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1 Introduction

Engineering gauge theories in string or M-theory provides alternative perspectives, often
geometric, on their dynamics. Such realizations typically lead to a deeper understanding of
the theories at hand, suggest natural generalizations, and even contribute to the discovery
of new results.

Our understanding of 2d N' = (0,2) gauge theories has significantly progressed in
recent years. The new results include c-extremization [1, 2], N = (0,2) triality [3] and
connections to gauge theories in higher dimensions [2, 4-7]. These discoveries have fueled
a renewed interest in the stringy engineering of such theories. A possible scenario involves
realizing them on the world volume of D1-brane probing singular Calabi-Yau (CY) 4-folds.'
Following the pioneering work of [10], a new class of brane configurations, denoted brane
brick models, was introduced in [11]. Brane brick models fully encode the 2d N = (0,2)
gauge theories probing toric CY 4-folds, to which they are connected by T-duality. Further-
more, they have significantly simplified the map between geometry and the corresponding
gauge theories (see [12-18] for further developments).

As usual, it is desirable to investigate theories with less supersymmetry. The next step
corresponds to 2d N = (0, 1), namely minimally supersymmetric, theories. Such models
are particularly interesting because while they are still supersymmetric, they no longer
have holomorphy. While considerably less is known about them, new results about their
dynamics have appeared in [19], including the proposal of a new 2d N' = (0, 1) triality. Once
again, this raises the question of how to engineer these theories in string theory. In [19], it
was noted that the theories participating in A/ = (0, 1) triality are, in a sense, “real slices”
of their “complex” N = (0,2) counterparts, both at the level of gauge theory description
and effective non-linear sigma model. A more general formulation of such N' = (0,2)/(0, 1)
correspondence was left as an open question.

With these motivations in mind, in this paper we introduce Spin(7) orientifolds, a
new class of backgrounds that combine Joyce’s construction of Spin(7) manifolds via the
quotient of CY 4-folds by anti-holomorphic involutions with worldsheet parity, and con-
struct 2d N/ = (0, 1) gauge theories on D1-branes probing them. Closely related ideas were
presented in the insightful paper [20, 21], whose goal was to engineer 3d N’ = 1 theories on
M2-branes.?

This paper is organized as follows. Section 2 discusses the general structure and prop-
erties of 2d N = (0,1) field theories. Section 3 presents the decomposition of N' = (0,2)

'For alternative setups leading to 2d A = (0,2) gauge theories, see e.g. [2, 4, 7-9].
2For applications to F-theory of Spin(7) holonomy manifolds from CY 4-folds quotients see, e.g., [22, 23].



supermultiplets in N = (0, 1) language. Section 4 explains the construction of Spin(7) cones
and Spin(7) orientifolds starting from CY 4-folds. Sections 4.2 and 4.3 discuss the field the-
ory implementation of Spin(7) orientifolds. The connection between the anti-holomorphic
involutions of the CY4 and the gauge theory is studied in section 4.4. Section 5 considers
Spin(7) orientifolds of C* and its orbifolds. In section 6 we decribe how the choice of vector
structure can lead to different gauge theories associated to the same geometric involution.
Section 7 presents Spin(7) orientifolds of generic, non-orbifold, parent CY,’s. Finally, sec-
tion 8 investigates the interplay between partial resolution and higgsing. Section 9 collects
our conclusions and outlook. Appendix A contains additional examples that are used in
section 8.

2 2d N = (0,1) field theories

In this section, we briefly review the general structure of 2d N' = (0,1) field theories.
Instead of discussing all terms in the Lagrangian, we will focus on the main facts we will
use in following sections. We refer the reader to [19, 24-27] for a more detailed presentation.

2.1 Constructing 2d N' = (0,1) gauge theories

We describe these theories in terms of 2d N' = (0,1) superspace (xo,ml, 6%). There are
three types of supermultiplets as elementary building blocks:

e Vector multiplet:
Vi =60"(Ag(x) + A1(2)),
V.= Ag(x) — Ay(z) + 0T A_(2).

It contains a gauge boson Ay and a left-moving Majorana-Weyl fermion A_ in the

(2.1)

adjoint representation.

e Scalar multiplet:
(a,0) = ¢(x) + 0+ (). (2.2)
It has a real scalar field ¢ and a right-moving Majorana-Weyl fermion .

e Fermi multiplet:
Az,0) =y_(2)+ 0T F(z). (2.3)
It has a left-moving Majorana-Weyl spinor as its only on-shell degree of freedom.
Here F' is an auxiliary field.

As usual, the kinetic terms for matter fields and their gauge couplings are given by

Lo+ Lp = /d9+ (; S (D4 ®D_®;) — ;Z(AamAa)) , (2.4)

1 a
where Dy are super-covariant derivatives [19].
These theories admit another interaction, which is an A/ = (0, 1) analog of the N' =
(0,2) J-term interaction, or N' = 1 superpotential:

L, = / ot On — / 40+ 3" (Mg (), (2.5)



Figure 1. Generic 1-loop diagram associated with 2d anomalies.

where J%(®;) are real functions of scalar fields. Both the quiver and W) are necessary
for fully specifying any of the N' = (0,1) gauge theories considered in this paper. From

(0.1) as the superpotential for convenience.

now on, we will refer to W
After integrating out the auxiliary fields F,, £ produces various interactions, including

Yukawa-like couplings
aJ*
Ag—W1i, 2.6
2 Aagg s (2:6)

as well as a scalar potential

Sy (27)

a
2.2 Anomalies

In 2d, anomalies are given by 1-loop diagrams of the generic form shown in figure 1, where
left- and right-moving fermions running in the loop contribute oppositely.

Since 2d AV = (0,1) theories are chiral, left- and right-moving fermions are not neces-
sarily paired up, and anomalies do not cancel automatically. For a given symmetry group,
anomalies depend on the types and the representations of the fields transforming under
it. Below, we focus on those groups and representations appearing in the 2d N' = (0,1)
theories engineered in this paper.

Non-Abelian anomalies. Let us first consider pure non-Abelian G? gauge or global
anomalies, where G can be SU(N), SO(N) or USp(N) group.? The corresponding anomaly
is given by

Tr[v* JaJg) (2.8)

where 3 is the chirality matrix in 2d and .Jg is the current associated to G. The resulting
anomaly from a field in representation p of G' can be computed in terms of the Dynkin
index T'(p):

d(p)
d(adjoint) ’

where Co(p) is the quadratic Casimir for representation p.

T(p) = C2(p) (2.9)

In table 1 we present anomaly contributions for superfields in the most common rep-
resentations of SU(N). In table 2, we present anomaly contributions of different types of
superfields carrying various representations of SO(N) and USp(NV) groups, computed using
Dynkin indices listed in [28].

In the case of gauge groups, anomalies must vanish for consistency of the theory at the
quantum level. This leads to important constraints in our construction of 2d N' = (0, 1)

3In our convention USp(2) ~ SU(2), so USp(N) makes sense only if N is even.



SU(N) fundamental | adjoint | antisymmetric | symmetric

vector multiplet X -N X X

1 —N+2 —N—2

F i Itiplet —— -N _— _—
ermi multiple 5 5 5

1 N —2 N +2

scalar multiplet — N —_— Nre
2 2 2

Table 1. Anomaly contributions of the 2d A/ = (0,1) multiplets in various representations of
SU(N). Since anomalies are quadratic in 2d, the same contributions apply for the conjugate repre-

sentations.
SO(N) fundamental | antisymmetric (adjoint) symmetric
vector multiplet X —N+2 X
Fermi multiplet -1 —N+2 —N -2
scalar multiplet 1 N -2 N +2
USp(N) fundamental antisymmetric symmetric (adjoint)
vector multiplet X X —N -2
Fermi multiplet -1 —N+2 —N -2
scalar multiplet 1 N -2 N +2

Table 2. Anomaly contributions of the 2d A/ = (0,1) multiplets in various representations of

SO(N) and USp(N).

theories, that may require the introduction of extra flavors to cancel anomalies. We will
illustrate this with concrete examples in following sections.

Unlike gauge symmetries, global symmetries may indeed be anomalous. One important
property of global anomalies is that they are preserved along the Renormalization Group
(RG) flow. Therefore, they can be used to check dualities between two or more theories,
namely whether these UV-different theories are IR-equivalent. Examples of using global
anomalies to check dualities in 2d N = (0,1) theories can be found in [19] and also in our
upcoming work [29].

Abelian Anomalies. For U(N) groups of the worldvolume theories on D-brane probes,

2

in addition to non-Abelian anomalies, the U(1) factors can generically have U(1);

7 and

mixed U(1); U(1); Abelian anomalies. As before, the U(1) groups can be either gauged
or global.

The theories studied in this paper generically have non-vanishing Abelian gauge anoma-
lies. Similarly to the discussion in [15, 30], we expect that such anomalies are canceled
by the bulk fields in the closed string sector via a generalized Green-Schwarz (GS) mech-
anism (see [31, 32] for derivations in 4d N' = 1 and 2d N/ = (0,2) theories realized at
orbifolds/orientifold singularities).



2.3 Triality

Recently, an IR triality between 2d A/ = (0,1) theories with SO and USp gauge groups
was proposed in [19]. Evidence for the proposal includes matching of anomalies and elliptic
genera. This new triality can be regarded as a cousin of the 2d N' = (0, 2) triality introduced
in [3]. Interestingly, 2d N = (0,2) triality, together with Seiberg duality for 4d gauge
theories [33], extend to an infinite family of order (m + 1) dualities of m-graded quiver
theories [34-36].

It is natural to ask whether, within the context of gauge theories on the worldvolume
of D-branes probing singularities, the N' = (0, 1) triality admits a geometric explanation.
The similarity between the theories in [19] and the ones constructed in this paper hints
that this is the case. This question will be addressed in [29], where we will show that
N = (0,1) triality follows from the non-uniqueness of the map between Spin(7) cones and
2d N = (0,1) gauge theories.

3 N = (0,2) field theories in N' = (0, 1) formalism

In this paper, we will construct 2d N' = (0,1) theories from 2d N’ = (0,2) theories via
orientifold quotients. Therefore, it is useful to decompose N = (0,2) theories in terms of
the N' = (0,1) formalism.

N = (0,2) theories can be expressed in superspace (z°,2!,07,6%) and have three
types of multiplets: vector, chiral and Fermi. These multiplets and the Lagrangian can be
further expressed in A = (0,1) language using the superspace (2%, 2!, 07).

N = (0,2) vector multiplet. The N = (0,2) vector multiplet V(92) contains a gauge
boson, a left-moving chiral fermion and an auxiliary field. It decomposes into N = (0,1)
multiplets as follows:

N = (0,2) vector multiplet Vi(O’Q)

v\ (3.1)
N = (0,1) vector multiplet V; & N = (0,1) Fermi multiplet AZ.

02) 44 separated into two Majorana-Weyl fermions, one of which is

The chiral fermion in V
(0,2)

included in V; and the other is in A®. The auxiliary field in V,
The kinetic term of 1/1-(0’2) in the Lagrangian can be expressed in ' = (0, 1) superspace

becomes the one in AF.

as kinetic terms of V; and Af%:

1
0,2 R R
ﬁéauée — Lgauge — ) /d&* %:(Az DA, (3.2)

where Lgauge is the kinetic term of an N = (0, 1) vector multiplet.

N = (0,2) chiral multiplet. The N = (0,2) chiral superfield contains a complex scalar
¢¢ and a right-moving chiral fermion ¢ . Its expansion is

(I)gg,Q) _ QZ)%L + 0+¢§rm _ i9+§+D+¢fn . (33)



It decomposes into N' = (0, 1) multiplets as follows:

N = (0,2) chiral multiplet @52»2)

N\ (3.4)
N = (0,1) scalar multiplet @1 & N = (0,1) scalar multiplet ®2, .

The two N = (0,1) scalar multiplets ®.2 can be further combined into an N' = (0,1)
complex scalar multiplet, so that the above decomposition is rewritten as

N = (0,2) chiral multiplet 302

! (3.5)

N = (0,1) complex scalar multiplet ®,, .
The kinetic terms of the matter fields in <I>7(2’2) and their gauge couplings are included in

the term 5(0’2)1 in /' = (0,2) superspace. As an example, let us consider a chiral multiplet

chira
2% transforming under a U(1) gauge group. In this case, Egﬂﬁél reads:
0,2 1 = 0,2
£82 = 1 [ arart @92 pPag?). (3.5)

where with 1 we mean the Hermitian conjugate® of <I>£2’2). The above Lagrangian can be

regarded as a combination of two parts:

Egg’ifzﬂ = Kinetic terms of ®(%?) + Interaction terms between V(2 and 02 (3.7)

which can be further expressed in terms of AN/ = (0, 1) multiplets as

5(072)

s — Kinetic terms of ' = (0,1) complex scalar ®,,

+ Interaction terms between V and ®,, (3.8)

+ Interaction terms between AT and D, .

