality. Once
again, this raises the question of how to engineer these theories in string theory. In [19], it
was noted that the theories participating in N = (0, 1) triality are, in a sense, “real slices”
of their “complex” N = (0, 2) counterparts, both at the level of gauge theory description
and effective non-linear sigma model. A more general formulation of such N = (0, 2)/(0, 1)
correspondence was left as an open question.

With these motivations in mind, in this paper we introduce Spin(7) orientifolds, a
new class of backgrounds that combine Joyce’s construction of Spin(7) manifolds via the
quotient of CY 4-folds by anti-holomorphic involutions with worldsheet parity, and con-
struct 2d N = (0, 1) gauge theories on D1-branes probing them. Closely related ideas were
presented in the insightful paper [20, 21], whose goal was to engineer 3d N = 1 theories on
M2-branes.2

This paper is organized as follows. Section 2 discusses the general structure and prop-
erties of 2d N = (0, 1) field theories. Section 3 presents the decomposition of N = (0, 2)

1For alternative setups leading to 2d N = (0, 2) gauge theories, see e.g. [2, 4, 7–9].
2For applications to F-theory of Spin(7) holonomy manifolds from CY 4-folds quotients see, e.g., [22, 23].
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supermultiplets inN = (0, 1) language. Section 4 explains the construction of Spin(7) cones
and Spin(7) orientifolds starting from CY 4-folds. Sections 4.2 and 4.3 discuss the field the-
ory implementation of Spin(7) orientifolds. The connection between the anti-holomorphic
involutions of the CY4 and the gauge theory is studied in section 4.4. Section 5 considers
Spin(7) orientifolds of C4 and its orbifolds. In section 6 we decribe how the choice of vector
structure can lead to different gauge theories associated to the same geometric involution.
Section 7 presents Spin(7) orientifolds of generic, non-orbifold, parent CY4’s. Finally, sec-
tion 8 investigates the interplay between partial resolution and higgsing. Section 9 collects
our conclusions and outlook. Appendix A contains additional examples that are used in
section 8.

2 2d N = (0, 1) field theories

In this section, we briefly review the general structure of 2d N = (0, 1) field theories.
Instead of discussing all terms in the Lagrangian, we will focus on the main facts we will
use in following sections. We refer the reader to [19, 24–27] for a more detailed presentation.

2.1 Constructing 2d N = (0, 1) gauge theories

We describe these theories in terms of 2d N = (0, 1) superspace
(
x0, x1, θ+). There are

three types of supermultiplets as elementary building blocks:
• Vector multiplet:

V+ = θ+(A0(x) +A1(x)) ,
V− = A0(x)−A1(x) + θ+λ−(x) .

(2.1)

It contains a gauge boson A± and a left-moving Majorana-Weyl fermion λ− in the
adjoint representation.

• Scalar multiplet:
Φ(x, θ) = φ(x) + θ+ψ+(x) . (2.2)

It has a real scalar field φ and a right-moving Majorana-Weyl fermion ψ+.

• Fermi multiplet:
Λ(x, θ) = ψ−(x) + θ+F (x) . (2.3)

It has a left-moving Majorana-Weyl spinor as its only on-shell degree of freedom.
Here F is an auxiliary field.

As usual, the kinetic terms for matter fields and their gauge couplings are given by

Ls + LF =
∫
dθ+

(
i

2
∑
i

(D+ΦiD−Φi)−
1
2
∑
a

(ΛaD+Λa)
)
, (2.4)

where D± are super-covariant derivatives [19].
These theories admit another interaction, which is an N = (0, 1) analog of the N =

(0, 2) J-term interaction, or N = 1 superpotential:

LJ ≡
∫
dθ+W (0,1) =

∫
dθ+∑

a

(ΛaJa(Φi)) , (2.5)

– 2 –
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Figure 1. Generic 1-loop diagram associated with 2d anomalies.

where Ja(Φi) are real functions of scalar fields. Both the quiver and W (0,1) are necessary
for fully specifying any of the N = (0, 1) gauge theories considered in this paper. From
now on, we will refer to W (0,1) as the superpotential for convenience.

After integrating out the auxiliary fields Fa, LJ produces various interactions, including
Yukawa-like couplings ∑

a

λ−a
∂Ja

∂φi
ψ+i , (2.6)

as well as a scalar potential
1
2
∑
a

(Ja(φi))2 . (2.7)

2.2 Anomalies

In 2d, anomalies are given by 1-loop diagrams of the generic form shown in figure 1, where
left- and right-moving fermions running in the loop contribute oppositely.

Since 2d N = (0, 1) theories are chiral, left- and right-moving fermions are not neces-
sarily paired up, and anomalies do not cancel automatically. For a given symmetry group,
anomalies depend on the types and the representations of the fields transforming under
it. Below, we focus on those groups and representations appearing in the 2d N = (0, 1)
theories engineered in this paper.

Non-Abelian anomalies. Let us first consider pure non-Abelian G2 gauge or global
anomalies, where G can be SU(N), SO(N) or USp(N) group.3 The corresponding anomaly
is given by

Tr[γ3JGJG] , (2.8)

where γ3 is the chirality matrix in 2d and JG is the current associated to G. The resulting
anomaly from a field in representation ρ of G can be computed in terms of the Dynkin
index T (ρ):

T (ρ) = C2(ρ) d(ρ)
d(adjoint) , (2.9)

where C2(ρ) is the quadratic Casimir for representation ρ.
In table 1 we present anomaly contributions for superfields in the most common rep-

resentations of SU(N). In table 2, we present anomaly contributions of different types of
superfields carrying various representations of SO(N) and USp(N) groups, computed using
Dynkin indices listed in [28].

In the case of gauge groups, anomalies must vanish for consistency of the theory at the
quantum level. This leads to important constraints in our construction of 2d N = (0, 1)

3In our convention USp(2) ' SU(2), so USp(N) makes sense only if N is even.

– 3 –



J
H
E
P
0
3
(
2
0
2
2
)
1
5
0

SU(N) fundamental adjoint antisymmetric symmetric

vector multiplet × −N × ×

Fermi multiplet −1
2 −N −N + 2

2
−N − 2

2

scalar multiplet 1
2 N

N − 2
2

N + 2
2

Table 1. Anomaly contributions of the 2d N = (0, 1) multiplets in various representations of
SU(N). Since anomalies are quadratic in 2d, the same contributions apply for the conjugate repre-
sentations.

SO(N) fundamental antisymmetric (adjoint) symmetric

vector multiplet × −N + 2 ×

Fermi multiplet −1 −N + 2 −N − 2

scalar multiplet 1 N − 2 N + 2

USp(N) fundamental antisymmetric symmetric (adjoint)

vector multiplet × × −N − 2

Fermi multiplet −1 −N + 2 −N − 2

scalar multiplet 1 N − 2 N + 2

Table 2. Anomaly contributions of the 2d N = (0, 1) multiplets in various representations of
SO(N) and USp(N).

theories, that may require the introduction of extra flavors to cancel anomalies. We will
illustrate this with concrete examples in following sections.

Unlike gauge symmetries, global symmetries may indeed be anomalous. One important
property of global anomalies is that they are preserved along the Renormalization Group
(RG) flow. Therefore, they can be used to check dualities between two or more theories,
namely whether these UV-different theories are IR-equivalent. Examples of using global
anomalies to check dualities in 2d N = (0, 1) theories can be found in [19] and also in our
upcoming work [29].

Abelian Anomalies. For U(N) groups of the worldvolume theories on D-brane probes,
in addition to non-Abelian anomalies, the U(1) factors can generically have U(1)2

i and
mixed U(1)i U(1)j Abelian anomalies. As before, the U(1) groups can be either gauged
or global.

The theories studied in this paper generically have non-vanishing Abelian gauge anoma-
lies. Similarly to the discussion in [15, 30], we expect that such anomalies are canceled
by the bulk fields in the closed string sector via a generalized Green-Schwarz (GS) mech-
anism (see [31, 32] for derivations in 4d N = 1 and 2d N = (0, 2) theories realized at
orbifolds/orientifold singularities).
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2.3 Triality

Recently, an IR triality between 2d N = (0, 1) theories with SO and USp gauge groups
was proposed in [19]. Evidence for the proposal includes matching of anomalies and elliptic
genera. This new triality can be regarded as a cousin of the 2d N = (0, 2) triality introduced
in [3]. Interestingly, 2d N = (0, 2) triality, together with Seiberg duality for 4d gauge
theories [33], extend to an infinite family of order (m + 1) dualities of m-graded quiver
theories [34–36].

It is natural to ask whether, within the context of gauge theories on the worldvolume
of D-branes probing singularities, the N = (0, 1) triality admits a geometric explanation.
The similarity between the theories in [19] and the ones constructed in this paper hints
that this is the case. This question will be addressed in [29], where we will show that
N = (0, 1) triality follows from the non-uniqueness of the map between Spin(7) cones and
2d N = (0, 1) gauge theories.

3 N = (0, 2) field theories in N = (0, 1) formalism

In this paper, we will construct 2d N = (0, 1) theories from 2d N = (0, 2) theories via
orientifold quotients. Therefore, it is useful to decompose N = (0, 2) theories in terms of
the N = (0, 1) formalism.
N = (0, 2) theories can be expressed in superspace (x0, x1, θ+, θ̄+) and have three

types of multiplets: vector, chiral and Fermi. These multiplets and the Lagrangian can be
further expressed in N = (0, 1) language using the superspace

(
x0, x1, θ+).

N = (0, 2) vector multiplet. The N = (0, 2) vector multiplet V (0,2) contains a gauge
boson, a left-moving chiral fermion and an auxiliary field. It decomposes into N = (0, 1)
multiplets as follows:

N = (0, 2) vector multiplet V (0,2)
i

↙ ↘
N = (0, 1) vector multiplet Vi ⊕ N = (0, 1) Fermi multiplet ΛRi .

(3.1)

The chiral fermion in V (0,2)
i is separated into two Majorana-Weyl fermions, one of which is

included in Vi and the other is in ΛRi . The auxiliary field in V (0,2)
i becomes the one in ΛRi .

The kinetic term of V (0,2)
i in the Lagrangian can be expressed in N = (0, 1) superspace

as kinetic terms of Vi and ΛRi :

L(0,2)
gauge → Lgauge −

1
2

∫
dθ+∑

a

(ΛRi D+ΛRi ) , (3.2)

where Lgauge is the kinetic term of an N = (0, 1) vector multiplet.

N = (0, 2) chiral multiplet. The N = (0, 2) chiral superfield contains a complex scalar
φc and a right-moving chiral fermion ψc+. Its expansion is

Φ(0,2)
m = φcm + θ+ψc+m − iθ+θ̄+D+φ

c
m . (3.3)

– 5 –
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It decomposes into N = (0, 1) multiplets as follows:

N = (0, 2) chiral multiplet Φ(0,2)
m

↙ ↘
N = (0, 1) scalar multiplet Φ1

m ⊕ N = (0, 1) scalar multiplet Φ2
m .

(3.4)

The two N = (0, 1) scalar multiplets Φ1,2
m can be further combined into an N = (0, 1)

complex scalar multiplet, so that the above decomposition is rewritten as

N = (0, 2) chiral multiplet Φ(0,2)
m

↓
N = (0, 1) complex scalar multiplet Φm .

(3.5)

The kinetic terms of the matter fields in Φ(0,2)
m and their gauge couplings are included in

the term L(0,2)
chiral in N = (0, 2) superspace. As an example, let us consider a chiral multiplet

Φ(0,2)
m transforming under a U(1) gauge group. In this case, L(0,2)

chiral reads:

L(0,2)
chiral = − i2

∫
dθ+dθ̄+(Φ(0,2)

m )†D(0,2)
− Φ(0,2)

m , (3.6)

where with † we mean the Hermitian conjugate4 of Φ(0,2)
m . The above Lagrangian can be

regarded as a combination of two parts:

L(0,2)
chiral = Kinetic terms of Φ(0,2)

m + Interaction terms between V (0,2) and Φ(0,2)
m , (3.7)

which can be further expressed in terms of N = (0, 1) multiplets as

L(0,2)
chiral → Kinetic terms of N = (0, 1) complex scalar Φm

+ Interaction terms between V and Φm

+ Interaction terms between ΛR and Φm .
(3.8)

V and ΛR here are N = (0, 1) vector and adjoint Fermi multiplets coming from the decom-
position of V (0,2). From now on, the superscript R is used to emphasize that a superfield
is real.
L(0,2)

chiral can be expressed in N = (0, 1) superspace using eqs. (2.4) and (2.5). It becomes

L(0,2)
chiral → Ls +

∫
dθ+W (0,1)

= − i4

∫
dθ+[D+Φ†mD−Φm +D+ΦmD−Φ†m] +

∫
dθ+ΛRΦ†mΦm .

(3.9)

N = (0, 2) Fermi multiplet. The N = (0, 2) Fermi multiplet contains a left-moving
chiral fermion λc−a and an auxiliary field Ga. It can be expanded as

Λ(0,2)
a = λc−a − θ+Ga − iθ+θ̄+D+λ

c
−a − θ̄+E(0,2)

a (Φ(0,2)
m ) , (3.10)

4I.e. complex conjugate and transposition,
(
Φ̄(0,2))T .
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where E(0,2)
a

(
Φ(0,2)
m

)
is a holomorphic function of chiral multiplets, called E-term. The

decomposition of an N = (0, 2) Fermi multiplet into N = (0, 1) multiplets is

N = (0, 2) Fermi multiplet Λ(0,2)
a

↙ ↘
N = (0, 1) Fermi multiplet Λ1

a ⊕ N = (0, 1) Fermi multiplet Λ2
a .

(3.11)

The two N = (0, 1) Fermi multiplets can be further combined into an N = (0, 1) complex
Fermi multiplet. The decomposition of N = (0, 2) Fermi multiplet is then

N = (0, 2) Fermi multiplet Λ(0,2)
a

↓
N = (0, 1) complex Fermi multiplet Λa .

