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1 Introduction

2d N = (0, 1) quantum field theories are extremely interesting, since they are barely
supersymmetric and live at the borderline between non-SUSY theories and others with
higher amounts of SUSY, for which powerful tools such as holomorphy become applicable.
Due to the reduced SUSY, they enjoy a broad range of interesting dynamics. While there
has been recent progress in their understanding, they remain relatively unexplored.

In [1], it was discovered that 2d N = (0, 2) theories exhibit IR dualities reminiscent of
Seiberg duality in 4d N = 1 gauge theories [2]. This low-energy equivalence was dubbed
triality since, in its simplest incarnation, three SQCD-like theories become equivalent at
low energies. Recently, an IR triality between 2d N = (0, 1) theories with SO and USp
gauge groups was proposed in [3]. Evidence supporting the proposal includes matching
of anomalies and elliptic genera. This new triality can be regarded as a relative of its
N = (0, 2) counterpart.

The geometric engineering of 2d N = (0, 1) gauge theories on D1-branes probing singu-
larities was initiated in [4], where a new class of backgrounds denoted Spin(7) orientifolds
was introduced. These orientifolds are quotients of Calabi-Yau (CY) 4-folds by a combi-
nation of an anti-holomorphic involution leading to a Spin(7) cone and worldsheet parity.
They provide a beautiful correspondence between the perspective of N = (0, 1) theories as
real slices of N = (0, 2) theories and Joyce’s geometric construction of Spin(7) manifolds
starting from CY 4-folds. This geometric perspective provides a new approach for studying
2d N = (0, 1) theories.

For branes at singularities, a single geometry often corresponds to multiple gauge
theories. Such non-uniqueness is the manifestation of gauge theory dualities in this context.
Examples of this phenomenon abound in different dimensions. The various 4d N = 1 gauge
theories on D3-branes over the same CY 3-fold are related by Seiberg duality [2, 5, 6]. The
triality of 2d N = (0, 2) gauge theories on D1-branes over CY 4-folds and the quadrality of
0d N = 1 gauge theories on D(−1)-branes over CY 5-folds can be similarly understood [7,
8]. These ideas were further extended to the (m+1)-dualities of the m-graded quivers that
describe the open string sector of the topological B-model on CY (m+2)-folds for arbitrary
m ≥ 0 [9–11]. In this paper, we will show that the engineering of 2d N = (0, 1) gauge
theories in terms of D1-branes probing Spin(7) orientifolds leads to a similar perspective
on N = (0, 1) triality.

The paper is organized as follows. In section 2 we review N = (0, 2) and N = (0, 1)
trialities in their original formulations and comment on their generalizations to quivers. We
discuss Spin(7) orientifolds and the corresponding 2dN = (0, 1) field theories arising on D1-
branes probing them in section 3. In section 4 we explain how the basic N = (0, 1) triality
arises from the universal involution. In section 5 we investigate how (generalizations of)
N = (0, 1) triality arise in the case of Spin(7) orientifolds based on more general involutions.
We present our conclusions in section 6. There are, also, three appendices that may help
the reader to follow the discussion in the main text. In appendix A we review the N = (0, 1)
formalism for 2d gauge theories, and in appendix B we list the possible contributions to
2d gauge anomalies for the groups and representations that we will encounter in the main
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Figure 1. 2d N = (0, 2) SQCD and its triality dual. The central nodes have ranks given in (2.1).

text. Finally, in appendix C we give all the necessary details for the phases of Q1,1,1/Z2
involved in the triality web introduced in section 5.2.

2 N = (0, 2) and N = (0, 1) triality

In this section, we review the trialities of 2d N = (0, 2) [1] and N = (0, 1) [3] gauge
theories. Discussing N = (0, 2) triality first is not only useful for setting the stage since
both trialities share various features, but it is also convenient since Spin(7) orientifolds
connect them.

2.1 N = (0, 2) triality

Here we present a quick review of 2d N = (0, 2) triality. A detailed discussion can be found
in [1]. Additional developments, including connections to 4d, its realization in terms of D1-
branes at CY4 singularities, brane brick models and mirror symmetry, appear in [7, 12–15].

Without loss of generality, we can focus on the quiver shown in figure 1a, which can be
regarded as 2d N = (0, 2) SQCD. The yellow node represents the SU(Nc) gauge group that
undergoes triality, while the blue nodes are flavor SU(Ni) groups, i = 1, . . . , 3.1 We have
absorbed the multiplicities of flavor fields in the ranks of the flavor nodes. In N = (0, 2)
quivers, we adopt the convention that the head and tail of the arrow associated to a
chiral field correspond to fundamental and antifundamental representations, respectively.
A Fermi field connecting the flavor nodes 1 and 3 has been included to make the original
and dual theories more similar.