V and AF here are N = (0, 1) vector and adjoint Fermi multiplets coming from the decom-
position of V(2. From now on, the superscript R is used to emphasize that a superfield
is real.

Egﬁ 2 can be expressed in N = (0, 1) superspace using egs. (2.4) and (2.5). It becomes

b
iral

chiral

LoD = Lo+ [ dotw D

| 3.9
_ ! + i i +ARpt (39)
=~ [d0* (D0}, D 8, + DB, D )] + [d6FAD] B,

N = (0,2) Fermi multiplet. The N = (0,2) Fermi multiplet contains a left-moving
chiral fermion \¢ , and an auxiliary field G. It can be expanded as

AP = 0@, —i0T0t DN, — 6T E0D (902)) (3.10)

a m

4].e. complex conjugate and transposition, (Ci)(o‘m)T,



where E(O 2) (@%2’2)) is a holomorphic function of chiral multiplets, called E-term. The
decomposition of an N = (0,2) Fermi multiplet into N/ = (0, 1) multiplets is

N = (0,2) Fermi multiplet AL?

v\ (3.11)
N = (0,1) Fermi multiplet AL @& AN = (0,1) Fermi multiplet A2 .

The two N = (0,1) Fermi multiplets can be further combined into an A" = (0,1) complex
Fermi multiplet. The decomposition of N' = (0,2) Fermi multiplet is then

N = (0,2) Fermi multiplet AP

! (3.12)
N = (0,1) complex Fermi multiplet A, .

In NV = (0, 2) theories, in addition to the E-term, there is another holomorphic function
J©2)a(®, ) of chiral fields associated to the Fermi multiplet A((10,2). The kinetic terms for
the Fermi multiplet and its couplings to chiral multiplets are

Ferml =

L0 4 02 _ /d9+d0+(A(0 2)aytA02) _ /d9+A 02) 702a. _ he.
(3.13)

There is a symmetry under exchanging J(©2% E(SO’Q), which corresponds to exchanging
Ago72) o (A(O,Q))Ta'

In order to express the above Lagrangian terms for N/ = (0,2) Fermi multiplets in
N = (0,1) superspace, we first decompose <I>$272) chiral fields into N/ = (0,1) complex
scalar multiplets ®,,, as in (3.5). Then, we introduce N' = (0, 1) complex scalar multiplets
E.(®,,) and J%(®,,) as functions of ®,,. The field components of E,(®,,) and J*(P,,) are
given by

Ea((I)m> = Ea(¢m) -

8<Z>m
a.J"

Opm

(3.14)

T (@) = T () — OF ™.

where ¢, and 7" are component fields of the N' = (0,1) complex scalar multiplet ®,,.
The terms for an A = (0, 2) Fermi multiplet Aﬁ?’z) in the Lagrangian can then be expressed
in terms of A/ = (0, 1) superspace and multiplets as

Ferml

{02 5(02)—>£F+/d0+W01)
- -3 / 40 (MDD Ay) (3.15)

v / A0 (A (JH(®) + BN (D1 )) + AT(Ey () + JH (@] ))].



N = (0,1) superpotential of N' = (0,2) gauge theories. To conclude this section,
for an N' = (0,2) field theory with vector multiplets ‘@(0’2), chiral multiplets @52’2) and
Fermi multiplets AgO’Q), the generic N/ = (0,2) Lagrangian can be expressed in terms of

N = (0,1) multiplets and superspace as
L= Lomge + Ly + L + / oo (3.16)

where Lgauge; L£s and L are the usual kinetic terms for vector, scalar and Fermi superfields.
The N = (0, 1) superpotential WO reads

wOD =3NS Afol e, + / Aot Ao (J4( D) + ET(D] ) + AT EL(®,,) + JI (21 )],

(3.17)
where the sum over n in the first term means the sum over all complex scalar multiplets
transforming under a given gauge group .

4 2d N = (0,1) theories and orientifolds

In this section, we discuss the construction of Spin(7) and Spin(7) orientifolds starting
from CY 4-folds. We also explain the general structure of the A' = (0,1) theories on D1-
branes probing Spin(7) orientifolds, which are obtained from the A" = (0, 2) gauge theories
associated to the parent CY4 via a Zs orientifold quotient. While we will focus on the case
in which the CYy is toric, our construction applies in general. Concrete examples will be
covered in sections 5 to 8.

4.1 Spin(7) cones and Spin(7) orientifolds from CY4

Our aim in this section is to set the stage for Spin(7) orientifolds probed by D1-branes.
The construction of the corresponding gauge theories on D1-branes will be introduced
in sections 4.2 to 4.4.

We start discussing Spin(7) manifolds, which are eight dimensional Riemannian mani-
folds of special holonomy group Spin(7). Every Spin(7) manifold is equipped with a globally
well-defined 4-form Q®, called Cayley 4-form.

Spin(7) manifolds are interesting because they lead to minimally supersymmetric theo-
ries. For instance, consider Type IIB string theory on a Ms x Xg, where My, is 2d Minkowski
space and Xg is a Spin(7) manifold. The number of supercharges is broken from 32 real
supercharges to 2, since Spin(7) manifolds preserves 1/16 of the original supersymmetry.®

Probing the singularity of such Spin(7) manifold with a stack of N D1-branes breaks
SUSY even further. We would be left with only 1 real supercharge on the 2d worldvolume,
hence engineering 2d N = (0, 1) theories.

However, in this paper we focus on an alternative, yet related, way to achieve 2d
N = (0,1) theories, using an orientifold construction based on the following observation.
An explicit construction of Spin(7) manifolds was introduced by Joyce in [39]. Start with

®For more details of why Spin(7) preserves 1/16 SUSY, we refer the reader to [37] and [38].



a Calabi-Yau 4-fold Mg equipped with the holomorphic (4,0)-form Q49 and Kéhler form
JOD  One can always define a 4-form

Q@ = Re (249) + % JAD A g0 (4.1)

which is stabilized by a Spin(7) subgroup of the general SO(8) holonomy of a 8d Riemannian
manifold.

We can now consider the parent CY, geometry, and perform an orientifold by Qo,
where Q denotes worldsheet parity® and ¢ is an anti-holomorphic involution keeping the real
4-form (4.1) invariant. It is easy to check, in analogy with the above arguments, that the
supersymmetry preserved by D1-brane probing this orientifold singularity is 2d A" = (0, 1).
Hence, we refer to this construction as Spin(7) orientifolds. One motivation for considering
these orientifolds is that they naturally realize the “real projection” of the “complex”
N = (0,2) theories mentioned in [19]. The theories on D1-branes probing Spin(7) cones,
without the orientifold projection, are also interesting and we plan to investigate them in
future work.

4.2 Spin(7) orientifolds in the field theory

We now discuss the field theory implementation of the Spin(7) orientifold construction.
The field theory involution must act anti-holomorphically on the chiral fields of the parent
gauge theory. Its connection to o will be addressed in section 4.4. Further details on the
theory obtained via the orientifold projection will be given in section 4.3. The construction
follows the standard orientifolding procedure. Anti-holomorphic orientifolds have appeared
in the literature in other contexts, see, e.g., [40, 41].

Such involution must be a Zy symmetry of the parent gauge theory, namely a symmetry
of both its quiver and superpotential. Given the anti-holomorphicity of the transformation,
it is convenient to write the superpotential in N'= (0,1) language, as in (3.17).

We will use indices ¢,7 = 1,...,g, to label gauge groups in the parent theory. We
will also use a4, 3; = 1,...,N; for Chan-Paton indices, equivalently (anti) fundamental
color indices of U(XV;) in the gauge theory. Every bifundamental field ®;; in the gauge
theory (adjoint if ¢ = j) should be regarded as an N; x N; matrix to be contracted with the
corresponding Chan-Paton factors, namely open string states are of the form ®;; o, g, |, Bj).
In what follows, we will keep the color/Chan-Paton indices implicit.

Below, we present the transformation properties of each type of field under the gener-
ator of the orientifold group.

Vector multiplets. Gauge fields transform as follows

where the transposition acts on color indices and vq, is a matrix encoding the action of
worldsheet parity on the Chan-Paton degrees of freedom at the node i. All matrices in this
expression are IN; x N; dimensional, with N; = N.

5We hope the context suffices for the reader not to confuse it with the holomorphic 4-form.



For gauge groups that are mapped to themselves, i.e., when i = 7/, the fact that the
involution squares to the identity gives rise to the standard constraint

Y0, =+, . (4.3)

The two canonical solutions to this equation are the identity matrix 7o, = 1u;, for the
positive sign, and the symplectic matrix 7o, = J = i€y, /2, for the negative sign. Plugging
each of them back into (4.2), they respectively lead to gauge fields in the antisymmetric or
symmetric representation, namely in the adjoint representations of the resulting SO(IV;)
or USp(4V;) gauge groups. The corresponding gaugino is projected accordingly, completing
an N = (0,1) vector multiplet. Our general discussion allows for independent ranks for
different gauge groups. That said, in the explicit examples considered later, we will assume
that the ranks in the parent theory are such that all the ranks in the orientifolded theory
are equal.

Scalar multiplets. Let us consider complex A = (0, 1) scalar fields or, equivalently, the
N = (0,2) chiral fields in the parent theory. The anti-holomorphicity of the geometric
involution implies that we have to take their Hermitian conjugate and their transformation
becomes

X5 = a0, Xijg, (4.4)

where the bar indicates conjugation. We can understand the conjugation as the net result
of two operations. First, we have the transposition of the matrix Xi’}j,, which effectively
exchanges its two endpoints. This corresponds to the usual orientation reversal between
fields and their images, which is characteristic of orientifolds and is also present in holo-
morphic orientifolds. In addition, we take the Hermitian conjugate, which is the matrix
counterpart of the conjugation involved in the anti-holomorphic involution. This leads to
an additional orientation flip.

While expressions like (4.4) are rather standard, this is a good point to carefully state
the meaning of each of the matrices in it. Color indices are implicit. As mentioned earlier,
Y, and Ve, encode the action of worldsheet parity on the color indices at nodes i’ and
j', and they are Ny x Ny and Nj x Nj matrices, respectively. X{}j, is an Ny x Ny
matrix, for which the transposition and Hermitian conjugation, independently, transpose
the color indices. We also include the indices m,n = 1,..., nfj,
N = (0,2) chiral fields between nodes i and j. 7 is an n},

with ni‘] the number of

X
. X nk
J ij
the representation of the Zs group generated by the field theory involution under which

matrix corresponding to

the X7 fields transform.” We sum over the repeated index n. i’ and 5’ indicate the nodes
connected by the field, and are clearly not summed over. Eq. (4.4) also applies to fields
that are mapped to themselves.

The condition that the orientifold action is an involution implies that 7 - n? = 1. In
the explicit examples presented later, we will mostly use n = +1 (in the 1-dimensional

representation case) or n = % (9 }), which implements a non-trivial exchange between two

"In principle, this representation might be reducible. The irreducible representations of Z, are either 1-
or 2-dimensional.
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pairs of fields. In view of this, from now on we will reduce nmnXﬁj, to iX{l}ll,

in order to
simplify expressions.

The transformation (4.4) and the ones for Fermi superfields that we present below,
simplify considerably in the case of Abelian parents. As usual, this is sufficient for con-
necting the gauge theories to the probed geometries, along the lines that will be discussed

in section 4.3.

Fermi multiplets. Contrary to scalar fields, whose transformation always involves con-
jugation in order to account for the anti-holomorphicity of the geometric involution, Fermi
fields may or may not be conjugated.

Let us first consider the N' = (0,1) complex Fermi multiplets in the parent, i.e. the
N = (0,2) Fermi multiplets in the original theory. Their transformation is either®

AG = £90,A770,, (4.5)
or
A = 290, A7 g, (4.6)

Notice that the second transformation only involves transposition, without complex con-
jugation.