(3.12)

InN = (0, 2) theories, in addition to the E-term, there is another holomorphic function
J (0,2)a(Φm) of chiral fields associated to the Fermi multiplet Λ(0,2)

a . The kinetic terms for
the Fermi multiplet and its couplings to chiral multiplets are

L(0,2)
Fermi + L(0,2)

J = −1
2

∫
dθ+dθ̄+(Λ(0,2)a)†Λ(0,2)

a − 1√
2

∫
dθ+Λ(0,2)

a J (0,2)a|θ̄+=0 − h.c.

(3.13)

There is a symmetry under exchanging J (0,2)a ↔ E
(0,2)
a , which corresponds to exchanging

Λ(0,2)
a ↔ (Λ(0,2))†a.

In order to express the above Lagrangian terms for N = (0, 2) Fermi multiplets in
N = (0, 1) superspace, we first decompose Φ(0,2)

m chiral fields into N = (0, 1) complex
scalar multiplets Φm, as in (3.5). Then, we introduce N = (0, 1) complex scalar multiplets
Ea(Φm) and Ja(Φm) as functions of Φm. The field components of Ea(Φm) and Ja(Φm) are
given by

Ea(Φm) = Ea(φm)− θ+ ∂Ea
∂φm

ψm+ ,

Ja(Φm) = Ja(φm)− θ+ ∂Ja

∂φm
ψm+ .

(3.14)

where φm and ψm+ are component fields of the N = (0, 1) complex scalar multiplet Φm.
The terms for an N = (0, 2) Fermi multiplet Λ(0,2)

a in the Lagrangian can then be expressed
in terms of N = (0, 1) superspace and multiplets as

L(0,2)
Fermi + L(0,2)

J →LF +
∫
dθ+W (0,1)

→ − 1
2

∫
dθ+(ΛaD+Λa)

+
∫
dθ+[Λa(Ja(Φm) + E†a(Φ†m)) + Λ†a(Ea(Φm) + J†a(Φ†m))] .

(3.15)

– 7 –
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N = (0, 1) superpotential of N = (0, 2) gauge theories. To conclude this section,
for an N = (0, 2) field theory with vector multiplets V (0,2)

i , chiral multiplets Φ(0,2)
m and

Fermi multiplets Λ(0,2)
a , the generic N = (0, 2) Lagrangian can be expressed in terms of

N = (0, 1) multiplets and superspace as

L = Lgauge + Ls + LF +
∫
dθ+W (0,1) , (3.16)

where Lgauge, Ls and LF are the usual kinetic terms for vector, scalar and Fermi superfields.
The N = (0, 1) superpotential W (0,1) reads

W (0,1) =
∑
i

∑
n

ΛRi Φ†nΦn +
∑
a

∫
dθ+[Λa(Ja(Φm) + E†a(Φ†m)) + Λ†a(Ea(Φm) + J†a(Φ†m))] ,

(3.17)
where the sum over n in the first term means the sum over all complex scalar multiplets
transforming under a given gauge group i.

4 2d N = (0, 1) theories and orientifolds

In this section, we discuss the construction of Spin(7) and Spin(7) orientifolds starting
from CY 4-folds. We also explain the general structure of the N = (0, 1) theories on D1-
branes probing Spin(7) orientifolds, which are obtained from the N = (0, 2) gauge theories
associated to the parent CY4 via a Z2 orientifold quotient. While we will focus on the case
in which the CY4 is toric, our construction applies in general. Concrete examples will be
covered in sections 5 to 8.

4.1 Spin(7) cones and Spin(7) orientifolds from CY4

Our aim in this section is to set the stage for Spin(7) orientifolds probed by D1-branes.
The construction of the corresponding gauge theories on D1-branes will be introduced
in sections 4.2 to 4.4.

We start discussing Spin(7) manifolds, which are eight dimensional Riemannian mani-
folds of special holonomy group Spin(7). Every Spin(7) manifold is equipped with a globally
well-defined 4-form Ω(4), called Cayley 4-form.

Spin(7) manifolds are interesting because they lead to minimally supersymmetric theo-
ries. For instance, consider Type IIB string theory on a M2×X8, where M2 is 2d Minkowski
space and X8 is a Spin(7) manifold. The number of supercharges is broken from 32 real
supercharges to 2, since Spin(7) manifolds preserves 1/16 of the original supersymmetry.5

Probing the singularity of such Spin(7) manifold with a stack of N D1-branes breaks
SUSY even further. We would be left with only 1 real supercharge on the 2d worldvolume,
hence engineering 2d N = (0, 1) theories.

However, in this paper we focus on an alternative, yet related, way to achieve 2d
N = (0, 1) theories, using an orientifold construction based on the following observation.
An explicit construction of Spin(7) manifolds was introduced by Joyce in [39]. Start with

5For more details of why Spin(7) preserves 1/16 SUSY, we refer the reader to [37] and [38].
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a Calabi-Yau 4-fold M8 equipped with the holomorphic (4,0)-form Ω(4,0) and Kähler form
J (1,1). One can always define a 4-form

Ω(4) = Re
(
Ω(4,0)

)
+ 1

2J
(1,1) ∧ J (1,1) , (4.1)

which is stabilized by a Spin(7) subgroup of the general SO(8) holonomy of a 8d Riemannian
manifold.

We can now consider the parent CY4 geometry, and perform an orientifold by Ωσ,
where Ω denotes worldsheet parity6 and σ is an anti-holomorphic involution keeping the real
4-form (4.1) invariant. It is easy to check, in analogy with the above arguments, that the
supersymmetry preserved by D1-brane probing this orientifold singularity is 2d N = (0, 1).
Hence, we refer to this construction as Spin(7) orientifolds. One motivation for considering
these orientifolds is that they naturally realize the “real projection” of the “complex”
N = (0, 2) theories mentioned in [19]. The theories on D1-branes probing Spin(7) cones,
without the orientifold projection, are also interesting and we plan to investigate them in
future work.

4.2 Spin(7) orientifolds in the field theory

We now discuss the field theory implementation of the Spin(7) orientifold construction.
The field theory involution must act anti-holomorphically on the chiral fields of the parent
gauge theory. Its connection to σ will be addressed in section 4.4. Further details on the
theory obtained via the orientifold projection will be given in section 4.3. The construction
follows the standard orientifolding procedure. Anti-holomorphic orientifolds have appeared
in the literature in other contexts, see, e.g., [40, 41].

Such involution must be a Z2 symmetry of the parent gauge theory, namely a symmetry
of both its quiver and superpotential. Given the anti-holomorphicity of the transformation,
it is convenient to write the superpotential in N = (0, 1) language, as in (3.17).

We will use indices i, j = 1, . . . , g, to label gauge groups in the parent theory. We
will also use αi, βj = 1, . . . , Ni for Chan-Paton indices, equivalently (anti) fundamental
color indices of U(Ni) in the gauge theory. Every bifundamental field Φij in the gauge
theory (adjoint if i = j) should be regarded as an Ni×Nj matrix to be contracted with the
corresponding Chan-Paton factors, namely open string states are of the form Φij,αiβj |αi, βj〉.
In what follows, we will keep the color/Chan-Paton indices implicit.

Below, we present the transformation properties of each type of field under the gener-
ator of the orientifold group.

Vector multiplets. Gauge fields transform as follows

Aiµ → −γΩi′A
i′T
µ γ−1

Ωi′
, (4.2)

where the transposition acts on color indices and γΩi is a matrix encoding the action of
worldsheet parity on the Chan-Paton degrees of freedom at the node i. All matrices in this
expression are Ni ×Ni dimensional, with Ni = Ni′ .

6We hope the context suffices for the reader not to confuse it with the holomorphic 4-form.
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For gauge groups that are mapped to themselves, i.e., when i = i′, the fact that the
involution squares to the identity gives rise to the standard constraint

γTΩiγ
−1
Ωi = ±1Ni . (4.3)

The two canonical solutions to this equation are the identity matrix γΩi = 1Ni , for the
positive sign, and the symplectic matrix γΩi = J = iεNi/2, for the negative sign. Plugging
each of them back into (4.2), they respectively lead to gauge fields in the antisymmetric or
symmetric representation, namely in the adjoint representations of the resulting SO(Ni)
or USp(Ni) gauge groups. The corresponding gaugino is projected accordingly, completing
an N = (0, 1) vector multiplet. Our general discussion allows for independent ranks for
different gauge groups. That said, in the explicit examples considered later, we will assume
that the ranks in the parent theory are such that all the ranks in the orientifolded theory
are equal.

Scalar multiplets. Let us consider complex N = (0, 1) scalar fields or, equivalently, the
N = (0, 2) chiral fields in the parent theory. The anti-holomorphicity of the geometric
involution implies that we have to take their Hermitian conjugate and their transformation
becomes

Xm
ij → ηmnγΩi′ X̄

n
i′j′γ−1

Ωj′ , (4.4)

where the bar indicates conjugation. We can understand the conjugation as the net result
of two operations. First, we have the transposition of the matrix Xn

i′j′ , which effectively
exchanges its two endpoints. This corresponds to the usual orientation reversal between
fields and their images, which is characteristic of orientifolds and is also present in holo-
morphic orientifolds. In addition, we take the Hermitian conjugate, which is the matrix
counterpart of the conjugation involved in the anti-holomorphic involution. This leads to
an additional orientation flip.

While expressions like (4.4) are rather standard, this is a good point to carefully state
the meaning of each of the matrices in it. Color indices are implicit. As mentioned earlier,
γΩi′ and γΩj′ encode the action of worldsheet parity on the color indices at nodes i′ and
j′, and they are Ni′ × Ni′ and Nj′ × Nj′ matrices, respectively. Xn

i′j′ is an Ni′ × Nj′

matrix, for which the transposition and Hermitian conjugation, independently, transpose
the color indices. We also include the indices m,n = 1, . . . , nχij , with nχij the number of
N = (0, 2) chiral fields between nodes i and j. η is an nχij × n

χ
ij matrix corresponding to

the representation of the Z2 group generated by the field theory involution under which
the Xm

ij fields transform.7 We sum over the repeated index n. i′ and j′ indicate the nodes
connected by the field, and are clearly not summed over. Eq. (4.4) also applies to fields
that are mapped to themselves.

The condition that the orientifold action is an involution implies that η · ηT = 1. In
the explicit examples presented later, we will mostly use η = ±1 (in the 1-dimensional
representation case) or η = ± ( 0 1

1 0 ), which implements a non-trivial exchange between two
7In principle, this representation might be reducible. The irreducible representations of Z2 are either 1-

or 2-dimensional.
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pairs of fields. In view of this, from now on we will reduce ηmnX̄n
i′j′ to ±X̄m′

i′j′ , in order to
simplify expressions.

The transformation (4.4) and the ones for Fermi superfields that we present below,
simplify considerably in the case of Abelian parents. As usual, this is sufficient for con-
necting the gauge theories to the probed geometries, along the lines that will be discussed
in section 4.3.

Fermi multiplets. Contrary to scalar fields, whose transformation always involves con-
jugation in order to account for the anti-holomorphicity of the geometric involution, Fermi
fields may or may not be conjugated.

Let us first consider the N = (0, 1) complex Fermi multiplets in the parent, i.e. the
N = (0, 2) Fermi multiplets in the original theory. Their transformation is either8

Λmij → ±γΩi′ Λ̄
m′
i′j′γ−1

Ωj′ , (4.5)

or
Λmij → ±γΩi′ Λ

m′ T
j′i′ γ

−1
Ωj′ . (4.6)

Notice that the second transformation only involves transposition, without complex con-
jugation.

The signs and the presence or absence of complex conjugation in the transformations
of each Fermi in eqs. (4.5) and (4.6) are determined by imposing the transformation of the
chirals and requiring the invariance of the superpotential W (0,1) of the parent theory. As
mentioned earlier, focusing on the Abelian theory is sufficient for this.

The decomposition of N = (0, 2) vector multiplets gives rise to additional N = (0, 1)
adjoint Fermi fields ΛRi , as explained in section 3. Invariance of W (0,1) in the parent fully
determines the transformation of the ΛRi , which is given by

ΛRi → γΩi′ Λ
R T
i′ γ−1

Ωi′
. (4.7)

The relative sign between (4.2) and (4.7) implies that for i = i′, an SO or USp projection
of the gauge group is correlated with a projection of ΛRi into a symmetric or antisymmetric
representation, respectively.

The construction of the Spin(7) orientifolds we have just presented exclusively uses
information from the gauge theory. In coming sections, we will explain how it can be con-
nected to the geometry.9 The anti-holomorphic involution of the generators of the parent
CY4 geometry can be mapped to an action on scalars. This, combined with the invariance
of the parent superpotential, determines the transformation of the Fermi superfields.

8Here we use the simplified notation introduced earlier in the case of scalar multiplets, instead of including
an η matrix as in (4.4).

9In the case of toric CY4, perfect matchings of the corresponding brane brick models are powerful tools
in connecting gauge theory and geometry [11]. It is therefore natural to ask whether and, if so, how the
anti-holomorphic involution translates into perfect matchings. Preliminary investigations suggest that, at
least, the involution of chiral fields maps to an anti-holomorphic involution of the perfect matchings. It
would be interesting to study this question in the future.

– 11 –



J
H
E
P
0
3
(
2
0
2
2
)
1
5
0

i

U (Ni)

i′

U (Ni′)

· · · i

U (Ni)

(a) Two nodes mapped according to Rule 1a.

i

U (Ni)

i

Gi(Ni)

(b) A node mapped according to Rule 1b.

Figure 2. The two possible identifications of gauge groups. The group Gi(Ni) can be either SO(Ni)
or USp(Ni). Dashed black and red lines represent fields that can be either scalar or Fermi fields.

