PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: December 21, 2021
ACCEPTED: December 27, 2021
PUBLISHED: January 18, 2022

Spin(7) orientifolds and 2d N = (0, 1) triality

Sebastian Franco,”’ Alessandro Mininno,° Angel M. Uranga? and Xingyang Yu®
@ Physics Department, The City College of the CUNY,
160 Convent Avenue, New York, NY 10031, U.S.A.

b Physics Program and Initiative for the Theoretical Sciences,
The Graduate School and University Center, The City University of New York,
365 Fifth Avenue, New York, NY 10016, U.S.A.

¢Il. Institut fiir Theoretische Physik, Universitdt Hamburg,

Luruper Chaussee 149, Hamburg 22607, Germany
dInstituto de Fisica Tedrica IFT-UAM/CSIC,

C/ Nicolds Cabrera 13-15, Campus de Cantoblanco, Madrid 28049, Spain
¢ Center for Cosmology and Particle Physics, Department of Physics, New York University,
726 Broadway, New York, NY 10003, U.S.A.

E-mail: sfranco@ccny.cuny.edu, alessandro.mininno@desy.de,
angel.uranga@csic.es, xy10380@nyu.edu
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N = (0,1) gauge theories, based on its engineering in terms of D1-branes probing Spin(7)
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1 Introduction

2d N = (0,1) quantum field theories are extremely interesting, since they are barely
supersymmetric and live at the borderline between non-SUSY theories and others with
higher amounts of SUSY, for which powerful tools such as holomorphy become applicable.
Due to the reduced SUSY, they enjoy a broad range of interesting dynamics. While there
has been recent progress in their understanding, they remain relatively unexplored.

In [1], it was discovered that 2d N = (0, 2) theories exhibit IR dualities reminiscent of
Seiberg duality in 4d N' = 1 gauge theories [2]. This low-energy equivalence was dubbed
triality since, in its simplest incarnation, three SQCD-like theories become equivalent at
low energies. Recently, an IR triality between 2d NV = (0,1) theories with SO and USp
gauge groups was proposed in [3]. Evidence supporting the proposal includes matching
of anomalies and elliptic genera. This new triality can be regarded as a relative of its
N = (0,2) counterpart.

The geometric engineering of 2d N = (0, 1) gauge theories on D1-branes probing singu-
larities was initiated in [4], where a new class of backgrounds denoted Spin(7) orientifolds
was introduced. These orientifolds are quotients of Calabi-Yau (CY) 4-folds by a combi-
nation of an anti-holomorphic involution leading to a Spin(7) cone and worldsheet parity.
They provide a beautiful correspondence between the perspective of N' = (0,1) theories as
real slices of N/ = (0,2) theories and Joyce’s geometric construction of Spin(7) manifolds
starting from CY 4-folds. This geometric perspective provides a new approach for studying
2d N = (0,1) theories.

For branes at singularities, a single geometry often corresponds to multiple gauge
theories. Such non-uniqueness is the manifestation of gauge theory dualities in this context.
Examples of this phenomenon abound in different dimensions. The various 4d /' = 1 gauge
theories on D3-branes over the same CY 3-fold are related by Seiberg duality [2, 5, 6]. The
triality of 2d N = (0, 2) gauge theories on D1-branes over CY 4-folds and the quadrality of
0d N = 1 gauge theories on D(—1)-branes over CY 5-folds can be similarly understood [7,
8]. These ideas were further extended to the (m + 1)-dualities of the m-graded quivers that
describe the open string sector of the topological B-model on CY (m+2)-folds for arbitrary
m > 0 [9-11]. In this paper, we will show that the engineering of 2d N' = (0,1) gauge
theories in terms of D1-branes probing Spin(7) orientifolds leads to a similar perspective
on N = (0,1) triality.

The paper is organized as follows. In section 2 we review N' = (0,2) and N' = (0,1)
trialities in their original formulations and comment on their generalizations to quivers. We
discuss Spin(7) orientifolds and the corresponding 2d N = (0, 1) field theories arising on D1-
branes probing them in section 3. In section 4 we explain how the basic N' = (0, 1) triality
arises from the wuniversal involution. In section 5 we investigate how (generalizations of)
N = (0, 1) triality arise in the case of Spin(7) orientifolds based on more general involutions.
We present our conclusions in section 6. There are, also, three appendices that may help
the reader to follow the discussion in the main text. In appendix A we review the N' = (0,1)
formalism for 2d gauge theories, and in appendix B we list the possible contributions to
2d gauge anomalies for the groups and representations that we will encounter in the main



(a) (b)
Figure 1. 2d N’ = (0,2) SQCD and its triality dual. The central nodes have ranks given in (2.1).

text. Finally, in appendix C we give all the necessary details for the phases of Q%1 /Zy
involved in the triality web introduced in section 5.2.

2 N =(0,2) and N = (0,1) triality

In this section, we review the trialities of 2d N' = (0,2) [1] and N' = (0,1) [3] gauge
theories. Discussing N = (0,2) triality first is not only useful for setting the stage since
both trialities share various features, but it is also convenient since Spin(7) orientifolds
connect them.

2.1 N =(0,2) triality

Here we present a quick review of 2d A/ = (0, 2) triality. A detailed discussion can be found
in [1]. Additional developments, including connections to 4d, its realization in terms of D1-
branes at CY singularities, brane brick models and mirror symmetry, appear in [7, 12-15].

Without loss of generality, we can focus on the quiver shown in figure 1a, which can be
regarded as 2d N = (0,2) SQCD. The yellow node represents the SU(N,) gauge group that
undergoes triality, while the blue nodes are flavor SU(N;) groups, i = 1,...,3.! We have
absorbed the multiplicities of flavor fields in the ranks of the flavor nodes. In N' = (0,2)
quivers, we adopt the convention that the head and tail of the arrow associated to a
chiral field correspond to fundamental and antifundamental representations, respectively.
A Fermi field connecting the flavor nodes 1 and 3 has been included to make the original
and dual theories more similar.

The triality dual is shown in figure 1b. The rank of the central node in both theories
is determined by anomaly cancellation to be

Ny + N3 — N- Ny + Ny — N:
Ne=iEsm e oy T s (2.1)
2 2
The transformation of the rank can also be written as
Né =N — N,. (2.2)

Both theories in figure 1 have J-/E- terms associated to the triangular loops in the quivers.

'More generally, as in theories arising on D1-branes probing CY, singularities, such groups can have
additional matter charged under them and be gauged.



Figure 2. Triality loop for 2d A" = (0,2) SQCD.

Taking the dual theory as the new starting point and acting on it with triality, we
obtain the theory shown on the bottom left of figure 2. Applying triality a third time takes
us back to the original theory. We can therefore think about this second dual as connected
to the original theory by inverse triality.? The triality among these three theories can be
viewed as a cyclic permutation of Ny, No and Nj.

We will later use N' = (0,2) gauge theories engineered on D1-branes probing CY 4-
folds as starting points of orientifold constructions. Such theories have U(N) gauge groups.
A U(N,) version of N' = (0,2) triality was also introduced in [1]. It only differs from
the SU(N,) triality depicted in figure 2 by the presence of additional Fermi fields in the
determinant representation of the gauge group, which are necessary for the cancellation of
the Abelian anomaly. It is expected that Abelian anomalies of gauge theories on D1-branes
are cancelled via a generalized Green-Schwarz mechanism (see [16, 17] for 4d N' =1 and
2d N = (0,2) theories realized on D-branes probing orbifolds/orientifolds singularities).
For this reason, the determinant Fermi fields are not present in such theories and triality
reduces to the one considered in this section.

N = (0,2) triality can be extended to general quivers (see e.g. [1, 7, 1315, 18]). It acts
as a local operation on the dualized node, with the part of the quiver that is not connected
to it acting as a spectator. The transformation of such a theory under triality on a gauge
node k can be summarized as follows. The rank of node k changes according to

Nj, = > n}Nj — Ny, (2.3)
o

2The distinction between triality and inverse triality is just a convention.



X Y v A by
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A SO(Ny) | vec. - - vec.
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Figure 3. 2d N' = (0,1) SQCD. N, is given in eq. (2.4).

where ni‘k is the number of chiral fields from node j to node k. All other ranks remain the
same. The field content around node k changes according to the following rules:

(R.1) Dual Flavors. Replace each of (= k), (< k), ( — k) by (< k), ( — k), (— k),
respectively.

(R.2) Chiral-Chiral Mesons. For each subquiver i — k — j, add a new chiral field i — j.
(R.3) Chiral-Fermi Mesons. For each subquiver i — k — j, add a new Fermi field i — j.
(R.4) Remove all chiral-Fermi massive pairs generated in the previous steps.

For a detailed discussion of the transformation of J- and E-terms, see e.g., [9].

2.2 N = (0,1) triality

A similar triality for 2d N/ = (0,1) gauge theories was introduced in [3]. The primary
example in which the proposal was investigated is 2d N' = (0,1) SQCD with SO(N,)
gauge group, whose quiver diagram is shown in figure 3.2 The theory has N; + N3 scalar
multiplets in the vector representation of SO(N.). These scalar fields are further divided
into two sets, X and Y, transforming under SO(NV;) and SO(N3) flavor groups, respectively.
A bifundamental Fermi multiplet A connects SO(N7) and SO(N3).* There are also Ny
Fermi multiplets ¥ in the vector representation of SO(N,) and a Fermi multiplet ¥ in the
symmetric representation of SO(N,).

Anomaly cancellation for the SO(NN,) gauge group requires that®

N1+ N3— N

N, 5

(2.4)

3When drawing N = (0,1) quivers, black and red lines correspond to real N'= (0, 1) scalar and Fermi
fields, respectively. In addition, we indicate symmetric and antisymmetric representations with star and
diamond symbols, respectively.

4We will use the term bifundamental in the case of matter fields that connect pairs of nodes, even when
one or both of them is either SO or USp.

5The anomaly contributions of A/ = (0, 1) multiplets in various representations are listed in appendix B.
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Figure 4. 2d N' = (0,1) triality dual of the theory in figure 3. N/ is given in eq. (2.6).

The theory also has the following superpotential consistent with its symmetries

Nc N1 N3 N1 N3 Nc
WO = 3" 3.4 (Z XOX§+> Vv — m) YN N AaXAYE. (25)
a,f=1 a=1 b=1 a=1b=1a=1

Figure 4 shows the dual under triality. The transformation is rather similar to the
N = (0,2) triality discussed in the previous section. Once again, in this simple example,
the structure of the dual theory is identical to the original one up to a cyclic permutation of
N7, Ny and N3. For the flavors, scalar multiplets X, Y and Fermi multiplets ¥ are replaced
by scalar multiplets Y’/, Fermi multiplets ¥/, and scalar multiplets X', respectively. The
new theory also contains a Fermi field ¥’ in the symmetric representation of the gauge
group.

The gauge group is SO(N/), with the rank determined by anomaly cancellation

Ny + N1 — N.
N2t (2.6)
2
which can be expressed as

N!=N; — N,. (2.7)

Very much like Rule (R.3) of the previous section, the new Fermi A’ in the bifundamen-
tal representation of SO(N1) x SO(N3) can be regarded as a scalar-Fermi meson in terms of
the fields in the initial theory, i.e. A’ = X WU. Similarly, we can interpret the disappearance
of the original Fermi A between figures 3 and 4 as the result of it becoming massive via its
superpotential coupling to the scalar-scalar meson XY, which is analogous to the chiral-
chiral mesons of Rule (R.2). An interesting difference with respect to N’ = (0,2) SQCD
follows from the fact that SO representations are real. Equivalently, the quivers under
consideration are not oriented. It is therefore natural to ask why, in addition to A’ = XU,
figure 4 does not simultaneously have another scalar-Fermi meson YW in the bifundamen-
tal representation of SO(N2) x SO(N3). Its absence can be interpreted as descending from
N = (0,2) triality, in which the orientation of chiral fields prevent the formation of such a
gauge invariant. Additional thoughts on the connection between ' = (0,2) and N = (0,1)



Figure 5. Triality loop for 2d A" = (0,1) SQCD.

trialities will be presented in section 2.3. Also related to this issue, in the coming section,
we will discuss scalar-Fermi mesons in more general quivers.

The superpotential is identical to (2.5) upon replacing all fields by the primed coun-
terparts and permuting Ny, No and Nj.

Acting with triality again gives rise to the theory shown on the bottom left of figure 5.
A third triality takes us back to the original theory.

There is also a symplectic version of N' = (0,1) triality [3]. The corresponding SQCD
has USp(NV,) gauge group and USp(N7) x USp(Nz2) x USp(N3) global symmetry. The
matter content is almost the same as in the SO(N,) SQCD quiver shown in figure 3, with
the exception that the Fermi field ¥ instead transforms in the antisymmetric representation
of USp(V.). The rank of the gauge group is N, = W to cancel gauge anomalies.
In this case, the triality loop is identical to the one shown in figure 5.

Evidence for the N' = (0,1) triality proposal includes matching of anomalies and
elliptic genera [3]. In the coming sections, we will provide further support for this idea, by
realizing 2d N = (0, 1) theories via Spin(7) orientifolds.

2.3 N = (0,1) triality for quiver gauge theories

Let us consider the extension of N' = (0,1) triality to general quivers. To do so, it is useful
to first draw some lessons from Seiberg duality and N = (0,2) triality. In both cases,
incoming chiral fields at the dualized gauge group play a special role.” They control the

®Differently from [3], we adopt the convention USp(2) ~ SU(2) in order to be consistent with the notation
of the orientifold theories we construct later.

"This is a general phenomenon that applies e.g. to the order (m + 1) dualities of m-graded quivers [9].
Seiberg duality and N = (0, 2) triality correspond to the m = 1 and 2 cases, respectively.



rank of the dual gauge group and, for triality, determine which mesons are formed. Since
N = (0,1) quivers are unoriented, how to split the scalar fields terminating on a dualized
node into two sets analogous to “incoming” and “outgoing” flavors is not clear. This issue
was hinted in our discussion in the previous section.

In [3], a generalization of triality to a simple class of quiver theories with SO(N,,) x
SO(N,) X ... gauge group (or the symplectic counterpart) was briefly discussed. Theories
in this family are obtained by combining various N' = (0,1) SQCD building blocks, which
are glued by identifying any of the three global nodes of a given theory with the gauge
node of another one. Locally, the resulting theories have the same structure of basic SQCD.
Namely, every gauge node is connected to three other nodes, to two of them via scalar fields
and to the remaining one via Fermi fields. Due to this simple structure, the dualization of
any of the gauge groups is unambiguous and proceeds as in basic triality. For every node,
the two possible choices of scalar fields acting as “incoming” or “outgoing” corresponds to
acting with triality or inverse triality.

For general quivers, in which a given node can be connected to multiple others, how
to separate the flavor scalar fields at every gauge group into two sets is an open question.
All the theories that we will construct later using Spin(7) orientifolds are indeed beyond
the above special class. However, this ambiguity is resolved in them by inheriting the
separation of flavors from the parent N/ = (0,2) theories.

3 Spin(7) orientifolds

In this section we review the construction of Spin(7) orientifolds introduced in [4] and the
2d N = (0,1) field theories arising on D1-branes probing them. We focus the overview on
a few key points relevant for subsequent sections, and refer the reader to this reference for
additional details.

Our starting point is a toric CY 4-fold singularity Mg. When probed by a stack of D1-
branes at the singular point, the worldvolume theory corresponds to an A" = (0, 2) quiver
gauge field theory. When Mg is toric, the structure of gauge groups, matter content and
interactions of these theories is nicely encoded by brane brick models [13, 19, 20] (see [21]
for an early related construction). Nevertheless, for our purposes it suffices to use the
quiver description, supplemented by the explicit expression of the interaction terms (.J-
and E-terms).

We then perform an orientifold quotient by the action Qo, where {2 is worldsheet parity
and o is an anti-holomorphic involution of Mg leaving a specific 4-form, that we call Q®),
invariant. Such 4-form is constructed from the CY holomorphic 4-form Q®*9 and the
Kahler form J(&D as

0@ = Re (9(4’°)> + %J(l’l) AJED (3.1)

If the quotient did not involve worldsheet parity, this quotient corresponds to Joyce’s
construction of Spin(7) geometries, with QW defining the invariant Cayley 4-form of such
varieties. To keep this connection in mind, the above orientifold quotients were dubbed
Spin(7) orientifolds in [4].



This orientifold quotient has a natural counterpart on the D1-brane systems, and
naturally realizes a “real projection” of the 2d N/ = (0,2) theories in [3], resulting in a 2d
N = (0,1) gauge field theory. Its structure is determined by a set of rules analogous to
those of orientifold field theories in higher dimensions (see e.g. [22] in the 4d context), and
which were explicitly determined in [4]. Morally, it corresponds to identifying the gauge
factors and matter fields of the parent A/ = (0,2) theory under an involution symmetry &
of the quiver, compatible with the set of interactions.

To describe the orientifold action on the field theory in more detail, we label the
different nodes by an index i, and their orientifold images by ¢’ (with i = i corresponding
to nodes mapped to themselves under the orientifold action), and denote X;; and A;; the
bifundamental A" = (0, 2) chiral or Fermi multiplets charged under the gauge factors i and
j (with j =i corresponding to adjoints). The results of [4] are:

la. Two gauge factors U(N);, U(N); mapped to each other under the orientifold action
(namely i # ') are identified and give rise to a single U(N) factor in the orientifold
theory.

1b. On the other hand, a gauge factor U(N); mapped to itself (namely, i’ = ) is projected
down to SO(NNV) or USp(N).

2a. Two different chiral or Fermi bifundamental fields X;; and X;;, mapped to each
other under the orientifold action, become identified® and lead to a single (chiral or
Fermi) bifundamental field. This holds even in special cases for the gauge factors,
such as 7' = 7, or simultaneously i = 7 and j' = j, and for the special case of fields in
the adjoint, j =1, 5/ = 7'.

2b. Two different chiral or Fermi bifundamental fields X;; and Yj/;, related each to the
(conjugate of the) other under the orientifold action, give rise to one field in the two-
index symmetric and one field in the two-index antisymmetric representation of the
corresponding SO / USp i*" gauge factor in the orientifold quotient. The rule holds
also in the case of adjoint fields, namely i’ = i.

3a. A bifundamental field X;; that is mapped to itself by the orientifold action gives rise
to a real N = (0, 1) field transforming under the bifundamental of G; x G, where G;
and G are the same type of SO or USp gauge group.