The signs and the presence or absence of complex conjugation in the transformations
of each Fermi in egs. (4.5) and (4.6) are determined by imposing the transformation of the
chirals and requiring the invariance of the superpotential W (%1 of the parent theory. As
mentioned earlier, focusing on the Abelian theory is sufficient for this.

The decomposition of NV = (0,2) vector multiplets gives rise to additional N' = (0,1)

(0,1)

adjoint Fermi fields Af?, as explained in section 3. Invariance of W in the parent fully

determines the transformation of the A, which is given by
AR 5 0, AB ot @

The relative sign between (4.2) and (4.7) implies that for ¢ = ¢/, an SO or USp projection
of the gauge group is correlated with a projection of A into a symmetric or antisymmetric
representation, respectively.

The construction of the Spin(7) orientifolds we have just presented exclusively uses
information from the gauge theory. In coming sections, we will explain how it can be con-
nected to the geometry.? The anti-holomorphic involution of the generators of the parent
CY,4 geometry can be mapped to an action on scalars. This, combined with the invariance
of the parent superpotential, determines the transformation of the Fermi superfields.

8Here we use the simplified notation introduced earlier in the case of scalar multiplets, instead of including
an 1 matrix as in (4.4).

%In the case of toric CY4, perfect matchings of the corresponding brane brick models are powerful tools
in connecting gauge theory and geometry [11]. It is therefore natural to ask whether and, if so, how the
anti-holomorphic involution translates into perfect matchings. Preliminary investigations suggest that, at
least, the involution of chiral fields maps to an anti-holomorphic involution of the perfect matchings. It
would be interesting to study this question in the future.
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(a) Two nodes mapped according to Rule 1la. (b) A node mapped according to Rule 1b.

Figure 2. The two possible identifications of gauge groups. The group G;(N;) can be either SO(N;)
or USp(N;). Dashed black and red lines represent fields that can be either scalar or Fermi fields.

4.3 Orientifold projection of the quiver

Quiver. In this section we explicitly discuss all possible orientifold projections of the
quiver following from the rules in section 4.2. The different types of N’ = (0, 1) superfields,
combined with their various transformations, lead to several possibilities.

Gauge groups. The orientifold projections for gauge groups can be one of the following
two possibilities:

la. Every node i # i’ gives rise to a gauge factor U(N;), as shown in figure 2(a).

1b. Every node ¢ = ¢’ gives rise to a gauge factor SO(N;) or USp(N;), for vo, = 1 or J,
respectively, as schematically shown in figure 2(b).

Matter fields

N = (0,2) chiral and Fermi fields: we start with the projection of ' = (0,2) chiral
and Fermi multiplets, equivalently A' = (0, 1) complex scalar and Fermi multiplets. Unless
explicitly mentioned, the rules below apply to both scalar and Fermi fields. In figures, we
will use dashed black and red lines to indicate fields that can be of the two types and we
use N' = (0,1) language. To organize the presentation, we will distinguish between the
case in which a field is mapped to a different image and when it is mapped to itself.

Fields mapped to other fields. The two rules that follow apply to both to fields transform-
ing anti-holomorphically, as in (4.4) and (4.5), or holomorphically, as in (4.6). While the
resulting quiver does not depend on the presence of conjugation, such details do affect how
the final fields precisely emerge from the original theory and, therefore, the projection of
the superpotential.

2a. Consider a bifundamental or adjoint field X;; of the parent theory, for j # ¢/, which
transforms into (the conjugate of) a different image field Xy ;. The two fields, X;;
and Xy,
Various possibilities are shown in figure 3.

are projected down to a single complex bifundamental (or adjoint) Xij.lo

0There is no distinction between [J and [ whenever the resulting gauge group is SO or USp.
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Xij . Xi’j’ _’ Xz'j

o
U(Nj)@\ ,@U(Njf) @U(Nj)

(a) Pairs of bifundamentals that do not share any node.

RO oh

.. /N .,
Xz X’LJ * XZ]

N;)
U(Nj)@\ ,@U(Nj') @U(Nj)

(b) Pairs of bifundamentals with a common node.

U(Ni)@ @Gi (Vi)
|

\
\

/
{
v
v\

I
|
v (Nj)@ @G] (IV;)

(c) Pairs of bifundamentals sharing both nodes.

<IN

{ ) Xii

\ /)Xi’i’
2]
(d) A pair of adjoint fields whose nodes are mapped to each other.

Figure 3. Various instances of Rule 2a. These pictures apply to both fields that are mapped
anti-holomorphically (via (4.4) or (4.5)) or holomorphically (via (4.6)). The group G;(N;) can be
either SO(NV;) or USp(N;).
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(a) Two bifundamental fields connecting a node and its image.

Xii Y Xiin Xiis

AN PaliaintN

P ' \
® - @
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(b) Two adjoint fields sharing on a node that is mapped to itself.

Figure 4. The two instances of Rule 2b, depending on whether the original fields are bifunda-
mental (i # ') or adjoint (¢ = 4’). This picture applies to both fields that are mapped anti-
holomorphically (via (4.4) or (4.5)) or holomorphically (via (4.6)). The group G;(N;) can be either
SO(NV;) or USp(N;).

2b. Consider two bifundamental or adjoint fields X;; and Yj,;, which transform into
(the conjugate of) each other. They give rise to two complex fields, one in the
symmetric representation and the other one in the antisymmetric representation of
the resulting unitary (for i # ') or SO /USp (for i = i’) node.'! From now on,
we indicate symmetric and antisymmetric representations with star and diamond
symbols, respectively. This rule is illustrated in figure 4.

Fields mapped to themselves. In this case, the transformation of the quiver depends cru-
cially on whether the map is anti-holomorphic or holomorphic. Therefore, in the figures
we indicate it over the arrow connecting the parent to the orientifolded theory.

3a. A bifundamental field X;; that is mapped to itself anti-holomorphically via (4.4)
r (4.5), with the nodes i and j also being their own images, gives rise to a real

N = (0,1) field transforming under the bifundamental of G; (IV;) x G;(N;), where G;
and G; are the same type of SO or USp gauge group.'? Figure 5 illustrates this rule.

3b. There is another possibility for a bifundamental Fermi field A;; stretching between
a node and its image. Such a field can only be mapped to itself in the case of a
holomorphic transformation (4.6).'3 This gives rise to a complex Fermi superfield in

1We thank Massimo Porrati for discussions on this point.

12YWe will later elaborate on why these two gauge groups should be of the same type.

13For this reason, there is no analogue of this rule for chiral or Fermi fields transforming anti-
holomorphically.
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Figure 5. Rule 3a, in which a complex bifundamental scalar or Fermi is mapped to itself anti-
holomorphically via (4.4) or (4.5). G; and G; are the same type of SO or USp gauge group.

zzS

or

i i/

Figure 6. Rule 3b, in which a Fermi connecting a node to its image is mapped to itself holomor-
phically via (4.6).

114 115

Figure 7. Rule 3c, in which a complex adjoint Fermi is mapped to itself holomorphically via (4.6).
The group G;(N;) can be either SO(V;) or USp(V;).

3c.

3d.

the symmetric/antisymmetric representation of the resulting U (V;) group for a +/—
sign, respectively, as shown in figure 6.

Closely related to Rule 3b, consider an adjoint complex Fermi field A;; that is mapped
to itself via the holomorphic transformation (4.6). As shown in figure 7, this gives
rise to a complex Fermi field in the symmetric or antisymmetric representation of the
resulting gauge group for a +/— sign, respectively. In this case, the + sign in (4.6)
correlates the projection of such Fermi with the one of the corresponding vector
multiplet, which is controlled by (4.2). In particular, a 4+ sign implies the opposite
projection, and hence we obtain symmetric/antisymmetric for SO / USp. Similarly,
a — sign implies the same projection, and we obtain antisymmetric/symmetric for

SO / USp.

Consider an adjoint complex scalar or Fermi field that is mapped to itself via the
anti-holomorphic transformation in (4.4) or (4.5). This gives rise to two real scalar or
Fermi fields, one symmetric and one antisymmetric of node ¢. This can be understood
as projecting the real and imaginary parts of the parent field with opposite signs.
The sign in (4.2) determines the projection of the real part relative to the SO or USp
projection of the gauge group as in Rule 3c. This case is shown in figure 8.
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Figure 8. Rule 3d, in which a complex adjoint scalar or Fermi is mapped to itself anti-
holomorphically via (4.4) or (4.5). The group G;(N;) can be either SO(V;) or USp(V;).

AR
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= @)
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Figure 9. Rule 4a, in which two real Fermi fields are mapped to each other into a single real Fermi
field.

A;‘;’ AﬁA Aﬁs
@ - @) @)
USp(iVi) SO(NV;)

Figure 10. Rule 4b, in which one real Fermi field is mapped to itself.

N = (0,1) real Fermi fields from N = (0,2) vector multiplets: finally, let us
consider the projection of the N = (0,1) adjoint real Fermi fields Ag coming from the
N = (0,2) vector multiplets. Such fields always transform according to (4.7). Therefore,
there are only two possibilities, depending on whether the corresponding node is mapped

to a different node or to itself.

4a. Consider a real Fermi AZ which transforms via (4.7) into A%, with i’ # i. The two
fields are projected down to a single real Fermi Aﬁ-, as in figure 9.

4b. Consider a real Fermi Af»f which is mapped to itself, with i’ # 7. Due to the relative
sign between (4.2) and (4.7), this gives rise to a symmetric or antisymmetric real
Fermi for an SO or USp projection of the node i, respectively. We show the result in

figure 10.

In general, it is possible for the theories constructed with the orientifolding procedure
described above to suffer from gauge anomalies. Such anomalies can be canceled by the
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addition of appropriate scalar or Fermi flavors. In string theory, this corresponds to intro-
ducing flavor D5/D9-branes to cancel the local RR tadpole arising when orientifold planes
are present. In section 5.3.2, we present an example in which flavor fields are needed in
order to cancel the gauge anomalies.

The gauge theories obtained from D1-branes probing Spin(7) orientifolds may provide
a large class of superconformal field theories in the infrared. Determining whether this
is indeed the case is an interesting direction, whose exploration we leave for future work,
possibly along the lines of [19].

Superpotential. The superpotential of the orientifold theory is obtained from the parent
superpotential by keeping the invariant terms and projecting out half of the other terms,
which are identified in pairs. In the surviving terms, the parent fields must be replaced by
their images under the orientifold projection.

A constraint on the relative projections of nodes connected by matter. Requir-
ing that the orientifold group acts on the gauge theory as an involution, leads to interesting
relations between the transformation of matter fields and gauge groups. In particular, fo-
cusing on bifundamental fields, applying the transformations (4.4), (4.5) or (4.6) twice and
demanding that they amount to the identity, leads to correlations between the n and ~vq
matrices. For example, for a pair of nodes ¢ and j connected by a single field or by a pair
of fields with n = £ ({ }) which transform anti-holomorphically, we must have yq, = Q-
Most of the examples we will consider later are of these two types. On the other hand,

n = (,01 §) implies that g, and Yq, are of opposite types.

4.4 Anti-holomorphic involutions from the mesonic moduli space

The anti-holomorphic involution ¢ of a CY4 underlying Joyce’s construction can be beau-
tifully connected to the anti-holomorphic involution of the associated N' = (0,2) gauge
theory. The CYy arises as the mesonic moduli space of the parent gauge theory. Conse-
quently, the complex coordinates parameterizing the CY4 correspond to mesonic operators.
Below, we present an algorithmic procedure for identifying anti-holomorphic involutions of
CY4 cones leading to Spin(7) manifolds. Combined with the map of generators to the
gauge theory, this provides an alternative method for constructing Spin(7) orientifolds.
This approach is analogous to the one introduced in [42] for 4d orientifolds. As usual, the
construction focuses on the Abelian case of the gauge theories, but the results extend to
general ranks.

In general, we can define the moduli space as the polynomial ring of the chiral fields
modded by the ideal generated by the J- and E-terms, i.e.

M= (C[Xy, ..., X5/ {Jij, Eij)) |/ U, (4.8)

where G is the number of U(1) gauge groups in the theory, and n is the number of chiral
fields. It is then possible to associate a GLSM to such a moduli space, given by a set of
fields p, such that

M= (Clp1,...,pml//QEs) //QD, (4.9)
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where Qg and Qp are matrices containing U(1) charges of the p, that implement the J-,
E- and D-terms. The mesonic moduli space is obtained by considering combinations of
fields p, that are invariant under the action of these U(1)’s. For details on this construction
we refer to [11].