4.3 Orientifold projection of the quiver

Quiver. In this section we explicitly discuss all possible orientifold projections of the
quiver following from the rules in section 4.2. The different types of N = (0, 1) superfields,
combined with their various transformations, lead to several possibilities.

Gauge groups. The orientifold projections for gauge groups can be one of the following
two possibilities:

1a. Every node i 6= i′ gives rise to a gauge factor U(Ni), as shown in figure 2(a).

1b. Every node i = i′ gives rise to a gauge factor SO(Ni) or USp(Ni), for γΩi = 1 or J ,
respectively, as schematically shown in figure 2(b).

Matter fields

N = (0, 2) chiral and Fermi fields: we start with the projection of N = (0, 2) chiral
and Fermi multiplets, equivalently N = (0, 1) complex scalar and Fermi multiplets. Unless
explicitly mentioned, the rules below apply to both scalar and Fermi fields. In figures, we
will use dashed black and red lines to indicate fields that can be of the two types and we
use N = (0, 1) language. To organize the presentation, we will distinguish between the
case in which a field is mapped to a different image and when it is mapped to itself.

Fields mapped to other fields. The two rules that follow apply to both to fields transform-
ing anti-holomorphically, as in (4.4) and (4.5), or holomorphically, as in (4.6). While the
resulting quiver does not depend on the presence of conjugation, such details do affect how
the final fields precisely emerge from the original theory and, therefore, the projection of
the superpotential.

2a. Consider a bifundamental or adjoint field Xij of the parent theory, for j 6= i′, which
transforms into (the conjugate of) a different image field Xi′j′ . The two fields, Xij

and Xi′j′ , are projected down to a single complex bifundamental (or adjoint) Xij .10

Various possibilities are shown in figure 3.

10There is no distinction between and whenever the resulting gauge group is SO or USp.
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i
U (Ni)

jU (Nj)

i′
U (Ni′)

j′ U
(
Nj′

)

. . .

. . .

Xij 2 2 Xi′j′

i
U(Ni)

j
U (Nj)

Xij2

(a) Pairs of bifundamentals that do not share any node.

i
U (Ni)

jU (Nj)
j′ U

(
Nj′

). . .

Xij 2
Xij′

2

i
Gi(Ni)

j
U (Nj)

Xij2

(b) Pairs of bifundamentals with a common node.

i
U (Ni)

jU (Nj)

2 Yij2Xij

i
Gi (Ni)

j
Gj (Nj)

2 Xij

(c) Pairs of bifundamentals sharing both nodes.

Xii

2

Xi′i′

2

iU (Ni)

i′U (Ni′)

... 2

Xii

i

U (Ni)

(d) A pair of adjoint fields whose nodes are mapped to each other.

Figure 3. Various instances of Rule 2a. These pictures apply to both fields that are mapped
anti-holomorphically (via (4.4) or (4.5)) or holomorphically (via (4.6)). The group Gi(Ni) can be
either SO(Ni) or USp(Ni).
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i

U (Ni)

i′

U (Ni′)

2
Xii′

2
Xi′i

2

XiiS

�

2

XiiA

i

U (Ni)

(a) Two bifundamental fields connecting a node and its image.

2

Xii

2

Yii

i

U (Ni)

2

XiiS

�

2

XiiA

i

Gi (Ni)

(b) Two adjoint fields sharing on a node that is mapped to itself.

Figure 4. The two instances of Rule 2b, depending on whether the original fields are bifunda-
mental (i 6= i′) or adjoint (i = i′). This picture applies to both fields that are mapped anti-
holomorphically (via (4.4) or (4.5)) or holomorphically (via (4.6)). The group Gi(Ni) can be either
SO(Ni) or USp(Ni).

2b. Consider two bifundamental or adjoint fields Xii′ and Yi′i, which transform into
(the conjugate of) each other. They give rise to two complex fields, one in the
symmetric representation and the other one in the antisymmetric representation of
the resulting unitary (for i 6= i′) or SO /USp (for i = i′) node.11 From now on,
we indicate symmetric and antisymmetric representations with star and diamond
symbols, respectively. This rule is illustrated in figure 4.

Fields mapped to themselves. In this case, the transformation of the quiver depends cru-
cially on whether the map is anti-holomorphic or holomorphic. Therefore, in the figures
we indicate it over the arrow connecting the parent to the orientifolded theory.

3a. A bifundamental field Xij that is mapped to itself anti-holomorphically via (4.4)
or (4.5), with the nodes i and j also being their own images, gives rise to a real
N = (0, 1) field transforming under the bifundamental of Gi (Ni)×Gj(Nj), where Gi
and Gj are the same type of SO or USp gauge group.12 Figure 5 illustrates this rule.

3b. There is another possibility for a bifundamental Fermi field Λii′ stretching between
a node and its image. Such a field can only be mapped to itself in the case of a
holomorphic transformation (4.6).13 This gives rise to a complex Fermi superfield in

11We thank Massimo Porrati for discussions on this point.
12We will later elaborate on why these two gauge groups should be of the same type.
13For this reason, there is no analogue of this rule for chiral or Fermi fields transforming anti-

holomorphically.
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i

U (Ni)

j

U (Nj)

Xij

2 i

Gi (Ni)

j

Gj (Nj)

XR
ijX → ±X̄

Figure 5. Rule 3a, in which a complex bifundamental scalar or Fermi is mapped to itself anti-
holomorphically via (4.4) or (4.5). Gi and Gj are the same type of SO or USp gauge group.

i

U (Ni)

i′

U (Ni′)

Λii′
2

�

2

ΛiiA

i

U (Ni)

or 2

ΛiiS

i

U (Ni)

Λ→ ±ΛT

Figure 6. Rule 3b, in which a Fermi connecting a node to its image is mapped to itself holomor-
phically via (4.6).

Λii

2 i

�

2

ΛiiA

i

Gi(Ni)

or 2

ΛiiS

i

Gi(Ni)

Λ→ ±ΛT

Figure 7. Rule 3c, in which a complex adjoint Fermi is mapped to itself holomorphically via (4.6).
The group Gi(Ni) can be either SO(Ni) or USp(Ni).

the symmetric/antisymmetric representation of the resulting U (Ni) group for a +/−
sign, respectively, as shown in figure 6.

3c. Closely related to Rule 3b, consider an adjoint complex Fermi field Λii that is mapped
to itself via the holomorphic transformation (4.6). As shown in figure 7, this gives
rise to a complex Fermi field in the symmetric or antisymmetric representation of the
resulting gauge group for a +/− sign, respectively. In this case, the ± sign in (4.6)
correlates the projection of such Fermi with the one of the corresponding vector
multiplet, which is controlled by (4.2). In particular, a + sign implies the opposite
projection, and hence we obtain symmetric/antisymmetric for SO /USp. Similarly,
a − sign implies the same projection, and we obtain antisymmetric/symmetric for
SO /USp.

3d. Consider an adjoint complex scalar or Fermi field that is mapped to itself via the
anti-holomorphic transformation in (4.4) or (4.5). This gives rise to two real scalar or
Fermi fields, one symmetric and one antisymmetric of node i. This can be understood
as projecting the real and imaginary parts of the parent field with opposite signs.
The sign in (4.2) determines the projection of the real part relative to the SO or USp
projection of the gauge group as in Rule 3c. This case is shown in figure 8.
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Xii

2 i

XR
iiS

�

XR
iiA

i

Gi(Ni)

X → ±X̄

Figure 8. Rule 3d, in which a complex adjoint scalar or Fermi is mapped to itself anti-
holomorphically via (4.4) or (4.5). The group Gi(Ni) can be either SO(Ni) or USp(Ni).

ΛRii

ΛRi′i′

iU (Ni)

i′U (Ni′)

...

ΛRii
i

U (Ni)

Figure 9. Rule 4a, in which two real Fermi fields are mapped to each other into a single real Fermi
field.

ΛRii
i

�

ΛRiiA

i

USp(Ni)

or

ΛRiiS

i

SO(Ni)

Figure 10. Rule 4b, in which one real Fermi field is mapped to itself.

N = (0, 1) real Fermi fields from N = (0, 2) vector multiplets: finally, let us
consider the projection of the N = (0, 1) adjoint real Fermi fields ΛRii coming from the
N = (0, 2) vector multiplets. Such fields always transform according to (4.7). Therefore,
there are only two possibilities, depending on whether the corresponding node is mapped
to a different node or to itself.

4a. Consider a real Fermi ΛRii which transforms via (4.7) into ΛRi′i′ , with i′ 6= i. The two
fields are projected down to a single real Fermi ΛRii , as in figure 9.

4b. Consider a real Fermi ΛRii which is mapped to itself, with i′ 6= i. Due to the relative
sign between (4.2) and (4.7), this gives rise to a symmetric or antisymmetric real
Fermi for an SO or USp projection of the node i, respectively. We show the result in
figure 10.

In general, it is possible for the theories constructed with the orientifolding procedure
described above to suffer from gauge anomalies. Such anomalies can be canceled by the
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addition of appropriate scalar or Fermi flavors. In string theory, this corresponds to intro-
ducing flavor D5/D9-branes to cancel the local RR tadpole arising when orientifold planes
are present. In section 5.3.2, we present an example in which flavor fields are needed in
order to cancel the gauge anomalies.

The gauge theories obtained from D1-branes probing Spin(7) orientifolds may provide
a large class of superconformal field theories in the infrared. Determining whether this
is indeed the case is an interesting direction, whose exploration we leave for future work,
possibly along the lines of [19].

Superpotential. The superpotential of the orientifold theory is obtained from the parent
superpotential by keeping the invariant terms and projecting out half of the other terms,
which are identified in pairs. In the surviving terms, the parent fields must be replaced by
their images under the orientifold projection.

A constraint on the relative projections of nodes connected by matter. Requir-
ing that the orientifold group acts on the gauge theory as an involution, leads to interesting
relations between the transformation of matter fields and gauge groups. In particular, fo-
cusing on bifundamental fields, applying the transformations (4.4), (4.5) or (4.6) twice and
demanding that they amount to the identity, leads to correlations between the η and γΩ
matrices. For example, for a pair of nodes i and j connected by a single field or by a pair
of fields with η = ± ( 0 1

1 0 ) which transform anti-holomorphically, we must have γΩi = γΩj .
Most of the examples we will consider later are of these two types. On the other hand,
η =

( 0 1
−1 0

)
implies that γΩi and γΩj are of opposite types.

4.4 Anti-holomorphic involutions from the mesonic moduli space

The anti-holomorphic involution σ of a CY4 underlying Joyce’s construction can be beau-
tifully connected to the anti-holomorphic involution of the associated N = (0, 2) gauge
theory. The CY4 arises as the mesonic moduli space of the parent gauge theory. Conse-
quently, the complex coordinates parameterizing the CY4 correspond to mesonic operators.
Below, we present an algorithmic procedure for identifying anti-holomorphic involutions of
CY4 cones leading to Spin(7) manifolds. Combined with the map of generators to the
gauge theory, this provides an alternative method for constructing Spin(7) orientifolds.
This approach is analogous to the one introduced in [42] for 4d orientifolds. As usual, the
construction focuses on the Abelian case of the gauge theories, but the results extend to
general ranks.

In general, we can define the moduli space as the polynomial ring of the chiral fields
modded by the ideal generated by the J- and E-terms, i.e.

M = (C[X1, . . . , Xn]/ 〈Jij , Eij〉) //U(1)G , (4.8)

where G is the number of U(1) gauge groups in the theory, and n is the number of chiral
fields. It is then possible to associate a GLSM to such a moduli space, given by a set of
fields pa such that

M = (C[p1, . . . , pm]//QEJ) //QD , (4.9)

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
1
5
0

where QEJ and QD are matrices containing U(1) charges of the pa that implement the J-,
E- and D-terms. The mesonic moduli space is obtained by considering combinations of
fields pa that are invariant under the action of these U(1)’s. For details on this construction
we refer to [11].

A tool that has proven to be powerful to compute such gauge invariant operators is
the Hilbert series (HS) [43, 44]. The explicit expression of the HS is

HS(x,p) = PE
[
m∑
a=1

xQapa

]
, (4.10)

where Qa = (QaEJ , QaD) are the charges of the field pa represented by the collective fugacity
x. The function PE is called the Plethystic Exponential (PE) and is defined as

PE [f(t)] = PE
[ ∞∑
k=0

ckt
k

]
= exp

[ ∞∑
k=1

1
k

(
f
(
tk
)
− f(0)

)]
=
∞∏
k=1

1
(1− tk)ck . (4.11)

Performing the Molien integral over the fugacities x, we obtain the HS of the mesonic
moduli spaceM:

HS(p;M) =
∮
|x|=1

dx
2πix HS(x,p) . (4.12)

Such HS contains the generators of the mesonic moduli space and their relations. This
information can be extracted using the Plethystic Logarithm (PL):

PL[HS(p;M)] =
∞∑
k=1

µ(k)
k

ln
[
HS

(
pk;M

)]
, (4.13)

where µ is the Möbius function. The resulting series can be finite, and in that case, the
mesonic moduli space is said to be a complete intersection, or it can be an infinite sum
of positive and negative monomials in p. The generators are identified with the positive
monomials, while the relations are associated with the negative monomials. The generators
for all examples in the paper have been computed using such HS techniques.

The generators, subject to their relations, are the coordinates that parameterize the
toric CY4 under consideration. From the point of view of the gauge theory, these coordi-
nates are mesons and we call them Ma, with a running from 1 to the number of mesons.
The anti-holomorphic involution σ acts on these coordinates by mapping each Ma to a
possibly different M̄b, with M̄b being the complex conjugate of Mb, i.e.