The triality dual is shown in figure 1b. The rank of the central node in both theories
is determined by anomaly cancellation to be

Nc = N1 +N3 −N2
2 , N ′c = N2 +N1 −N3

2 . (2.1)

The transformation of the rank can also be written as

N ′c = N1 −Nc . (2.2)

Both theories in figure 1 have J-/E- terms associated to the triangular loops in the quivers.
1More generally, as in theories arising on D1-branes probing CY4 singularities, such groups can have

additional matter charged under them and be gauged.
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Figure 2. Triality loop for 2d N = (0, 2) SQCD.

Taking the dual theory as the new starting point and acting on it with triality, we
obtain the theory shown on the bottom left of figure 2. Applying triality a third time takes
us back to the original theory. We can therefore think about this second dual as connected
to the original theory by inverse triality.2 The triality among these three theories can be
viewed as a cyclic permutation of N1, N2 and N3.

We will later use N = (0, 2) gauge theories engineered on D1-branes probing CY 4-
folds as starting points of orientifold constructions. Such theories have U(N) gauge groups.
A U(Nc) version of N = (0, 2) triality was also introduced in [1]. It only differs from
the SU(Nc) triality depicted in figure 2 by the presence of additional Fermi fields in the
determinant representation of the gauge group, which are necessary for the cancellation of
the Abelian anomaly. It is expected that Abelian anomalies of gauge theories on D1-branes
are cancelled via a generalized Green-Schwarz mechanism (see [16, 17] for 4d N = 1 and
2d N = (0, 2) theories realized on D-branes probing orbifolds/orientifolds singularities).
For this reason, the determinant Fermi fields are not present in such theories and triality
reduces to the one considered in this section.
N = (0, 2) triality can be extended to general quivers (see e.g. [1, 7, 13–15, 18]). It acts

as a local operation on the dualized node, with the part of the quiver that is not connected
to it acting as a spectator. The transformation of such a theory under triality on a gauge
node k can be summarized as follows. The rank of node k changes according to

N ′k =
∑
j 6=k

nχjkNj −Nk , (2.3)

2The distinction between triality and inverse triality is just a convention.
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Figure 3. 2d N = (0, 1) SQCD. Nc is given in eq. (2.4).

where nχjk is the number of chiral fields from node j to node k. All other ranks remain the
same. The field content around node k changes according to the following rules:

(R.1) Dual Flavors. Replace each of (→ k), (← k), ( — k) by (← k), ( — k), (→ k),
respectively.

(R.2) Chiral-Chiral Mesons. For each subquiver i→ k → j, add a new chiral field i→ j.

(R.3) Chiral-Fermi Mesons. For each subquiver i→ k — j, add a new Fermi field i — j.

(R.4) Remove all chiral-Fermi massive pairs generated in the previous steps.

For a detailed discussion of the transformation of J- and E-terms, see e.g., [9].

2.2 N = (0, 1) triality

A similar triality for 2d N = (0, 1) gauge theories was introduced in [3]. The primary
example in which the proposal was investigated is 2d N = (0, 1) SQCD with SO(Nc)
gauge group, whose quiver diagram is shown in figure 3.3 The theory has N1 + N3 scalar
multiplets in the vector representation of SO(Nc). These scalar fields are further divided
into two sets, X and Y , transforming under SO(N1) and SO(N3) flavor groups, respectively.
A bifundamental Fermi multiplet Λ connects SO(N1) and SO(N3).4 There are also N2
Fermi multiplets Ψ in the vector representation of SO(Nc) and a Fermi multiplet Σ in the
symmetric representation of SO(Nc).

Anomaly cancellation for the SO(Nc) gauge group requires that5

Nc = N1 +N3 −N2
2 . (2.4)

3When drawing N = (0, 1) quivers, black and red lines correspond to real N = (0, 1) scalar and Fermi
fields, respectively. In addition, we indicate symmetric and antisymmetric representations with star and
diamond symbols, respectively.

4We will use the term bifundamental in the case of matter fields that connect pairs of nodes, even when
one or both of them is either SO or USp.

5The anomaly contributions of N = (0, 1) multiplets in various representations are listed in appendix B.
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Figure 4. 2d N = (0, 1) triality dual of the theory in figure 3. N ′
c is given in eq. (2.6).

The theory also has the following superpotential consistent with its symmetries

W (0,1) =
Nc∑

α,β=1
Σαβ

 N1∑
a=1

Xa
αX

a
β +

N3∑
b=1

Y b
αY

b
β − δαβ

+
N1∑
a=1

N3∑
b=1

Nc∑
α=1

ΛabXa
αY

b
α . (2.5)

Figure 4 shows the dual under triality. The transformation is rather similar to the
N = (0, 2) triality discussed in the previous section. Once again, in this simple example,
the structure of the dual theory is identical to the original one up to a cyclic permutation of
N1, N2 and N3. For the flavors, scalar multiplets X, Y and Fermi multiplets Ψ are replaced
by scalar multiplets Y ′, Fermi multiplets Ψ′, and scalar multiplets X ′, respectively. The
new theory also contains a Fermi field Σ′ in the symmetric representation of the gauge
group.