A tool that has proven to be powerful to compute such gauge invariant operators is
the Hilbert series (HS) [43, 44]. The explicit expression of the HS is

m
HS(x,p) = PE [Z XQupa] : (4.10)
a=1
where Q% = (Q%;, Q%) are the charges of the field p, represented by the collective fugacity
x. The function PE is called the Plethystic Exponential (PE) and is defined as

1

PE [f(t)] = PE [Z cktk] — exp [Z % (f (tk) _ f(o))] =11 e (4.11)
k=0 k=1 k=1

Performing the Molien integral over the fugacities x, we obtain the HS of the mesonic
moduli space M:

dx
HS (p; M) — 7{(-1 2 HS(x,p). (4.12)

Such HS contains the generators of the mesonic moduli space and their relations. This
information can be extracted using the Plethystic Logarithm (PL):

PL[HS(p; M i“k n [HS (p* M)] | (4.13)

where p is the Mébius function. The resulting series can be finite, and in that case, the
mesonic moduli space is said to be a complete intersection, or it can be an infinite sum
of positive and negative monomials in p. The generators are identified with the positive
monomials, while the relations are associated with the negative monomials. The generators
for all examples in the paper have been computed using such HS techniques.

The generators, subject to their relations, are the coordinates that parameterize the
toric CY4 under consideration. From the point of view of the gauge theory, these coordi-
nates are mesons and we call them M,, with ¢ running from 1 to the number of mesons.
The anti-holomorphic involution ¢ acts on these coordinates by mapping each M, to a
possibly different M, with M; being the complex conjugate of Mp, i.e.

M, — +M,. (4.14)

This transformation must be consistent with the relations among the generators.
As explained in section 4.1, in order to obtain a Spin(7) structure, ¢ must preserve
the Cayley 4-form. A sufficient condition for this to happen is that Q49 — Q04 [39].

Consider a CY4 with n generators M,, a = 1,--- ,n and k relations among them F, (M,) =
0, «=1,---,k. The holomorphic 4-form is computed in terms of the Poincaré residue
dMy N -+ NdM,
Q40 = Res—— n (4.15)

[o-1 Fa(Ma)
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With this formula, it is straightforward to verify that all the involutions considered in this
paper satisfy Q40 5 QOA) 1 the following sections, we will show this explicitly in some
examples.!?

The procedure outlined above provides a geometric criterion for identifying an anti-
holomorphic involution o leading to a Spin(7) orientifold. Using the definition of the
generators as gauge invariant chiral operators in the field theory, we can translate o into
the anti-holomorphic involution that acts on the chiral fields. Finally, we can complete
such involution with the transformations of Fermi fields in the form of egs. (4.5) to (4.7)
such that it corresponds to a Zg symmetry of the N' = (0, 2) gauge theory, as discussed in
section 4.2.

An important observation is that the relation between the geometric anti-holomorphic
involution o that accompanies the orientifold action, and the action on the N' = (0,2)
theory, is not one-to-one. In particular, this non-uniqueness goes beyond the obvious
one due to choices of signs and 7q’s in egs. (4.5) to (4.7). Indeed, certain orientifolded
geometries defined by an involution o of CYy4 correspond to a unique action on the N =
(0,2) quiver (up to those obvious choices), but others can admit several genuinely different
possible actions from the field theory point of view. These are distinguished by the action
of the orientifold on the gauge factor, in particular by the presence or absence of groups
mapped to themselves. In more mathematical terms, this is related to the presence or the
absence of vector structure in type IIB singularities with orientifolds. We will discuss this
in more detail and present illustrative examples in section 6.

5 C* and its orbifolds

In this section, we construct the 2d gauge theories on D1-branes over Spin(7) orientifolds
of C* and its Abelian orbifold C*/Z.

51 C4

Let first consider the simplest CYy, i.e. C*, and construct its Spin(7) orientifold. Its toric
diagram is shown in figure 11.

The parent 2d worldvolume theory on D1-branes over C* is the dimensional reduction
of 4d N = 4 super Yang-Mills (SYM) and has N = (8,8) SUSY. In N/ = (0,2) language,
this theory is given by the quiver shown in figure 12(a), and the following J- and E-terms
for the Fermi fields:

J E
A YZ-2ZY WX - XW
A2 ZX-XZ WY -YW
A3 XY -YX WZ—2ZW

(5.1)

MYWhen the HS is not a complete intersection, the number of relations is redundant. It is then possible
to reduce them to their effective number, and F,(M,) represents the minimal number of relations that are
necessary in order to get a 4-form, given n generators, i.e. « = 1,...,n — 4. Moreover, given an Q0
after applying the anti-holomorphic involution, it might be necessary to use such relations to obtain the
corresponding Q0D Generically, the resulting (0, 4)-form that is obtained by the involution, is not simply
the complex conjugate of Q%% . An explicit example of this is given in section 7.1.
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Figure 11. Toric diagram for C*.

XY, Z,W AL A% AP
@
U(N)

(a) N = (0,2) language. (b) N'= (0,1) language.

Figure 12. Quiver diagrams for C* in N = (0,2) and N = (0,1) language. AT is the real Fermi
coming from the A" = (0,2) vector multiplet.

Before performing the orientifold quotient, it is useful to rewrite this theory in N' =
(0,1) superspace. In N' = (0,1) language, this theory has a vector multiplet associated
with the U(N) gauge group, four complex scalar multiplets (X,Y, Z and W), three complex
Fermi multiplets (Ai, i =1,2,3) and one real Fermi multiplet AR) from the N' = (0, 2)
vector multiplet. The quiver is shown in figure 12(b). The corresponding NV = (0,1)
superpotential is given by

WO —wO2) ¢ AMME(xTX 4 YTy + 2T 72 + wiw)
=A(YZ-2Y)+ AT (WX — XW) + hec.
+A(ZX - XZ)+ A2T(WY —YW) + he. (5.2)
+ AB(XY - YX)+ A (WZ - ZW) + hec.
+ MEXTX +YTY + 212 + WTW),

where W(2) indicates the superpotential obtained from the .J- and E-terms in (5.1).

For this theory, computing the HS for identifying the generators parameterizing the
moduli space is not necessary, since these mesons are in one-to-one correspondence with
the chiral superfields. The four complex coordinates (z,y,z,w) of C* map to the four
N = (0,1) complex scalar fields

(z,y,z,w) < (X,Y,Z,W). (5.3)

In the Abelian case, the space is freely generated, i.e. there are no relations among the
generators. This can be easily understood in N' = (0,2) language, where the J- and
E-terms in (5.1) are automatically vanishing.
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Now we are ready to find an anti-holomorphic involution ¢ of C* and construct the
gauge theory for the corresponding Spin(7) orientifold. We will choose a specific form of
o. All other possible ¢’s are in fact equivalent to it via the SO(8) global symmetry of C*.

5.1.1 The orientifold theory

Let us consider the anti-holomorphic involution under which the U(N) gauge group is
mapped to itself and the chiral fields transform as

X = me’yS;l , Y — 7917751, Z — 792751, W — me’y@l. (5.4)

Requiring the invariance of the superpotential W1 in (5.2), we obtain the action on
the Fermi multiplets

AY = yoAlygt, A2 = APyt AP = yaAPygt, A AR T oL (5.5)
From a geometric point of view, the anti-holomorphic involution ¢ is simply given by
(x,y,z,w) — (Z,y, 2, W) . (5.6)

The holomorphic 4-form Q®*9 and Kahler form J1 of C* are given by

QU0 = dz ndyndzndw, JED) = 3T da; Adz (5.7)

Iie{m7yvsz}

They transform under o as
Q10— Q04 -y 5 _ g1, (5.8)

One can then easily check that the Cayley 4-form defined in (4.1) is indeed invariant under
this involution o.

The orientifold theory can be derived by projecting over the involution. As discussed
in section 4.2, 7q equal to 1y, or J corresponds to the SO(N) or USp(N) gauge group
after projection. We will construct the SO(N) theory in detail below. The USp(N) theory
can be derived following the same procedure.

The SO(N) gauge theory contains four real scalar superfields in the symmetric rep-
resentation and four real scalar superfields in the antisymmetric representation. We will
use subscripts S and A to keep track of representations. There are also four real Fermi
superfields (A¢ with @ = 1,2,3 and A*R) in the symmetric representation, and three real
Fermi superfields (A% with a = 1,2, 3) in the antisymmetric representation. The origin of
these matter multiplets from the parent theory is as follows

X = x§ xE, At = AR AR

Y = Y& VE, A% = AZF AR (5.9)
zZ = Z§ 7%, A = A AR

W= Wi Wk, AR = AR
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(a) SO(N) gauge group. (b) USp(N) gauge group.

Figure 13. Quiver diagrams for the orientifold theories associated with the anti-holomorphic
involution of C* in (5.6).

The field content of the resulting SO(N) gauge theory is summarized by the quiver in
figure 13(a). The quiver for the USp(N) theory is shown in figure 13(b). Redefining the

(0,1)

fields according to eq. (5.9), it is possible to derive the W after the involution from

eq. (5.2).
Finally, computing the SO(N)? anomaly contributions from different A" = (0, 1) fields
using table 2, we obtain

(N —2)—4(N +2) —3(N —2) +4(N +2) + 4(N — 2) = 0. (5.10)

Vector Fermi Scalar

Therefore, this theory is free of gauge anomalies.

While the Spin(7) orientifold construction generically produces 2d N' = (0, 1) theories,
special cases such as this one can have enhanced SUSY. This theory in fact enjoys N =
(4,4) SUSY. To see this more explicitly, let us define the four complex coordinates of C*
in terms of the 8d space transverse to the D1-branes as

(x,y,z,w) = (x2 + ix¢, T3 + ix7, T4 + i28, T5 + i), (5.11)

where x;, ¢ = 0,1,--- ,9 are real spacetime coordinates. In terms of them, the geometric
involution (5.6) becomes

(w2, w3, T4, T5, T6, T7, T8, T9) — (T2, X3, T4, T5, —T6, —T7, —Tg, —T9) , (5.12)

giving rise to a codimension-4 fixed locus, i.e., an O5-plane. The brane setup is therefore,

(0 1 2 3 4 5 6 7 8 9
e o X X X X X X X X (5.13)
O5| e o e e e e X X X X

where e and X indicate directions in which an object extends or does not extend, respec-
tively. The configuration preserves N' = (4,4) SUSY in the 2d spacetime of the gauge
theory, given by (zg,z1). The field theory has SO(NN) or USp(N) gauge symmetry, de-
pending on the charge of the O5-plane.
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The extended SUSY can also be seen at the level of the gauge theory. The field content
can be organized into N/ = (4, 4) multiplets. For example, in the SO(N) case, we have

Ve A(ALQ’S)R @ XE; Y,fa zE Wf — N = (4,4) vector multiplet

(adjoint=antisymmetric) (5.14)
5.14
A g Ag’Z’g)R o XE Y& ZB Wl — N = (4,4) hypermultiplet

(symmetric)

where V' is the NV = (0, 1) vector multiplet of the SO(NN) gauge group.

Note also that the SO(4) x SO(4) R-symmetry group of N' = (4, 4) supersymmetry is
completely manifest in our realization. An SO(4) factor corresponds to geometric rotations
in the directions transverse to the D1-branes and along the O5-plane, i.e. 2345 in (5.13).
On the other hand, the second SO(4) corresponds to rotations in the directions transverse
to the O5-plane, i.e. 6789 in (5.13). The above multiplets fill out representations of SO(4)?
(noticing that the representation including the 3 Fermi multiplets must be completed by
including the gauginos in the N' = (0, 1) vector multiplet, as befits an R-symmetry). It is
easy to check that the interactions are also compatible with this symmetry.

Naively, one can consider seemingly different involutions o preserving the Cayley 4-
form and construct the corresponding orientifold theories. However, the resulting theories
will always be the same 2d N = (4,4) SO(N)/USp(N) gauge theory worked out above.
All such anti-holomorphic involutions are equivalent, since they are connected by SO(8)
rotations of the eight real coordinates of C* and lead to the same brane configuration with
D1-branes on top of an O5-plane.

For example, consider the anti-holomorphic involution (z,y, z,w) — (y, &, zZ, —w), un-
der which the Cayley 4-form is also invariant. Using the SO(8) global symmetry, we can
redefine the eight real coordinates of C* as

/ / / / / / /
($2,$3,ZC4,$5,$6,1’7,$8,1‘9 2 ) 9 y L4, L9, 9 ’ 9 , L8, T5

(5.15)

Then, the fixed locus of the involution corresponds to an O5-plane extended along a7,

,):<m2+x3 Te — T7 Ty — T3 T+ T7

i =2,...,5. This is exactly the same orientifold configuration in (5.13). Therefore, despite
the seemingly different involution, the 2d gauge theory on D1-branes is the same up to
field redefinitions.