Ma → ±M̄b . (4.14)

This transformation must be consistent with the relations among the generators.
As explained in section 4.1, in order to obtain a Spin(7) structure, σ must preserve

the Cayley 4-form. A sufficient condition for this to happen is that Ω(4,0) → Ω̄(0,4) [39].
Consider a CY4 with n generatorsMa, a = 1, · · · , n and k relations among them Fα(Ma) =
0, α = 1, · · · , k. The holomorphic 4-form is computed in terms of the Poincaré residue

Ω(4,0) = ResdM1 ∧ · · · ∧ dMn∏k
α=1 Fα(Ma)

. (4.15)
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With this formula, it is straightforward to verify that all the involutions considered in this
paper satisfy Ω(4,0) → Ω̄(0,4). In the following sections, we will show this explicitly in some
examples.14

The procedure outlined above provides a geometric criterion for identifying an anti-
holomorphic involution σ leading to a Spin(7) orientifold. Using the definition of the
generators as gauge invariant chiral operators in the field theory, we can translate σ into
the anti-holomorphic involution that acts on the chiral fields. Finally, we can complete
such involution with the transformations of Fermi fields in the form of eqs. (4.5) to (4.7)
such that it corresponds to a Z2 symmetry of the N = (0, 2) gauge theory, as discussed in
section 4.2.

An important observation is that the relation between the geometric anti-holomorphic
involution σ that accompanies the orientifold action, and the action on the N = (0, 2)
theory, is not one-to-one. In particular, this non-uniqueness goes beyond the obvious
one due to choices of signs and γΩ’s in eqs. (4.5) to (4.7). Indeed, certain orientifolded
geometries defined by an involution σ of CY4 correspond to a unique action on the N =
(0, 2) quiver (up to those obvious choices), but others can admit several genuinely different
possible actions from the field theory point of view. These are distinguished by the action
of the orientifold on the gauge factor, in particular by the presence or absence of groups
mapped to themselves. In more mathematical terms, this is related to the presence or the
absence of vector structure in type IIB singularities with orientifolds. We will discuss this
in more detail and present illustrative examples in section 6.

5 C4 and its orbifolds

In this section, we construct the 2d gauge theories on D1-branes over Spin(7) orientifolds
of C4 and its Abelian orbifold C4/Z2.

5.1 C4

Let first consider the simplest CY4, i.e. C4, and construct its Spin(7) orientifold. Its toric
diagram is shown in figure 11.

The parent 2d worldvolume theory on D1-branes over C4 is the dimensional reduction
of 4d N = 4 super Yang-Mills (SYM) and has N = (8, 8) SUSY. In N = (0, 2) language,
this theory is given by the quiver shown in figure 12(a), and the following J- and E-terms
for the Fermi fields:

J E

Λ1 : Y Z − ZY WX −XW
Λ2 : ZX −XZ WY − YW
Λ3 : XY − Y X WZ − ZW

(5.1)

14When the HS is not a complete intersection, the number of relations is redundant. It is then possible
to reduce them to their effective number, and Fα(Ma) represents the minimal number of relations that are
necessary in order to get a 4-form, given n generators, i.e. α = 1, . . . , n − 4. Moreover, given an Ω(4,0),
after applying the anti-holomorphic involution, it might be necessary to use such relations to obtain the
corresponding Ω̄(0,4). Generically, the resulting (0, 4)-form that is obtained by the involution, is not simply
the complex conjugate of Ω(4,0). An explicit example of this is given in section 7.1.
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x

y

z

Figure 11. Toric diagram for C4.

3

Λ1,Λ2,Λ3

4

X,Y, Z,W

U(N)

(a) N = (0, 2) language.

6

Λ1,Λ2,Λ3,ΛR

8

X,Y, Z,W

U(N)

(b) N = (0, 1) language.

Figure 12. Quiver diagrams for C4 in N = (0, 2) and N = (0, 1) language. ΛR is the real Fermi
coming from the N = (0, 2) vector multiplet.

Before performing the orientifold quotient, it is useful to rewrite this theory in N =
(0, 1) superspace. In N = (0, 1) language, this theory has a vector multiplet associated
with the U(N) gauge group, four complex scalar multiplets (X,Y, Z and W ), three complex
Fermi multiplets

(
Λi , i = 1, 2, 3

)
and one real Fermi multiplet

(
ΛR
)
from the N = (0, 2)

vector multiplet. The quiver is shown in figure 12(b). The corresponding N = (0, 1)
superpotential is given by

W (0,1) =W (0,2) + Λ4R(X†X + Y †Y + Z†Z +W †W )
= Λ1(Y Z − ZY ) + Λ1†(WX −XW ) + h.c.

+ Λ2(ZX −XZ) + Λ2†(WY − YW ) + h.c.
+ Λ3(XY − Y X) + Λ3†(WZ − ZW ) + h.c.
+ Λ4R(X†X + Y †Y + Z†Z +W †W ) ,

(5.2)

where W (0,2) indicates the superpotential obtained from the J- and E-terms in (5.1).
For this theory, computing the HS for identifying the generators parameterizing the

moduli space is not necessary, since these mesons are in one-to-one correspondence with
the chiral superfields. The four complex coordinates (x, y, z, w) of C4 map to the four
N = (0, 1) complex scalar fields

(x, y, z, w)⇔ (X,Y, Z,W ) . (5.3)

In the Abelian case, the space is freely generated, i.e. there are no relations among the
generators. This can be easily understood in N = (0, 2) language, where the J- and
E-terms in (5.1) are automatically vanishing.
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Now we are ready to find an anti-holomorphic involution σ of C4 and construct the
gauge theory for the corresponding Spin(7) orientifold. We will choose a specific form of
σ. All other possible σ’s are in fact equivalent to it via the SO(8) global symmetry of C4.

5.1.1 The orientifold theory

Let us consider the anti-holomorphic involution under which the U(N) gauge group is
mapped to itself and the chiral fields transform as

X → γΩX̄γ
−1
Ω , Y → γΩȲ γ

−1
Ω , Z → γΩZ̄γ

−1
Ω , W → γΩW̄γ−1

Ω . (5.4)

Requiring the invariance of the superpotential W (0,1) in (5.2), we obtain the action on
the Fermi multiplets

Λ1 → γΩΛ̄1γ−1
Ω , Λ2 → γΩΛ̄2γ−1

Ω , Λ3 → γΩΛ̄3γ−1
Ω , Λ4R → γΩΛ4R Tγ−1

Ω . (5.5)

From a geometric point of view, the anti-holomorphic involution σ is simply given by

(x, y, z, w) 7→ (x̄, ȳ, z̄, w̄) . (5.6)

The holomorphic 4-form Ω(4,0) and Kähler form J (1,1) of C4 are given by

Ω(4,0) = dx ∧ dy ∧ dz ∧ dw , J (1,1) =
∑

xi∈{x,y,z,w}
dxi ∧ dx̄i (5.7)

They transform under σ as

Ω(4,0) → Ω̄(0,4) , J (1,1) → −J (1,1). (5.8)

One can then easily check that the Cayley 4-form defined in (4.1) is indeed invariant under
this involution σ.

The orientifold theory can be derived by projecting over the involution. As discussed
in section 4.2, γΩ equal to 1Na or J corresponds to the SO(N) or USp(N) gauge group
after projection. We will construct the SO(N) theory in detail below. The USp(N) theory
can be derived following the same procedure.

The SO(N) gauge theory contains four real scalar superfields in the symmetric rep-
resentation and four real scalar superfields in the antisymmetric representation. We will
use subscripts S and A to keep track of representations. There are also four real Fermi
superfields (ΛaS with a = 1, 2, 3 and Λ4R) in the symmetric representation, and three real
Fermi superfields (ΛaA with a = 1, 2, 3) in the antisymmetric representation. The origin of
these matter multiplets from the parent theory is as follows

X ⇒ XR
S , X

R
A , Λ1 ⇒ Λ1R

S ,Λ1R
A ,

Y ⇒ Y R
S , Y

R
A , Λ2 ⇒ Λ2R

S ,Λ2R
A ,

Z ⇒ ZRS , Z
R
A , Λ3 ⇒ Λ3R

S ,Λ3R
A ,

W ⇒ WR
S ,W

R
A , Λ4R ⇒ Λ4R

S .

(5.9)
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(a) SO(N) gauge group.
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4XR

A , Y
R
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S , Y

R
S , Z
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A ,Λ2R

A ,Λ3R
A ,Λ4R

A4

3 Λ1R
S ,Λ2R

S ,Λ3R
S

USp(N)

(b) USp(N) gauge group.

Figure 13. Quiver diagrams for the orientifold theories associated with the anti-holomorphic
involution of C4 in (5.6).

The field content of the resulting SO(N) gauge theory is summarized by the quiver in
figure 13(a). The quiver for the USp(N) theory is shown in figure 13(b). Redefining the
fields according to eq. (5.9), it is possible to derive the W (0,1) after the involution from
eq. (5.2).

Finally, computing the SO(N)2 anomaly contributions from different N = (0, 1) fields
using table 2, we obtain

−(N − 2)︸ ︷︷ ︸
Vector

−4(N + 2)− 3(N − 2)︸ ︷︷ ︸
Fermi

+4(N + 2) + 4(N − 2)︸ ︷︷ ︸
Scalar

= 0 . (5.10)

Therefore, this theory is free of gauge anomalies.
While the Spin(7) orientifold construction generically produces 2d N = (0, 1) theories,

special cases such as this one can have enhanced SUSY. This theory in fact enjoys N =
(4, 4) SUSY. To see this more explicitly, let us define the four complex coordinates of C4

in terms of the 8d space transverse to the D1-branes as

(x, y, z, w) ≡ (x2 + ix6, x3 + ix7, x4 + ix8, x5 + ix9) , (5.11)

where xi, i = 0, 1, · · · , 9 are real spacetime coordinates. In terms of them, the geometric
involution (5.6) becomes

(x2, x3, x4, x5, x6, x7, x8, x9)→ (x2, x3, x4, x5,−x6,−x7,−x8,−x9) , (5.12)

giving rise to a codimension-4 fixed locus, i.e., an O5-plane. The brane setup is therefore,

0 1 2 3 4 5 6 7 8 9
D1 • • × × × × × × × ×
O5 • • • • • • × × × ×

(5.13)

where • and × indicate directions in which an object extends or does not extend, respec-
tively. The configuration preserves N = (4, 4) SUSY in the 2d spacetime of the gauge
theory, given by (x0, x1). The field theory has SO(N) or USp(N) gauge symmetry, de-
pending on the charge of the O5-plane.
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The extended SUSY can also be seen at the level of the gauge theory. The field content
can be organized into N = (4, 4) multiplets. For example, in the SO(N) case, we have

V ⊕ Λ(1,2,3)R
A ⊕XR

A , Y
R
A , Z

R
A ,W

R
A → N = (4, 4) vector multiplet

(adjoint=antisymmetric)

Λ4R ⊕ Λ(1,2,3)R
S ⊕XR

S , Y
R
S , Z

R
S ,W

R
S → N = (4, 4) hypermultiplet

(symmetric)

(5.14)

where V is the N = (0, 1) vector multiplet of the SO(N) gauge group.
Note also that the SO(4)× SO(4) R-symmetry group of N = (4, 4) supersymmetry is

completely manifest in our realization. An SO(4) factor corresponds to geometric rotations
in the directions transverse to the D1-branes and along the O5-plane, i.e. 2345 in (5.13).
On the other hand, the second SO(4) corresponds to rotations in the directions transverse
to the O5-plane, i.e. 6789 in (5.13). The above multiplets fill out representations of SO(4)2

(noticing that the representation including the 3 Fermi multiplets must be completed by
including the gauginos in the N = (0, 1) vector multiplet, as befits an R-symmetry). It is
easy to check that the interactions are also compatible with this symmetry.

Naively, one can consider seemingly different involutions σ preserving the Cayley 4-
form and construct the corresponding orientifold theories. However, the resulting theories
will always be the same 2d N = (4, 4) SO(N)/USp(N) gauge theory worked out above.
All such anti-holomorphic involutions are equivalent, since they are connected by SO(8)
rotations of the eight real coordinates of C4 and lead to the same brane configuration with
D1-branes on top of an O5-plane.

For example, consider the anti-holomorphic involution (x, y, z, w)→ (ȳ, x̄, z̄,−w̄), un-
der which the Cayley 4-form is also invariant. Using the SO(8) global symmetry, we can
redefine the eight real coordinates of C4 as(

x′2, x
′
3, x
′
4, x
′
5, x
′
6, x
′
7, x
′
8, x
′
9
)
≡
(
x2 + x3

2 ,
x6 − x7

2 , x4, x9,
x2 − x3

2 ,
x6 + x7

2 , x8, x5

)
.

(5.15)
Then, the fixed locus of the involution corresponds to an O5-plane extended along x′i,
i = 2, . . . , 5. This is exactly the same orientifold configuration in (5.13). Therefore, despite
the seemingly different involution, the 2d gauge theory on D1-branes is the same up to
field redefinitions.

5.2 A universal involution

Interestingly, the anti-holomorphic involution of C4 can be generalized to any CY4. Con-
sider the gauge theory associated to a generic toric CY4. From the field theory perspective,
it is always possible to define an involution as follows. First, all gauge groups are mapped
to themselves. In addition, all chiral fields transform as

Xij → γΩiX̄ijγ
−1
Ωj , (5.16)

i.e. every chiral field is mapped to itself anti-holomorphically. This in turn implies that the
J- and E-terms for every Fermi Λij transform as

Jji → γΩj J̄jiγ
−1
Ωi , Eij → γΩiĒijγ

−1
Ωj . (5.17)
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Invariance of the superpotential W (0,1) implies that the action on the Fermi fields must be

Λij → γΩiΛ̄ijγ−1
Ωj . (5.18)

Finally, as usual, the N = (0, 1) adjoint Fermi fields coming from N = (0, 2) vector
multiplets transform as in (4.7).