3b. A bifundamental Fermi field A;; can only be mapped to itself (resp. minus itself) in
the case of a holomorphic transformation, and gives rise to a complex Fermi superfield
in the symmetric (resp. antisymmetric) representation of the resulting U(n); group.

3c. Closely related to Rule 3b, an adjoint complex Fermi field A;; that is mapped to itself
(resp. minus itself) via a holomorphic transformation, gives rise to a complex Fermi

8In the presence of multiple sets of fields in these representations, the mapping may include a non-trivial
action on the flavor index, encoded in a matrix 7. As explained in [4], the choice can impact on the
orientifold projection of the relevant gauge factors. We will encounter a non-trivial use of this freedom in
the example in section 5.1.



field in the symmetric/antisymmetric (resp. antisymmetric/symmetric) representa-
tion of SO / USp.

3d. An adjoint complex scalar or Fermi field that is mapped to itself gives rise to two
real scalar or Fermi fields, one symmetric and one antisymmetric.

4a. A real Fermi Ag- which transforms into Aﬁi,, with ¢/ # 4, are projected down to a
single real Fermi Aﬁ

4b. A real Fermi A} mapped to itself (resp. minus itself), with i’ # 4, gives rise to a
symmetric (resp. antisymmetric) real Fermi for an SO (resp. USp) projection of the
node 3.

These rules suffice to construct large classes of examples of 2d A = (0, 1) field theories,
in particular the explicit examples in coming sections.

Note that the N/ = (0,1) theory obtained upon orientifolding the parent ' = (0, 2)
may have non-abelian gauge anomalies. In such cases, the models require the introduction
of extra flavor branes (namely, D5- or D9-branes extending in the non-compact dimensions
of the CY 4-fold) for consistency. As already remarked in [4], very often the orientifolded
theories happen to be non-anomalous, and hence do not require flavor branes. This will be
the case in our examples later on.

The universal involution. We would like to conclude this overview by recalling from [4]
that any A/ = (0,2) quiver gauge theory from D1-branes at toric CY 4-fold singularities
admits a universal anti-holomorphic involution. It corresponds to mapping each gauge
factor to itself (maintaining all with the same SO or USp projection), and mapping every
N = (0,2) chiral or Fermi field to itself anti-holomorphically.

To be more explicit, let us introduce a set of matrices 7, implementing the action
of the orientifold on the gauge degrees of freedom of the i*" node.” Then, the orientifold
projections for the universal involution read

Xij = e Xivg, Ay = redig, (3.2)

where, by X;; or A;; we mean any chiral or Fermi field present in the gauge theory. In
addition, the N/ = (0,1) adjoint Fermi fields coming from N = (0,2) vector multiplets
transform as

AR — ’YQiAﬁ T’yﬁ} . (3.3)
There is relative sign between this projection and the one for gauge fields, which implies
that an SO or USp projection of the gauge group is correlated with a projection of A into a
symmetric or antisymmetric representation, respectively. These projections are consistent
with the invariance of the AN/ = (0,1) superpotential. Modding out by this orientifold
action, the resulting ' = (0, 1) field theory is determined by applying the above rules.

9 Actually, the matrices Yo, are a useful ingredient in implementing the orientifold projection, even in
examples beyond the universal involution, as we will exploit in explicit examples in later sections.
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N =(0,2)

triality
Universal Universal
Involution Involution
N =(0,1)
triality

Figure 6. The universal involution on N = (0, 2) triality results in A" = (0, 1) triality.

From the geometric perspective, this universal involution corresponds to the conju-
gation of all generators of the toric CY 4-fold. The action on the holomorphic 4-form is
Q40 5 Q04 suitable for the realization of an Spin(7) orientifold. The following section
focuses on models obtained via the universal involution.

4 N = (0,1) triality and the universal involution

Let us consider what happens when the universal involution is applied to two gauge the-
ories associated to the same CY 4-fold, which are therefore related by N' = (0, 2) triality.
Remarkably, we obtain two theories connected by precisely N' = (0,1) triality. By con-
struction, the two theories correspond to the same underlying Spin(7) orientifold, realizing
the general idea of N' = (0, 1) triality arising from the non-uniqueness of the map between
Spin(7) orientifolds and gauge theories.

We illustrate this projection in figure 6, which shows the neighborhood of the quiver
around a dualized node 0.' As in the previous section, nodes 1, 2 and 3 represent possibly

10The universal involution with USp projection is analogous.
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Figure 7. Toric diagram for Hy,.

multiple nodes which, in turn, might be connected to node 0 by different multiplicities of
fields. The red and black dashed lines represent the rest of the quiver, which might include
fields stretching between nodes 1, 2 and 3. If triality generates massive fields, they can be
integrated out.

An explicit example of a triality pairs associated to the universal involution will be
presented in section 4.1. However, in section 5, we will show how more general orientifold
actions lead to interesting generalizations of the basic N' = (0,1) triality. The general
strategy will be to focus on parent CY, geometries with more than one N = (0, 2) triality
dual toric phases!'! (see e.g. [7, 15]) and to consider anti-holomorphic involutions leading
to the same Spin(7) orientifold.

4.1 The universal involution of H,4

As explained above, the universal involution works for every CY4. Therefore, it is sufficient
to present one example to illustrate the main features of the construction. Let us consider
the CY4 with toric diagram shown in figure 7, which is often referred to as Hy. Below we
consider two toric phases for D1-branes probing Hy and construct the N/ = (0,1) theories
that correspond to them via the universal involution.

4.1.1 Phase A

Figure 8 shows the quiver diagram for one of the toric phases of Hy, which we denote phase
A. This theory was first introduced in [20].
The corresponding J- and E-terms are

J E
Aty 0 X1aXg — X13Xs0 7 Y13X34241 — X12Y01
A 0 XuYa — YisXsZa X12Xo1 — X13 X342

A} X142y — X122 X13X32Y91 — Y13 X34 X1
Als 0 X32Xo1 — X34 X1 Yi3X33 — X14Z41Y13
A%, X32Yo1 — X3uYipy X12291X13 — X13X33

A 0 Xo1X14 — Z01X13X34 Z41Y13X30 — Y1 X2

"'We refer to a toric phase as one associated to a brane brick model [19], for which the connection to the
underlying CYy is considerably simplified.
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Figure 8. Quiver diagram for phase A of Hy.

A%y 0 YorXi4 — Z01Y13X34 X Xi2 — Z41 X13X30
Aoz 1 X33X39 — X32791 X712 Y21X13 — Xo21Yi13
Ayg3 0 X33X34 — X34Z41 X104 Xu1Yis — Y Xas.

The N = (0,1) superpotential is then

WO = WO ¢ AKX, X + XTI X0a + X5 Xo1 + Y5 Yoy + 28, Zon +
+ X1 X+ Y Yo + Z Zan + X3 X5 + Y Yas)+
+ AR Xy X9 + Xy Xao + X3, Xo1 + Yy Yar + 25, Zo1 )+ (4.2)
+ A5 (X3 Xaa + X1y Xaz + Xy Xaa + X {5 X013 + Y3 Vig)+
+ Aﬁ(XhXM + X§4X34 + XLX41 + YZ&Y@ + ZLZ41) .

The generators of H4, which arises as the moduli space of the gauge theory, can be
determined for instance using the Hilbert Series (HS) [19, 23, 24] (see also [4]). We list them
in table 1, together with their expressions as mesons in terms of chiral fields in phase A.

The generators satisfy the following relations

T = (M My = MyMs, My M7 = MM , My My = MzMs , My M7 = MyMs ,
MsM7 = MyMe , MiMg = M5 Mg , MaMg = M5 My , MsMg = MgM7, (4.3)
My Mg = M72> .

The universal involution acts on the fields of any theory as (3.2). This results in the

expected map of the generators
M1—>M1, M2—>M2, Mg—)Mg, M4—)M4,

_ _ _ _ 4.4
M5—)M5, Mﬁ—)M(;, M7—)M7, Mg—)Mg. ( )
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Figure 9. Quiver diagram for the Spin(7) orientifold of phase A of Hy using the universal involution.

Meson Chiral superfields
My Xz = X142 = Zo1 X12
My Yo1X12 = Z41Y13X34
Ms3 X14Yn = Z21Y13X32
M, X32Yn1Y13 = X34Y1 Y13
M5 Xo1X12 = Zn1 X13X34
Mg X14X41 = Zo1 X13X30
M7 | X32Y21 X193 = X32X21Y13 = XY X3 = Xga X1 Y3
Ms X32X21X13 = X34 X1 X713

Table 1. Generators of H4 in terms of fields in phase A.

The quiver for the 2d N' = (0,1) orientifold theory is shown in figure 9. It is rather
straightforward to write the projected superpotential but, for brevity, we will omit it here
and in the examples that follow.

4.1.2 Phase B

Let us now consider the so-called phase B of Hy [20]. Its quiver diagram is shown in
figure 10.
The J- and E-terms are

J E
Aoy X13X34Y49 — Y13X34 X490 X291 X714 X441 — Xo3X32X01
Aly 0 Xo93X34Yie X1 — X21V13X34 X4 X13X30 — X14Xy0
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Figure 10. Quiver diagram for phase B of Hy.

Ay 0 Xo1 X13X34 X141 — Xo3 X34 X492 X1 Y13X32 — X14Yyo
Aszg Y42 X201 X13 — X42X01Y13 X34 X401 X714 — X320 X93X34
Als + X34Y12Xo1 X14 — X320 X21Y13X34 X9 Xo3 — X1 X3
A%y X390 X091 X13X34 — X34 X42X01 X 14 YioXo3 — X41Yi3.
(4.5)
The corresponding W01 ig
WO = w02 4 AR (X XT) + X X, + X1 XT, + X1 X5 + VisVih)+
+ AR (Xo3 XDy + Xo1 X + Xao X1y + Xao X1y + VoY) + (o)

+ A (Xos X135 + Xaa Xy + Xaa X, + X3 X]g + YisV{h)+
+ Aﬁ(X42X12 + X41X:[1 + X34X§4 + X14XI4 + Y42Y4Tg) .

Table 2 lists the generators of Hy, this time expressed in terms of chiral fields in phase
B. They satisfy the same relations we presented in (4.3) when discussing Phase A.

Once again, we consider the universal involution, which acts on the fields of phase B
as in (3.2). This, in turn, maps the generators as in (4.4).

Figure 11, shows the resulting quiver for the orientifold theory. By construction, this
gauge theory corresponds to the same Spin(7) orientifold as the one constructed from phase
A in the previous section. In section 4.1.3, we will elaborate on the connection between
both theories.

4.1.3 Triality between the orientifolded theories

Let us now elaborate on the connection between the two theories that we have constructed
via the universal involution. Both of them correspond to the same Spin(7) orientifold of
Hy. The parent theories, phases A and B of Hy, are related by NV = (0,2) triality on
either node 2 or 4 of phase A (equivalently, by inverse triality on the same nodes of phase
B). This leads to a similar connection between the two orientifolded theories, this time via
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Figure 11. Quiver diagram for the Spin(7) orientifold of phase B of H4 using the universal
involution.

Meson Chiral superfields
M, Xo3 X320 = X1 X14
M, X34Y12 X953 = X34 X01Y13
Ms; X21X14Ya2 = X01Y13X32
M, X34Y12X21Y13
Ms X34 X2 X03 = X34 X101 X33
Mg X21X14X42 = X021 X13X32
M7 | X42X01Y13X34 = Yo X201 X13X34
Mg X42X21X13X34

Table 2. Generators of H4 in terms of fields in phase B.

N = (0,1) triality on node 2 or 4. Figure 12 summarizes the interplay between triality and
orientifolding. This was expected, given our general discussion of the universal involution
in section 4.

It is important to emphasize that it is possible for two Spin(7) orientifolds to correspond
to the same geometric involution while differing in the choice of vector structure. In
practical terms, the appearance of the choices of vector structure in orientifolds arises when,
for a given geometry, there are different Zo symmetries on the underlying quiver gauge
theory, which differ in the action on the quiver nodes. Such a discrete choice generalizes
beyond orbifold singularities, and it was studied in detail in [4], in anticipation of the
application of Spin(7) orientifolds to triality that we carry out in this paper. In order for
equivalent orientifold geometric involutions to actually produce dual theories, it is necessary
that they also agree on the choice of vector structure they implicitly define. This is the
case for all the examples considered in this paper.

Finally, it is interesting to note that, as we discussed in section 2.3, in orientifold
theories the number of “incoming flavors” at the dualized node is inherited from the parent.
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4
N = (0, 2;
triality
4

N =(0,1
triality

Figure 12. Phases A and B of H, are connected by N = (0, 2) triality on node 2 (shown in green).
Upon orientifolding with the universal involution, the resulting theories are similarly connected by
N = (0,1) triality.

5 Beyond the universal involution

In this section, we present theories that are obtained from N = (0, 2) triality dual parents
by Spin(7) orientifolds that do not correspond to the universal involution. We will see that
they lead to interesting generalizations of the basic N' = (0, 1) triality.'?

51 QL

7171

Let us now consider the cone over Q%! or Q1! for short, whose toric diagram is shown in

figure 13. The N = (0,2) gauge theories, brane brick models and the triality web relating

12We will rightfully continue referring to the resulting equivalences between theories as trialities, due to
their connections to the basic trialities of SQCD-type theories. It is reasonable to expect that we can indeed
perform these transformations three times on the same quiver node. However, the three transformations,
can sometimes fall outside our analysis, provided they actually exist. This is due to our restriction to the
class of theories obtained as Spin(7) orientifolds of toric phases.
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Figure 13. Toric diagram for Q%1.

Figure 14. Quiver diagram for phase A of Q1.

the toric phases for this geometry have been studied at length [7, 19, 25]. However, none
of its Spin(7) orientifolds has been presented in the literature. Below, we construct an
orientifold based on a non-universal involution.

5.1.1 Phase A

The toric phases for Q11! were studied in [7]. Figure 14 shows the quiver for the so-called
phase A.
The J- and E-terms are

J E
Aby Yo Xo3VauXao — Yao Xo1 X14Xuo Yo3X34 — Y21Y14
A3y 0 YipYaYiuXuo — YaoYos X34 Xyo X23Y34 — X01X14
A3y Yo X14Yo1 Xap — Yao Xo3 X34 Xuo X21Y14 — Yo3Y34 (5.1)
A3yt Yo X1 YiaXao — YaoYosY34 Xuo X23X34 — Y21X14
Ajy Y14 X 42 Xo3 — X14X42Y03 X34Y12 X091 — Y34V Yoy
A3 X14Y12Y23 — Y14Y42 Xo3 X34 X2X01 — Y34 X42Y01 .
Finding the corresponding WO is a simple exercise, but we omit it here for brevity.

Table 3 lists the generators for Q5! written in terms of the gauge theory.
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Field Chiral superfields
M,y Yi2Y23 X34 = Ya2Y01Y14
My | X49Yo3X34 = X42Y21Y14
Mz | YioXo3X31 = Ya2Y21X14
My | Xy2Xo3X34 = XgoYo1 X104
Ms Yi2Yo3Y34 = Yio X01Y14
Me | X42Yo3Y34 = X42X21Y14
M7 | YioXo3Y34 = Y2 X91X14
Mg | X42Xo3Y34 = X2 X1 X14

Table 3. Generators of @'1'! in terms of fields in phase A.

The generators satisfy the following relations
T ={(MyM7; = M3Ms , MsMg = MsMy , My My = MsMs , MsMg = M7 Mg,
My Mg = MaM7, MsMg = MyMs , My Mg = MyMs , M1 Mg = M5M, , (5.2)
My Mg = My Mg) .

Let us now consider the involution that maps all the four gauge groups to themselves
and has the following action on chiral fields

Yo — —%24)_(427521 , Xyo — 79457427521, X34 — 79357347541, Y34 — —793)_(347541,
Xo1 — —7923721’7511, Yor — 792X21’}’§117 Yoz — ’792372375317 Xoz — 792X23’Yg_2317

Y4 — 79137147541 , X — 791)_(147541 )
(5.3)
where we have used the 7, matrices mentioned in footnote 9.

Invariance of W (%1 further implies that the involution acts on Fermi fields as follows
1 A3 1 2 A4 —1 3 Al 1

Aoy = =y, M547q, » Ass = Y. Mouvg, s A2y = Y. Maag, (5.4)

4 A2 -1 1 32 -1 2 1 .—1 :

Aoy = v, M50, Azt = =73 A5, A3 = s As17q;

and
R RT, —1 R RT, ~1 R RT, —1 R RT, —1
AT =y AT g, 0 A 0. A% g, s Ass — s Ass Yqs Ay = v Mg g, -
(5.5)
Interestingly, the involution in (5.3) and (5.4) involves a non-trivial action on flavor
indices (see e.g. the action on pairs of fields such as (Xa1,Y21)). As briefly mentioned

in section 3, this leads to a constraint on the matrices o, that encode the action of the
orientifold group on the gauge groups, which reads

Y = Y F V02 = V0 - (5.6)

This constraint follows for requiring that the involution squares to the identity. For a de-
tailed discussion of this constraint and additional explicit examples, we refer the interested
reader to our previous work [4].
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Figure 15. Quiver diagram for the Spin(7) orientifold of phase A of Q!'!'! using the involution in
egs. (5.3), (5.4) and (5.5), together with our choice of v, matrices.

For concreteness, we will focus on the following solution to the constraint

= = J’
’YQl 794 (5'7)

Y2, = Y0 = In,

where J = i€y o is the symplectic matrix, and 1y is the identity matrix.
Using table 3, the involution in (5.3) translates into the following action at the level
of the geometry

M1—>—M6, M2—>M5, Mg—}—Mg, M4—>M7,

_ _ _ _ 5.8
M5—>M2, M6—>—M1, ]\47—)]\447 M8—>—M3, ( )

which is clearly not the universal involution.
Figure 15 shows the quiver for the orientifold theory, which is free of gauge anomalies.

5.1.2 Phase S

Figure 16 shows the quiver for phase S of Q%11 [7].
The J- and E-terms are

J E
Ajs X34Ya2 — Y3aWiyo Yo4Xy3 — Xo4Z43
Ay XgaXao—YaaZas  XoaWis — YauVis
A%, X14Z43 — Y1aWa3 X34 Xa1 — Y3424
A3 X14X43 — Y14Y3 Y34Wa1 — X3aYnn
Afy Yo4Z41 — XoaWa X14X42 — Y14Yyo
A%, Y24 Xa1 — XoaYi Y1aWio — X14Z49
Ay, Yi3Ys4 — X41 X4 Wi Y14 — Z42Yos
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Figure 16. Quiver diagram for phase S of Q%'!1.