5.2 A universal involution

Interestingly, the anti-holomorphic involution of C* can be generalized to any CY4. Con-
sider the gauge theory associated to a generic toric CY4. From the field theory perspective,
it is always possible to define an involution as follows. First, all gauge groups are mapped
to themselves. In addition, all chiral fields transform as

Xz'j — ’)/Qi)_(ij’yéjl s (516)

i.e. every chiral field is mapped to itself anti-holomorphically. This in turn implies that the
J- and E-terms for every Fermi A;; transform as

Tii = v, Jjiva,  Bij = ve,Bijg, (5.17)
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(0,1)

Invariance of the superpotential W implies that the action on the Fermi fields must be

Aij = o.M, - (5.18)

Finally, as usual, the N' = (0,1) adjoint Fermi fields coming from N = (0,2) vector
multiplets transform as in (4.7).
This field theoretic involution translates into a simple action on the generators of CYy

oo : M, — M,, (5.19)

namely an involution that maps every generator to its conjugate. The holomorphic 4-form
Q40 then transforms as Q49 — Q04 based on the discussion in section 4.1. This, in
turn, implies the invariance of the Cayley 4-form. Therefore, o0y combined with worldsheet
parity leads to a Spin(7) orientifold. Since o applies to any CYy, we refer to it as the
universal involution. The resulting gauge theory is derived using the rules in section 4.3.

In general, depending on the geometry, other involutions can also exist. In the coming
sections, we will present various examples of such involutions. C* is special in that, as
we have previously discussed, all its anti-holomorphic involutions are equivalent to the
universal one.

The universal involution explicitly realizes the idea of N' = (0,1) theories as “real
slices” of N = (0, 2) gauge theories [19]. Moreover, in this context, the real slicing admits
a beautiful geometric interpretation as the Spin(7) orientifold of a CY4. We can similarly
think about other involutions as different real slices of the parent theories.

5.3 C*/Z

Let us consider the C*/Zy orbifold with action (z,y,z,w) — (—z,—y, —2, —w) as the
parent geometry. Its toric diagram is shown in figure 14.

The corresponding 2d N = (0,2) theory was constructed in [30]. Its quiver is shown
in figure 15(a).

The J- and E-terms are:

J FE
ALy YioZy — Z19Ym Wi Xo1 — X12Way
A} Z12Xo1 — X127 WiaYor — Y12 Wy
A3y s X1pYay — Yia X WhaZo1 — Z12Wan (5.20)
AYy + Yo1Zig — ZnYro Wa1 X129 — Xo1 Wi
A3y ZnX1g — Xo1Z12 Wai1Yie — Yo Who
A3y + XnYip — Yo Xio Wa1Z12 — ZonWhe

Figure 15(b) shows the quiver for this theory in A" = (0, 1) language. Denoting W (0:2)
the superpotential obtained from (5.20), W (1) is given by
2
wOD = w2 4 N AKX X+ Vi + 2]z + wiwy) (5.21)

1,7,k=1
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Figure 14. Toric diagram for C*/Zs.

Afy A3 AT Xo1, Yo1, Zo1, Wor

X12, Y12, Z12, Wi2 Ado, A3y, A5
(a) N'=(0,2) language.

1 A2 A3 A4R
Adq, ATy, Agy, AT
Xo1, Yo1, Zo1, Wy

Ay ABy Ay, ALE
(b) N = (0,1) language.

Figure 15. Quiver diagram for C*/Z, in N = (0,2) and N = (0, 1) language.

Since the J- and E-terms in (5.20) are more involved, we use the HS to extract the
generators of the moduli space. In table 3 we present their expression in terms of chiral
fields of the gauge theory.

The mesonic moduli space is not a complete intersection, so the PL of the HS does
not terminate. We can, however, extract the relations among the generators composing
the following ideal:

T = <M1M3 = M3, My Ms = MoMy, M3My = MyMs , My Mg = M2,
MyMg = MyMs, MsMg = M3, My Mg = MyMy , MMz = MyMsg
MMy = MyM7 , MoMy = MyMs , MsM7 = MaMg, M3Mg = M5Msg , (5.22)
MgM;7 = MyMy, MgMg = MsMy, My Myg = M7, MyMyg = M7 Ms,
MsMyg = Mg, MyMyo = M7z Mg, M5Myg = MsMg , MgMyo = M92> :
We now have everything necessary for identifying anti-holomorphic involutions and

constructing the corresponding Spin(7) orientifolds, both from the gauge theory and from
geometry.
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Meson Chiral fields

M, Yi2Yo;
M, Yi2Z91 = Y1212
M3 YALYZH

My X12Y21 = X91Y12
Ms X122 = Xo1Z12
Mg X12X21

Mo Y12Way = Yo1 Wi
Msg Z1oWa1 = Zo1Who
Mgy | X12Wa1 = Xo1Wia
Mg WiaWay

Table 3. Generators of C*/Zs.

5.3.1 Universal involution

Let us consider the universal involution defined in section 5.2. It maps the two gauge
groups to themselves. Chiral fields transform according to (5.16), i.e.

X12 =0, X127, . Yiz =y Yi2vg, s Ziz = 0. Zi2vg, . Wiz = e, Wi2vg,
Xo1 = 0, X017q, » Yo =0, Yo100, s Za1 = 10,2217, War = 0, Waing, -
(5.23)
The N = (0,2) Fermi fields transform as in (5.18), namely

Al — 791/_\%1’7511 , Af = 791/_\%1’)’511 , A} — 791/_\?175117 (5.24)
Ay — 792]\%2%_221 , A3 — %22]\%2%_221 , A3y — ’792]\%27521 :
Finally, the Fermi superfields coming from the A/ = (0,2) vector multiplets transform
according to (4.7)
AT = 0, A1 g, A — 10,49 g, - (5.25)

As argued in full generality in section 5.2, these transformations leave the superpotential
WO in (5.21) invariant.

Using table 3, we can translate this field theory involution into the geometric involution,
whose action on the generators of C*/Zs becomes

My, = M,,a=1,---,10, (5.26)

as expected for the universal involution.

The gauge symmetry and the projections of matter fields in the orientifolded theory
are controlled by 7q, and 7q,. According to the discussion in section 4.3, the choices of
Yo, and 7, are not independent. In this case, they should satisfy 7o, = 7yq,. To show this
correlation, we consider the effect of acting with the involution twice. For example, acting
on X129 we obtain

X12 = Y0, 70 X1270, Yo, » (5.27)
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1R 2R 3R 1R 2R 3R
AllA? AllA? AllA A22A‘ AQQA? A22A

R vR 7R R

SO(N) Xi5, Y15, Z15, Wi3
AlRw AQR AlR AZR
1157 4318> 4] @ 2255 43229
3R A4R L= 3R A4R
Avrs, AiTs R R R R Asys, Ao

Xo1, Ya1, Zo1, Wai SO(N)

Figure 16. Quiver for the Spin(7) orientifold of C*/Zy using the universal involution.

which should be equal to the identity transformation. Since vgq, is equal to 1y or J, this
implies that vo, = 7q,. Repeating this analysis for any other bifundamental field leads to
the same condition. We conclude that the gauge symmetry of the orientifolded theory is
either SO(N) x SO(N) or USp(N) x USp(N).

For concreteness, let us focus on the SO(N) x SO(N) case. Figure 16 shows the
corresponding quiver. There are eight real bifundamental scalars, coming from the bi-
fundamental chiral fields in the parent.'® Every adjoint complex Fermi in the parent is
projected to one symmetric and one antisymmetric real Fermi fields, while the adjoint real
Fermi fields from the N' = (0, 2) vector multiplets are projected to the symmetric represen-
tation. It is rather straightforward to write the projected superpotential but, for brevity,
we omit it here and in the examples that follow. Finally, it is easy to verify the vanishing
of gauge anomalies.

We would like to mention that, although the above models are built as orientifolds of
the C*/Zsy theory, they can be equivalently regarded as Zy orbifolds of the orientifolds of
C* in section 5.1. This viewpoint is useful to display that the models inherit the SO(4)?
global symmetry of the C* orientifolds, since the Zs orbifold acts in the same way on
the coordinates within each 4-plet. In fact, it is easy to gather the different multiplets in
SO(4)? representations (including the gauginos in the N’ = (0,1) vector multiplet, as befits
an R-symmetry). We leave the check of the SO(4)? invariance of the interactions as an
exercise for the interested reader. Similar remarks apply to other orientifolds of C*/Zs in
coming sections.

5.3.2 Beyond the universal involution: an SO(IN) X USp(IN) theory
Let us now consider another involution, which also maps the two gauge groups to themselves
but transforms chiral fields differently, according to

X2 = v, Y1270, » Yi2 = v X12vg, s Zi2 = vy Wi2vg, s Wiz = —va, Zi27g, »

Xo1 = 0, Yo17g, s Yar = =y, X017 s Zo1t = 10, Waivg, s War — =0, 2217, -
(5.28)
Invariance of W1 in (5.21) implies that the Fermi fields transform as

—1 —1 A3 1
Afy — ’YQlAhT'YQl , Af = ’YﬁlA%lT’YQl , Af = VﬂlA?fYQl ) (5.29)
-1 -1 A3 —1 )
Agy — VQQA%QTVQQ , A3 — WQzAngVQQ , A — 792A§2792 ;

15Tn what follows, we will use the term bifundamental in the case of matter fields that connect pairs of
nodes, even when one or both of them is either SO or USp.
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3R
11A

1 2
AllS? AllS?
3R 4R
A1 1S Al LS

1 2
A22Av AQQA?
3R 4R
A22A= A22A

Figure 17. Quiver for the Spin(7) orientifold of C*/Zy using the involution in (5.28), (5.29)
and (5.30). The squares indicate the number of flavors necessary to cancel gauge anomalies.

and

4R ART,—1 AAR 4RT, —1
AT = o, AT T g, 0 Ay = v A9 T g, - (5.30)

Using table 3, this translates into the following geometric involution

(Mh My, M3, My, M5, Mg, M7, Mg, My, Ml())

1 (5.31)
(M67 _Mga Ml()v _M47 M7a Mla M5a _M87 _M27 M3) .

As in the previous example, the choices of yo, and 7q, are correlated because they
are connected by matter fields. From (5.28), we conclude that for each pair of chiral
fields that are mapped to each other, the involution corresponds to the case n = £+ (_01 (1))
in (4.4). Following to the discussion in section 4.3, in this case the gauge groups project to
SO(N) x USp(N). We can explicitly see this constraint by considering the square of the

involution on, e.g., X129, for which we obtain
X1z = —70,70, X1270, Y, (5.32)

which should be equal to the identity. This implies that v, = 1y and yq, = J or vq, = J
and v, = 1. The other chiral fields lead to the same condition.

The resulting quiver is shown in figure 17. This theory suffers from gauge anomalies,
which can be canceled by adding eight scalar flavors to the SO group and eight Fermi
flavors to the USp group.

We would like to emphasize the fact that most of the orientifold theories in this paper
actually do not require flavor branes to cancel their anomalies. Our expectation is that
this is due to the relative simplicity of the singularities considered, at the level of their
structure of collapsed cycles (for instance, their toric diagrams have no collapsed cycles),
and that orientifold of more general singularities are likely to require flavor branes. This is
somewhat similar to the CY3 case, in which “simple” singularities (i.e. not having interior
points) generically lead to theories not requiring flavor branes, and only specific cases
require them [45]. Hence, the above example is particularly remarkable, and possibly
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illustrates, in a relatively simple setup, a feature which may be generic in orientifolds of
more involved CYy singularities.

6 Choice of vector structure

6.1 Vector structure in type IIB orientifold construction

The C*/Zy example serves to address an important point, which will apply to many oth-
ers of our more general examples discussed later. As already pointed out at the end of
section 4.4, when orientifolding by a certain geometric action, there are certain discrete
choices which lead to different orientifolds for the same geometric action. One such choice
is the already mentioned SO /USp projection; in this section we discuss a second (and
independent) choice, corresponding to the existence or not of vector structure in certain
singularities.