This field theoretic involution translates into a simple action on the generators of CY4

σ0 : Ma → M̄a , (5.19)

namely an involution that maps every generator to its conjugate. The holomorphic 4-form
Ω(4,0) then transforms as Ω(4,0) → Ω̄(0,4), based on the discussion in section 4.1. This, in
turn, implies the invariance of the Cayley 4-form. Therefore, σ0 combined with worldsheet
parity leads to a Spin(7) orientifold. Since σ0 applies to any CY4, we refer to it as the
universal involution. The resulting gauge theory is derived using the rules in section 4.3.

In general, depending on the geometry, other involutions can also exist. In the coming
sections, we will present various examples of such involutions. C4 is special in that, as
we have previously discussed, all its anti-holomorphic involutions are equivalent to the
universal one.

The universal involution explicitly realizes the idea of N = (0, 1) theories as “real
slices” of N = (0, 2) gauge theories [19]. Moreover, in this context, the real slicing admits
a beautiful geometric interpretation as the Spin(7) orientifold of a CY4. We can similarly
think about other involutions as different real slices of the parent theories.

5.3 C4/Z2

Let us consider the C4/Z2 orbifold with action (x, y, z, w) → (−x,−y,−z,−w) as the
parent geometry. Its toric diagram is shown in figure 14.

The corresponding 2d N = (0, 2) theory was constructed in [30]. Its quiver is shown
in figure 15(a).

The J- and E-terms are:

J E

Λ1
11 : Y12Z21 − Z12Y21 W12X21 −X12W21

Λ2
11 : Z12X21 −X12Z21 W12Y21 − Y12W21

Λ3
11 : X12Y21 − Y12X21 W12Z21 − Z12W21

Λ1
22 : Y21Z12 − Z21Y12 W21X12 −X21W12

Λ2
22 : Z21X12 −X21Z12 W21Y12 − Y21W12

Λ3
22 : X21Y12 − Y21X12 W21Z12 − Z21W12

(5.20)

Figure 15(b) shows the quiver for this theory in N = (0, 1) language. Denoting W (0,2)

the superpotential obtained from (5.20), W (0,1) is given by

W (0,1) = W (0,2) +
2∑

i,j,k=1
Λ4R
kk (X†ijXij + Y †ijYij + Z†ijZij +W †ijWij) . (5.21)
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Figure 14. Toric diagram for C4/Z2.

3

Λ1
11,Λ2

11,Λ3
11

3

Λ1
22,Λ2

22,Λ3
33

1 24 4

X12, Y12, Z12,W12

X21, Y21, Z21,W21

(a) N = (0, 2) language.

6

Λ1
11,Λ2

11,Λ3
11,Λ4R

11

6

Λ1
22,Λ2

22,Λ3
33,Λ4R

22

1 28 8

X12, Y12, Z12,W12

X21, Y21, Z21,W21

(b) N = (0, 1) language.

Figure 15. Quiver diagram for C4/Z2 in N = (0, 2) and N = (0, 1) language.

Since the J- and E-terms in (5.20) are more involved, we use the HS to extract the
generators of the moduli space. In table 3 we present their expression in terms of chiral
fields of the gauge theory.

The mesonic moduli space is not a complete intersection, so the PL of the HS does
not terminate. We can, however, extract the relations among the generators composing
the following ideal:

I =
〈
M1M3 = M2

2 , M1M5 = M2M4 , M3M4 = M2M5 , M1M6 = M2
4 ,

M2M6 = M4M5 , M3M6 = M2
5 , M1M8 = M2M7 , M3M7 = M2M8 ,

M1M9 = M4M7 , M2M9 = M4M8 , M5M7 = M2M9 , M3M9 = M5M8 ,

M6M7 = M4M9 , M6M8 = M5M9 , M1M10 = M2
7 , M2M10 = M7M8 ,

M3M10 = M2
8 , M4M10 = M7M9 , M5M10 = M8M9 , M6M10 = M2

9

〉
.

(5.22)

We now have everything necessary for identifying anti-holomorphic involutions and
constructing the corresponding Spin(7) orientifolds, both from the gauge theory and from
geometry.
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Meson Chiral fields
M1 Y12Y21

M2 Y12Z21 = Y21Z12

M3 Z12Z21

M4 X12Y21 = X21Y12

M5 X12Z21 = X21Z12

M6 X12X21

M7 Y12W21 = Y21W12

M8 Z12W21 = Z21W12

M9 X12W21 = X21W12

M10 W12W21

Table 3. Generators of C4/Z2.

5.3.1 Universal involution

Let us consider the universal involution defined in section 5.2. It maps the two gauge
groups to themselves. Chiral fields transform according to (5.16), i.e.

X12 → γΩ1X̄12γ
−1
Ω2
, Y12 → γΩ1 Ȳ12γ

−1
Ω2
, Z12 → γΩ1Z̄12γ

−1
Ω2
, W12 → γΩ1W̄12γ

−1
Ω2
,

X21 → γΩ2X̄21γ
−1
Ω1
, Y21 → γΩ2 Ȳ21γ

−1
Ω1
, Z21 → γΩ2Z̄21γ

−1
Ω1
, W21 → γΩ2W̄21γ

−1
Ω1
.

(5.23)
The N = (0, 2) Fermi fields transform as in (5.18), namely

Λ1
11 → γΩ1Λ̄1

11γ
−1
Ω1
, Λ2

11 → γΩ1Λ̄2
11γ
−1
Ω1
, Λ3

11 → γΩ1Λ̄3
11γ
−1
Ω1
,

Λ1
22 → γΩ2Λ̄1

22γ
−1
Ω2
, Λ2

22 → γΩ2Λ̄2
22γ
−1
Ω2
, Λ3

22 → γΩ2Λ̄3
22γ
−1
Ω2
.

(5.24)

Finally, the Fermi superfields coming from the N = (0, 2) vector multiplets transform
according to (4.7)

Λ4R
11 → γΩ1Λ4R T

11 γ−1
Ω1
, Λ4R

22 → γΩ2Λ4R T
22 γ−1

Ω2
. (5.25)

As argued in full generality in section 5.2, these transformations leave the superpotential
W (0,1) in (5.21) invariant.

Using table 3, we can translate this field theory involution into the geometric involution,
whose action on the generators of C4/Z2 becomes

Ma → M̄a , a = 1, · · · , 10 , (5.26)

as expected for the universal involution.
The gauge symmetry and the projections of matter fields in the orientifolded theory

are controlled by γΩ1 and γΩ2 . According to the discussion in section 4.3, the choices of
γΩ1 and γΩ2 are not independent. In this case, they should satisfy γΩ1 = γΩ2 . To show this
correlation, we consider the effect of acting with the involution twice. For example, acting
on X12 we obtain

X12 → γΩ1 γ̄Ω1X12γ̄
−1
Ω2
γ−1

Ω2
, (5.27)
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Figure 16. Quiver for the Spin(7) orientifold of C4/Z2 using the universal involution.

which should be equal to the identity transformation. Since γΩi is equal to 1N or J , this
implies that γΩ1 = γΩ2 . Repeating this analysis for any other bifundamental field leads to
the same condition. We conclude that the gauge symmetry of the orientifolded theory is
either SO(N)× SO(N) or USp(N)×USp(N).

For concreteness, let us focus on the SO(N) × SO(N) case. Figure 16 shows the
corresponding quiver. There are eight real bifundamental scalars, coming from the bi-
fundamental chiral fields in the parent.15 Every adjoint complex Fermi in the parent is
projected to one symmetric and one antisymmetric real Fermi fields, while the adjoint real
Fermi fields from the N = (0, 2) vector multiplets are projected to the symmetric represen-
tation. It is rather straightforward to write the projected superpotential but, for brevity,
we omit it here and in the examples that follow. Finally, it is easy to verify the vanishing
of gauge anomalies.

We would like to mention that, although the above models are built as orientifolds of
the C4/Z2 theory, they can be equivalently regarded as Z2 orbifolds of the orientifolds of
C4 in section 5.1. This viewpoint is useful to display that the models inherit the SO(4)2

global symmetry of the C4 orientifolds, since the Z2 orbifold acts in the same way on
the coordinates within each 4-plet. In fact, it is easy to gather the different multiplets in
SO(4)2 representations (including the gauginos in the N = (0, 1) vector multiplet, as befits
an R-symmetry). We leave the check of the SO(4)2 invariance of the interactions as an
exercise for the interested reader. Similar remarks apply to other orientifolds of C4/Z2 in
coming sections.

5.3.2 Beyond the universal involution: an SO(N)×USp(N) theory

Let us now consider another involution, which also maps the two gauge groups to themselves
but transforms chiral fields differently, according to

X12 → γΩ1 Ȳ12γ
−1
Ω2
, Y12 → −γΩ1X̄12γ

−1
Ω2
, Z12 → γΩ1W̄12γ

−1
Ω2
, W12 → −γΩ1Z̄12γ

−1
Ω2
,

X21 → γΩ2 Ȳ21γ
−1
Ω1
, Y21 → −γΩ2X̄21γ

−1
Ω1
, Z21 → γΩ2W̄21γ

−1
Ω1
, W21 → −γΩ2Z̄21γ

−1
Ω1
.

(5.28)
Invariance of W (0,1) in (5.21) implies that the Fermi fields transform as

Λ1
11 → γΩ1Λ1 T

11 γ
−1
Ω1
, Λ2

11 → γΩ1Λ2 T
11 γ

−1
Ω1
, Λ3

11 → γΩ1Λ̄3
11γ
−1
Ω1
,

Λ1
22 → γΩ2Λ1 T

22 γ
−1
Ω2
, Λ2

22 → γΩ2Λ2 T
22 γ

−1
Ω2
, Λ3

22 → γΩ2Λ̄3
22γ
−1
Ω2
,

(5.29)

15In what follows, we will use the term bifundamental in the case of matter fields that connect pairs of
nodes, even when one or both of them is either SO or USp.
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Figure 17. Quiver for the Spin(7) orientifold of C4/Z2 using the involution in (5.28), (5.29)
and (5.30). The squares indicate the number of flavors necessary to cancel gauge anomalies.

and
Λ4R

11 → γΩ1Λ4R T
11 γ−1

Ω1
, Λ4R

22 → γΩ2Λ4R T
22 γ−1

Ω2
. (5.30)

Using table 3, this translates into the following geometric involution(
M1,M2,M3,M4,M5,M6,M7,M8,M9,M10

)
↓(

M̄6,−M̄9, M̄10,−M̄4, M̄7, M̄1, M̄5,−M̄8,−M̄2, M̄3
)
.

(5.31)

As in the previous example, the choices of γΩ1 and γΩ2 are correlated because they
are connected by matter fields. From (5.28), we conclude that for each pair of chiral
fields that are mapped to each other, the involution corresponds to the case η = ±

( 0 1
−1 0

)
in (4.4). Following to the discussion in section 4.3, in this case the gauge groups project to
SO(N) × USp(N). We can explicitly see this constraint by considering the square of the
involution on, e.g., X12, for which we obtain

X12 → −γΩ1 γ̄Ω1X12γ̄
−1
Ω2
γ−1

Ω2
, (5.32)

which should be equal to the identity. This implies that γΩ1 = 1N and γΩ2 = J or γΩ1 = J

and γΩ2 = 1N . The other chiral fields lead to the same condition.
The resulting quiver is shown in figure 17. This theory suffers from gauge anomalies,

which can be canceled by adding eight scalar flavors to the SO group and eight Fermi
flavors to the USp group.

We would like to emphasize the fact that most of the orientifold theories in this paper
actually do not require flavor branes to cancel their anomalies. Our expectation is that
this is due to the relative simplicity of the singularities considered, at the level of their
structure of collapsed cycles (for instance, their toric diagrams have no collapsed cycles),
and that orientifold of more general singularities are likely to require flavor branes. This is
somewhat similar to the CY3 case, in which “simple” singularities (i.e. not having interior
points) generically lead to theories not requiring flavor branes, and only specific cases
require them [45]. Hence, the above example is particularly remarkable, and possibly
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illustrates, in a relatively simple setup, a feature which may be generic in orientifolds of
more involved CY4 singularities.

6 Choice of vector structure

6.1 Vector structure in type IIB orientifold construction

The C4/Z2 example serves to address an important point, which will apply to many oth-
ers of our more general examples discussed later. As already pointed out at the end of
section 4.4, when orientifolding by a certain geometric action, there are certain discrete
choices which lead to different orientifolds for the same geometric action. One such choice
is the already mentioned SO /USp projection; in this section we discuss a second (and
independent) choice, corresponding to the existence or not of vector structure in certain
singularities.

This possibility was first uncovered for singularities obtained as orbifolds of flat space
by even order groups, e.g. Cn/Z2N , triggered by the analysis in [46] of 6d orientifold
models [47, 48], in particular orientifolds of C2/Z2. The key observation is that in such
orbifolds, the orientifold acts by mapping a sector twisted by an element θk to the θ−k-
twisted sector, and hence for even order Z2N , the θN -twisted sector is mapped to itself and
there are two possible choices of sign in this action. In the open string perspective, the two
possibilities correspond to choices of Chan-Paton actions satisfying

γθN = ±γΩγ
T
θNγ

−1
Ω . (6.1)

The relation with vector structure (namely, the possibility that the gauge bundle defined
by the Chan-Paton matrices admits objects in the vector representation or not) was further
clarified in [49] (also [50]).

Although these ideas arose in the 6d orbifold context, they are far more general. For
instance, the choice of vector structure has appeared in the construction of orientifolds of
toroidal orbifolds in [51]. In such compact setups, the choice of orientifolds with vector
structure sometimes requires the introduction of anti-branes [52, 53]; however, this is due
to untwisted RR tadpoles, and hence any choice of vector structure leads to consistent ori-
entifolds of non-compact C2/Z2N singularities (see e.g. the constructions in 6d in [54, 55]
and in 4d in [45, 56]). An even more important generalization is that the existence of a
discrete choice of vector structure in the orientifold action generalizes beyond orbifold sin-
gularities, and applies to a far broader set of singularities. This was tacitly included in the
construction of general orientifolds of general toric Calabi-Yau 3-fold singularities in [42].