Ay WaYia— ZisXss  XanXia— Yo Xoy
Al o YuYis— XgpYa WiyoXoy — Yy3X34
Ay o WiXos— ZunXu  XaoYou — Zu3Vau
Nyt ZuaXos — Xu3Xss Yo4Yso — Y1 X4
Ay 0 WigYay — YiYou XoaZa2 — Zn1Y1a
ALy 0 WisXay — WXy XaVig — XX
Ayt XaYia— XazYas W Xig — WiaYos.
(5.9)

Table 4 shows the generators of Q1! in terms of the gauge theory. They satisfy the
same relations given in (5.2).

Let us consider the involution that maps all gauge groups to themselves and acts on
chiral fields as follows

242 =Y, X427(_221 ;o Xao——vq, 242’7521 , You——mq, X'24’>’§41 , Xoa— 0, 37247541 ;
Zy3— —794)_(437531 , Xuz—va, 2437531 ; X347, 5_’347541 ) Y34 — =0, X34’7§41 )
Wy — —’794)241’}’511 y o Xa1— =y, W41’Yg_211 s 2=, Y41'Y§_211 ) Y1 — v, 2417511 )
Wio —vq, 5_’427521 ) Yo ——vq, V_V427§21 , Waz——vq, 37437531 , Yaz—yq, W437§31 ;
Yis =0, Yiavg, » X4 =0, X147, -
(5.10)

As we will explain shortly, we have chosen this involution in order to connect to the
orientifold of phase A that we constructed in the previous section.
Invariance of W1 implies the following action on Fermi fields

1 AL 1 2 A2 1 1 A2 —1 2 Al —1
Az =70, 09370, > Adz3—=70.M9370, . Az~ —1:A3170, . A3 =031,

1 2 -1 2 N1 -1 1 A7 -1 7 N1 —1
Mg = =70, Aa7g, » A=y Miavg, A= =0 Mg, s A= —r0, Mg,
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Field Chiral superfields

My | ZaoYos = Z43 X34 = W1 Y14
My | Zy2Xos = Xu3X34 = Zn1Y14
Mz | WiyaYos = Wy3 X34 = Wi Xy
My | WiyaXos = Y3 X34 = Z01X14
Ms Xa9Yoy = Z43Y34 = YY1
Ms | XyoXo4 = Xy3Y34 = X41Y14
Mz YioYos = Wy3Yss = Y X4
Mg | YiaXos = Ya3Ys = X1 X1y

Table 4. Generators of @1'1'! in terms of fields in phase S.

2 A8 —1 8 2 -1 3 6T, —1 6 3T, -1
Ay — =0, Mg, > Na— =10, Mavg, s M= =0, g, 0 Ada— —r2.058 g,
4 5T -1 4T -1
A= v0, M4 g, Ai4—>’m4/\44 T,
(5.11)

and

Aﬁ — ’YQlA{%lT’YS;} ) A§2 - 792A§2T’Y§21 ) ASR?) - 793‘/\3%717(_231 ) Afél - VQ4A4]1%4T’Y§_241 :

(5.12)

The involution on bifundamental fields leads to the same constraints on the ~yq, ma-
trices as in (5.6). As for phase A, we pick

= = J,
’YQI ’YQ4 (5‘13)
Y0, = Y0 = In .
Using table 4, (5.10) translates into the following action on the generators
M1—>—M6, M2—>M5, Mg—)—Mg, M4—>M7, (514)

Ms — My, Mg — —My, M7;— My, Mg — —Ms,

which is the same geometric involution that we found for phase A in (5.8). Therefore,
the involutions considered on these two phases correspond to the same Spin(7) orientifold
of QL. Figure 17 shows the quiver for the orientifold theory, which is free of gauge
anomalies.

5.1.3 Triality between the orientifolded theories

Figure 18 summarizes the connections between the theories considered in this section.
Again, we observe that the two theories we constructed for the same Spin(7) orientifold are
related by N = (0, 1) triality. More precisely, they are related by a simple generalization
of the basic triality reviewed in section 2.2. First, in this case, triality is applied to quivers
with multiple gauge nodes. More importantly, some of the nodes that act as flavor groups
are of a different type (in this example, USp) than the dualized node. As in previous
examples, the orientifold construction leads to a clear prescription on how to treat scalar
flavors, which is inherited from the parent theories.
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Figure 17. Quiver diagram for the Spin(7) orientifold of phase S of Q%! using the involution in
egs. (5.10), (5.11) and (5.12), together with our choice of vq, matrices.

N = (0,2
triality

N =(0,1
triality

Figure 18. Phases A and S of QV'!'! are connected by N = (0,2) triality on node 2 (shown in
green). The orientifolded theories are similarly connected by A = (0, 1) triality.
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Figure 19. Toric diagram for Q%11 /Z,.

5.2 Theories with unitary gauge groups: Q%! /Z,

All N = (0,1) triality examples we constructed so far contain only SO(N) and USp(V)
gauge groups. Namely, the anti-holomorphic involutions of the parent N' = (0, 2) theories,
universal or not, map all gauge groups to themselves. In this section we will construct
Spin(7) orientifolds giving rise to gauge theories that include U(NN) gauge groups. To do
so, we focus on Q! /Zs, whose toric diagram is shown in figure 19.'* This CY4 has a rich
family of 14 toric phases. They were classified in [15], whose nomenclature we will follow.
We will restrict to a subset consisting of 5 of these toric phases. In order to streamline our
discussion, several details about these theories are collected in appendix C.

Let us first consider phase D, whose quiver diagram is shown in figure 20. We provide
a 3d representation of the quiver in order to make the action of the anti-holomorphic
involution that we will use to construct a Spin(7) orientifold more manifest.

The J- and E-terms for this theory are

J E

Az : Wi Xa1 — Y2z X18X85Y53 — X53Xg5Y18
Afs X1Ys4 — X3qYi X53Y18Yss — X18Y53Y55
Ay 0 XroYs3Yos — Xs3Yr2Yos XarZ34 — X34Yu7
A7+ X72X25Ys3 — X53Xo5Y72 Y34Yar — W3y Xu7
Ay + XeaVisYar — X1V You Xs56Ys5 — Xg5256
Afs © Xu1X64Y1s — X18X41Yes Ws6Xs5 — Ya6Ys5
Ags : Yo5Z56 — Wse X5 Xa7XeaY72 — X72X47Y64
Agy Xo5Y56 — X56Y25 Xe64Y72Ya7r — X72Yy7Ye4
Als Wis6Yea — W34Y53 X18 X1 X5 — X72Xa7 X025
Ads Ws6X6a — W34 X53 Xa7Xo5Y72 — X1 Xg5Y18
A - Y614Z56 — Y53234 X7oXy7Yos — X18Xs5Yn1
Ajs X6aZs6 — X53234 Xs5Y18Ya1 — Xa7Y72Yos5

3More precisely, this is the Zy orbifold of the real cone over Q11!.
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Figure 20. Quiver diagram for phase D of Q%1 /Z,.

A5 Y56Y64 — Y34Y53 X7 Xo5Yar — X185 X41 Y55
Afs - X6aYs56 — X53Y34 Xu1Y1sYss — Xos Y72 Yy
Als X56Y6a — X34Y53 X18YnYss — X72YarYos
IV X56X64 — X34 X53 Y72Ya7Yos — YisYa1 Vs

(5.15)

The generators of Q%!'!/Zy in terms of the chiral fields in phase D are listed in ta-
ble 7. Note that the generators and their relations are common to all the phases, but their
realizations in terms of chiral superfields in each of them are different. Let us consider an
anti-holomorphic involution of phase D which acts on figure 20 as a reflection with respect
to the vertical plane that contains nodes 3, 4, 5 and 6. The nodes on the plane map to
themselves, while the following pairs 1 <> 7 and 2 < 8 get identified. This leads to the
anticipated mixture of SO / USp and U gauge groups.

The involution on chiral fields is

X8 — 7971772%_221, Yis — 797)_(727521, X7 — %2157187581, Y7o — 791)_(18’7581,
Xas = v, X347, Yas = 1052347, » Zaa — Yo, Yaavg, s Waa = v0,Wasavg,
X4 — 794)2477571, Yy — 7945747’7571, Xy7 — ’7(245(417511, Yir — 794174175117
Xs3 = 70, Y5370, Yas = 10: X537, » X56 = Y05 X567, » Y6 — 105 256 Ve, »
Z56 — 7951756’7561 , Wse — 795W567561 , Xea — 79657647541 , Yo — 7965(64’7541 ;
Xos = 05 X570, » Yos = 05 YesV0, » X85 = 1. X257, Yas — 70, Y2570, -
(5.16)
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Invariance of W(%1) implies the following action on Fermi fields

Ajz — —793A§77§71 , Afy— 793A§77571 ;o Ay o VQlA%:ﬂé; R —793/%77571 )
Agg — —’YﬂeAgz’Y(_zsl , Afg— —’YﬂeAéz’Yﬁgl , Ago — —’msAgﬂﬁﬁl , Ag— —’YQsAéG’YﬁGl )
A4115 - 794]\12157551 ) Ais - 794]\41157551 ) Ai5 - 794]\46157551 , A§115 - 794]\45157551 ’
A = 1A 00, 0 A% = e Msra, s Al = e Aisg) s Al = e Aa,s
(5.17)
and

R RT, —1 R RT_ -1 R RT,_ -1 R RT_ -1
AT = 0. M7 ar s A = v Mg Yo, 0 Az = v0s a3 Vg, > Aus — 0. Adl g,
R RT, —1 R RT,_—1 R RT,—1 R RT, 1
Ass = v0s 055" 10, Nes = 126 Me6” Vo 0 AT = 10 ML g, > Ass = 100022 g, -
(5.18)
Using table 7, we find the corresponding geometric involution on the generators of

QLY /7,

My — Mo, My — Myy, Ms— My, My— Mg, Ms— My,
Mg — Mg, M7 — Mys, Mg — Moy, Mg — My, My — Mz,
My — My, Mg — Ms, Mz — Mays, My — My, Mz — My,
Myg — My, Mz — Mg, Mg — My, Mg— M5, My — My,
My — My, Mgy — My, Mz — Mg, Moy — My, Mas — Mg,
Mg — My,  My; — My .

(5.19)

The orientifolded theory has gauge group U(N); x U(N)ax [[%_5 G;(N). The involution
of fields connecting nodes 3, 4, 5 and 6 gives rise to the constraint

Vs = V0 = V25 = V0 - (5.20)

Let us set the four matrices equal to 1, i.e. project the corresponding gauge groups
to SO(N). Figure 21 shows the quiver for the resulting theory, which is free of gauge
anomalies.

Let us pause for a moment to think about a possible interpretation on this theory. We
note that it has two distinct types of nodes. First, we have U(/N) nodes with adjoint Fermi
fields, which can be combined into N = (0, 2) vector multiplets. Second, there are SO(N)
nodes with symmetric Fermi fields which, contrary to the previous case, are inherently N’ =
(0,1). This is because the adjoint of SO(XNV) is instead the antisymmetric representation.
We can similarly consider whether it is possible to combine the bifundamental fields into
N = (0,2) multiplets, which may or may not be broken by the superpotential. In this
example, all bifundamental fields come in pairs so, leaving the superpotential aside, they
can form N = (0,2) multiplets. Broadly speaking, we can therefore regard this theory
as consisting of coupled N' = (0,1) and N = (0,2) sectors.!® This discussion extends to
the other orientifolds of Q1! /Zy considered in this section and is a generic phenomenon.

1A gimilar interpretation in terms of coupled N = (0,1) and N = (0,2) sectors was proposed in the
analysis of non-compact models in [3].
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Figure 21. Quiver diagram for the Spin(7) orientifold of phase D of Q! /Z, using the involution
in egs. (5.16), (5.17) and (5.18), together with our choice of g, matrices.

Interestingly, we will see below that Spin(7) orientifolds produce theories in which triality
acts on either of these two sectors.

In order to find other N' = (0, 1) theories associated with the same Spin(7) orientifold,
one needs to find the field-theoretic involutions of other toric phases of Q! /Z leading to
U(N)2xSO(N)* gauge theories, whose geometric involution is the same as (5.19). Scanning
the 14 toric phases of Q1! /Zs, we found that only 5 of them (including phase D) admit
N = (0,1) orientifolds with U(N)2 x SO(N)* gauge symmetry. Let us first present the
N = (0,2) triality web for these 5 phases in figure 22, which can be regarded as a portion
of the whole triality web for Q111 /Zs in [15].

Colored arrows connecting different phases indicate N' = (0, 2) triality transformations
between them. Furthermore, the quiver node on which triality acts is shown in the same
color as the corresponding arrow. Note that from phase D to phase H there are two triality
steps, where the intermediate stage is the so-called phase C in [15]. However, since phase
C does not give rise to a U(N)? x SO(N)? orientifold, we do not show its quiver here.

Similarly to phase D, we consider the anti-holomorphic involutions of phases E, H,
J and L which act on their quivers shown in figure 22 as reflections with respect to the
vertical plane that contains nodes 3, 4, 5 and 6. Then, the nodes on the plane map to
themselves, while the pairs 1 <+ 7 and 2 <> 8 get identified. In all these cases, we choose the
~q, matrices as for phase D, so they have U(N)? x SO(N)* gauge group. The construction
of the N = (0, 1) theories associated with the Spin(7) orientifold for these phases is detailed
in appendix C. The crucial point is that they all correspond to the same Spin(7) orientifold
of QY11 /Zs, since they are all associated to the same geometric involution as that of phase
D, given in (5.19).

From a field theory perspective, we find that the orientifolds of phases D, E, J and L
are connected by AN/ = (0, 1) triality transformation on various SO(N) gauge groups (with
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Figure 22. N = (0,2) triality web for phases D, E, H, J and L of Q\'1!/Z,.

the obvious generalization to more general flavor groups). These are the first examples of
N = (0,1) triality in the presence of U(N) gauge groups. Interestingly, the orientifolds of
phases D and H are not connected by the usual NV = (0, 1) triality on an SO(NN) node, but
by triality on node 1, which is of U(N) type. This transformation locally follows the rules
of N = (0, 2) triality. Such U(N) triality in N' = (0, 1) gauge theories is a new phenomenon
which, to the best of our knowledge, has not appeared in the literature before. Following
our earlier discussion, it can be nicely interpreted as N' = (0, 2) triality in the presence of
an N = (0, 1) sector. In our Spin(7) orientifold construction, the U(N) triality has a clear
origin: the two N = (0, 2) trialities that connect phases D and H passing through phase C
are projected onto a single U(N) triality connecting the orientifolds of phases D and H. In
the case of nodes that are not mapped to themselves, an even number of trialities in the
parent is necessary in order to get a new phase that is also symmetric under the involution.
Figure 23 summarizes the web of trialities for the Spin(7) orientifolds under consideration.

6 Conclusions

D1-branes probing singularities provide a powerful framework for engineering 2d gauge
theories. In our previous work [4], these constructions were extended to N/ = (0, 1) theories
with the introduction of Spin(7) orientifolds.
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triality

Figure 23. Triality web for the AV = (0, 1) theories associated with the Spin(7) orientifolds under
consideration for phases D, E, H, J and L of Q%1 /Zo.

In this paper we introduced a new, geometric, perspective on the triality of 2d N' =
(0,1) gauge theories, by showing that it arises from the non-uniqueness of the correspon-
dence between Spin(7) orientifolds and the gauge theories on D1-brane probes.

Let us reflect on how 2d trialities with different amounts of SUSY are manifested in
D1-branes at singularities. N' = (0,2) triality similarly arises from the fact that multiple
gauge theories can be associated to the same underlying CY, [7]. We explained that
Spin(7) orientifolds based on the universal involution give rise to exactly the N' = (0,1)
triality of [3]. But our work shows that the space of possibilities is far richer. Indeed,
general Spin(7) orientifolds extend triality to theories that can be regarded as consisting
of coupled N/ = (0,2) and (0,1) sectors. The geometric construction of these theories
therefore leads to extensions of triality that interpolate between the pure ' = (0,2) and
(0,1) cases.

On the practical side, Spin(7) orientifolds also give a precise prescription for how scalar
flavors transform under triality in general quivers, which is inherited from the transforma-
tion of the corresponding chiral flavors in the parent.
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A 2d N = (0,1) formalism

In this appendix we review the 2d N' = (0,1) field theory formalism as we did in [4]. Let
us introduce the 2d A" = (0, 1) superspace (2%, x1,0%), on which we can define three types
of supermultiplets:

e vector multiplet:

Vi =0T (Ap(x) + A1 (),

V. = Ag(z) — Ar(z) + 0T A_(z). (A1)

It contains a gauge boson Ay and a left-moving Majorana-Weyl fermion A_ in the
adjoint representation.

e Scalar multiplet:
D(2,0) = (2) + 07 (). (A.2)

It has a real scalar field ¢ and a right-moving Majorana-Weyl fermion 1.

e Fermi multiplet:
Az, 0) =vy_(z) + 0" F(x). (A.3)

It has a left-moving Majorana-Weyl spinor as its only on-shell degree of freedom.
Here F is an auxiliary field.

The kinetic terms for matter fields and their gauge couplings are given by

1 a

Lo+ Lp= / a9+ (; S (D, ®,D_®;) — ;Z(AamAG)) , (A.4)

where Dy are super-covariant derivatives [3].
We need also to introduce the N' = (0, 1) analog of the N’ = (0,2) J-term interaction,
which is given by

L, = / oD — / A0 3 (Mg T (@;)) (A.5)
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(0,1)

where J%(®;) are real functions of scalar fields. We refer to W as the superpotential.