This possibility was first uncovered for singularities obtained as orbifolds of flat space
by even order groups, e.g. C"/Zsy, triggered by the analysis in [46] of 6d orientifold
models [47, 48], in particular orientifolds of C?/Zy. The key observation is that in such
orbifolds, the orientifold acts by mapping a sector twisted by an element 6% to the §*-
twisted sector, and hence for even order Zsy, the N -twisted sector is mapped to itself and
there are two possible choices of sign in this action. In the open string perspective, the two
possibilities correspond to choices of Chan-Paton actions satisfying

VoN = :l:’m’y%fyﬁl ) (6.1)

The relation with vector structure (namely, the possibility that the gauge bundle defined
by the Chan-Paton matrices admits objects in the vector representation or not) was further
clarified in [49] (also [50]).

Although these ideas arose in the 6d orbifold context, they are far more general. For
instance, the choice of vector structure has appeared in the construction of orientifolds of
toroidal orbifolds in [51]. In such compact setups, the choice of orientifolds with vector
structure sometimes requires the introduction of anti-branes [52, 53]; however, this is due
to untwisted RR tadpoles, and hence any choice of vector structure leads to consistent ori-
entifolds of non-compact C2/Zgy singularities (see e.g. the constructions in 6d in [54, 55]
and in 4d in [45, 56]). An even more important generalization is that the existence of a
discrete choice of vector structure in the orientifold action generalizes beyond orbifold sin-
gularities, and applies to a far broader set of singularities. This was tacitly included in the
construction of general orientifolds of general toric Calabi-Yau 3-fold singularities in [42].

In practical terms, the appearance of the choices of vector structure in orientifolding
arises when, for a given geometry, there are different Zy symmetries on the underlying
quiver gauge theory, which differ in the action on the quiver nodes: an orientifold whose
action on nodes is pairwise exchange, with no nodes mapped to themselves, corresponds to
an action without vector structure, whereas the presence of nodes mapped to themselves

corresponds to an action with vector structure. 6

6 There are cases, e.g. orbifolds by products of cyclic groups Zy X Zas etc., in which the orientifold may
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We thus expect that the choice of vector structure will arise in our present setup
of Spin(7) orientifolds of Calabi-Yau 4-fold singularities. In particular, for orbifolds of
C*, this should already follow from the early analysis in [46]. From this perspective,
the orientifold of C*/Zs constructed in section 5.3 corresponds to an orientifold action
with vector structure, since each of the two gauge factors of the underlying N' = (0, 2)
theory are mapped to themselves. Our discussion suggests that it should be possible to
construct an orientifold of the same geometry, with the same orientifold geometric action,
but without vector structure. This corresponds to the symmetry of the ' = (0,2) theory
that exchanges pairwise the two gauge factors. We will indeed build this orientifold without
vector structure in the following section.

This brings about an important observation. The universal involution in section 5.2
maps each gauge factor of the N' = (0,2) theory to itself, hence it corresponds to actions
with vector structure. Therefore, in geometries admitting it, the choice of orientifold
action without vector structure must correspond to orientifolds actions beyond the universal
involution. Thus, the possibility of choosing the vector structure is already ensuring that
the set of orientifold theories is substantially larger than the class provided by the universal
involution.

6.2 (C?/Zs revisited: an orientifold without vector structure
Let us revisit the C*/Zs theory, but this time consider an anti-holomorphic involution that
maps one gauge group to the other. A possible involution of the chiral fields reads

Xi2 = 70, X017, Y12 = 10,Ya17qg) s Zi2 = 1. Za17g, s Wiz = v, Waing,

Xo1 =y, X127g, » Ya1r = v Y125, s Zo1 = v Zi2vg, . War — o, Wiavg, -

(6.2)
Invariance of W1 in (5.21) implies that Fermi fields transform as
Al — 792/_\%27521 , A — ’792]\32’)’521 , A= 792/_\%275217 (6.3)
A%2 - 791]&%17{211 ) A%Z — ’791]&%17511 ) A%2 - 791/7\%1753’
and
AT = 90,035 T g, s A — e, AT g, (6.4)
Using table 3, (6.2) translates into the following geometric involution
M, — Mg,a=1,---,10, (6.5)

which coincides with (5.26). This model and the one in section 5.3.1 provide concrete
examples in which the same geometric action but different choices of vector structure lead
to different Spin(7) orientifolds. The resulting quiver is shown in figure 18. It is free of
gauge anomalies.

act with vector structure with respect to the Zx and without vector structure with respect to the Zy.
For simplicity, we ignore these more subtle possibilities and stick to the stated convention, as a practical
reference device.
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Figure 18. Quiver for the Spin(7) orientifold of C*/Z, using the involution in (6.2), (6.3) and (6.4).
The underlying geometric involution coincides with the one for the model in figure 16, but both
theories differ in the vector structure.

Y
B“

Figure 19. Toric diagram for Ds.

We would like to conclude this discussion with an interesting observation: in our
example, the orientifold models with/without vector structure differ also in the fact that
one requires flavor branes to cancel anomalies, while the other does not. In fact, this
feature has also been encountered in the 4d case of D3-branes at (orientifolds of) CY3. For
instance, in the 4d V' = 1 orientifolds of even order orbifolds C?/Z;, theories in [45], models

without /with vector structure were shown to require/not require flavor D7-branes.!”

7 Beyond orbifold singularities

In this section, we construct Spin(7) orientifolds in which the parent theory is a non-orbifold
toric CYy.

7.1 Dj

Let us consider the CY,4 with toric diagram shown in figure 19. This geometry is often
referred to as Ds.

The N' = (0,2) theory on D1-branes probing D3 was first derived in [30]. Its quiver
diagram is shown in figure 20(a).

n a T-dual type ITA picture with D4-branes suspended between k NS-branes, in the presence of two O6'-
planes, the two possibilities differ in having the NS-branes splitting/not splitting the O6’-planes in halves. In
the former case, the orientifold plane charge flips sign across the NS-brane and charge conservation requires
the introduction of additional half-D6-branes (i.e. flavor branes) for consistency [57] (see also [58, 59]).
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(a) N = (0,2) language.

Figure 20. Quiver diagram for D3 in N' = (0,2) and N = (0, 1) language.

The J- and E-terms read

(b) N = (0,1) language.

J FE
A1p + X1 X13X31 — X990 X0y X11X12 — X12X23X30
Aoy @ X13X31 X2 — X12X09 Xo3X32X01 — Xo1 X1y
Aoz @ X33X30 — X320 X901 X120 Xo3X31X13 — X2 Xo3 (7.1)
A3y Xo3X33 — Xo1 X120 Xo3 X32Xo9 — X31X13X32
A1 X13X33 — X12X01 X33 X31X11 — X32X03X31
A3 0 X531 X12X01 — X33X31 X11X13 — X13X32X03

Figure 20(b) shows the quiver for this theory in ' = (0,1) language. The W1

associated to (7.1) is

3 3
WD WO S AKXk 3 M (XX ). o
i=1 i,j=1
J#i

Table 4 shows the generators, which were obtained using the HS. They satisfy the

following relation

T = (MyMyM;s = MyMs) .

(7.3)

Of course, as for all cases, we can consider the universal involution. However, in this
section we will consider another involution, which gives rise to an SO(N) x U(N) (or
USp(N) x U(N)) gauge theory.

SO(N) x U(N) orientifold. Let us consider an involution which, roughly speaking,
acts as a reflection with respect to a vertical axis going through the middle of figure 20.
Node 1 maps to itself, while nodes 2 and 3 get identified.
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Meson Chiral fields
M, Xo3X32 = X11
My | X13X31 = Xoo
M3 X12X01 = X33
M, X23X31X12
M5 X13X32 X021

Table 4. Generators of Djs.

Chiral fields transform according to

X1 =y, Xuvg, . Xo2 — 10, X375, s Xss — v0, X207, »
Xi2 =y, X1370, > Xo1 = 10, X317, » Xas = v0, X327, » (7.4)

X32 — ’YQQXQS’Y{); , X31— ’mngl’Yg_hl , X13 — ’YQIXQ’Y{;; .
Invariance of W in (7.2) implies that Fermi fields transform as

Aig — ’ml/_hw{ggl, Aoy — —7931_\31’7511, Aoz — —792A2T3’Y§317

) , (7.5)
Azz = v0,8570, » Azt = —0,A07) . Az — 0, M2,
and
AR =y AR Ty AR = 0 AR TG A — e, AT (7.6)

Using table 4, we derive the corresponding geometric involution o on the generators
of D3
<M17M2,M3,M4,M5>
3 (7.7)
(1\2/1,1\2/3,]\2/2,]\2/5,]\2/4) :

Since D3 is a complete intersection, we can easily check that ¢ maps the holomorphic
4-form Q49 to QY. We define

o dMy N dMso N\ dMs N dMy N\ dMs . dMy N dMo N\ dMs N\ dMy

040 — R, =
My MMz — MyMs My

(7.8)

which maps to

dMl A dMg A dMQ A dM5
M; '
Either choosing the residue with respect to My to express the holomorphic 4-form, or by
using the relation in the ideal (7.3), one can show that (7.9) is exactly the anti-holomorphic
4-form Q4 of Ds. Based on the discussion in section 4.4, we conclude that Qo with o
in (7.7) indeed gives rise to a Spin(7) orientifold.

(7.9)

Returning to the gauge theory, we obtain an A’ = (0, 1) theory with gauge symmetry
SO(N) x U(N) or USp(IV) x U(N), depending on whether vo, = 1 or J. The quivers for
both choices are shown in figure 21. Both theories are free of gauge anomalies.
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(a) SO(N) (b) USp(N)

Figure 21. Quivers for the Spin(7) orientifolds D5 using the involution in (7.4), (7.5) and (7.6).
The two different theories correspond to the choices vq, = 1y or J.

©

Figure 22. Toric diagram for Hy.

7.2 H,y

Another example that we are going to discuss is H4. We show its toric diagram in figure 22.

In particular, we will consider two N = (0,2) gauge theories associated with Hy,
denoted as Phase A and Phase B. These two phases are related by N = (0, 2) triality and
were first introduced in [15]. While they have different matter content and J- and E-terms,
they share the same moduli space. Therefore, the generators of their moduli space and the

relations among them are the same.
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(a) N = (0,2) language. (b) N = (0,1) language.

Figure 23. Quiver for Hy in phase A.

7.2.1 Phase A

The quiver diagram for Phase A is shown in figure 23, both in N' = (0,2) and N' = (0,1)
languages.
The J- and E-terms are

J E
Al XuuXa — X13X3220 Y13X34Z41 — X12Y21
A} 0 X1aYa — Y1i3X32Z0 X12X01 — X13X34Z11
A s X14Za — X12Z; X13X32Y21 — Y13 X34 X1
Als 0 X32X01 — X34 X1 Y13 X33 — X14Zu Y13 (7.10)
Afs 1 XsoYo — X34V X12221X13 — X13X33 ‘
Al + X1 X4 — Zo1X13X34 Z31Y13X32 — Y41 X712
Ay © YorXig — ZnY13 X3y Xu1X12 — 251 X13X32
Aoz : X33X32 — X32791 X712 Y91 X153 — Xo1Yi3
Ayg3 1 X33X34 — X34Z241X14 XYz — Y X3

The WD superpotential becomes

wOD — w02 ¢ AB(XT X + X, X144+ XJ, Xo1 + Yy Yo1 + Z8, Zoy
+ X0 Xax + Y Vi + ZJy Zay + X[ Xas + Y Vis)
+ AR (XTI, X0 + XTIy Xao + X3, Xoy + Yo Yoy + Z3, Zo1) (7.11)
+ AR (X3 Xa3 + X Xap + X, Xag + X[ Xas + Vi)
+ Aﬁ(X1T4X14 + X§4X34 + XLX41 + YLY41 + ZLZ41) .

Table 5 shows the generators of the moduli space, which were computed using the HS,
and their expression in terms of the chiral fields in phase A.
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Meson Chiral fields
M, X33 = X14Z41 = Z21X12
M, Y21X12 = Z41Y13 X34
M3 X14Ya1 = Z01Y13X30
M, X32Y21Y13 = X34Yy1 Y13
Ms Xo1X12 = Z41 X13X34
Mg X14X41 = Z21X13X32
My KN32Y21 X153 = X32X01Y13 = X34 Y1 X3 = X34 X421 Y13
Mg X32X01X13 = X34 X41X13

Table 5. Generators of H, in Phase A.