In practical terms, the appearance of the choices of vector structure in orientifolding
arises when, for a given geometry, there are different Z2 symmetries on the underlying
quiver gauge theory, which differ in the action on the quiver nodes: an orientifold whose
action on nodes is pairwise exchange, with no nodes mapped to themselves, corresponds to
an action without vector structure, whereas the presence of nodes mapped to themselves
corresponds to an action with vector structure.16

16There are cases, e.g. orbifolds by products of cyclic groups ZN × ZM etc., in which the orientifold may
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We thus expect that the choice of vector structure will arise in our present setup
of Spin(7) orientifolds of Calabi-Yau 4-fold singularities. In particular, for orbifolds of
C4, this should already follow from the early analysis in [46]. From this perspective,
the orientifold of C4/Z2 constructed in section 5.3 corresponds to an orientifold action
with vector structure, since each of the two gauge factors of the underlying N = (0, 2)
theory are mapped to themselves. Our discussion suggests that it should be possible to
construct an orientifold of the same geometry, with the same orientifold geometric action,
but without vector structure. This corresponds to the symmetry of the N = (0, 2) theory
that exchanges pairwise the two gauge factors. We will indeed build this orientifold without
vector structure in the following section.

This brings about an important observation. The universal involution in section 5.2
maps each gauge factor of the N = (0, 2) theory to itself, hence it corresponds to actions
with vector structure. Therefore, in geometries admitting it, the choice of orientifold
action without vector structure must correspond to orientifolds actions beyond the universal
involution. Thus, the possibility of choosing the vector structure is already ensuring that
the set of orientifold theories is substantially larger than the class provided by the universal
involution.

6.2 C4/Z2 revisited: an orientifold without vector structure

Let us revisit the C4/Z2 theory, but this time consider an anti-holomorphic involution that
maps one gauge group to the other. A possible involution of the chiral fields reads

X12 → γΩ2X̄21γ
−1
Ω1
, Y12 → γΩ2 Ȳ21γ

−1
Ω1
, Z12 → γΩ2Z̄21γ

−1
Ω1
, W12 → γΩ2W̄21γ

−1
Ω1
,

X21 → γΩ1X̄12γ
−1
Ω2
, Y21 → γΩ1 Ȳ12γ

−1
Ω2
, Z21 → γΩ1Z̄12γ

−1
Ω2
, W21 → γΩ1W̄12γ

−1
Ω2
.

(6.2)
Invariance of W (0,1) in (5.21) implies that Fermi fields transform as

Λ1
11 → γΩ2Λ̄1

22γ
−1
Ω2
, Λ2

11 → γΩ2Λ̄2
22γ
−1
Ω2
, Λ3

11 → γΩ2Λ̄3
22γ
−1
Ω2
,

Λ1
22 → γΩ1Λ̄1

11γ
−1
Ω1
, Λ2

22 → γΩ1Λ̄2
11γ
−1
Ω1
, Λ3

22 → γΩ1Λ̄3
11γ
−1
Ω1
,

(6.3)

and
Λ4R

11 → γΩ2Λ4R T
22 γ−1

Ω2
, Λ4R

22 → γΩ1Λ4R T
11 γ−1

Ω1
. (6.4)

Using table 3, (6.2) translates into the following geometric involution

Ma → M̄a , a = 1, · · · , 10 , (6.5)

which coincides with (5.26). This model and the one in section 5.3.1 provide concrete
examples in which the same geometric action but different choices of vector structure lead
to different Spin(7) orientifolds. The resulting quiver is shown in figure 18. It is free of
gauge anomalies.

act with vector structure with respect to the ZN and without vector structure with respect to the ZM .
For simplicity, we ignore these more subtle possibilities and stick to the stated convention, as a practical
reference device.
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Λ4R

U(N)

Figure 18. Quiver for the Spin(7) orientifold of C4/Z2 using the involution in (6.2), (6.3) and (6.4).
The underlying geometric involution coincides with the one for the model in figure 16, but both
theories differ in the vector structure.

x

y

z

Figure 19. Toric diagram for D3.

We would like to conclude this discussion with an interesting observation: in our
example, the orientifold models with/without vector structure differ also in the fact that
one requires flavor branes to cancel anomalies, while the other does not. In fact, this
feature has also been encountered in the 4d case of D3-branes at (orientifolds of) CY3. For
instance, in the 4d N = 1 orientifolds of even order orbifolds C2/Zk theories in [45], models
without/with vector structure were shown to require/not require flavor D7-branes.17

7 Beyond orbifold singularities

In this section, we construct Spin(7) orientifolds in which the parent theory is a non-orbifold
toric CY4.

7.1 D3

Let us consider the CY4 with toric diagram shown in figure 19. This geometry is often
referred to as D3.

The N = (0, 2) theory on D1-branes probing D3 was first derived in [30]. Its quiver
diagram is shown in figure 20(a).

17In a T-dual type IIA picture with D4-branes suspended between k NS-branes, in the presence of two O6′-
planes, the two possibilities differ in having the NS-branes splitting/not splitting the O6′-planes in halves. In
the former case, the orientifold plane charge flips sign across the NS-brane and charge conservation requires
the introduction of additional half-D6-branes (i.e. flavor branes) for consistency [57] (see also [58, 59]).
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(a) N = (0, 2) language.
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22
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(b) N = (0, 1) language.

Figure 20. Quiver diagram for D3 in N = (0, 2) and N = (0, 1) language.

The J- and E-terms read

J E

Λ12 : X21X13X31 −X22X21 X11X12 −X12X23X32

Λ21 : X13X31X12 −X12X22 X23X32X21 −X21X11

Λ23 : X33X32 −X32X21X12 X23X31X13 −X22X23

Λ32 : X23X33 −X21X12X23 X32X22 −X31X13X32

Λ31 : X13X33 −X12X21X13 X31X11 −X32X23X31

Λ13 : X31X12X21 −X33X31 X11X13 −X13X32X23

(7.1)

Figure 20(b) shows the quiver for this theory in N = (0, 1) language. The W (0,1)

associated to (7.1) is

W (0,1) =W (0,2) +
3∑
i=1

ΛRiiX
†
iiXii +

3∑
i,j=1
j 6=i

ΛRii
(
X†ijXij +X†jiXji

)
. (7.2)

Table 4 shows the generators, which were obtained using the HS. They satisfy the
following relation

I = 〈M1M2M3 = M4M5〉 . (7.3)

Of course, as for all cases, we can consider the universal involution. However, in this
section we will consider another involution, which gives rise to an SO(N) × U(N) (or
USp(N)×U(N)) gauge theory.

SO(N) × U(N) orientifold. Let us consider an involution which, roughly speaking,
acts as a reflection with respect to a vertical axis going through the middle of figure 20.
Node 1 maps to itself, while nodes 2 and 3 get identified.
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Meson Chiral fields
M1 X23X32 = X11

M2 X13X31 = X22

M3 X12X21 = X33

M4 X23X31X12

M5 X13X32X21

Table 4. Generators of D3.

Chiral fields transform according to

X11 → γΩ1X̄11γ
−1
Ω1
, X22 → γΩ3X̄33γ

−1
Ω3
, X33 → γΩ2X̄22γ

−1
Ω2
,

X12 → γΩ1X̄13γ
−1
Ω3
, X21 → γΩ3X̄31γ

−1
Ω1
, X23 → γΩ3X̄32γ

−1
Ω2
,

X32 → γΩ2X̄23γ
−1
Ω3
, X31 → γΩ2X̄21γ

−1
Ω1
, X13 → γΩ1X̄12γ

−1
Ω2
.

(7.4)

Invariance of W (0,1) in (7.2) implies that Fermi fields transform as

Λ12 → γΩ1Λ̄13γ
−1
Ω3
, Λ21 → −γΩ3Λ̄31γ

−1
Ω1
, Λ23 → −γΩ2ΛT23γ

−1
Ω3
,

Λ32 → γΩ3ΛT32γ
−1
Ω2
, Λ31 → −γΩ2Λ̄21γ

−1
Ω1
, Λ13 → γΩ1Λ̄12γ

−1
Ω2
,

(7.5)

and
ΛR11 → γΩ1ΛR T

11 γ−1
Ω1
, ΛR22 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR33 → γΩ2ΛR T

22 γ−1
Ω2
. (7.6)

Using table 4, we derive the corresponding geometric involution σ on the generators
of D3 (

M1,M2,M3,M4,M5
)

↓(
M̄1, M̄3, M̄2, M̄5, M̄4

)
.

(7.7)

Since D3 is a complete intersection, we can easily check that σ maps the holomorphic
4-form Ω(4,0) to Ω̄(0,4). We define

Ω(4,0) = Res dM1 ∧ dM2 ∧ dM3 ∧ dM4 ∧ dM5
M1M2M3 −M4M5

= dM1 ∧ dM2 ∧ dM3 ∧ dM4
M4

, (7.8)

which maps to
dM̄1 ∧ dM̄3 ∧ dM̄2 ∧ dM̄5

M̄5
. (7.9)

Either choosing the residue with respect to M4 to express the holomorphic 4-form, or by
using the relation in the ideal (7.3), one can show that (7.9) is exactly the anti-holomorphic
4-form Ω̄(0,4) of D3. Based on the discussion in section 4.4, we conclude that Ωσ with σ
in (7.7) indeed gives rise to a Spin(7) orientifold.

Returning to the gauge theory, we obtain an N = (0, 1) theory with gauge symmetry
SO(N)×U(N) or USp(N)×U(N), depending on whether γΩ1 = 1N or J . The quivers for
both choices are shown in figure 21. Both theories are free of gauge anomalies.
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Figure 21. Quivers for the Spin(7) orientifolds D3 using the involution in (7.4), (7.5) and (7.6).
The two different theories correspond to the choices γΩ1 = 1N or J .

x

y

z

Figure 22. Toric diagram for H4.

7.2 H4

Another example that we are going to discuss is H4. We show its toric diagram in figure 22.
In particular, we will consider two N = (0, 2) gauge theories associated with H4,

denoted as Phase A and Phase B. These two phases are related by N = (0, 2) triality and
were first introduced in [15]. While they have different matter content and J- and E-terms,
they share the same moduli space. Therefore, the generators of their moduli space and the
relations among them are the same.
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Figure 23. Quiver for H4 in phase A.

7.2.1 Phase A

The quiver diagram for Phase A is shown in figure 23, both in N = (0, 2) and N = (0, 1)
languages.

The J- and E-terms are

J E

Λ1
11 : X14X41 −X13X32Z21 Y13X34Z41 −X12Y21

Λ2
11 : X14Y41 − Y13X32Z21 X12X21 −X13X34Z41

Λ3
11 : X14Z41 −X12Z21 X13X32Y21 − Y13X34X41

Λ1
13 : X32X21 −X34X41 Y13X33 −X14Z41Y13

Λ2
13 : X32Y21 −X34Y41 X12Z21X13 −X13X33

Λ1
42 : X21X14 − Z21X13X34 Z41Y13X32 − Y41X12

Λ2
42 : Y21X14 − Z21Y13X34 X41X12 − Z41X13X32

Λ23 : X33X32 −X32Z21X12 Y21X13 −X21Y13

Λ43 : X33X34 −X34Z41X14 X41Y13 − Y41X13

(7.10)

The W (0,1) superpotential becomes

W (0,1) =W (0,2) + Λ4R
11 (X†12X12 +X†14X14 +X†21X21 + Y †21Y21 + Z†21Z21

+X†41X41 + Y †41Y41 + Z†41Z41 +X†13X13 + Y †13Y13)
+ ΛR22(X†12X12 +X†32X32 +X†21X21 + Y †21Y21 + Z†21Z21)
+ ΛR33(X†33X33 +X†32X32 +X†34X34 +X†13X13 + Y †13Y13)
+ ΛR44(X†14X14 +X†34X34 +X†41X41 + Y †41Y41 + Z†41Z41) .

(7.11)

Table 5 shows the generators of the moduli space, which were computed using the HS,
and their expression in terms of the chiral fields in phase A.
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Meson Chiral fields
M1 X33 = X14Z41 = Z21X12

M2 Y21X12 = Z41Y13X34

M3 X14Y41 = Z21Y13X32

M4 X32Y21Y13 = X34Y41Y13

M5 X21X12 = Z41X13X34

M6 X14X41 = Z21X13X32

M7 X32Y21X13 = X32X21Y13 = X34Y41X13 = X34X41Y13

M8 X32X21X13 = X34X41X13

Table 5. Generators of H4 in Phase A.

The relations among the generators are

I =
〈
M1M4 = M2M3 , M1M7 = M2M6 , M1M7 = M3M5 , M2M7 = M4M5 ,

M3M7 = M4M6 , M1M8 = M5M6 , M2M8 = M5M7 , M3M8 = M6M7 ,

M4M8 = M2
7

〉
.

(7.12)

SO(N)×U(N)×SO(N) orientifold. Let us consider an anti-holomorphic involution
of phase A which acts on figure 23 as a reflection with respect to the diagonal connecting
nodes 1 and 3. Then, nodes 1 and 3 map to themselves, while nodes 2 and 4 are identified.