Both the field content and gauge symmetry (i.e., the quiver for the theories considered in

this paper) and W ()

are necessary for fully specifying an A" = (0,1) gauge theory.
After integrating out the auxiliary fields F,, £ produces various interactions, including

Yukawa-like couplings

Z /\— w+z ) (AG)

as well as a scalar potential

%Zuaww . (A7)

A.1 N = (0,2) gauge theories in N/ = (0,1) superspace

For the construction of Spin(7) manifolds, it is useful to express N' = (0,2) gauge theories
in NV = (0,1) language. Here, we briefly sketch the decomposition, referring to [4] for
details:

1. An NV = (0,2) vector multiplet Vi(O’Q) decomposes into an N = (0, 1) vector multiplet
V; and an N = (0, 1) Fermi multiplet AL,

2. An N = (0,2) chiral multiplet G decomposes into two N = (0, 1) scalar multiplets
®¢ with a = 1,2. It can then be further re-expressed in an N' = (0, 1) complex scalar
multiplet ®,,

3. An N = (0,2) Fermi multiplet A7(72’2) decomposes into two A/ = (0, 1) Fermi multiplets
A%, with a = 1,2, that form an AN/ = (0, 1) complex Fermi multiplet A,

The J- and E-terms of the N' = (0,2) gauge theory become part of WO upon
the decomposition of Fermi and chiral multiplets in N' = (0, 1) language. The interactions
between A = (0, 2) vector and chiral multiplets also contribute to W (1) couplings between
scalar multiplets and NV = (0, 1) Fermi multiplets A coming from the N = (0,2) vector
multiplets. The full N' = (0,1) superpotential reads

WO - /d9+ (J9 (@) + E1(®])) + AT (By (@) + JH (@) +ZZAR<I>T<I>n,

(A.8)

where n runs over all complex scalar multiplets transforming under a given gauge group 1.

B Anomalies

Here, we list the possible contributions to 2d gauge anomalies coming from fields in the
representations considered in this paper. Generically, 2d anomalies are obtained by a 1-
loop diagram as shown in figure 24, where left- and right-moving fermions running in the
loop contribute oppositely.

In the case of gauge groups, anomalies must vanish for consistency of the theory at the
quantum level. This leads to important constraints in our construction of 2d N' = (0, 1)
theories, which may require the introduction of extra flavors to cancel anomalies.
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Figure 24. Generic 1-loop diagram associated with 2d anomalies.

SU(N) fundamental | adjoint | antisymmetric | symmetric
vector multiplet X -N X X
. . 1 —N+2 —N-2
Fermi multiplet -3 —-N S §
: 1 N-2 N+2
scalar multiplet 5 N 2 Nt2

Table 5. Anomaly contributions of the 2d N' = (0,1) multiplets in various representations of
SU(N). Since anomalies are quadratic in 2d, the same contributions apply for the conjugate repre-
sentations.

Unlike gauge symmetries, global symmetries may indeed be anomalous. They are
also preserved by RG flows, so they are useful for testing dualities between two or more
theories. Examples of using global anomalies to check dualities in 2d AN/ = (0, 1) theories
can be found in [3].

Generically, the gauge theories on D1-branes probing Spin(7) orientifolds that we con-
struct in this paper have non-vanishing Abelian gauge anomalies. However, similarly to
the discussion in [20, 25], we expect that such anomalies are canceled by the bulk fields
in the closed string sector via a generalized Green-Schwarz (GS) mechanism (see [16, 17]
for derivations in 4d N' = 1 and 2d N' = (0,2) theories realized at orbifolds/orientifold
singularities). For this reason, we mainly focus on non-Abelian anomalies.

Let us consider pure non-Abelian G? gauge or global anomalies, where G is SU(N),
SO(N) or USp(N) group. The corresponding anomaly is given by

Tr[v3JgJq], (B.1)

where 3 is the chirality matrix in 2d and .J is the current associated to G. The resulting
anomaly from a field in representation p of G can be computed in terms of the Dynkin
index T'(p):

T(p) = cxmmﬁgﬂm) , (B.2)

where Cy(p) is the quadratic Casimir for representation p. In table 5 we present anomaly
contributions for superfields in the most common representations of SU(N). In table 6, we
present anomaly contributions for various representations of SO(NN) and USp(N) groups,
computed using Dynkin indices listed in [26].

C Details on Q1! /Z,

In section 5.2, we introduced a web of trialities that contains a Spin(7) orientifold of phase
D of Q%11 /Zy and summarized it in figure 23. In this appendix, we collect all the relevant
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SO(N) fundamental | antisymmetric (adjoint) symmetric
vector multiplet X —N+2 X
Fermi multiplet -1 —N+2 —N —2
scalar multiplet 1 N -2 N +2

USp(N) fundamental antisymmetric symmetric (adjoint)
vector multiplet X X —N -2
Fermi multiplet —1 —N+2 —N -2
scalar multiplet 1 N -2 N +2

Table 6. Anomaly contributions of the 2d N/ = (0,1) multiplets in various representations of
SO(N) and USp(N).

Figure 25. Quiver diagram for phase E of Q111 /Z,.

information for the other theories in this web.

C.1 Phase E

The quiver for phase E is shown in figure 25.
The corresponding J- and E-terms are given by

J E
Age + XeaYnYis — YoV Xis Ys5 X56 — Xg5Z56
Ajs + YaaXunXis — XeaXaYis  YasWae — XssYse
Mg+ YeaVirXro — XgaVirYro  Yas X6 — XosWie
A 1 XeaXarYro — YoaXar Xro Yo5Z56 — Xo5Y56
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Y56Y64Xa7 — Ws6YeaYar

ZseXeaXar — Xo6XeaYar
X56Y64Yar — Z56Y64Xar

W6 X6aYar — XeaYs6Xa7
Y35Y56X64 — X35Y56Y64

Y35 X56X64 — X35X56Y64
X35Ws6Y6a — Y35 W56 X64
X35256Y64 — Y35 256 X64
Z56Y6a Y1 — Yo Yoa Xa1
X56X64Ya1 — W6 Xea Xa1
Ws6Y6aXa1 — X56Y64Ya1
X6aY56X41 — X6aZ56Ya1

X73X35 — X72X95
Y73Y35 — Y72Yo5
Y73 X35 — X72Y25
X73Y35 — Y72 X5

XarX73 — Xa1X13
YirYr3 — Y Yis
Yir X735 — X3
XarY73 — Y1 Xa3

X13X35 — X18Xs5
Y13Y35 — YigYss
Y13X35 — X18Yss

X13Y35 — Yis Xs5 .

(C.1)

Finally, the generators of the moduli space expressed in terms of the chiral fields are

listed in table 8.

U(N)?2 x SO(NN)* orientifold Let us consider an anti-holomorphic involution of phase
E which acts on the nodes in figure 25 as 1 <> 7, 2 <> 8 and maps all other nodes mapped

to themselves. Chiral fields transform according to

Xa1 = v, Xamvg,
Xi8 = Y0, Y7270, »
Xos — ’VQ8X85'7§517
X35 = 70; Y3570 »
X56 — 7955(56’75617

X13 = Y0, X737, »

Requiring the invariance of W%, the Fermi fields transform as

1 Al .—1
Ags = 702, M2670

1 x4 -1
Azs = v0, M50,

1 12 -1
Az — =70, Mi370,
1 x4 -1
Aty = 0. A757,

and

R RT_ -1
Ay = v, A7 Y, o

R RT,. -1
Ags = v, M55 Yo,

Y — v, Yarvg,
Yis = 0, X727, »
Yo5 — 79837857551 ;
Y35 = 70, X350, »
Y56 — 79537567561 ;
Yi3 = Y0, Y7370, »

2 12 -1
A — VQQA%WQG )

2 A3 . —1
A7s = v, A7,

2 Nl -1
Al = =72, M4370, -

2 13 -1
A5 — ’YQ7A757£25 )

R RT_ -1
Ags = v Ass” Yo

R RT._ -1
Ags = 10566~ Vg -

X7 — 79157187581>
Xea — 705 Vo4, »
Xgs — 792X257g_251 ;

Xa7 = v, Xa17g,

Y7o — 791)_(187581 ;
You — 05 X640, -
Ys5 — 7921/25%_251 ;

Yir — v0,Yavg,

Zss — ¥0sWse1a, . Was = 705 25670, »

X73 = v0, X137, »

1 1 -1
Ay — VQBASWQG )

3 A2 —1
A7s = v, A5, -

Y73 — v, V37, -
(C.2)

2 A2 1
A = v0s 8670y,

4 Al -1
A7s = y0, A5,

3 N4 —1 4 A3 -1
Ayz = =y, Masvg, » Aas = — v, Nisvg,

3 X2 -1
Ajs — ’YQ7A75’YQ5 )

A4115 - ’79711%57551 )
(C.3)

R RT,_ —1 R RT_—1
Ass — 0,53 Y Ay = v Ay Yoy

R RT, -1 R RT, —1
A7 = ya, A Y0, o Agg = 70,95 T, -

~ 34—

(C.4)



Figure 26. Quiver diagram for the Spin(7) orientifold of phase E of Q!:!+! /Z, using the involution
in egs. (C.2), (C.3) and (C.4), together with our choice of yq, matrices.

Using table 8, the corresponding geometric involution acting on the generators reads

My — Moy, My — Moy, Ms— Msy, My — Mg, Ms— M,
Mg — Mg, M7 — Mg, Mg — Moz, Mg — My, My — M7,
Myy — Myy, Mg — Ms, Mz — Mas, Mg — Moy, M5 — Mg,

_ _ _ _ _ (C.5)
Mg — Mg, Mz — Mo, Mg — My, Mg — M5, My — My,
My — Mz, Mag — Miy, Moz — Mg, Moy — Ma, Moy — Mg,
M26—>M7, M27—>M1.
This geometric involution is the same of (5.19).
The g, matrices are constrained as in (5.20). As for phase D, we choose
V05 = Vs = V05 = V0 = LN (C.6)

The resulting orientifold is shown in figure 26.

C.2 Phase H

The quiver for phase H is shown in figure 27.
The J- and E-terms are

J E
Abg : YoaZao — XaWao Yo5X56 — Xo5Z56
Adg + YoaXuo — YaoXea Xo5Ws6 — Ya5Y56
Ay + XpaWas — YouYae  Yos X53Xa7 — Xo5X53Yar
AS7  Xr4Zys — YuXay  Xo5YssYar — Yo5Ya3 Xz
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Figure 27. Quiver diagram for phase H of Q%! /Z,.

1
A68

7
A68

: XssWs6 — Ys5Z56
: Xg5Y56 — Ys5X56
0 X14Wag — Y14Yag
0 X14Z48 — Y124 Xus
: WagYss — WaaYos
: ZagYss — Z42Yas
: Wag Xgs — Yo Yos
D Zug X5 — Xa2Yas
: YagYss — Wi Xos
: XagYss — Z42 X5
: Yag Xgs — Yyo Xos
: X4 Xgp — Xa2 Xo5
0 Ya1Yia — YsrYnu
0 X31Y14 — Y37 X74
D Y31X14 — X37Y74
1 X1 X14 — Xgr X7y

X6aYas — YoaXus
Yo1Z4s8 — XeaWas
X85 X53Y31 — Y35 X53X31
Ys5Ys53X31 — XssY53Ya1
X53X31X14 — X56X64
X56Y6a — Y53 X31X14
Y56 X614 — X53Y31X14
Y53 X37Y74 — Y56Y64
Zs56X64 — X53X31Y14
Y53Y37.X74 — Z56Yea
X53Y37Y74 — Ws6 X6
Wis6Y6a — Y53Y37Y74
Yis X5 X553 — Xug Xg5Y53
XagYs5Y53 — Wya Xo5 X53
Z48X85Y53 — YaaYo5X53
WagYo5 X53 — Z42Y25Y53 -

(C.7)

The generators of the moduli space expressed in terms of the chiral fields are listed in

table 9.

U(N)?2 x SO(IN)* orientifold Let us consider an anti-holomorphic involution of phase
H which acts on the nodes in figure 27 as 1 <» 7 and 2 <> 8 and maps all other nodes
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mapped to themselves. Chiral fields transform according to

Zg — 79437487582 , Yag — 7942427522 ;
Yo5 — 798X85’V§52, Xgs — 792372575527

Xos — Y05 YesVqs»  Yas = Y0, X250 »

Xea — 7065764753,
X48 — ’794W42’Y§22 )

Yo4 — 796)_(647542 ,
Wyo — ’YQ4X48’Y§82 )

Xs56 — Y05 W56’Y§62 , Wse — 795)_(56%562 ;

Z56 — YQs 256’7562 , Xgo — 'YQ4W48'7582 , Wag — 7945(427522 y Yo — 7942487582 ;

248 — 79437427522 )
Y74 — v, X147, »

X37 — ’79357317512,

Y56 — 79517567562 ;

X14 — 0, Yravg,

Y31 — 7935(37’75727

X7y — 79137147542 ;

Xs3 — Y0, Y5370, »

Yig — 797)_(74’7542 )

Y53 — Y0, X370, »

Va7 = 0, X317, Xa1 — 70, Yarg. -

(C.8)

Requiring the invariance of W1 the Fermi fields transform as

A36 — fYQ6Aé8’Y§825
Afs — 10, M6
A§4 — *’795]\%3475427
Ay = —vasASvg7

2 x4 2
Afs = =0, M3,
and

R RT,. -1
ATy = 0. A7 g,

Agﬁ — _796A287582 )
Ay — =70, A3%7q7
A3y — *795/1;47542 ,
A5y = —vasA37q7

8 A2 -2
Ags = =0, M3,

R RT_—1
A = YasAgs” Yoy

A3y = =0 A81707
AZL = —10.A3707
A2y = —va,A5070)
Agy = =05 M37q7

5 A3 -2
Ads = =0, N3,

R RT, —1
Ags — v0;A33 Y5 s

A%, = —vashsvg?
Af = 10,0570
Ag4 - *msf\?ﬂ&f,
Afy = —vasAs4vg?
A?13 - —VQ4A}L37§:7

(C.9)

R RT,. -1
Ay = vou Mg g,

R RT, —1 R RT. —1 R RT_ —1 R RT, -1
Ass = vas M55 a0 Nes = 126866 Yo - At =y M Vg, Ags = 1A% g, -

(C.10)

Using table 9, the corresponding geometric involution acting on the generators reads
My — Mo, My — Myy, Ms— My, My— Mg, Ms— M,
Mg — Mg, My — Mg, Mg — Mg, My — My, Mg — Mz,

My — My, Mg — Ms, Mz — Mas, My — My, M5 — Mg, (C.11)
Myg — My, Mz — Mig, Mg — My, Mg — M5, My — My,
My — Ms, Moy — Myg, Mz — Mg, My — My, Moy — Mis,

Mo — M7, Mayy — M.
Once again, this is the same involution of phase D in (5.19).

The 7, matrices are constrained as in (5.20). As for phase D, we choose

’YQ3 =4 = ’YQ5 = ’YQG - ]lN . (012)

Figure 28 shows the quiver for the resulting orientifold of phase H.

C.3 PhaseJ

The quiver for phase J is shown in figure 29.
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Figure 28. Quiver diagram for the Spin(7) orientifold of phase H of Q' /Z, using the involution

in egs. (C.8), (C.9) and (C.10), together with our choice of yq, matrices.

Figure 29. Quiver diagram for phase J of Q%11 /Z,.

The J- and E-terms are

Ah :
A2,
Als
A%

J
Yi6Y61 — XasWer
Yi6X61 — Xa6Z61
Y56We1 — Wi6Z61
Zs6Z61 — X56We1

— 38 —
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Y13 X34 — X13Y34
X13W34 — Y13234
X18Xg5 — X13X35
Xi18Yss — Y13X35



Ay 0 YseYe — WieXe X13Y35 — Y18 Xs5
Als @ Xs6Ye1 — ZssXe YisYss — Yi3Yss
Ayt YaYis —WaXis  Xgs5Yse — YasXsg
Aje © Xe1Yis — ZaiX1s  YasZsg — XssWae
Nj7 + X73Way — Yr3Vsy Xa6Zer — Yas Xe7
Al o XrsZsy—Yr3Xas  YagYer — XasWer
Agg + YasWisg — WaaYie  Xe1X13 — X7 Xr3
Ay Ys5Zsg — Z34Yae Yo7 X73 — X61Y13
A R TR CT 4T Xe7Y73 — Y61 X13
Agy 1 Ya5Xs6 — X34Vag Y61Y13 — YerY73
Ags o XgsWse — WauXug  ZerXrs — Zs1 Xis
Ay XssZsg — ZsuXas  Ze1Yis — Wer X3
Afs o XssYse — YauXag  WerXis — ZerYos
Ajs + X35Xs56— XsuXas  WerYrs — WerYis
Mgy o XosWise — YasYss  XerYra — ZerXro
Agy + XosZse — Yos X5 WerXra — YerYo
AL+ YnYas — YsYis Y56 X67 — X56Yo7
A2+ YroXos — XusYss  ZseYer — WeeXer
A3y + XoYas — YosXss  XseWer — YaeZor
Ay o X7aXos — XusXss  WieZer — ZseWer -
(C.13)

Once again, the generators can be found in table 10.

U(N)?2 x SO(IN)* orientifold Let us consider an anti-holomorphic involution of phase
J which acts on the nodes in figure 29 as 1 <> 7 and 2 < 8 and maps all other nodes
mapped to themselves. Chiral fields transform according to

Vie = v, Xa670, » Xa6 — 10, YaeVg, » Yer = Vas 26V s Zer — vas Vel Va, »
Wer — '796{(677571 , Xer — 7061/1/61'7511 , Yiz— 797)7(737531 , o X73 = v, 5{137531 ;
X3 = ’)’973_’73’7531 ;Y3 — 79195137531 ; Xzg— 'YQgV_V34'Yg_z41 ;o Wiy — 793{(34’)’541 ;
Vg — 70, Y3470, Xe1 = 10sWerrar » Wer = 106 X617, - Ze1 — Y05 Yer Vo »

Yo7 — ’}’962617511 y 34— 7932347541 , Yz — ’}’9537567561 , Wse — 795925675; ;

Xs6 — 10 WaeVap » X35 = 103 Y3570, > Y35 = 10, X570, Xis = 10, Y727, »
Yoo = o, X1sVge » Xes = 0. Yosvg s Yos = s Xes1qe s Zs6 — 10525670,
Vis = y0, Xm0, . Xr2 = . Yisvg, » Yas = Y0, X257, s Xas — 0 Yesvan »

Yie = v, Xa67g, »  Xa6 — Y04 Yas Vg, -
(C.14)
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Requiring the invariance of W the Fermi fields transform as

ALL - ’794A4117'Y§71 ) A%4 - _’794A42177§71 ’ A%5 - VﬁsA%fYSE: ’ A%5 - ’795‘/\%7’7571 ’
Als = =10, 0370, s Al = 10,850, Ase = —19sAe0, s Als = YesAig,
Ad7 — v, A%ﬂ@l N *7941\42;77571 , Agy— VQGA237§; ;o A - 796Ag37§; )
Ags — 796/_\%37531 ) Aéi‘) — 796/_\23’7531 ) Ag3 - FYQG‘/_Xé?)fo_Z?,l ) A23 - ’YQG/_\gzs’Yﬁ; )
Afy = 10608370, 0 M6 = 1M, 0 sz = —asAsera, s Afe = 105 MB670, -
Ayr = Mg, A3 = Mg, . Ak = —ve A, As — e A, -
(C.15)
and

R RT, -1 R RT, 1 R RT,. —1 R RT, 1
ATy = v0: A7 a0, Agn = vauNesT Yoy o Az = Y033 g, Aus = yeuAag g,
R RT, —1 R RT, 1 R RT,. —1 R RT, 1
Ags — v05Ass Qs Ag — 105 N6 Vg > A7 = v, A g, Ass = 10, A T, -
(C.16)
Using table 10, the corresponding geometric involution acting on the generators reads

My — Ma7, My — Myy, Ms— My, My— Mg, Ms— My,
Mg — Mg, Mg — Mys, Mg — Mg, Mg — My, Mg — Mz,
My — My, Mg — Ms, Mg — Mas, My — My, Mz — My,
Mg — Mg, Mz — My, Mg — My, Mg — My, Moy — My,
May — My, Mgy — My, Mz — Mg, Moy — My, Mas — Mg,
Mas — My, Moy — M, . xs

(C.17)

Notice, again, that this is the same geometric action that we have found for phase D
in (5.19).
The vq, matrices are constrained as in (5.20). As for phase D, we choose

Y3 =V = V25 = V0 = LN - (C.18)
The resulting orientifold of phase J is shown in figure 30.