The relations among the generators are

T =(MyMy = My My, My My = My Mg, MyMyz = MgMs , My Mz = My M,
MsMy7 = MyMg, M Mg = MsMg, MaMg = MsMy, MsMg = MgM7 , (7.12)
My Mg = M$> .
SO(N) X U(N) x SO(N) orientifold. Let us consider an anti-holomorphic involution
of phase A which acts on figure 23 as a reflection with respect to the diagonal connecting
nodes 1 and 3. Then, nodes 1 and 3 map to themselves, while nodes 2 and 4 are identified.
The involution on chiral fields is
X33 = 70, X337, » X1 =1, X1270, » Za = . Za17g, » Yor = 0, Xag,
Yiz =y, X137, » Xsa = 0. X327, Yo =y, X017, . Xi2 = e, Xug,
Zor = youZavg) s Xa = ye.Yarg s Xis =0 Yisvg, . Xse = 0, Xsavg,
Xo1 — 'YQ4Y41'Y§11 . (7.13)
It is interesting to note that since phase A is a chiral theory, it clearly illustrates a
characteristic feature of anti-holomorphic involutions: they map chiral fields to images with

the same orientation, as it follows from the discussion in section 4.2.

From the invariance of W1 we obtain the transformations of the Fermi fields
-1 —1 A —1
Al = = Mg A 2 A e AN = A g,
A%B - _791]&%3'7631’ A%B - _791]\%375317 A}LQ - _’794A4112T’y§217 (7‘14)
Al = oMb vl Ass = a,Masvg) s Aas = oM,

and

4R ART, —1 R RT, —1 R RT,_ -1 R RT, -1
AT =y AT g, s A% A g, s Mgz = s Tas Ay = v, 09" Vg, -
(7.15)
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Figure 24. Quiver for a Spin(7) orientifold of phase A of Hy using the involution in (7.13), (7.14)
and (7.15).

Using table 5, we find the corresponding geometric involution ¢ on the generators of Hy

(Mh My, M3, My, M5, Mg, Mz, Ms)

! (7.16)
(Mla Mﬁa M57 MS; M?n MQ; M77 M4) .

The orientifolded theory has gauge group G1(N) x U(N) x G3(N). The involution
of the fields connecting nodes 1 and 3 implies that in this case we must have vo, = vq,.
Then, G1(N) and G3(N) can be either both SO or both USp gauge groups, but cannot be
of different types. For example, figure 24 shows the quiver for Go(N) = G3(N) = SO(N).
The theory is free of gauge anomalies.

7.2.2 Phase B

Figure 25 shows the quiver for phase B of Hy.
The J- and E-terms are

J E
Aoy X13X34Ya2 — Y13 X34 X490 Xo1X14 X1 — Xo3X32X01
Aly + X93X34YioXo1 — X1 Y13 X34 X1 X13X32 — X14 X2
A%y 0 Xo1 X13 X34 Xa1 — Xo3 X34 X2 X 01 Y13X32 — X14Ya2 (7.17)
Aszyg Yio X01X13 — X42X01Y13 X34 Xa1X14 — X32X23X34
Als 0 X34V X1 X14 — X32X21Y13 X34 X42Xo3 — X41X13
A%y 0 X30X01X13X34 — X34 X492 X201 X14 Y9 Xo3 — X41Y13
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(a) N = (0,2) language. (b) V' = (0,1) language.

Figure 25. Quiver for H, in phase B.

Meson Chiral fields
M, Xo3X30 = X1 X14
Mo X34Y42Xo3 = X34 X41Y13
M3 X21X14Y4o = X01Y13 X302
My X34Y42 X5, Y13
M; X34 X420 X203 = X34 X41X13
M X1 X14X42 = X021 X13X30
M- X2 X01Y13X34 = Yy X1 X153 X34
Msg X2 X201 X13X34

Table 6. Generators of H, in Phase B.

The WO superpotential is
WOD = w2 4 A (X, Xor + X) Xan + X[, X1 + X3 X13 + VhYis)
+ A%(X;%ng + X§1X21 + X12X42 + X§2X32 + Y4Jr2Y42)

R (vt T i T T (7.18)
+ A3 (X393 X03 + X390 X30 + X3, X34 + X{3 X134+ Y5Y13)
+ A (X Xao + X0y X + X Xaa + X[y X4+ Yo Vio)
Table 6 shows the generators of Hy in terms of the chiral fields in phase B.
They satisfy the following relations
T =(MyMy = MyMs, My My = My Mg, My Mz = MsMs , My Mz = My Ms,
M3My7 = MyMg , My Mg = MsMg, MaMsg = MsM7, M3Mg = MMz, (7.19)

MMy = MZ) .

This can be seen not only geometrically, but also from the gauge theory. While, as
already mentioned, the generators and their relations are common to all the phases, their
realizations in terms of chiral superfields in each of them are different.
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Figure 26. Quiver for a Spin(7) orientifold of phase B of Hy using the involution in (7.20), (7.21)
and (7.22).

U(N) x U(N) orientifold. Let us consider an anti-holomorphic involution of phase B
which acts on figure 25 as a reflection with respect to a horizontal line through the middle
of the quiver. Nodes are mapped as 1 <+ 4 and 2 <> 3.

The involution on chiral fields is

Xoz = v0, X327, »  Xa1 = 70, X1avg, » X1 = 10, X017, Yaz — ve, X137, -
Yiz — 794)_(42%321, X3 — 792)_(237531, Xy — 794)_(4175117 Xop — 793)_(3475417

X13 — ’79417427521, Xag — ’79117137531'
(7.20)
Requiring the invariance of W we obtain the transformations for the Fermi fields
Aar = yo,ha17g) . Mo = 1 AhrGs 0 Al = Mg, (ra1)
Ass = Yo, A7) Ay = v, MG, Al = v Alg,

and

R RT,. —1 R RT,—1 R RT,. —1 R RT,—1
A = oA g, Aoe = s A3 Vg, s Ass = 0, A% g, Ady — v AT g, -
(7.22)
Using table 6, we get the corresponding geometric involution o on the generators of Hy

(M1, My, M3, My, M5, Mg, M7, Ms)

1 (7.23)
(Mla M(,, M5, MBa M?)a MQa M?a M4) )

which is exactly the same anti-holomorphic involution in (7.16). In section 7.2.3 we elab-
orate on the relation between both theories and the role of vector structure.
Figure 26 shows the quiver for the orientifolded theory, which is anomaly free.

7.2.3 Vector structure explanation

On general grounds, one can expect that considering orientifolds by the same anti-
holomorphic involution on geometries in different toric phases of the same geometry, should
lead to equivalent N' = (0, 1) theories. Indeed, this can lead to a systematic construction
of N = (0,1) theories related by 2d trialities, as we will discuss in a companion paper [29].

On the other hand, this is not the case for the two orientifolds constructed in the pre-
vious section. We have seen that the H4 theory admits several orientifold quotients which
nevertheless correspond to the same anti-holomorphic involution, see (7.16) and (7.23). In
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this section, we show that the resulting theories are different because they correspond to
orientifold quotients with or without vector structure, realized in the context of a non-
orbifold singularity.

Indeed, the structure of the orientifold action on the gauge factors follows the pat-
tern described in section 6 for orientifolds of orbifolds of C*. Namely, the orientifold in
section 7.2.1 acts on the quiver of the Hy theory (in the toric phase A) by swapping the
two nodes 2 and 4, while mapping nodes 1 and 3 to themselves; this corresponds to an
orientifold with vector structure. On the other hand, the orientifold in section 7.2.2 acts
on the quiver of the Hy theory (in the toric phase B) by swapping 1 <> 4 and 2 < 3; this
corresponds to an orientifold without vector structure.

Hence, even though the two models correspond to the same underlying geometry, with
an orientifold action associated to the same anti-holomorphic involution, the resulting
orientifold theories are associated to genuinely different actions of the orientifold on the
gauge degrees of freedom, and lead to inequivalent models.

An interesting observation is that the orientifolds with and without vector structure are
obtained as orientifold quotients of the theory in two different toric phases. This effect did
not arise in the context of orbifolds of C*, since these do not admit multiple toric phases:
on the other hand, it is actually an expected phenomenon in non-orbifold singularities,
as it already occurs in the context of 4d N = 1 theories with D3-branes at orientifold
singularities. We illustrate this with the following simple example.

Consider a set of D3-branes at the tip of the non-compact CY 3-fold singularity de-
scribed by the equation

zy = 22w?. (7.24)

This corresponds to a Za quotient of the conifold, of the kind introduced in [60] as T-duals
of 4d Hanany-Witten (HW) configurations of D4-branes suspended between NS and rotated
NS-branes (aka NS'-branes). This T-dual picture allowed to recover the same geometry
from different Seiberg dual phases, as explicitly discussed in section 3 of [61]. In particular,
we can describe a phase A as corresponding to the type IIA configuration of D4-branes
suspended in intervals separated by NS-branes ordered as NS - NS - NS’ - NS’ on the circle,
and a phase B as corresponding to D4-branes suspended between NS-branes ordered as NS’
- NS - NS’ - NS on the circle.

Let us now perform an orientifold quotient in the type IIB geometry, which corresponds
to, e.g., introducing O6-planes in the type IIA T-dual; this can map NS-branes to NS-
branes, and NS’-branes to NS’-branes, and cannot swap NS- and NS’-branes. Hence, for
phase A, the only Zs-invariant configuration must have the orientifold swapping the two NS
branes, and swapping the two NS’-branes, see figure 27(a); hence, the interval between the
two NS-branes and the interval between the two NS’-branes are both mapped to themselves
under the orientifold action, while the intervals between NS- and NS’-branes are swapped.
The result corresponds to an orientifold with vector structure.

On the other hand, for phase B, a Zs-invariant configuration has e.g. NS-branes
mapped to themselves under the orientifold action, and the two NS’-branes swapped, see
figure 27(b); hence, no interval is mapped to itself, rather the four intervals are swapped
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(a) Phase A. (b) Phase B.

Figure 27. Configurations of D4-branes suspended between NS- and NS’-branes in the presence
of O6-planes leading to two different 4d A/ = 1 theories from orientifold quotients of the same CY3
geometry differing only on the existence (figure 27(a)) or not (figure 27(b)) of vector structure.

pairwise. The result corresponds to an orientifold without vector structure (there is an
equivalent model obtained by having NS’-branes on top of the orientifold plane, and the
two NS-branes swapped under the orientifold action).

This illustrates the fact that the construction of orientifolds with or without vec-
tor structure, for a given geometric involution, may require their realization in different
toric phases.

We have thus shown that, in order for equivalent orientifold geometric involutions to
produce equivalent theories, it is necessary that they also agree on the choice of vector
structure they implicitly define. This is an important ingredient in the application of
orientifold quotients to N' = (0,2) trialities to generate examples of theories displaying
N = (0,1) triality [29].

8 Partial resolution and Higgsing

In this section, we study partial resolutions connecting two different Spin(7) orientifolds,
which translate into higgsings between the corresponding gauge theories.

8.1 General idea

Consider two CYy’s, CYS) and CYEE), connected via partial resolution. Let us call the
gauge theories on D1-branes probing them 7'1(0’2) and 7'2(0’2), respectively.'® Partial res-
olution translates into higgsing connecting the two gauge theories, in which the scalar
component of one or more chiral fields gets a non-zero VEV (as usual, this is meant in the
Born-Oppenheimer approximation in 2d). In the process, part of the gauge symmetry is
higgsed and some matter fields may become massive. We refer to [30] for a more detailed

discussion and explicit examples.

¥More precisely, we mean one of the various phases related via N = (0,2) triality for each CYy4.
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Projection

Qo 0,2 0,1
ov) —2 5 0, 70— 7"
resolution resolution
2 5 02 5 401
CYy Qo 02 T3 Projection 2
(a) String background. (b) Field theory.

Figure 28. Interplay between partial resolution, orientifolding and higgsing.

Let us now consider a Spin(7) orientifold O; of CYL(E) associated to a given anti-
holomorphic involution o. If the partial resolution considered above is symmetric under o,
it gives rise to a partial resolution of @ into a Spin(7) orientifold Os of CYEE). At the field
theory level, the VEVs that higgs 7'1(0’2) — 7'2(0’2) are symmetric under the involution and
project onto a higgsing between the orientifold gauge theories, 7'1(0’1) — 7'2(0’1) . Figure 28
illustrates the interplay between partial resolution, orientifolding and higgsing.