The involution on chiral fields is

X33 → γΩ3X̄33γ
−1
Ω3
, X14 → γΩ1X̄12γ

−1
Ω2
, Z41 → γΩ2Z̄21γ

−1
Ω1
, Y21 → γΩ4X̄41γ

−1
Ω1
,

Y13 → γΩ1X̄13γ
−1
Ω3
, X34 → γΩ3X̄32γ

−1
Ω2
, Y41 → γΩ2X̄21γ

−1
Ω1
, X12 → γΩ1X̄14γ

−1
Ω4
,

Z21 → γΩ4Z̄41γ
−1
Ω1
, X41 → γΩ2 Ȳ21γ

−1
Ω1
, X13 → γΩ1 Ȳ13γ

−1
Ω3
, X32 → γΩ3X̄34γ

−1
Ω4
,

X21 → γΩ4 Ȳ41γ
−1
Ω1
. (7.13)

It is interesting to note that since phase A is a chiral theory, it clearly illustrates a
characteristic feature of anti-holomorphic involutions: they map chiral fields to images with
the same orientation, as it follows from the discussion in section 4.2.

From the invariance of W (0,1), we obtain the transformations of the Fermi fields

Λ1
11 → −γΩ1Λ1 T

11 γ
−1
Ω1
, Λ2

11 → γΩ1Λ2 T
11 γ

−1
Ω1
, Λ3

11 → −γΩ1Λ̄3
11γ
−1
Ω1
,

Λ1
13 → −γΩ1Λ̄2

13γ
−1
Ω3
, Λ2

13 → −γΩ1Λ̄1
13γ
−1
Ω3
, Λ1

42 → −γΩ4Λ1 T
42 γ

−1
Ω2
,

Λ2
42 → γΩ4Λ2 T

42 γ
−1
Ω1
, Λ23 → γΩ4Λ̄43γ

−1
Ω3
, Λ43 → γΩ2Λ̄23γ

−1
Ω3
,

(7.14)

and

Λ4R
11 → γΩ1Λ4R T

11 γ−1
Ω1
, ΛR22 → γΩ4ΛR T

44 γ−1
Ω4
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ2ΛR T

22 γ−1
Ω2
.

(7.15)
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Figure 24. Quiver for a Spin(7) orientifold of phase A of H4 using the involution in (7.13), (7.14)
and (7.15).

Using table 5, we find the corresponding geometric involution σ on the generators of H4(
M1,M2,M3,M4,M5,M6,M7,M8

)
↓(

M̄1, M̄6, M̄5, M̄8, M̄3, M̄2, M̄7, M̄4
)
.

(7.16)

The orientifolded theory has gauge group G1(N) × U(N) × G3(N). The involution
of the fields connecting nodes 1 and 3 implies that in this case we must have γΩ1 = γΩ3 .
Then, G1(N) and G3(N) can be either both SO or both USp gauge groups, but cannot be
of different types. For example, figure 24 shows the quiver for G2(N) = G3(N) = SO(N).
The theory is free of gauge anomalies.

7.2.2 Phase B

Figure 25 shows the quiver for phase B of H4.
The J- and E-terms are

J E

Λ21 : X13X34Y42 − Y13X34X42 X21X14X41 −X23X32X21

Λ1
12 : X23X34Y42X21 −X21Y13X34X41 X13X32 −X14X42

Λ2
12 : X21X13X34X41 −X23X34X42X21 Y13X32 −X14Y42

Λ34 : Y42X21X13 −X42X21Y13 X34X41X14 −X32X23X34

Λ1
43 : X34Y42X21X14 −X32X21Y13X34 X42X23 −X41X13

Λ2
43 : X32X21X13X34 −X34X42X21X14 Y42X23 −X41Y13

(7.17)
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Figure 25. Quiver for H4 in phase B.

Meson Chiral fields
M1 X23X32 = X41X14

M2 X34Y42X23 = X34X41Y13

M3 X21X14Y42 = X21Y13X32

M4 X34Y42X21Y13

M5 X34X42X23 = X34X41X13

M6 X21X14X42 = X21X13X32

M7 X42X21Y13X34 = Y42X21X13X34

M8 X42X21X13X34

Table 6. Generators of H4 in Phase B.

The W (0,1) superpotential is

W (0,1) =W (0,2) + ΛR11(X†21X21 +X†41X41 +X†14X14 +X†13X13 + Y †13Y13)
+ ΛR22(X†23X23 +X†21X21 +X†42X42 +X†32X32 + Y †42Y42)
+ ΛR33(X†23X23 +X†32X32 +X†34X34 +X†13X13 + Y †13Y13)
+ ΛR44(X†42X42 +X†41X41 +X†34X34 +X†14X14 + Y †42Y42) .

(7.18)

Table 6 shows the generators of H4 in terms of the chiral fields in phase B.
They satisfy the following relations

I =
〈
M1M4 = M2M3 , M1M7 = M2M6 , M1M7 = M3M5 , M2M7 = M4M5 ,

M3M7 = M4M6 , M1M8 = M5M6 , M2M8 = M5M7 , M3M8 = M6M7 ,

M4M8 = M2
7

〉
.

(7.19)

This can be seen not only geometrically, but also from the gauge theory. While, as
already mentioned, the generators and their relations are common to all the phases, their
realizations in terms of chiral superfields in each of them are different.
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Figure 26. Quiver for a Spin(7) orientifold of phase B of H4 using the involution in (7.20), (7.21)
and (7.22).

U(N)×U(N) orientifold. Let us consider an anti-holomorphic involution of phase B
which acts on figure 25 as a reflection with respect to a horizontal line through the middle
of the quiver. Nodes are mapped as 1↔ 4 and 2↔ 3.

The involution on chiral fields is

X23 → γΩ3X̄32γ
−1
Ω2
, X41 → γΩ1X̄14γ

−1
Ω4
, X34 → γΩ2X̄21γ

−1
Ω1
, Y42 → γΩ1X̄13γ

−1
Ω3
,

Y13 → γΩ4X̄42γ
−1
Ω2
, X32 → γΩ2X̄23γ

−1
Ω3
, X14 → γΩ4X̄41γ

−1
Ω1
, X21 → γΩ3X̄34γ

−1
Ω4
,

X13 → γΩ4 Ȳ42γ
−1
Ω2
, X42 → γΩ1 Ȳ13γ

−1
Ω3
.

(7.20)
Requiring the invariance of W (0,1), we obtain the transformations for the Fermi fields

Λ21 → γΩ3Λ̄34γ
−1
Ω4
, Λ1

12 → γΩ4Λ̄2
43γ
−1
Ω3
, Λ2

12 → γΩ4Λ̄1
43γ
−1
Ω3
,

Λ34 → γΩ2Λ̄21γ
−1
Ω1
, Λ1

43 → γΩ1Λ̄2
12γ
−1
Ω2
, Λ2

43 → γΩ1Λ̄1
12γ
−1
Ω2
,

(7.21)

and

ΛR11 → γΩ4ΛR T
44 γ−1

Ω4
, ΛR22 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR33 → γΩ2ΛR T

22 γ−1
Ω2
, ΛR44 → γΩ1ΛR T

11 γ−1
Ω1
.

(7.22)
Using table 6, we get the corresponding geometric involution σ on the generators of H4(

M1,M2,M3,M4,M5,M6,M7,M8
)

↓(
M̄1, M̄6, M̄5, M̄8, M̄3, M̄2, M̄7, M̄4

)
,

(7.23)

which is exactly the same anti-holomorphic involution in (7.16). In section 7.2.3 we elab-
orate on the relation between both theories and the role of vector structure.

Figure 26 shows the quiver for the orientifolded theory, which is anomaly free.

7.2.3 Vector structure explanation

On general grounds, one can expect that considering orientifolds by the same anti-
holomorphic involution on geometries in different toric phases of the same geometry, should
lead to equivalent N = (0, 1) theories. Indeed, this can lead to a systematic construction
of N = (0, 1) theories related by 2d trialities, as we will discuss in a companion paper [29].

On the other hand, this is not the case for the two orientifolds constructed in the pre-
vious section. We have seen that the H4 theory admits several orientifold quotients which
nevertheless correspond to the same anti-holomorphic involution, see (7.16) and (7.23). In
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this section, we show that the resulting theories are different because they correspond to
orientifold quotients with or without vector structure, realized in the context of a non-
orbifold singularity.

Indeed, the structure of the orientifold action on the gauge factors follows the pat-
tern described in section 6 for orientifolds of orbifolds of C4. Namely, the orientifold in
section 7.2.1 acts on the quiver of the H4 theory (in the toric phase A) by swapping the
two nodes 2 and 4, while mapping nodes 1 and 3 to themselves; this corresponds to an
orientifold with vector structure. On the other hand, the orientifold in section 7.2.2 acts
on the quiver of the H4 theory (in the toric phase B) by swapping 1 ↔ 4 and 2 ↔ 3; this
corresponds to an orientifold without vector structure.

Hence, even though the two models correspond to the same underlying geometry, with
an orientifold action associated to the same anti-holomorphic involution, the resulting
orientifold theories are associated to genuinely different actions of the orientifold on the
gauge degrees of freedom, and lead to inequivalent models.

An interesting observation is that the orientifolds with and without vector structure are
obtained as orientifold quotients of the theory in two different toric phases. This effect did
not arise in the context of orbifolds of C4, since these do not admit multiple toric phases;
on the other hand, it is actually an expected phenomenon in non-orbifold singularities,
as it already occurs in the context of 4d N = 1 theories with D3-branes at orientifold
singularities. We illustrate this with the following simple example.

Consider a set of D3-branes at the tip of the non-compact CY 3-fold singularity de-
scribed by the equation

xy = z2w2 . (7.24)

This corresponds to a Z2 quotient of the conifold, of the kind introduced in [60] as T-duals
of 4d Hanany-Witten (HW) configurations of D4-branes suspended between NS and rotated
NS-branes (aka NS′-branes). This T-dual picture allowed to recover the same geometry
from different Seiberg dual phases, as explicitly discussed in section 3 of [61]. In particular,
we can describe a phase A as corresponding to the type IIA configuration of D4-branes
suspended in intervals separated by NS-branes ordered as NS - NS - NS′ - NS′ on the circle,
and a phase B as corresponding to D4-branes suspended between NS-branes ordered as NS′
- NS - NS′ - NS on the circle.

Let us now perform an orientifold quotient in the type IIB geometry, which corresponds
to, e.g., introducing O6-planes in the type IIA T-dual; this can map NS-branes to NS-
branes, and NS′-branes to NS′-branes, and cannot swap NS- and NS′-branes. Hence, for
phase A, the only Z2-invariant configuration must have the orientifold swapping the two NS
branes, and swapping the two NS′-branes, see figure 27(a); hence, the interval between the
two NS-branes and the interval between the two NS′-branes are both mapped to themselves
under the orientifold action, while the intervals between NS- and NS′-branes are swapped.
The result corresponds to an orientifold with vector structure.

On the other hand, for phase B, a Z2-invariant configuration has e.g. NS-branes
mapped to themselves under the orientifold action, and the two NS′-branes swapped, see
figure 27(b); hence, no interval is mapped to itself, rather the four intervals are swapped
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(a) Phase A.
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(b) Phase B.

Figure 27. Configurations of D4-branes suspended between NS- and NS′-branes in the presence
of O6-planes leading to two different 4d N = 1 theories from orientifold quotients of the same CY3
geometry differing only on the existence (figure 27(a)) or not (figure 27(b)) of vector structure.

pairwise. The result corresponds to an orientifold without vector structure (there is an
equivalent model obtained by having NS′-branes on top of the orientifold plane, and the
two NS-branes swapped under the orientifold action).

This illustrates the fact that the construction of orientifolds with or without vec-
tor structure, for a given geometric involution, may require their realization in different
toric phases.

We have thus shown that, in order for equivalent orientifold geometric involutions to
produce equivalent theories, it is necessary that they also agree on the choice of vector
structure they implicitly define. This is an important ingredient in the application of
orientifold quotients to N = (0, 2) trialities to generate examples of theories displaying
N = (0, 1) triality [29].

8 Partial resolution and Higgsing

In this section, we study partial resolutions connecting two different Spin(7) orientifolds,
which translate into higgsings between the corresponding gauge theories.

8.1 General idea

Consider two CY4’s, CY(1)
4 and CY(2)

4 , connected via partial resolution. Let us call the
gauge theories on D1-branes probing them T (0,2)

1 and T (0,2)
2 , respectively.18 Partial res-

olution translates into higgsing connecting the two gauge theories, in which the scalar
component of one or more chiral fields gets a non-zero VEV (as usual, this is meant in the
Born-Oppenheimer approximation in 2d). In the process, part of the gauge symmetry is
higgsed and some matter fields may become massive. We refer to [30] for a more detailed
discussion and explicit examples.

18More precisely, we mean one of the various phases related via N = (0, 2) triality for each CY4.
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(a) String background.
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1 T (0,1)

1

T (0,1)
2T (0,2)

2

Projection

Higgsing

Projection

Higgsing

(b) Field theory.

Figure 28. Interplay between partial resolution, orientifolding and higgsing.

Let us now consider a Spin(7) orientifold O1 of CY(1)
4 associated to a given anti-

holomorphic involution σ. If the partial resolution considered above is symmetric under σ,
it gives rise to a partial resolution of O1 into a Spin(7) orientifold O2 of CY(2)

4 . At the field
theory level, the VEVs that higgs T (0,2)

1 → T (0,2)
2 are symmetric under the involution and

project onto a higgsing between the orientifold gauge theories, T (0,1)
1 → T (0,1)

2 . Figure 28
illustrates the interplay between partial resolution, orientifolding and higgsing.

8.2 Partial resolution and the universal involution

Interestingly, for theories obtained via the universal involution, every partial resolution
between CY4’s maps to a partial resolution between Spin(7) orientifolds. In this case,
every field in T (0,2)

1 and T (0,2)
2 is its own orientifold image. Therefore, the condition that

chiral fields and their images get VEVs simultaneously is automatically satisfied.
Under the universal involution, VEVs and the resulting higgsing of the gauge symme-

try and mass terms for some matter fields straightforwardly map from the parent to the
orientifolded theory. In other words, higgsing survives the “real slicing” of the universal
involution.