C.4 Phase L

The last N' = (0,2) quiver we consider is phase L, shown in figure 31.
The J- and E-terms are

J FE
Als © BsaVii — DsaXayr X13X35 — X15Xss
A%E) o COsaXa1 — AsaYar X13Y35 — Y18 Xgs
ANy © WsaXa — YaaYar Y13X35 — X1sYas
Ayt ZsaXa — XsaYa YigYss — YisVas
Ay YnYis — YirYs X35Y54 — Y35X54
A3 0 XaYis—YarXrs  YasZss — X3sWss
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Figure 30. Quiver diagram for the Spin(7) orientifold of phase J of Q%! /Z, using the involution

in egs. (C.14), (C.15) and (C.16), together with our choice of g, matrices.

Figure 31. Quiver diagram for phase L of Q'!:!/Z,.

Y X3 — Xu7Yrs
X1 X13 — Xar X73
Xs5D54 — Yes W4
Xg5C51 — Y5754
Xg5Bs4 — Ys5Y54
Xg5Asa — Ys5X54
Xo5D54 — Y25 Bs4
Xo5C54 — Yo5 Asa
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Y35A54 — X35B54
X35D514 — Y35C54
Xa6Xes — Xa41X18
Xa1Y1s — Yag Xes
Y1 X1s — X46Yes
Yi6Yes — Ya1Y1s
Xa7X72 — Xa6Xe62
Yy X62 — XarY72



12
bt XosZsy — Yos X5y
150 WsaYar — D5y Xy
% 1 ZsaYar — CsaXuz
55 1 Y5uVir — BuXur
75 1 X5aYir — AsaXar
56 ¢ YosYss — Yo2Vas

2 1 XosYes — Yo2Xos5
6 1 YasXgs — XgoYos
56 1 XesXss — Xg2Xos

XosWsq — Yo5Y54

Xa6Ye2 — Yar X172
Yi7Y7o — YaeYe2
X792 Xo5 — X73X35
X73Y35 — Y72 Xo5
Y73 X35 — X72Y25
Y72Yo5 — Y73Y35
X54Ya6 — Y54 X
W54 Xa6 — Z54Ya6
B4 X46 — A54Ya6
Cs54Ya6 — D54 X46 -

(C.19)

U(IN)? x SO(N)? orientifold. We can, again, look for an involution that maps the
nodes in figure 31 1 <» 7 and 2 <+ 8 and all the other nodes to themselves. The map on

the fields is
Bsy — 7952547541 ,
Vi — va,Yarvg,
X13 — 797)_(7375317
X18 — 70, Y7270, »
Ass — vos W54’V§41 ;
Vi3 — Y0, Y7370, »
Y54 — 7955(547541 )

Yo3 — 79657627521 ,

Zs4 — 7953547541 ;
Yir = v, Yoo,
X7z — 791)_(137531 ;
Y72 = v0, X1870, »
Wsy — 795;1547541 )
Y73 = v0, V1370, »
X4 — 79537547541 ;

Yoo — 79637687581 ,

Dsy — vas 6'547541 ;
Xa1 = o, Xarvg,
X35 — 79317357551 ;
Xss = 70, X250 »
Yig — 797)?72’7521 )
Ya5 — 70, Y2570, »
Xy — 7941746’661 )

Xeg — 796)_%27521 ;

Cs4 — 7951_)547541 ;
Xar = v, Xa17g,
Y35 — 793)_(35’7551 ;
X5 — Y5 X850, »
X7 — 79117187581 ;
Yo5 — Y05 YasVq, »
Yi6 — 7945(46’7561 )
Xe2 — 796)_%87581 .
(C.20)

Requiring the invariance of the W1 guperpotential, we obtain also the following

transformations for the Fermi fields:

Ajs — 797/_\35%_251 )
Ady = =0, M570;
Azlls - VQ4A?127§; )
Ady = e, Mg,
At = —va,A 570,

1 1 .—1
Ass = =705 M5670, >

and
R RT_ —1
A7 = v, A7 Ta;

R RT,. -1
Ags = v, M55 Yo, -

Al — _797/_\%5%_2; ;
A3y = =y, A3q)
A4218 - ’794]\41127521 ;
Ady = v, Migvar
A% = o, Misg,

2 13 -1
Ase = —v0: A5670, »

R RT_ -1
Ago = o Ass” Vg

R RT._ -1
Ags = v, M1 Vg,

A5 — _797A§57§: )
A3y = =0, M30q)
Aig - VQ4A327§; ;
Ay — v, Mo,
A% - *791/1%575; )

3 2 -1
Asg = =705 M5670, »

R RT, -1
Az = v, M35 7o,

R RT. -1
A7z = v, AT g,
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Afs — —VQ7A$57§517
ASy = =0, M50,
Adg — 794]\327521 ;
Afp — 794/_\?187581 ;
Azs = =0, Mg,
A§6 - _795A§675§7
(C.21)

R RT, -1
Ayy — v, A Yoy

Aé% — VQQA%T')@; .
(C.22)



Figure 32. Quiver diagram for the Spin(7) orientifold of phase L of Q''!:!/Z using the involution
in egs. (C.20), (C.21) and (C.22), together with our choice of v, matrices.

Using table 11, the corresponding geometric involution acting on the generators reads

My — Myy, My — Moy,
Mg — Mg,  My; — Mo,
My — My, Mg — Ms,
Mg — Mg, M7z — Mg,
My — M3, My — My,
Mo — My, Moy — M .

Ms — Moy,
Mg — Mo,
My3 — Mo,
Mg — My,
Mss — Mg,

My — Mg,
Mgy — Moy,
My — Mo,
Myg — Ms,
Maq — M,

This is, once again, the same geometric involution.

Ms — Mg,
My — Mz,
Mys — My,
My — My,
Mss — M3,

The g, matrices are constrained as in (5.20). As for phase D, we choose

fYQg = Y :’795 :VQG = ]]-N

The resulting orientifold is shown in figure 32.

C.5 Generators of QY11 /Z,

(C.23)

(C.24)

In tables 7, 8, 9, 10 and 11 we list the generators of Q11! /Zy in terms of the chiral fields

of phases D, E, H, J and L.

The relations among the generators are the same for all phases, and they are:

I=(My M3=M3 ,M) Ms=Ma My ,Mz Mg=M3zMs ,My Mg=M3 M7 ,Ma Mo=M3z Mg ,My M1o=M4 M7,

M3 Mio=MeMg , My Mi3=M2 , M7 Mis=Mg M3 ,M3M1s=M2 , Mg Mis=Mo M4 ,M13M15=M3,

My Mig=MioMi3 ,MisMi7=Mi4 Mg ,MoMig=MisM1s ,M14Mig=Mi5 M7 .My Mig=M3

My Moo=Ms Mg ,M3Ma1=M2 ,MsMa1=MeMao ,M19 Ma1=MZ2, ,MsMaz=M1o Mg ,
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M9 Maz=MaoMag ,MeMaa=Mi2Ma1 ,Moo Maa=Ma1 Maz ,M10Mas=M16 Moo ,Mi3Mas=M%; ,
MigMas=M3, M1 Mog=Mi7Mos ,May Mog=Ma3Mys ,M1oMar=M1gMay ,M15s Mar=MZ
M7 Maz=Mig Moae ,Maoy Mar=M2, ,Ma3Mar=MasMoe ,Mas Mar=MZ; , M1 Me=MoMs=M3zM,
My Mo=MMg=M3M7 ,M1 M14=MMi3=Mr7 Mg ,MzM15=M3M14=MgMy ,
M7 Mis=MgMia=Mg M3 ,Mi Mi6=M4sMi3=M7 Mo ,M3Mig=Me¢Mi5=MgMi2,
Mg Mig=M1aM17=M15Mie ,M1 Mao=MoMi9=MsMs ,Ma Mo1=M3Moo=Ms5Ms ,
My Maz1=Ms5Mao=Me¢M19 ,M1 Maz=MsMio=M7 Mg ,MzMag=MeMi2=MgM21 ,
Mg Maa=Mao Maz=Ma1 Mao ,MaMos=MioMao=Mic M9 ,M7Mas=MioMie=Mi3Maz,
Mz Mas=Mi4Maos=MiecMi7 ,M19Mas =Moo Mas =Moo Moz ,Me Mar=M12 Mas=M1gMo1 ,
Mo Ma7=M2 Mig=M15Mas ,M14Mar=M15Mac=M17 Mg ,Mi6 Mar=M17 Mac=M18Mas ,
Moo Ma7=Ma21 Mag=Maz Maa ,Mao Mo7z=Mao3 Mog=Ma4 Mos ,M1 M11=Ma M1o=MsMg=M5M7 ,
Mo Myo=M3zMi1=MsMo=MeMg ,M7Mi7=MgMi6=MioM1a=M11M13,
Mg Mig=MgMi7=M11 Mi5=M12M14 ,MsMozg=MsMoo=Mi0M20=M11Mg,
Ms Maa=MeMag=M11 M2a1=Mi2 Moo ,M10Mas=M11 Mas=Mi6 Maz=Mi7 M2z,
M1 Myr=M1aMag=M17 Mag=M1gMas , M1 Mys=MyMis=M3Mi3=M7Mg=M2 ,
My Moy=MoMao=M3Mig=MsMe=M2 M1 Mas=M4Mis=M7Mao=M3Z,=M13M9,
M3 Mar=MeM1g=MoMos=M32,=M15Ma1 ,M13Mar=M14 Mag=M15 Mas=M16 M1s=M?%, ,
Mg Mar=Mag Mag=May Mas=Mao May=MZy M1 Mio=MasM;1 =Mz Mio=MyMo=MsMg=MgcMr
My Miz=MaMig=MaMia=MsMiz=M7Mi1=MgMo ,M2Mig=M3zMi7=MsMi5=MeMi1a=MgMi2=
=My M1 ,M7Mig=MgMi7=MoMi6=Mi0Mi5=M11 M1a=Mi12 M3 ,M1 Maz=MoMoo=MsMi1=
=MsMio=M7Mao=Mg Mg ,M2Moa=M3zMoz3=MsMi2=Me¢M11=MgMa1=M9 Mo ,MaMoa=MsMaz=
=MeMao=M19Ma1=M11 Mao=Mi2M19 ,MsMaos=MsMos=M10Mag=M11 Maz=Mi6 Mao=M17 Mg,
M7 Mae=MgMas=MioMi7=Mi11 Mie=M13M2az=M14Ma2 ,M5Ma7r=Me¢Moc=M11 Maa=M1i2 Mag=M17 M21=
=MigMzo ,MgMa7r=MgMoc=M11M1g=M12M17=M14Moa=M15Maz ,M10Ma7r=M11 Mae=M12 Mas=
=Mie Maa=Mi7Maz=Mig Maz ,M1 Mi1g=Ma Mi7=M3M16=M4Mi5=Ms5M14=MeMi3=M7M12=MgMi1=
=My Mo ,M1 Maa=MsMoz=M3zMoo=MsMi2=MsMi1=MeMio=Mr7 M2a1=MgMao=Mo M9 ,M1 Mac=
=My Mas=MysMr17=Ms5Mie=M7 Mag=MgMao=M1ioMi1=M13Mao=M14M19 ,Mz Mo7r=M3Mos=
=MsMig=Me¢Mi7=MgMaa=Mg Moz=Mi1 Mi12=MiaMo1=M15 M2o ,MaMao7=MsMoc=MecMas=M10M24=
=M1 Maz=Mi2 Mao=Mi6 M21=Mi7Mao=M18 M9 ,M7 Mar=MgMoe¢=Mo Mos=M1i0Mig=M11 M17=
=Mi2Mie=M13Maa=M14Maz=Mi5Ma2 ,Mi Ma7r=Ma2Moc=M3zMos=MasM1g=MsMi7=MeM16=M7 M2a=
=MgMag=MgMaa=M1oMi2=M?2 =M1i3Ma1=M14 Mag=M15M19 >

(C.25)
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Field Chiral superfields

My X790 X47X64Y56Yo5 = X70Xu7X53Y34Y05 = X138 X64Xg5Y41Y56 =
= X18X53Xg5Y34Ys1

My X7o X7 X6aXo5Y56 = X7o X7 X56X64Yos = X790 X7 X53X05Y34 =
= X790 X34 X47X53Y05 = X8 X56X64Xg5Ya1 = X18X41X64Xg5Y56 =
= X8 X411 X53X355Y314 = X158 X341 X53 X551

M3 X79 X417 X56X64X05 = X720 X34 Xy7 X53X05 = X18X41 X56X64Xg5 =
= X118 X34 X41 X53 X35

My X64Xg5Y18Y11Y56 = X53Xs5Y18Y34Y01 = Xu7XeaY72Y56Y25 =
= Xu7X53Y72Y34Yo5 = X790 Xy7Y56Y64Yo5 = X790 X47Y34Y53Y05 =
= X118 Xg5Y11Y56Y64 = X138 Xg5Y34Y41Y53

Ms X56X64X85Y18Y11 = Xa7X64X05Y72Y56 = Xu7X56X64Y72Y05 =

= X7 X53X05Y72Y314 = X1 X64Xs5Y18Y56 = X41 X553 X85Y18Y34 =

= X34 X53Xg5Y18Ya1 = X34 Xa7X53Y72Y05 = X720 X47X05Y56Y64 =

= X72X47X05Y34Y53 = X72Xu7X56Y64Y25 = X720 X34 Xu7Y53Y05 =

= X18X56X85Y11Y6a = X138 X1 Xs5Y56Y64 = X18X41X85Y34Y53 =
= X185 X34 Xg5Y141 Y53

Ms X7 X56X64X05Y70 = X1 X56X64X55Y18 = X34 X7 X53X05Y72 =
= X34 X41 X53Xg5Y18 = Xro X7 X56Xo5Y64 = X720 X34 Xy7 Xo5Y53 =
= X8 X411 X56X55Y64 = X18X34X41Xg5Y53

My X79X64Ya7Y56Y05 = X790 X53Y34Yy7Yo5 = X18XeaYs1Y56Ys5 =
= X8 X53Y34Y41Yss = W5 X720 X47X64Yo5 = Wi56X18X64Xg5Ya1 =
= W34 X79 X47X53Y05 = W34 X138 X53Xg5Y41

Mg X792 X64Xo5YarYs6 = X72X56X64Ya7Yos = X72X53X05Y34Ya7 =
= X7 X471 X64Yo5256 = X2 XurX53Y25734 = X720 X34 X53YarYos =
= X18X64X85Y11 256 = X18X56X64Ya1Yss = X18X53X85Ya1234 =
= X158 X41 X64Y56Yss = X18Xu1X53Y34Ys5 = X158 X34 X53Yu1Ys5 =
= Ws6 X172 Xa7 X64Xo5 = W56 X18 X401 X64Xs5 = Wiaa X7o Xu7 X53X05 =
= W3y X158 X411 X53 X85

My Xr9 X56 X624 Xo5Ys7 = Xro Xy XeaXo5Z56 = XroXy7X53X05234 =
= X790 X34 X53X05Ya7 = X18Xu1X64Xg5756 = X18X41 X56X64Ys5 =
= Xi18X41X53Xg5234 = X18X34X41 X53Y35

Mg XeaY72Yy7Y56Yos = XpaY18Ya1Y56Ys5 = X53Y70Y34Ys7Yos =
= X53Y18Y34Yy1Yos = X7oYurYs6YeaYos = XroY34YarY53Yo5 =
= Xi18Yu1Y56Y64Yss = X18Y34Y41Y53Ys5 = Wi X64Xg5Y18Ya1 =
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Field Chiral superfields

= W56 Xu7Xe4Y72Y0o5 = W56 X70X47Y64Y05 = W56 X18Xg5Y41Ye4 =
= W34 X53Xg5Y18Ya1 = W3 Xy7 X53Y70Yos = W3y X720 Xy7Y53Y05 =
= W34 X18Xg5Y41Y53

My, X6aXs5Y18Y11 256 = XeaXos5Y72YarYss = Xs56X64Y72YarYos =
= X56X64Y18Y01Ys5 = X53Xg5Y18Y01234 = X53X05Y72Y34Yy7 =
= Xu7Xe64Y72Y25256 = Xa7 X53Y72Y25234 = X1 X64Y18Y56Ys5 =
= X1 X53Y18Y34Ys5 = X34 X53Y72YarYos = X34 X53Y18Y1 Y5 =
= X72Xo5Y47Y56Y64 = X72X05Y34Ya7Y53 = X720 X56Ya7Y64Y25 =
= X7oXu7Ye4Yo5Z56 = X72Xa7Y53Y25234 = X792 X34Ya7Y53Y25 =
= X185 Xg5Y11Y64256 = X18X85Yu1Y53234 = X18X56Ya1Y64Ys5 =
= X18X41Y56Y64Ys5 = X18Xa1Y34Y53Ys5 = X18X34Ya1Y53Ys5 =