8.2 Partial resolution and the universal involution

Interestingly, for theories obtained via the universal involution, every partial resolution
between CY4’s maps to a partial resolution between Spin(7) orientifolds. In this case,
every field in 7'1(072) and 7'2(0’2) is its own orientifold image. Therefore, the condition that
chiral fields and their images get VEVs simultaneously is automatically satisfied.

Under the universal involution, VEVs and the resulting higgsing of the gauge symme-
try and mass terms for some matter fields straightforwardly map from the parent to the
orientifolded theory. In other words, higgsing survives the “real slicing” of the universal
involution.

8.3 Beyond the universal involution: (C4/Zz X Zo — SPP xC

The interplay between partial resolutions and orientifolds that we discussed above is not
limited to the universal involution.

The parent. Let us consider the C*/Zy x Zy orbifold, with the two Zs groups generated
by the actions (1,1,0,0) and (1,0, 1,0) on C*, as phase rotations (in units of 7). From now
on, we will omit these vectors. This orbifold can be partially resolved to SPP xC, where
SPP denotes the complex cone over the suspended pinch point. The toric diagrams and
gauge theories for both geometries can be found in appendices A.1 and A.2. This partial
resolution and its translation into higgsing of the gauge theory has been discussed in detail
in [30].
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The two theories are connected by turning on a VEV for X;3.'9 As a result, the
U(N)1xU(NV)3 gauge groups are broken to the diagonal U(N); /3. In addition, the following
Fermi-chiral pairs become massive

11 — X33

X
{Aa21, X320}, {A137 5 }, {Aa1, X34}, {Asg2, Xo1}, {Azs, Xaa}. (8.1)

Integrating out the massive fields leads to the gauge theory for SPP xC.

The Spin(7) orientifold. In appendix A.1, we present a Spin(7) orientifold of C*/Zy x
Zo constructed using a non-universal involution, given in egs. (A.4) to (A.6). The crucial
point of that involution for the discussion in this section is that it maps Xi3 to itself.
Following the discussion in section 8.1, the resolution/higgsing of the parent is therefore
projected onto one for the Spin(7) orientifold.

In the Spin(7) orientifold of C*/Zs x Zs, the higgsing associated to this partial resolu-
tion proceeds by giving a VEV to X#%. This breaks the SO(NN); x SO(N)3 gauge symmetry
into the diagonal SO(INV);/3. In addition, the combination of real Fermi fields AﬁLQA%S,
coming from the N' = (0,2) vector multiplets of gauge groups 1 and 3, become massive.
Finally, The following fields also become massive

XR _XR XR _XR
Aoy, X3, AJY, 115 5 333 14 5 B4 A3g, Xo1 . (8.2)

Integrating them out, each of the surviving bifundamentals of SO(IN); x SO(N )3 becomes a
symmetric and an antisymmetric of SO(NN); /3. The resulting theory is exactly the one asso-
ciated for the Spin(7) orientifold of SPP xC in figure 34, generated by the anti-holomorphic
involution in egs. (A.11) to (A.13).

9 Conclusions

In this paper, we initiated the geometric engineering of 2d N/ = (0,1) gauge theories by
means of D1-branes probing (orientifolds of) Spin(7) cones. In particular, we introduced
Spin(7) orientifolds, which are constructed by starting from a CY,4 cone and quotient-
ing it by a combination of an anti-holomorphic involution leading to a Spin(7) cone and
worldsheet parity.

We illustrated this construction with various examples, including theories coming from
both orbifold and non-orbifold parent singularities, discussed the role of the choice of vector
structure in the orientifold quotient, and studied partial resolutions.

Spin(7) orientifolds explicitly realize the perspective on 2d A = (0, 1) theories as real
slices of N' = (0,2) ones. Remarkably, this projection is mapped to Joyce’s construction
of Spin(7) manifolds as quotients of CY4’s by anti-holomorphic involutions.

We envision multiple directions for future research. To name a few:

YThere are other choices of the chiral field getting a VEV that lead to the same resolution. They are
equivalent to this choice by symmetries.
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o In general, the map between Spin(7) orientifolds and 2d A" = (0, 1) gauge theories is
not one-to-one but one-to-many. We will investigate this issue in [29], showing that
this non-uniqueness provides a geometric understanding of N' = (0, 1) triality.

e Another interesting direction is to construct the gauge theories on D1-branes probing
Spin(7) manifolds obtained from CY4’s via Joyce’s construction, without the addi-
tional quotient by worldsheet parity leading to Spin(7) orientifolds. A significant part
of the results of this paper would also be useful for such setups. We plan to study
this problem in a future work.

 In section 8, we considered resolutions of Spin(7) orientifolds. It would be interest-
ing to investigate deformations and their gauge theory counterpart. Understanding
deformations for CYy’s and their translation to the associated 2d A" = (0,2) gauge
theories would be a useful preliminary step, which is interesting in its own right.

We hope that the novel perspective on 2d N' = (0,1) introduced in this paper will
provide a useful tool for understanding their dynamics.
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A (C4/Zg X Zo and SPP xC

In this appendix we present two additional examples of Spin(7) manifolds, which are con-
sidered in section 8.3 to discuss partial resolutions.

Al C4/Z2 X Zig

Figure 29 shows the toric diagram for the C*/Zy x Zy orbifold.
The gauge theory for D1-branes probing this orbifold was first constructed in [30]. Tts
quiver diagram is shown in figure 30(a).
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A

Figure 29. Toric diagram for C*/Zy x Zs.

(a) N'=(0,2) language.

(b) N = (0,1) language.

Figure 30. Quiver diagram for C*/Zy x Zo in N’ = (0,2) and N = (0, 1) language.

The J- and E-terms are

J FE
A1g : Xo3X31 — Xoa Xy X11 X712 — X12X99
Ao+ X14Xy2 — X13X32 XooXo1 — Xo1X11
A1z 0 X34 Xy — X32X01 X11X13 — X13X33
Az1 @ X12X03 — X14.X43 X33X31 — X31X11
A1y 0 Xy Xo1 — Xy3X31 X11X14 — X14Xyy
Ag1 0 X13X34 — X12X04 XyaXq1 — X1 X1 (A.1)
Aoz : X31X12 — X34 Xy Xo2Xo3 — X93X33
Azz : X9y Xy3 — X21X13 X33X39 — X39X99
Aoy @ Xy3X30 — X41 X712 XooXog — Xog Xy
Ay Xo1 X4 — X3 X34 X4 Xg2 — X2 X209
Agzy + X1 X3 — Xy2Xo3 X33X34 — X34Xy4
Ay3 0 X390 Xo4 — X351 X1y X4 X43 — X43X33
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Meson Chiral fields

M, X12X21 = X43X34
M, X13X31 = XoaZso
M3 X14 X4 = Xo3X39

My X14 X4 Xo1 = X3 X351 X102 = X390 X904 Xy3 = X1 X13X34 =
= X114 X43X31 = Xo3 X34 Xyp = X320 X01 X 13 = X41 X 12X
Ms X1 = Xop = X33 = Xyy

Table 7. Generators of C*/Zy x Zs.

Figure 30(b) shows the quiver for this theory in N' = (0,1) language. The w1
associated to (A.1) is

4 4
WO = w2 1 3~ Al (ijXij + X}ixﬂ) +Y AEX Xy (A.2)
ij=1 i=1
i#£]

Table 7 shows the generators of the moduli space and their expression in terms of
chiral fields.

They are subject to the following relation
T = (MMM = M) . (A.3)

SO(N) X U(N) x SO(N) orientifold. Let us consider an anti-holomorphic involution
which acts on figure 30 as a reflection with respect to the diagonal connecting nodes 1 and
3. Then, nodes 1 and 3 map to themselves, while nodes 2 and 4 are identified.

The involution on chiral fields is
X12 = v, Xuvg, » Xoo = e, Xavg), Xis = e, X7, Xs1 = 10, X117,
X1a — 791)2127521, Xy — ’YQQXm’Yg_zll, X3 — ’YQQXQ:;’V@;, X34 — 793)23275217
Xog — ’794)?42’7521, Xap — 792)_(247541, Xog — 794)_(437531, X32 — 793)_(347541,

X1 — —791)_(117511, Xoo — —794)_(447541, X33 — —793)_(337531, Xyg — —792)_(227521-
(A 4)

From the invariance of W1 we obtain the transformations of the Fermi fields
Aig — —7911_\14’7541, Aoy — —7941_\41’7511, Az — —7911_\13’7531, Az1 — —7931_\31’7511,
A — =0, Ay, A — —0,An0,) Az = —ra,Aes7,  Ass = —ya,As7g,

Mg = —ya,Ma27g,) s Aaz = —y0,M0a7, » Aoz = =, Aaszg, » A2 — —YasAsung,
(A'5)

and

—1 - - —1
A = 0, AT Ty, s A = 0, AT, A = 0, AT A = e, AT,
(A.6)
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Figure 31. Quiver for the Spin(7) orientifold of C*/Zy x Zy using the involution in (A.4), (A.5)
and (A.6).

Using table 7, the transformation in the field theory translates into the geometric
involution ¢ acting on the generators as

<M1, My, M3, My, M5)

] (A7)
(85, Mo, M, Ny, — 15 |

which, as expected, is different from and inequivalent to the universal involution M, — M,.
The quiver for the resulting theory is shown in figure 31, which is also free of gauge
anomalies.

A.2 SPPxC

Figure 32 shows the toric diagram for SPP xC.

The gauge theory for D1-branes probing this CY,4 was introduced in [30]. Its quiver
diagram is shown in figure 33(a).

The J- and E-terms are

J FE
A1 X13X31 — X12 X091 @11 X1 — X11Pny
Agr @ X12Xo93 X3 — X11 X712 Poo Xo1 — Xo1P11
A1z @ Xo1 X711 — X3 X32X91 X12Po2 — P11 X712 (A.8)
Az @ X13X32X93 — X11 X713 X31P11 — P33 X3
A1s X31X11 — X32X23X31 @11 X3 — X13P33

Aszp ¢ X291 X190 X93 — X903 X31X13 D33 X309 — X32Po9
Aoz 1 X39X01 X192 — X31 X13X30 Doo X3 — Xo3P33
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Y

Figure 32. Toric diagram for SPPxC.

(a) N'=(0,2) language. (b) ' = (0,1) language.

Figure 33. Quiver diagram for SPPxC in N = (0,2) and N = (0,1) language.

Meson Chiral fields

M, X13X30 X1
M X1 = X23X3
M3 X31X12X93

M, X12X01 = X13X31
M;y Dy = Pyy = P33

Table 8. Generators of SPPxC.

Figure 33(b) shows the quiver for this theory in ' = (0,1) language. The W1
associated to (A.8) is

3 3
WO = WO AfX] X0+ 3 A (XX + X0 X) + Yo Aflelea. (A9)
ij=1 i=1
i#£j

Table 8 shows the generators of SPPxC and their expression in terms of chiral fields.
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Figure 34. Quiver for a Spin(7) orientifold of SPP xC using the involution in (A.11), (A.12)
and (A.13).

They satisfy the following relation
7= <M1M3 = M2M3> . (A.10)

SO(N) X U(N) orientifold. Let us consider an anti-holomorphic involution which acts
on figure 33 as a reflection with respect to a vertical line going through node 1. Then, node
1 maps to itself, while nodes 2 and 3 are identified.

The involution on chiral fields is

X2 — ’YQIXB’Y{;;, Xo1 — 7935(317511, Xi13 — ’leu’Yg_le, X31 — 792)2217511,
Xogz — 793)_(327521, X32 — 792)_(237531, X1 — 791)_(117511, b — —791‘5117511,

Poy — —793@337531, P33 — —mgézﬂﬁj-
(A.11)

From the invariance of WD we obtain the transformations of the Fermi fields
Ay — *791/111753, Aoy — 793]\317511, Ap — 791A137§;, Az; — 792A217§37

Az = oMoy, s Az — —0,Me37g) . Aas — —YasAsa7g,
(A.12)
and

—1 —1 —1
AR — 'leAﬁT'le , AL — 'YQSA3R3T’YQ3 , AE — ’VQ2A£%2T’YQQ . (A.13)

Using table 8, the transformation in the field theory translates into the geometric
involution ¢ acting on the generators as

(Mla MQ, M3a M4a M5)
1 (A.14)
(M37 MQ, Mla M47 _M5) )
which is different from and inequivalent to the universal involution M, — M,. The quiver

for the resulting theory is shown in figure 31, which is also free of gauge anomalies.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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