8.3 Beyond the universal involution: C4/Z2 × Z2 → SPP×C

The interplay between partial resolutions and orientifolds that we discussed above is not
limited to the universal involution.

The parent. Let us consider the C4/Z2×Z2 orbifold, with the two Z2 groups generated
by the actions (1, 1, 0, 0) and (1, 0, 1, 0) on C4, as phase rotations (in units of π). From now
on, we will omit these vectors. This orbifold can be partially resolved to SPP×C, where
SPP denotes the complex cone over the suspended pinch point. The toric diagrams and
gauge theories for both geometries can be found in appendices A.1 and A.2. This partial
resolution and its translation into higgsing of the gauge theory has been discussed in detail
in [30].
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The two theories are connected by turning on a VEV for X13.19 As a result, the
U(N)1×U(N)3 gauge groups are broken to the diagonal U(N)1/3. In addition, the following
Fermi-chiral pairs become massive

{Λ21, X32},
{

Λ13,
X11 −X33

2

}
, {Λ41, X34}, {Λ32, X21}, {Λ34, X41} . (8.1)

Integrating out the massive fields leads to the gauge theory for SPP×C.

The Spin(7) orientifold. In appendix A.1, we present a Spin(7) orientifold of C4/Z2×
Z2 constructed using a non-universal involution, given in eqs. (A.4) to (A.6). The crucial
point of that involution for the discussion in this section is that it maps X13 to itself.
Following the discussion in section 8.1, the resolution/higgsing of the parent is therefore
projected onto one for the Spin(7) orientifold.

In the Spin(7) orientifold of C4/Z2×Z2, the higgsing associated to this partial resolu-
tion proceeds by giving a VEV to XR

13. This breaks the SO(N)1×SO(N)3 gauge symmetry
into the diagonal SO(N)1/3. In addition, the combination of real Fermi fields ΛR11S+ΛR33S

2 ,
coming from the N = (0, 2) vector multiplets of gauge groups 1 and 3, become massive.
Finally, The following fields also become massive

Λ21, X32, ΛR13,
XR

11S −XR
33S

2 ,
XR

11A −XR
33A

2 , Λ32, X21 . (8.2)

Integrating them out, each of the surviving bifundamentals of SO(N)1×SO(N)3 becomes a
symmetric and an antisymmetric of SO(N)1/3. The resulting theory is exactly the one asso-
ciated for the Spin(7) orientifold of SPP×C in figure 34, generated by the anti-holomorphic
involution in eqs. (A.11) to (A.13).

9 Conclusions

In this paper, we initiated the geometric engineering of 2d N = (0, 1) gauge theories by
means of D1-branes probing (orientifolds of) Spin(7) cones. In particular, we introduced
Spin(7) orientifolds, which are constructed by starting from a CY4 cone and quotient-
ing it by a combination of an anti-holomorphic involution leading to a Spin(7) cone and
worldsheet parity.

We illustrated this construction with various examples, including theories coming from
both orbifold and non-orbifold parent singularities, discussed the rôle of the choice of vector
structure in the orientifold quotient, and studied partial resolutions.

Spin(7) orientifolds explicitly realize the perspective on 2d N = (0, 1) theories as real
slices of N = (0, 2) ones. Remarkably, this projection is mapped to Joyce’s construction
of Spin(7) manifolds as quotients of CY4’s by anti-holomorphic involutions.

We envision multiple directions for future research. To name a few:
19There are other choices of the chiral field getting a VEV that lead to the same resolution. They are

equivalent to this choice by symmetries.
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• In general, the map between Spin(7) orientifolds and 2d N = (0, 1) gauge theories is
not one-to-one but one-to-many. We will investigate this issue in [29], showing that
this non-uniqueness provides a geometric understanding of N = (0, 1) triality.

• Another interesting direction is to construct the gauge theories on D1-branes probing
Spin(7) manifolds obtained from CY4’s via Joyce’s construction, without the addi-
tional quotient by worldsheet parity leading to Spin(7) orientifolds. A significant part
of the results of this paper would also be useful for such setups. We plan to study
this problem in a future work.

• In section 8, we considered resolutions of Spin(7) orientifolds. It would be interest-
ing to investigate deformations and their gauge theory counterpart. Understanding
deformations for CY4’s and their translation to the associated 2d N = (0, 2) gauge
theories would be a useful preliminary step, which is interesting in its own right.

We hope that the novel perspective on 2d N = (0, 1) introduced in this paper will
provide a useful tool for understanding their dynamics.
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A C4/Z2 × Z2 and SPP×C

In this appendix we present two additional examples of Spin(7) manifolds, which are con-
sidered in section 8.3 to discuss partial resolutions.

A.1 C4/Z2 × Z2

Figure 29 shows the toric diagram for the C4/Z2 × Z2 orbifold.
The gauge theory for D1-branes probing this orbifold was first constructed in [30]. Its

quiver diagram is shown in figure 30(a).
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Figure 29. Toric diagram for C4/Z2 × Z2.
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Figure 30. Quiver diagram for C4/Z2 × Z2 in N = (0, 2) and N = (0, 1) language.

The J- and E-terms are

J E

Λ12 : X23X31 −X24X41 X11X12 −X12X22
Λ21 : X14X42 −X13X32 X22X21 −X21X11
Λ13 : X34X41 −X32X21 X11X13 −X13X33
Λ31 : X12X23 −X14X43 X33X31 −X31X11
Λ14 : X42X21 −X43X31 X11X14 −X14X44
Λ41 : X13X34 −X12X24 X44X41 −X41X11
Λ23 : X31X12 −X34X42 X22X23 −X23X33
Λ32 : X24X43 −X21X13 X33X32 −X32X22
Λ24 : X43X32 −X41X12 X22X24 −X24X44
Λ42 : X21X14 −X23X34 X44X42 −X42X22
Λ34 : X41X13 −X42X23 X33X34 −X34X44
Λ43 : X32X24 −X31X14 X44X43 −X43X33

(A.1)
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Meson Chiral fields
M1 X12X21 = X43X34

M2 X13X31 = X24Z42

M3 X14X41 = X23X32

M4 X14X42X21 = X23X31X12 = X32X24X43 = X41X13X34 =
= X14X43X31 = X23X34X42 = X32X21X13 = X41X12X24

M5 X11 = X22 = X33 = X44

Table 7. Generators of C4/Z2 × Z2.

Figure 30(b) shows the quiver for this theory in N = (0, 1) language. The W (0,1)

associated to (A.1) is

W (0,1) =W (0,2) +
4∑

i,j=1
i 6=j

ΛRii
(
X†ijXij +X†jiXji

)
+

4∑
i=1

ΛRiiX
†
iiXii . (A.2)

Table 7 shows the generators of the moduli space and their expression in terms of
chiral fields.

They are subject to the following relation

I =
〈
M1M2M3 = M2

4

〉
. (A.3)

SO(N)×U(N)×SO(N) orientifold. Let us consider an anti-holomorphic involution
which acts on figure 30 as a reflection with respect to the diagonal connecting nodes 1 and
3. Then, nodes 1 and 3 map to themselves, while nodes 2 and 4 are identified.

The involution on chiral fields is

X12 → γΩ1X̄14γ
−1
Ω4
, X21 → γΩ4X̄41γ

−1
Ω1
, X13 → γΩ1X̄13γ

−1
Ω3
, X31 → γΩ3X̄31γ

−1
Ω1
,

X14 → γΩ1X̄12γ
−1
Ω2
, X41 → γΩ2X̄21γ

−1
Ω1
, X43 → γΩ2X̄23γ

−1
Ω3
, X34 → γΩ3X̄32γ

−1
Ω2
,

X24 → γΩ4X̄42γ
−1
Ω2
, X42 → γΩ2X̄24γ

−1
Ω4
, X23 → γΩ4X̄43γ

−1
Ω3
, X32 → γΩ3X̄34γ

−1
Ω4
,

X11 → −γΩ1X̄11γ
−1
Ω1
, X22 → −γΩ4X̄44γ

−1
Ω4
, X33 → −γΩ3X̄33γ

−1
Ω3
, X44 → −γΩ2X̄22γ

−1
Ω2
.

(A.4)
From the invariance of W (0,1), we obtain the transformations of the Fermi fields

Λ12 → −γΩ1Λ̄14γ
−1
Ω4
, Λ21 → −γΩ4Λ̄41γ

−1
Ω1
, Λ13 → −γΩ1Λ̄13γ

−1
Ω3
, Λ31 → −γΩ3Λ̄31γ

−1
Ω1
,

Λ14 → −γΩ1Λ̄12γ
−1
Ω2
, Λ41 → −γΩ2Λ̄21γ

−1
Ω1
, Λ43 → −γΩ2Λ̄23γ

−1
Ω3
, Λ34 → −γΩ3Λ̄32γ

−1
Ω2
,

Λ24 → −γΩ4Λ̄42γ
−1
Ω2
, Λ42 → −γΩ2Λ̄24γ

−1
Ω4
, Λ23 → −γΩ4Λ̄43γ

−1
Ω3
, Λ32 → −γΩ3Λ̄34γ

−1
Ω4
,

(A.5)
and

ΛR11 → γΩ3ΛR T
11 γ−1

Ω3
, ΛR22 → γΩ2ΛR T

44 γ−1
Ω2
, ΛR33 → γΩ1ΛR T

33 γ−1
Ω1
, ΛR44 → γΩ4ΛR T

22 γ−1
Ω4
.

(A.6)
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Figure 31. Quiver for the Spin(7) orientifold of C4/Z2 × Z2 using the involution in (A.4), (A.5)
and (A.6).

Using table 7, the transformation in the field theory translates into the geometric
involution σ acting on the generators as(

M1,M2,M3,M4,M5
)

↓(
M̄3, M̄2, M̄1, M̄4,−M̄5

)
,

(A.7)

which, as expected, is different from and inequivalent to the universal involution Ma → M̄a.
The quiver for the resulting theory is shown in figure 31, which is also free of gauge
anomalies.

A.2 SPP×C

Figure 32 shows the toric diagram for SPP×C.
The gauge theory for D1-branes probing this CY4 was introduced in [30]. Its quiver

diagram is shown in figure 33(a).
The J- and E-terms are

J E

Λ11 : X13X31 −X12X21 Φ11X11 −X11Φ11
Λ21 : X12X23X32 −X11X12 Φ22X21 −X21Φ11
Λ12 : X21X11 −X23X32X21 X12Φ22 − Φ11X12
Λ31 : X13X32X23 −X11X13 X31Φ11 − Φ33X31
Λ13 : X31X11 −X32X23X31 Φ11X13 −X13Φ33
Λ32 : X21X12X23 −X23X31X13 Φ33X32 −X32Φ22
Λ23 : X32X21X12 −X31X13X32 Φ22X23 −X23Φ33

(A.8)
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Figure 32. Toric diagram for SPP×C.
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Figure 33. Quiver diagram for SPP×C in N = (0, 2) and N = (0, 1) language.

Meson Chiral fields
M1 X13X32X21

M2 X11 = X23X32

M3 X31X12X23

M4 X12X21 = X13X31

M5 Φ11 = Φ22 = Φ33

Table 8. Generators of SPP×C.

Figure 33(b) shows the quiver for this theory in N = (0, 1) language. The W (0,1)

associated to (A.8) is

W (0,1) = W (0,2) + ΛR11X
†
11X11 +

3∑
i,j=1
i 6=j

ΛRii
(
X†ijXij +X†jiXji

)
+

3∑
i=1

ΛRiiΦ
†
iiΦii . (A.9)

Table 8 shows the generators of SPP×C and their expression in terms of chiral fields.
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Figure 34. Quiver for a Spin(7) orientifold of SPP×C using the involution in (A.11), (A.12)
and (A.13).

They satisfy the following relation

I =
〈
M1M3 = M2M

2
4

〉
. (A.10)

SO(N)×U(N) orientifold. Let us consider an anti-holomorphic involution which acts
on figure 33 as a reflection with respect to a vertical line going through node 1. Then, node
1 maps to itself, while nodes 2 and 3 are identified.

The involution on chiral fields is

X12 → γΩ1X̄13γ
−1
Ω3
, X21 → γΩ3X̄31γ

−1
Ω1
, X13 → γΩ1X̄12γ

−1
Ω2
, X31 → γΩ2X̄21γ

−1
Ω1
,

X23 → γΩ3X̄32γ
−1
Ω2
, X32 → γΩ2X̄23γ

−1
Ω3
, X11 → γΩ1X̄11γ

−1
Ω1
, Φ11 → −γΩ1Φ̄11γ

−1
Ω1
,

Φ22 → −γΩ3Φ̄33γ
−1
Ω3
, Φ33 → −γΩ2Φ̄22γ

−1
Ω2
.

(A.11)
From the invariance of W (0,1), we obtain the transformations of the Fermi fields

Λ11 → −γΩ1Λ̄11γ
−1
Ω1
, Λ21 → γΩ3Λ̄31γ

−1
Ω1
, Λ12 → γΩ1Λ̄13γ

−1
Ω3
, Λ31 → γΩ2Λ̄21γ

−1
Ω1
,

Λ13 → γΩ1Λ̄12γ
−1
Ω2
, Λ32 → −γΩ2Λ̄23γ

−1
Ω3
, Λ23 → −γΩ3Λ̄32γ

−1
Ω2
,

(A.12)
and

ΛR11 → γΩ1ΛR T
11 γ−1

Ω1
, ΛR22 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR33 → γΩ2ΛR T

22 γ−1
Ω2
. (A.13)

Using table 8, the transformation in the field theory translates into the geometric
involution σ acting on the generators as(

M1,M2,M3,M4,M5
)

↓(
M̄3, M̄2, M̄1, M̄4,−M̄5

)
,

(A.14)

which is different from and inequivalent to the universal involution Ma → M̄a. The quiver
for the resulting theory is shown in figure 31, which is also free of gauge anomalies.
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