= Ws6Xa7 X6aX25Y72 = Wi56 X141 X64Xs5Y18 = W56 X72Xa7X25Y64 =

= W56 X18X41X85Y64 = Wi3a Xa7 X53X05Y70 = W34 X1 X53Xs5Y18 =

= W34 X729 X47X25Y53 = W31 X18 X141 Xs5Y53

Mo X56X64Xo5Y72Yar = Xar Xea XosYr2Z56 = Xur X53Xo5Y72 234 =

= X1 X64Xg5Y18256 = X1 X56X64Y18Ys5 = X41X53X85Y18734 =
= X34 X53X05Y72Ya7r = X34 X1 X53Y18Ys5 = X720 X56 X25YarYes =
= X7 X471 X05Y64 256 = X2 Xu7Xo5Y53234 = X720 X34 X05Ya7Y53 =
= X158 X401 Xg5Y64 256 = X18 X1 Xs5Y53234 = X18X41X56Y64Ys5 =

= X158 X34 X11Y53Y35

M3 W56 X72X64Ya7Yos = Wse X18 X6aYa1Yss = W3a X72X53Ya7Yo5 =
= W34 X18X53Y41Ys5

My X79X6aYarYos5 256 = X2 X53YarYa5Z34 = X18X6aYa1Ys5256 =

= X18X53Y11Ys5234 = W56 X720 X64Xo5Ya7r = W56 X18X41X64Ys5 =
= W34 X720 X53X05Ya7 = W34 X138 X1 X53Y55

M5 X79X64Xo5YarZ56 = X7 X53X05Ya7234 = X138 X41 X64Ys5256 =
= X18X41X53Yg5234
Mg W6 X64Y72Ys7Yo5 = W56 X64Y18Y41Ys5 = W56 X70YarYeaYos =

= Wi56X18Y11YeaYss = W34 X53Y72YarYos = W3s X53Y18Y41Ys5 =
= W34 X79Y47Y53Y05 = W34 X18Y41Y53Y35

M7 XeaY72Ya7Yo5256 = XeaY18Yu1YssZ56 = Xs53Y72YarYosZ34 =
= X53Y18Y01Ys5 7234 = X72YarYeaYos5Z56 = Xr2YarYssYos 234 =
= X18Y11Y6aYs5256 = X18Ya1Ys3Ys5234 = Ws6XeaXos5Y72Yar =
= W56 X41X64Y18Ys5 = Ws6 X720 X05Ya7Y6a = Wi X18X41Y64Ys5 =
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Field Chiral superfields
= W34 X53X05Y72Yar = W34 X41 X53Y18Yss = W34 X790 Xo5Ya7Ys3 =
= W34 X18X41Y53Y55
Mg X6aXo5Y72YarZs56 = X53Xo5Yr2YarZ34 = X1 X64Y18Ys5256 =
= X1 X53Y18Ys5 231 = X702 X05Ya7Y64256 = X72X05Ya7Y53234 =
= X18X41Y64Ys5 256 = X18X41Y53Y85234
Mg Xs5Y18Y11Y56Y6a = Xg5Y18Y34Yu1Ys3 = XurY72Ys6Y64Yo5 =
= Xy7Y72Y34Y53Y05
My X56X85Y18Y11Y6a = Xar Xo5Y72Y56Y64 = Xu7Xo5Y72Y34Y53 =
= Xu7X56Y72Y64Y25 = X1 Xg5Y18Y56Y64 = X1 Xs5Y18Y34Y53 =
= X34 Xg5Y18Y01Y53 = X34 Xu7Y72Y53Y25
Mo, XarX56X25Y72Y64 = X41 X56X85Y18Y6a = X34 Xu7Xo5Y72Y53 =
= X34 X401 Xg5Y18Y53
Ma7 Y72YarYs56Y64Yos = Y72Y34YarYs53Y05 = YigYa1Ys6Y64Ys5 =
= Y18Y34Yy1Y53Ys5 = Wi Xs5Y18Ya1Yea = Wi XurY72YeaYos =
= W34 Xg5Y18Y01Ys3 = W3a XarY72Y53Y25
Mas Xs5Y18Y41Y6aZ56 = Xg5Y18Ya1Y53234 = XosY72YarYs6Yea =
= Xo5Y72Y34YarYs3 = Xs6Y72YarYeaYos = Xs6Y18Ya1YeaYss =
= XurY72YeaYo5Z56 = XarY72Ys3Yo5234 = Xa1Y18Y56Y64Ys5 =
= XnY18Y34Y53Ys5 = X34Y72YarYs3Yos = X34Y18Y1Ys3Yss =
= WseXa7Xo5Y72Y64 = W56 X411 Xg5Y18Y6a = W34 Xu7Xo5Y72Y53 =
= W34 X411 X85Y18Y53
Moy X56X25Y72Ya7Yea = XurXos5Yr2YeaZs6 = XurXosY72Y53234 =
= X1 Xs5Y18Y64256 = X41Xs5Y18Y53234 = X41 X56Y18Y64Ys5 =
= X34 X05Y72Ya7Y53 = X34 X41Y15Y53Y35
Mas Wis6Y72Ya7Y6aYo5 = WieY18Ya1YeaYss = WiaY7oYarYssYos =
= W34Y18Y01Y53Y5s5
Mg Y72YarYeaYos5Z56 = YroYurYs3Yos Z3a = YisYa1YeaYs5256 =
= Y1sYn1Ys3Ys5234 = W56 Xo5Y72Ya7Yea = Ws6X41Y18Y64Ys5 =
= W34 Xo5Y72Ya7Y53 = W34 X41Y18Y53Y35
Ma7 XosY72YarYeaZs6 = XosY72YarYs3Z34 = X41Y18Y64Ys5256 =

= Xn1Y18Y53Ys5234

Table 7. Generators of Q%!/Z, in Phase D.
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Field Chiral superfields

My W6 X35 X47X64Y73 = W56 X18X64Xs5Ya1 = W5 X13X35X64Ya1 =
= Wi X72X47X64Y05

My X35 X47X64Y73Y56 = W56 X35 X64Y73Yar = X138 X4 Xg5Ys1Y56 =
= X13X35X64Y11Y56 = W56 X18X64Y11Ys5 = X720 X47X64Y56Y05 =
= Wi56X72X64Ys7Yos = Wi56X35X64Y13Ya1

M;3 X35X64Y73Y47Y56 = X18XeaYa1Y56Ys5 = X720 X64Ya7Y56Y25 =
= X35X64Y13Y11Y56
My Wi Xa7X64Y73Y35 = Wire X35 Xu7Y73Y64 = W56 X13X64Y35Y41 =

= W56 X18Xs5Y41Y6a = W56 X13X35Y41Y64 = W56 X70Xu7Y64Y25 =
= W56 X47XeaY72Yo5 = Wi56X64X55Y18Ya1

M5 Xa7X6aY73Y35Y56 = X35Xa7Y73Y56Y64 = WreXeaY73Y35Yar =

= W56 X35Y73Ya7Yea = X13X64Y35Y11Y56 = X18Xs5Ya1Y56Y64 =

= X13X35Y11Y56Y6a = Ws6X18Ya1Y64Ys5 = X720 Xa7Y56Y64Y25 =

= Xy7X64Y72Y56Y25 = Wi X72YarYeaYos = Ws6XeaY72YarYos =

= Ws6X64Y13Y35Ya1 = W56 X35Y13Ya1Yea = XeaXs5Y18Ya1Y56 =
= W56 X64Y18Y11 Y85

M Xe6aY73Y35YarYs6 = X35Y73YyrY56Yes = X141 Y56Y64Ys5 =
= XroYarY56Y64Yos = XeaYroYarYs56Yos = XeaY13Y35Y41Y56 =
= X35Y13Y11Y56Y64 = X6aY18Ya1Y56Y35

My X35 X47X56X64Y73 = W56 X18X41X64Xg5 = W56 X13X35X41 X4 =
= W56 X720 X7 X4 Xo5 = W56 X73X35X47X64 = X18X56X64Xg5Y01 =
= X13X35X56X64Ya1 = X790 X47X56X64Y25

Ms X18X41 X64 X556 = X13X35X41X64Y56 = X720 Xa7X64X025Y56 =

= X73 X35 X47X64Y56 = X35 X47X64Y73256 = X35 X56X6aY73Ya7 =

= WseX72X64X25Ya7 = Wi6X73 X35 X64Ya7r = X18X64X85Ya1256 =

= X13X35X64Y11 256 = Wse X158 X41 X64Ys5 = X158 X56 X64Ya1Ys5 =

= X7 X471 X64Y25 256 = X72X56X64YarYos = Wi56X35X41X64Y13 =
= X35X56X64Y13Yn1

My X79X64Xo5Ya7Y56 = X73X35X64Ya7Y56 = X35X64Y73Ys7256 =
= X8 X41Xe64Y56Ys5 = X18X64Ya1Ys5256 = X720 Xe4Ya7Yo5256 =
= X35X41X64Y13Y56 = X35X64Y13Y11Z56

Mg X7 X56X64Y73Y35 = X35 Xu7X56Y73Y64 = W56 X13X41X64Y35 =
= Wi X73X47X64Y35 = W5 X18X41Xg5Yes = Wi56X13X35X41Y64 =
= W56 X72X47X05Ye4 = Wi X73 X35 Xu7Y64 = W56 X47X64Xo5Y72 =
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Field Chiral superfields

= X13X56X64Y35Y41 = X18X56Xg5Y41Yea = X13X35X56Y41Y64 =
= X79Xy7X56Y64Yo5 = Xu7X56X64Yr2Yo5 = W56 X41 X624 Xg5Y18 =
= X56X64X55Y18Y41

My, X13X41X64Y35Y56 = X73X47X64Y35Y56 = X18 X1 Xs5Y56Y64 =
= X13X35X41Y56Y6a = X72Xu7Xo5Y56Y64 = X73 X35 Xa7Y56Y64 =
= Xu7X6aXo5Y72Y56 = Xa7X6aY73Y352Z56 = X35 Xa7Y73Y64256 =
= X56X64Y73Y35Ya7 = X35 X56Y73Ya7Yea = W6 X73X64Y35Ya7 =
= Ws6X72X05Ya7Y6a = Wse X73X35Ya7Y6a = Ws6X6aXo5Y72Yar =
= X13X64Y35Y11256 = X18X85Y11Y64Z56 = X13X35Ya1Y64256 =
= W56 X18X41Y64Ys5 = X18X56Ya1Y64Ys5 = X72Xu7Y64Y25756 =
= Xu7X64Y72Y25 256 = X720 X56Ya7Y64Y25 = X56X64Y72YarYo5 =
= W56 X41X64Y13Y35 = W56 X35 X41Y13Y6a = X56X64Y13Y35Y01 =
= X35 X56Y13Ya1Yea = X41X64X85Y18Y56 = X64Xs5Y18Ya1256 =
= W56 X141 X64Y18Ys5 = X56X64Y18Ya1Y55

My X73X64Y35Ya7Y56 = X72Xo5Ya7Y56Y6a = X73X35Ya7Y56Y64 =

= X4 Xo5Y72YarYs6 = XeaY73Y35Ya7Z56 = X35Y73Ya7Y64256 =

= X18X41Y56Y64Ys5 = X18Yu1Y64Ys5256 = X72Ya7Y6aY05756 =

= XeaY72YarYo5 256 = Xu1X64Y13Y35Y56 = X35 X41Y13Y56Y64 =

= X6aY13Y35Ya1Z56 = X35Y13Ya1Y64 256 = Xa1X64Y18Y56Ys5 =
= X64Y18Y11Y55Z56

M3 X18 X141 X56X64X55 = X13X35X41 X56X64 = X720 Xu7X56X64X05 =
= X73X35X47X56 X064

My X18X41 X4 Xg5256 = X13X35X41X64256 = X720 Xu7X64X05256 =
= Xr3X35X47Xe4Z56 = X720 X56X64Xo5Ya7 = X73X35X56X64Ya7 =
= X118 X411 X56X64Ys5 = X35X41X56X64Y13

Mis X720 Xe64Xo5Ya7Z56 = X73X35X64Ya7256 = X18X41X64Ys5256 =
= X35X41X64Y13256

Mg X13X41 X56X64Y35 = X73Xy7X56X64Y35 = X18X41 X56X85Y64 =
= X13X35X41X56Y64 = XroXu7 X56X05Y64 = X73X35X47 X56Y64 =
= Xy7X56X64X25Y72 = X41 X56X64X55Y18

M7 X13X01X64Y35756 = X73X47X64Y35256 = X138 X1 Xs5Y64256 =

= X13X35X41Y64 256 = X2 Xu7Xo5Y64Z56 = X73 X35 Xa7Y64Z56 =
= Xy7X64X05Y72 256 = X73X56X64Y35Ya7r = X72X56X25Ya7Y6a =
= X73X35X56Ya7Y64 = X56X64X25Y72Yar = X158 X401 X56Y64Ys5 =
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Field Chiral superfields

= X1 X56X64Y13Y35 = X35X41 X56Y13Y64 = X41X64Xg5Y18756 =
= X1 X56X64Y18Y35

Mg X73X64Y35Ya7 256 = X729 Xo5YurYeaZse = X3 X35Ys7Ye4Z56 =
= X4 Xo5Y7oYurZse = X183 X41Y64Ys5256 = X41X64Y13Y35256 =
= X35X11Y13Y64 256 = X1 X64Y18Ys57Z56

Mg W56 Xa7Y73Y35Y64 = W56 X13Y35Y41 Y64 = W56 XurY72YeaYos =
= W56 Xg5Y18Y41Y64
Mg Xu7Yr3Y35Y56Y64 = WieY73Y35Ya7Yes = Xi3Y35Y41Y56Y64 =

= Xu7Y7oY56Y64Yos = WieYroYarYeaYos = WseY13Y35Y41 Y64 =
= Xg5Y18Y11Y56Y64 = WiseY18Ya1Ye64Y35

Moy Y73Y35Y47Y56Yes = YroYa7Y56YeaYos = Y13Y35Y41Y56Y64 =
= Y18Y11Y56Y64Y35

M7 Xu7X56Y73Y35Yes4 = W56 X13X41Y35Y64 = W56 X73X47Y35Y64 =
= W56 X47Xo5Y72Ysa = X13X56Y35Ya1Y64 = Xu7X56Y72Y64Y05 =
= Ws6X41X35Y18Y64 = X56X55Y18Y11Y64

Mas X13X41Y35Y56Y6a = X73Xa7Y35Y56Y64 = X7 Xos5Y72Y56Y64 =

= XurY73Y35Y64256 = X56Y73Y35Ya7Yea = W6 X73Y35Ya7Yea =

= WhreXo5Y72YarYes = Xi13Y35Y01YeaZ56 = XarY72YeaYo5256 =

= X56Y72Ya7Y64Yo5 = Wse X41Y13Y35Y64 = X56Y13Y35Ya1Y6a =

= X1 Xg5Y18Y56Y64 = XssY18Ya1Y64Z56 = Wi6X41Y18Y64Ys5 =
= X56Y18Y11Y64Y55

Moy X73Y35Yu7Y56Y64 = XosY72YarYseYes = Yr3Y35YarYe4Z56 =
= Y72Yy7Ye4Yo5Z56 = X41Y13Y35Y56Y64 = Y13Y35Y41YeuaZ56 =
= Xn1Y18Y56Y64Ys5 = Y18Ya1Y64Ys5756

Moy X13X41X56Y35Y64 = X3 X7 X56Y35Y64 = Xy7X56X05Y70Y6s =
= X1 X56X85Y18Y64

Mog X13X41Y35Y64256 = X73Xu7Y35Y6a 256 = XarXo5Y70YeaZ5e =
= X3 X56Y35Ya7Yea = X56Xo5Y72Ya7Yea = X41 X56Y13Y35Y64 =
= X1 Xg5Y18Y64256 = Xu1X56Y18Y64Y35

M7 X73Y35YurYeaZng = XosY72YarYeaZse = X41Y13Y35Y64256 =
= X41Y18Y64Y35256

Table 8. Generators of Q41! /Zy in Phase E.
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Chiral superfields

My X2 X56X64Xo5 = Xug X56X64Xs5 = X14X31 Xy2X53X05 =
= X74X37 X190 X535 X05 = X14X31 Xug X53 X5 = X74X37 X458 X53 X5
M, X37 X2 X53X25Y74 = X37Xug X53Xs5Y74 = X56X64X25242 =
= X14 X351 X53X05 242 = X74X37 X535 X05 242 = X14X42X53X25Y31 =
= X14 X435 X53X85Y31 = Xy2X64X05Y56 = XysX64Xg5Y56 =
= Xus X56X64Ys5 = X14X31 Xug X53Ys5 = X74X37 X435 X53Y35
M3 X37X53X25Y74242 = X14X53X05Y31 7242 = X6aXo5Y56242 =
= X7 X4 X53Y74Ys5 = X14 X8 X53Y31Yss = XugX6aY56Ys5
My X56X64Xs5Yas = X14X31 X53Xs5Yas = X74X37X53Xs5Yas =
= X56X64X25Ya2 = X14X31 X53X05Y40 = X74 X37 X535 X5V =
= X2 X56X25Y64 = Xus X56Xg5Y64 = X14 X351 X42X05Y53 =
= X74X37 X490 X05Y53 = X14X31 X4 Xg5Y53 = X74 X37 X4 Xg5Y53
Ms X37X53Xs5Y74Yas = X37 X53X05Y74Ya0 = Wiya X56X64 X025 =
= Wiya X14X31 X535 X205 = Wiya X74 X357 X53X05 = X14 X535 X85Y31Yas =
= X14X53X05Y31Ya2 = X56X25Y64242 = X37 X402 X05Y74Y53 =
= X37Xus Xg5Y74Y53 = X14X31X05Y53240 = X74 X37X05Y537242 =
= X14X42X95Y31Y53 = X14Xug Xs5Y31Y53 = X6aXs5YasYs6 =
= X6aXo5Y12Y56 = Xu2Xo5Y56Y64 = Xug Xs5Y56Y64 =
= X56X64YasYss = X124 X31 X53YsusYs5 = X74X37X53YasYs5 =
= X4 X56Y64Yss = X14X31XugY53Yss = X74X37X4sY53Y35
Mg Wao X37 X53X05Y74 = Wi X14 X53X05Y31 = X37Xo5Y74Y53 242 =
= X14X95Y31Y53242 = Wi X6aXo5Y56 = Xo5Y56Y64212 =
= X37X53Y74YasYs5 = X14X53Y31YasYss = X37Xug¥74Y53Ys5 =
= X14X45Y31Y53Ys5 = X6aYasYs6Yss = XugYs6Y64Ys5
M, X31 X2 X53X25Y14 = X31 Xug X53Xs5Y14 = X56X64Xs5248 =
= X14 X531 X53 X85 248 = X74X37 X535 X85248 = X74X42X53X05Y37 =
= X74 X4 X53X85Y37 = X42X64X05256 = XugX6aX85Z56 =
= X2 X56X64Y25 = X14 X351 X42X53Y25 = X74X37X42X53Y25
Ms X371 X53X85Y74 248 = X351 X53X05Y14 242 = X2 X53X05Y74Y37 =

= Xys X53X85Y74Y37 = X74X53X05Y37 240 = X4o X53X05Y14Y31 =
= X3 X53Xg5Y14Y31 = X14X53Xs5Y31248 = X64X85Y56248 =
= X4 Xo5Z42756 = Ws6Xu2X64Xo5 = Wi X4 X6a X5 =
= X531 X458 X53Y14Ys5 = X56X64Ys5248 = X14X31X53Y55248 =
= X74X37X53Ys5248 = X74Xug X53Y37Ys5 = Xug X6aYs5256 =
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Chiral superfields

= X37X40X53Y74Yo5 = X56Xe4Yo5Z40 = X14X31X53Y05249 =
= X714 X37X53Y05 7240 = X14 X420 X53Y31Y05 = X420 X64Y56Y25

X53X05Y74Y37 242 = X53X05Y14Y31 240 = Wi X6aXo5Z42 =
= X37X53Y74Ys5 248 = Xug X53Y74Y37Ys5 = Xug X53Y14Y31Yg5 =
= X14X53Y31Ys5 248 = X6aY56Ys5248 = W56Xug X6aYss =
= X7 X53Y74Y25 2420 = X14X53Y31Y25 242 = X6aY56Y25242

Mg

X31X53X85Y14Yas = Wag X6 X6a X5 = Wig X14 X351 X53 X85 =
= Wig X74 X37 X535 X85 = X31X53X25Y14Ya2 = X74 X535 X85Y37Yas =
= X74X53X05Y37Ya2 = X56Xs5Y64248 = X31 X492 X25Y14Y53 =
= X351 X458 X85Y14Y53 = X14X31 Xs5Y53248 = X74X37X85Y53248 =
= X74 X492 X05Y37Y53 = X74Xus Xs5Y37Y53 = XeaXs5Ya8256 =
= XeaXo5Ys2Z56 = XaoXo5Y64256 = Xag Xs5Y64256 =
= X56X64Ya2Y2s = X14X31X53Ya2Y05 = X74 X37 X53Y42Yo5 =
= X420 X56Y64Y2s = X14X31 Xu2Y53Y05 = X74 X357 X42Y53Y05

Wig X37 X53Xs5Y74 = Wi X31 X53X25Y14 = X53Xs5Y74Y37Yas =
= X53X05Y74Y37Ya2 = Wiy X74 X53X05Y37 = X53X85Y14Y31Yas =
= Wig X114 X53X85Y31 = X53X25Y14Y31Ya0 = X37Xs5Y74Y53248 =
= X1 X05Y14Y53 242 = Xa2Xo5Y74Y37Y53 = Xug Xs5Y74Y37Y53 =
= X74X95Y37Y53 242 = X492 X25Y14Y31Y53 = Xug Xs5Y14Y31Y53 =
= X14Xg5Y31Y53248 = Wag X6 Xs5Y56 = Xs5Ys56Y64248 =
= Wi X6aX25256 = XosYeaZ42256 = Ws6XeaXs5Yas =
= Ws6X6aX25Ya2 = W56 Xa2X05Y64 = W56 Xus Xs5Y64 =
= X351 X53Y14YasYs5 = Wag X56X6aYss = Wag X14X31 X53Ys5 =
= Wig X74 X37 X53Ys5 = X74X53Y37YasYss = X56Y64Ys5248 =
= X351 X48Y14Y53Ys5 = X14X31Y53Ys5248 = X74X37Y53Ys5248 =
= X74X48Y37Y53Ys5 = XeaYasYs5256 = XagYeaYs5256 =
= X37X53Y74Ya2Y05 = Wi X56X6aYos = Waa X14X31 X53Y25 =
= Wia X74 X37 X53Y05 = X14X53Y31Ya2Y05 = X56Y64Y25242 =
= X37X42Y74Y53Y05 = X14X31Y53Y25 240 = X74X37Y53Y25240 =
= X14X42Y31Y53Y25 = XaYaoY56Yo5 = Xuo2V56Y64Y25

Wiao X53X05Y74Y37 = Wiya X53X05Y14Y31 = Xo5Y74Y37Y53 240 =
= Xo5Y14Y31Y53Z240 = WiyaWis6 X6a Xos = W56 Xo5Y64Z42 =
= Wag X37 X53Y74Yg5 = X53Y74Y37YusYss = X53Y14Y31YagYs5 =
= Wig X14 X53Y31Ys5 = X37Y74Y53Ys5248 = XugY74Y37Y53Ys5 =
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Field Chiral superfields

= X48Y14Y31Y53Ys5 = X14Y31Ys3Ys5248 = Wag X4 Ys6Ys5 =
= Y56Y64Ys5248 = Ws6X64YagYss = W56XagY64Ys5 =
= WioX37 X53Y74Yo5 = Wiya X14X53Y31Y05 = X37Y74Y53Y05240 =
= X14Y31Y53Y05 240 = WyaXe4Y56Y25 = Ys6Y64Y25 242

M3 X31X53X85Y14248 = X174 X53Xs5Y37 248 = X4 Xg5248756 =
= X31 X420 X53Y14Yo5 = X74 X420 X53Y37Y05 = Xy0X64Yo5756
My X53Xg5Y74Y37 248 = X53Xg5Y14Y31 248 = W56 X64Xg5248 =

= X31X53Y14Ys5248 = X74X53Y37Ys5248 = XeaYs5248256 =
= X31X53Y14Y25242 = X0 X53Y74Y37Yo5 = X4 X53Y37Y05240 =
= XyoX53Y14Y31Yos = Xe4Yo5Z42 756 = Wi56X42X64Y05

M5 X53Y74Y37Ys5 248 = X53Y14Y31Ys5248 = W56 X64Ys5248 =
= X53Y74Y37Yo5 240 = X53Y14Y31Y052490 = Wis6X64Yo5 242

Mie Wig X31 X553 X85Y14 = Wag X74 X53Xs5Y37 = X31Xs5Y14Y53 248 =
= X74Xs5Y37Y53248 = Wag XeaXg5256 = Xg5Y64Z48256 =
= X31X53Y14Ya0Y05 = X74X53Y37Ya0Y05 = X31X42Y14Y53Y25 =
= X74X42Y37Y53Y05 = XeaYa2Yo5256 = Xa2Ye4Yo5756

M7 Wis X53Xs5Y74Y37 = Wias X53Xs5Y14Y31 = Xg5Y74Y37Y53248 =
= Xg5Y14Y31Y53248 = WiysWis6 X64 X85 = Ws6Xs5Y64245 =
= Wig X31X53Y14Ys5 = Wis X74 X53Y37Ys5 = X31Y14Y53Ys5248 =
= X74Y37Y53Yg5 248 = WagXeaYs5Zs6 = YoaYs5Z48256 =
= Wiyo X351 X53Y14Yo5 = X53Y74Y37Y4oYos = Wiya X74 X53Y37Y05 =
= X53Y14Y31Ya2Yo5 = X31Y14Y53Y05 242 = Xua2Y74Y37Y53Y25 =
= X74Y37Y53Y05Z40 = Xy2Y14Y31Y53Yo5 = Wya Xe4Yo5256 =
= Y64Y25 242256 = WseX64Ya2Yos = Wi56Xa2Y64Y25

Mg Wis X53Y74Y37Ys5 = Wis X53Y14Y31Ys5 = Y74Y37Y53Ys5 248 =
= Y14Y31Y53Ys5 248 = WasWs6X64Ys5 = Ws6Y6aYs5248 =
= WioX53Y74Y37Y25 = Wa2 X53Y14Y31Y25 = Y74Y37Y53Y25 242 =
= Y14Y31Y53Y25 240 = WaaWs6X64Y25 = Ws6Y64Y52Z42

Mg X56X85Ya8Yea = X56Xo5Ya2Yes = X14X31Xg5Ys8Y53 =
= X74X37X385Y18Y53 = X14X31 Xo5Ya2Y53 = X74X37X05Y42Y53
My Wi X56Xo5Y6s = X37Xg5Y74Yu8Y53 = X37Xo5Y74Y40Y53 =

= Wy X14X31X05Y53 = Wiy X74 X357 X095Y53 = X14Xg5Y31YagY53 =
= X14X05Y31Ya9Y53 = Xg5YagY56Y6s = XosYsoYs6Yes =
= X56YusY6aYs5 = X14X31YygY53Ys5 = X74X37Ys8Y53Y35
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Field Chiral superfields

M>,q Wia X37X05Y74Y53 = Wiy X14X05Y31Y53 = WyoXo5Y56Y64 =
= X37Y74Y48Y53Ygs = X14Y31YusY53Ys5 = YigY56Y64Y3s5
M7 Wig X56Xg5Yea = X31X85Y14Ya8Y53 = Wiyg X14X31 Xg5Y53 =

= Wis X74X37 X85Y53 = X31X05Y14Ya2Y53 = X74Xg5Y37YusYs53 =
= X74X05Y37Y2 Y53 = Xg5YusYouZ56 = Xo5YaaYeaZ56 =
= X56Y12Y64Y25 = X14X31Y42Y53Y05 = X74X37Y42Y53Y25
Mas Wig X37 Xs5Y74Y53 = Wiya X31 X05Y14Y53 = Xs5Y74Y37YusYs3 =
= Xo5Y74Y37Y4oY53 = Wiya X74 X05Y37Y53 = Xs5Y14Y31YasYs3 =
= Wig X114 X85Y31Y53 = Xo5Y14Y31 Y00 Y53 = Wiag Xs5Y56Y64 =
= WaaXo5Ys4Z56 = Ws6Xs5YasYea = Ws6Xo5Y42Yes =
= WigX56Y64Ys5 = X31Y14YasY53Yss = Wiag X14X31Y53Y55 =
= Wis X74 X37Y53Ys5 = X74Y37YasY53Yss = YagYeaYs5256 =
= WiaX56Y64Y25 = X37Y74Ya2Y53Y25 = Wa2 X14X31Y53Y05 =
= Wi X74X37Y53Y25 = X14Y31Ya0Y53Y05 = YaoYs6Y64Y25
May Wao Xo5Y74Y37Y53 = Waa Xo5Y14Y351Y53 = Wiya W56 Xo5Y64 =
= Wig X37Y74Y53Yss = Y74Y37YagY53Ys5 = Y14Y31YagYs3Ys5 =
= Wis X14Y31Y53Yss = WagYs6Y64Ys5 = Ws6YagYeaYss =
= WiaaX37Y74Y53Y25 = Waa X14Y31Y53Y05 = WiaYs6Y64Y25

Moy Wiyg X31Xg5Y14Y53 = Wiyg X74 Xg5Y37Y53 = Wiyg Xg5Y64Z56 =
= X31Y14Y12Y53Yo5 = X74Y37Y42Y53Y05 = Yo Y64Yo5Z56
Mg Wiyg Xg5Y74Y37Y53 = Wiy Xg5Y14Y31Y53 = WiagWis6Xg5Y64 =

= Wag X31Y14Y53Ys5 = Wag X74Y37Y53Yss = WigYeaYs5 256 =

= Wiya X31Y14Y53Yo5 = Y74Y37YaoY53Yo5 = Wya X74Y37Y53Y05 =
= Y14Y51 Y40 Y53Y05 = WaaYe4Yo5256 = Ws6Ya2Y64Y25

Ma7 WisY74Y37Y53Ys5 = WagY14Y31Y53Yss = WasWs6YeaYs5 =

= WaoY74Y37Y53Y05 = WiaY14Y31Ys3Y05 = WiaWis6Y64Yo5

Table 9. Generators of Q!'! /Zy in Phase H.

Field Chiral superfields

My X18X56X61 X85 = X13X34X46X61 = X13X35X56X61 = X73 X34 X46X67 =
= X72X56X67Xo5 = X73X35X56X67

My X13X46X61434 = X3 Xu6X67234 = X720 X56X67Y25 = X312 Xu6Xe67Y73 =
= X35X56X67Y73 = X18X61X85256 = X13X35X61256 = X792 X67X05256 =
= X73X35X67256 = X138 X56Xs5Y61 = X13X34X46Y61 = X13X35X56Y61
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Field Chiral superfields

M3 X6 Xo7Y73234 = X790 X67Y05256 = X35 X67Y73456 = X13X46Y61434 =
= X18Xg5Y61256 = X13X35Y61Z56

My X13X56X61Y35 = X73X56X67Y35 = X56X67Xo5Y72 = X13X34.X61Ya6 =
= X73 X34 Xe7Yae = X73X34Xu6Z67 = X720 X56X05267 = X73X35X56 267 =
= X18X56X85261 = X13X34X46Z61 = X13X35X56261 = X56X61X85Y18

Ms X56X67Y73Y35 = X6 Xe7Y72Y2s = X13X61Y35256 = X73X67Y35256 =
= Xe7X25Y72256 = X13X61Ya6234 = X73X67Ya6234 = X34 X67Y73Ya6 =
= X3 Xu6Z34267 = X712 X56Y25Z67 = X34 Xa6Y73267 = X35X56Y73267 =
= X72Xo5Z56 267 = X13X35256267 = X13X56Y35Y61 = X13X34Ya6Y61 =

= Xi13Xu6Z34261 = X18Xs5256261 = X13X35256261 = We1 X18X56 X85 =
= We1X13 X34 X46 = W1 X13 X35 X56 = X61Xs5Y18256 = X56Xs5Y18Y61

M Xe7Y73Y35256 = Xe7YroYos Zs6 = XerY73YaeZ3s = XueY73 2434267 =
= X79Yo5Z56 267 = X35Y73456Z67 = X13Y35Y61456 = X13Ya6Y61434 =
= W1 X13X462314 = W1 X18Xg5256 = We1X13X357Z56 = Xg5Y18Y61Z56

My X13X46X61Y34 = X73X46X67Y34 = X18X61Xs5Y56 = X13X35X61Y56 =
= X79Xe7Xo5Y56 = X73X35X67Y56 = X18X56X61Yss = X73X31X46Y67 =
= X790 X56X25Ye7 = X713 X35 X56Ys7 = X34 X46X61Y13 = X35 X56X61Y13

Ms WiaX13Xa6X61 = WiaaX73Xa6Xe7 = XasXe67Y73Y34 = X720 X67Y56Y25 =
= X35 X67Y73Y56 = Wse X158 X61 X85 = W6 X13X35X61 = W6 X72X67X25 =
= Ws6X73 X35 Xo7 = X18X61Ys5256 = X73X46Y67Z34 = X72X56Y67Y25 =
= X34 X46Y73Y67r = X35X56Y73Y67 = X72X05Y67Z56 = X73X35Y67256 =
= X13X46Y34Y61 = X18Xs5Y56Y61 = X13X35Y56Y61 = X18X56Y61Ys5 =
= X46X61Y13234 = X35X61Y13256 = X34 X46Y13Y61 = X35X56Y13Y61

My W34 X6 Xe67Y73 = W56 X720 X67Yo5 = W56 X35 X67Y73 = XueY73Y672434 =
= X72Ye7Yo5 256 = X35Y73Ye7 256 = W34 X13Xu6Ye1 = WreX18Xg5Y61 =
= W56 X13X35Y61 = X18Ye61Ys5256 = XueY13Y612434 = X35Y13Y61Z56

Mo X13X61Y35Y56 = X73X67Y35Y56 = Xe7Xo5Y72Y56 = X13X61Y34Ya6 =
= X73X67Y34Ya6 = X73X56Y35Y67 = Xp6Xo5Y72Yer = X73X34Ya6Ye7 =
= X73Xa6Y34Z67 = X720 Xo5Ys6 267 = X73X35Y56Z67 = Wer X73 X34 Xu6 =
= Wer X172 X56 X025 = Wer X73 X35 X56 = X13Xu6Y31261 = X158 Xs5Y56261 =
= X13X35Y56 261 = X18X56Y85Z61 = X56X61Y13Y35 = X34X61Y13Ya6 =
= X34 X46Y13261 = X35X56Y13Z61 = X61X85Y18Y56 = X56X61Y18Y85

My, Xe7Y73Y35Y56 = Xe7Y70Y56Yo5 = W56 X13X61Y35 = W56 X73X67Y35 =
= W56 Xe7Xo5Y70 = W34 X13X61Ya6 = W3sX73Xe7Yss = Xo7Y73Y34Ys6 =
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Field Chiral superfields

= X56Y73Y35Ye7 = Xs6Y72Yo7Yos = X73Y35Y67256 = XosY72Y67256 =
= X73YaeYo71Z34 = X34Y73Ya6Ye7 = Waa Xr3Xu6Z67 = Xa6Y73Y342067 =
= X72Vs6Y25Z67 = X35Y13Y56 267 = Wis6X72X05Z67 = Wie X73X35Z67 =
= Wer X73Xa6Z34 = Wer X172 X56Y25 = Wer X34 XueY73 = W7 X35 X56Y73 =
= Wer X72X25256 = Wer X73X35256 = X13Y35Y56Y61 = X13Y34Ya6Y61 =
= W34 X13X46Z61 = W56 X18X85261 = Ws6X13X35261 = X18Ys5256 261 =
= W1 X13X46Y31 = W1 X18X85Y56 = We1X13X35Y56 = We1 X18X56Ys5 =
= X61Y13Y35256 = X61Y13Ya6234 = X56Y13Y35Y61 = X34Y13Ya6Y61 =
= Xu6Y13234Z61 = X35Y132456261 = We1 X34 Xu6Y13 = We1 X35 X56Y13 =
= Ws6X61X85Y18 = X61Y18Ys5256 = Xs5Y18Y56Y61 = X56Y18Y61Y55

Mo Ws6Xe7Y73Y35 = Wae XerY72Yos = WiaaXe7Y73Yae = Y73Ya5Y67256 =
= Y7oYo7Yo5Z56 = Yr3YaeYerZ34 = WaaXuaeY73Z67 = Wse X72Yo5Z67 =
= WseX35Y73267 = WerXaeY73234 = Wer Xr2Yo5Z56 = Wer Xa5Y73256 =
= W56 X13Y35Y61 = W34 X13Ya6Ye1 = Wi3aWe1 X13X46 = Wis6We1 X18Xs5 =
= WssWe1X13 X35 = We1X18Ys5256 = Y13Y35Y61256 = Y13Ya6Y61234 =
= We1X46Y13234 = W1 X35Y13256 = W56 Xs5Y18Y61 = Y18Y61Y85 756

M3 X18X61Y56Ys5 = X73Xu6Y34Yer = X7aXo5Y56Ye7 = X73X35Y56Y67 =
= Xy6X61Y13Y34 = X35X61Y13Y56
My W6 X18X61Yss = W34 X73Xu6Ys7r = XugY73Y34Ys7 = X72Y56Y67Yo5 =

= X35Y73Y56Ys7 = W56 X70X05Ys7 = W56 X73X35Ys7 = X18Y56Y61Ys5 =
= W34 X46X61Y13 = W56 X35X61Y13 = Xu6Y13Y34Y61 = X35Y13Y56Y61

M5 W34 X46Y73Ye7r = Wse X72Ye7Yos = WseX35Y73Ye7r = Wi X18Y61Ys5 =
= W34 X46Y13Y61 = W56 X35Y13Y61

Mg X73Y35Y56Yer = XosY7oYs56Yer = Xr3Y34YaYe7r = Wer X73X46Y34 =
= Wer X72Xo5Y56 = Wer X73X35Y56 = X18Y56Ys5261 = Xe61Y13Y35Y56 =
= X61Y13Y31Y6 = XueY13Y34261 = X35Y13Y56 261 = Xo61Y18Y56Y35

M7 Y73Ya5Ys6Yer = YroYs6YorYos = Wi X73Y35Ye7 = WoeXosY72Yer =
= W34 X73Yae Yo7 = Y73Y34Ya6Yor = WaaWer X73X46 = Wer XaeY73Y34 =
= WerX72Y56Y2s = Wer X35Y73Y56 = WocWer X72Xo5 = WseWer X73 X35 =
= W56 X18Ys5261 = We1X18Y56Ys5 = Ws6X61Y13Y35 = W34 X61Y13Ya6 =
= Yi3Y35Y56 Y61 = Y13Y34YaeYe1 = WsaXu6Y13261 = WreX35Y13261 =
= We1X46Y13Y34 = W1 X35Y13Y56 = W56 X61Y15Ys5 = Y1sYs6Y61Y5s5
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Mg Wi6Y73Y35Yer = WseYroYerYos = Wi3aYr3YaeYsr = W3sWe7 XugY73 =
= Wi5eWer XraYos = WssWe7 X35Y73 = WiseWe1 X18Yss = Wr6Y13Y35Y61 =
= W34Y13Ya6Ys1 = W3sWe1 Xu6Y13 = Wi56Wes1X35Y13 = Wir6Y18Y61Y35

Mg X73X56Y35267 = X56Xo5Y72Ze7 = X73X34Ya6267 = X13X56Y35261 =
= X13X34Yu6261 = X56X85Y18261

My X56Y73Y35267 = X56Y72Yo5Z67 = X13Y35Z56 267 = XosY72 256267 =
= X73Yy6 234267 = X34Y73Ya6Z67 = X13Y35256261 = X13Ya6Z34261 =
= W1 X13X56Y35 = W1 X13X34Ys6 = Xg5Y187256Z61 = We1X56X85Y18

My, Y73Y35256Z67 = Yr2Yos5Z56 467 = Yr3YaeZ3aZer = We1X13Y35256 =
= We1X13Ya6 2314 = We1Xg5Y187Z56
Moy X73Y35Y56 267 = XosY7oYs6Z67 = X73Y34Ya6Ze7 = Wer X73X56Y35 =

= Wer X56Xo5Y72 = W7 X73X34Ya6 = X13Y35Y56261 = X13Y34Y46261 =
= X56Y13Y35261 = X34Y13Yu6261 = Xg5Y18Y56261 = X56Y18Y85261

Mos Y73Y35Y56 Z67 = Yr2Y56Ya5Z67 = WscX73Y35267 = WseXosY72Z67 =
= W34 X73Ya6Zor = Yr3YsaYacZer = Wer Xs6Y73Y35 = Wer Xs6Y72Yo5 =
= Wer X73Y35256 = WerXasY72256 = Wer X73YaeZ31 = Wer XsaYr3Yae =
= W56 X13Y35261 = W34 X13Ya6Z61 = We1X13Y35Y56 = W1 X13Y34Ya6 =
= Y13Y35Z56 261 = Y13Ya6 234261 = We1X56Y13Y35 = W1 X34Y13Ya6 =
= Ws6Xs5Y18261 = Y1sYs5256Z61 = We1Xs5Y18Y56 = We1 X56Y18Y55

Moy Wis6Y73Y35 267 = WseY72Yo5Z67 = W3sY73YasZer = WerYr3Y35256 =
= WerY72Yo5256 = WerY73Ya6Z34 = Wi5eWe1X13Y35 = W34 We1 X13Ya6 =
= We1Y13Y35256 = We1Y13Ya6234 = Wis6We1Xs5Y18 = Wi1Y18Ys5 256

Moy Wer X73Y35Y56 = Wer XosYroYs6 = Wer X73Y34Y46 = Yi3Y35Y56 261 =
= Y13Y34Y46Z61 = Y18Y56Ys5261

Mg WerYr3Y35Y56 = WerYroYs6Yos = WigWer X73Y35 = WigWer XosY72 =
= W3uWer X73Yse = WerYr3Y34Yae = WieY13Y35261 = W34Y13Ya6Z61 =
= We1Y13Y35Y56 = We1Y13Y31Y46 = Wi6Y18Ys5261 = We1Y18Y56Y35

Moy W56 WerYr3Y3s = WssWerY72Yos = W3y We7Y73Yas = WiseWe1Y13Y35 =
= W34We1Y13Ys6 = W56We1Y18Ys5

Table 10. Generators of Q11 /Z, in Phase J.
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M,y A5y X18X41Yss = A5uXu6X68Yss = AsaXueXosYeor = Asa X3 X35Yar =
= Asu X790 Xo5Ys7r = A5y X35 X41Y13
My X18X11X54Ys5 = Xu6X54X68Ys5 = XupX54X05Y62 = A5aX13X35Xa1 =

= A5y X18 X141 Xgs = As54X73X35Xa7 = A5u X790 Xu7X05 = As4Xu6X62X05 =
= A5 X6 X638 Xss = X73X35X54Yar = X720 X54X05Yyr = X35X41 X54Y13

M3 X13X35X41 X554 = X8 X41 X54Xg5 = X73X35X47 X514 = X9 Xy7 X54Xo5 =
= Xy6X54X62X05 = Xu6X54X63X385

My B4 X18X41Yss = Bs51Xu6X63Yss = B54X16X25Y62 = A5aX63Ya6Ys5 =
= As54X05Y46Y62 = Bs54X73X35Ya7 = BsaX7oXosYar = A5y X73Y35Yyr =
= AsaXosY72Yar = As54X41Y18Yss = B54X35X41Y13 = A5 X41Y13Y35

M5 X18X41Y54Ys5 = Xu6Xe68Y54Ys5 = Xu6Xo5Y54Y62 = BraX13X35Xa1 =
= B54 X18X01Xs5 = BpaX73 X35 Xa7 = B5aX72X47X05 = B5aXueXe2X25 =
= B54 X416 X6 X85 = X54X68Ya6Yss = X54Xo5Ya6Yo2 = A54X62X25Ya6 =
= As54 X6 Xs5Ya6 = X73X35YarYsa = X720 Xo5YarVos = A5 X13X41 Y35 =
= A5 X73Xa7Ys5 = X73X54Y35Yar = A5aXur XosVro = X5a XosYroVar =
= X1 X54Y18Ys5 = A5a X1 Xs5Y15 = X35X01Y13V54 = X41 X54Y13Y35

Ms X13X35X41Y54 = X18X01 Xg5Y54 = X713 X35 Xu7Y54 = X70Xy7Xo5Y54 =
= Xy Xe2Xo5Y54 = XugXes Xg5Ys4 = X54 X2 X05Ys6 = X514 X638 Xg5Ya6 =
= X13 X1 X54Y35 = X713 X7 X54Y35 = Xur X54Xo5Y70 = Xu1 X54Xg5Y18

My A5y X46YesYss = As54Xu6Y62Y25 = X18X41Ys5C51 = X46X68Ys5C54 =
= Xu6X25Y52C054 = As5u X72Ya7Yos = X73X35Y47C54 = X720 X05Y47C54 =
= A5 X18Y11Yss = As54X35Y73Yar = X35X41Y13C54 = As54X35Y13Y01

Mg Xa6X54Ye8Ys5 = Xu6X54Y62Y25 = X18Xu1Ys5751 = Xu6XesYs5251 =
= Xu6X25Y62254 = ApaX72Xu7Yos = A54Xu6Xe2Yos = A54Xu6Xs5Y6s =
= X13 X35 X01C51 = X18 X401 Xg5C54 = X73 X35 X47C54 = X720 X47X05C54 =
= Xu6X62X25C54 = Xu6Xos8Xs5C54 = X2 X54YurYos = X73X35YarZ54 =
= X712 Xo5YurZ54 = X158 X54Y01Yss = A5 X13 X35V = A5a X18Xg5Ya1 =
= As54X35X47Y73 = X35 X54Y73Yar = X35X01Y13754 = X35 X54Y13Yan

My X790 X7 X54Yo5 = Xy X54X62Yo5 = Xy X54Xg5Y68 = X13X35X41 254 =
= X8 X1 Xg5250 = X3 X35 Xu7 754 = X729 Xu7Xo5754 = XueXe2Xo5254 =
= Xy Xe68Xs524510 = X13X35X54Ys1 = X18X54Xg5Y1 = X35 X47X54Y73

Mg B54X46Y6sYs5 = BraXueYs2Yos = D5a X18X41Yss = D5y Xu6XesYss =
= D54 X46X25Y62 = As54Ys6Y68Ys5 = As54YieY62Yo5 = XesYieYs5Cs4 =
= Xo5Yu6Y62C54 = BsaX72Ya7Yos = D5y X73X35Ya7 = D5y X720 Xo5Ya7 =
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= BssX18Y11Yss = X73Y35Yy7Csa = AsaY72YarYos = XosY72YyrCsy =
= Bs5sX35Y73Ya7r = AsaY73Y35Ysr = X41Y18Ys5C54 = A54Y18Y41Yss =
= D54 X35X41Y13 = Bs54X35Y13Y11 = Xu1Y13Y35C51 = A54Y13Y35Y01

My, Xa6Y54Y6sYss = XupY54Ye2Yos = Wsa X185 Xa1Yss = WraX46XesYs5 =
= W54 X46X25Y62 = B5aX72Xa7Yo5 = Bs5aXueXe2Y2s = B5aX46Xs5Y68 =
= D54 X13X35 X1 = D5 X18X01 X85 = D54 X73X35X47 = D5a X720 X47 X095 =
= D54 X46X62X25 = D54 Xa6XesXs5 = X54Ya6Y6sYs5 = X54YaY62Yo5 =
= Xo6sYa6Ys5254 = Xo5Yu6Y62254 = As4Xe2YaeYos = AsaXs5Ya6Yes =
= X62X25Y16C510 = Xos Xs5Ya6C51 = X72YarYsaYos = Wsa X73 X35Ya7r =
= W54 X7 Xo5Ya7 = X18Y11Y54Yss = B5aX13X35Ya1 = Bsa X158 Xg5Y =
= X13Xn1Y35054 = Xr3Xu7Y35050 = Xr3Y35YarZ54 = Asu X13Ya5Ya =
= ApaXu7Yr2Yos = Xu7r XosY72Css = X54Y72YurYos = XosYroYarZ54 =
= BsaX35Xu7Y73 = X35Y73YarYos = A5aXurYr3Yss = X5aYr3VasYar =
= X11Y18Ys5 254 = X1 Xg5Y18C54 = X54Y18Ya1Yss = A5s Xg5Y1sYa1 =
= W54 X35 X01Y13 = X35Y13Ya1 Y54 = Xa1Y13Y352514 = X54Y13Y35Yan
Mis X79Xa7Y54Yo5 = Xy6X62Y54Y25 = Xu6Xs5Y54Ye8 = W5a X13 X35 Xa1 =
= Wsa X18 X401 Xg5 = W54 X73X35Xu7 = Wra X7 Xy7 Xo5 = W54 XueXe2X25 =
= W54 X416 X6 X85 = X54X62Ya6Y25 = X54Xg5Ya6Yes = Xe2X25Ya6251 =
= X3 Xg5Ya62450 = X13X35Ya1Y54 = X158 Xg5Ya1Y5a = X13X41Y35754 =
= X73Xu7Y35250 = X13X54Y35Yn1 = Xur X5aY72Yo5 = Xur Xos5Y72254 =
= X35 Xa7Y73Y54 = Xur X54Y73Y35 = X1 Xg5Y18 754 = X54Xs5Y18Yn1
Mg X16Y6sYs5054 = Xu6Y62Y25C54 = X72YarYo5Css = X18Yn1Ys5C54 =
= X35Y73Y47C51 = X35Y13Y41C5a
My X46Y6sYs5250 = XagYo2Yo5Z50 = X72X47Yo5C54 = XusXe2Yo5C54 =

= Xu6Xs85Y68C54 = X72YurYo5250 = X158V Ye5250 = X13X35Y01Cs =
= X18Xs5Yu1C54 = X35 X47Y73C54 = X35Y73YarZ54 = X35Y13Y41254
M5 X790 Xa7Yo5Z54 = Xa6X62Y25254 = Xu6Xs5Y68254 = X13X35Ya1254 =
= X185 Xg5Y11 2450 = X35Xu7Y73254
D54 X46Y6sYs5 = D5aXa6Y62Yo5 = YagYesYs5C54 = YaeYoaYo5Cs4 =
= D5aX72Y47Yo5 = D54 X18Y1Yss = Y72YarYo5C54 = D54 X35Y73Ya7 =
= Yr3Y35Ya7C54 = Y1sYu1Ye5C54 = D5a X35Y13Ya1 = Yi3Y35Y41C54
M7 W54 X46Y6sYss = WsaXueY62Yos = D5aXr2XarYos = D5aXasXe2Y25 =
= D54 X46X385Y6s = Ya6YosYs5254 = YaeY62Y25Z54 = Xp2YaeY25C54 =
= Xg5Y16Y68C54 = W54 X72YarYos = W5 X18Ya1Yss = D54 X13 X35V =

Mg
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= D5y X18Xs5Yu1 = X13Y35Y41Cs4 = Xu7Yr2Yo5C54 = Y72YarYo5 754 =
= D5y X35Xu7Yr3 = W5y X35Y73Yyr = XurYr3Ya5Cs54 = Yr3Y35YarZ5s =
= Y18Yu1Ys5Z54 = Xg5Y18Y41C54 = W54 X35Y13Ya1 = Y13Y35Y41 2754

Mg

W54 X70X47Yo5 = W54 Xye X62Yos = W54 Xu6Xg5Y6s = Xe2YaeY25254 =
= Xg5Yu6Y68 2514 = W54 X13X35Ya1 = W54 X18XgsYa1 = X13Y35Y41 254 =
= Xu7YroYos 254 = Wi5s X35 X47Y73 = Xy7Y73Y35254 = Xg5Y18Y41 254

Mg

B X68Ya6Yss = BsaXosYaeYeo = BsaX73Y35Ys7 = BsaXosYroYar =
= B5s X41Y18Ys5 = B54X41Y13Y35

Msg

Xe68YaY54Yss = XosYueYs54Ys2 = Bs54Xe2Xo5Yss = BraXesXgsYas =
= B4 X13X41Y35 = Bss X73X47Y35 = X73Y35Ya7Y54 = By Xyr Xo5Y72 =
= Xo5Y7oYa7Y54 = X41Y18Y54Ys5 = B5aX41 Xg5Y18 = X41Y13Y35Y54

Xe2Xo5YueYss = X Xg5YaeYss = X13X41Y35Y54 = X73 Xy7Y35Y54 =
= X7 XosY70Y54 = X41Xg5Y18Y54

Moy

B54Y16Y63Ys5 = BsaYi6Y62Y25 = D5y XesYasYss = D5aXo5Ys6Y62 =
= D54 X73Y35Ya7 = B5aY7oYa7Yos = D5aXosY7oYar = BsaY73Y35Yyr =
= D54 X41Y18Ys5 = BrsaY18Y41Yss = D5y Xu1Y13Y35 = BsaY13Y35Ya1

M3

Yi6Y54Y6sYss = YaeY5aYe2Yos = WsaXesYaeYss = W54 Xo5Ya6Y62 =
= Bs54Xe2Ya6Yos = BsaXg5Ya6Yes = DsaXe2X25Ya6 = D5aXesXss5Ya6 =
= D54 X13X01Y35 = D5aX73Xa7Y35 = W54 X73Y35Yar = BsaX13Y35Y1 =
= BsaXarY72Yos = D54 Xu7Xo5Y72 = Y7oYarYsaYos = W5aXosYr2Yar =
= B5aXa7Y73Y35 = Y73Y35Ya7Ysa = W54 X41Y18Ys5 = D54 X1 Xs5Y18 =
= Y1sY01Ys5aYss = BsaXgsY1sYar = WsaX41Y13Y35 = Yi3Y35Ya1Y54

Moy

Xe2Ya6Y54Yo5 = XgsYueYs4Yes = WiraXeaXo5Yas = WirsXes Xs5Yae =
= W54 X13X41Y35 = Wss X73Xu7Y35 = X13Y35Ya1 Y54 = XyrY7oY54Yos =
= W5y Xu7Xo5Y70 = Xy7Y73Y35Y54 = W54 X1 Xg5Y18 = Xg5Y18Ya1Y54

Moy

D5y Yu6Ye8Yss = D5aYaeYe2Yos = DsaYroYa7Yos = DsaY73Y35Yy7 =
= D54Y18Y41Ys5 = D54Y13Y35Y41

Mg

Wi54Y46YesYss = WsaYaeYeaYos = D5y Xe2YaeYos = D5y Xg5YasYes =
= D5 X13Y35Y41 = D5y XyrY72Yos = Wiy Y72YarYos = D5y XyrY73Y35 =
= W54Y73Y35Ya7 = Wi54Y18Ya1Yss = D54 Xg5Y18Ya1 = WisaY13Y35Y1

Moy

W54 X62YaeYos = W5aXg5YaeYes = W5aX13Y35Y41 = W5y Xy7Yr0Yos =
= W54 X47Y73Y35 = W54 Xg5Y18Ya1

Table 11. Generators of Q11! /Z, in Phase L.
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