The gauge group is SO(N ′c), with the rank determined by anomaly cancellation

N ′c = N2 +N1 −N3
2 , (2.6)

which can be expressed as
N ′c = N1 −Nc . (2.7)

Very much like Rule (R.3) of the previous section, the new Fermi Λ′ in the bifundamen-
tal representation of SO(N1)×SO(N2) can be regarded as a scalar-Fermi meson in terms of
the fields in the initial theory, i.e. Λ′ = XΨ. Similarly, we can interpret the disappearance
of the original Fermi Λ between figures 3 and 4 as the result of it becoming massive via its
superpotential coupling to the scalar-scalar meson XY , which is analogous to the chiral-
chiral mesons of Rule (R.2). An interesting difference with respect to N = (0, 2) SQCD
follows from the fact that SO representations are real. Equivalently, the quivers under
consideration are not oriented. It is therefore natural to ask why, in addition to Λ′ = XΨ,
figure 4 does not simultaneously have another scalar-Fermi meson YΨ in the bifundamen-
tal representation of SO(N2)× SO(N3). Its absence can be interpreted as descending from
N = (0, 2) triality, in which the orientation of chiral fields prevent the formation of such a
gauge invariant. Additional thoughts on the connection between N = (0, 2) and N = (0, 1)
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Figure 5. Triality loop for 2d N = (0, 1) SQCD.

trialities will be presented in section 2.3. Also related to this issue, in the coming section,
we will discuss scalar-Fermi mesons in more general quivers.

The superpotential is identical to (2.5) upon replacing all fields by the primed coun-
terparts and permuting N1, N2 and N3.

Acting with triality again gives rise to the theory shown on the bottom left of figure 5.
A third triality takes us back to the original theory.

There is also a symplectic version of N = (0, 1) triality [3]. The corresponding SQCD
has USp(Nc) gauge group and USp(N1) × USp(N2) × USp(N3) global symmetry.6 The
matter content is almost the same as in the SO(Nc) SQCD quiver shown in figure 3, with
the exception that the Fermi field Σ instead transforms in the antisymmetric representation
of USp(Nc). The rank of the gauge group is Nc = N1+N3−N2

2 to cancel gauge anomalies.
In this case, the triality loop is identical to the one shown in figure 5.

Evidence for the N = (0, 1) triality proposal includes matching of anomalies and
elliptic genera [3]. In the coming sections, we will provide further support for this idea, by
realizing 2d N = (0, 1) theories via Spin(7) orientifolds.

2.3 N = (0, 1) triality for quiver gauge theories

Let us consider the extension of N = (0, 1) triality to general quivers. To do so, it is useful
to first draw some lessons from Seiberg duality and N = (0, 2) triality. In both cases,
incoming chiral fields at the dualized gauge group play a special role.7 They control the

6Differently from [3], we adopt the convention USp(2) ' SU(2) in order to be consistent with the notation
of the orientifold theories we construct later.

7This is a general phenomenon that applies e.g. to the order (m + 1) dualities of m-graded quivers [9].
Seiberg duality and N = (0, 2) triality correspond to the m = 1 and 2 cases, respectively.
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rank of the dual gauge group and, for triality, determine which mesons are formed. Since
N = (0, 1) quivers are unoriented, how to split the scalar fields terminating on a dualized
node into two sets analogous to “incoming” and “outgoing” flavors is not clear. This issue
was hinted in our discussion in the previous section.

In [3], a generalization of triality to a simple class of quiver theories with SO(Nc1) ×
SO(Nc2)× . . . gauge group (or the symplectic counterpart) was briefly discussed. Theories
in this family are obtained by combining various N = (0, 1) SQCD building blocks, which
are glued by identifying any of the three global nodes of a given theory with the gauge
node of another one. Locally, the resulting theories have the same structure of basic SQCD.
Namely, every gauge node is connected to three other nodes, to two of them via scalar fields
and to the remaining one via Fermi fields. Due to this simple structure, the dualization of
any of the gauge groups is unambiguous and proceeds as in basic triality. For every node,
the two possible choices of scalar fields acting as “incoming” or “outgoing” corresponds to
acting with triality or inverse triality.

For general quivers, in which a given node can be connected to multiple others, how
to separate the flavor scalar fields at every gauge group into two sets is an open question.
All the theories that we will construct later using Spin(7) orientifolds are indeed beyond
the above special class. However, this ambiguity is resolved in them by inheriting the
separation of flavors from the parent N = (0, 2) theories.

3 Spin(7) orientifolds

In this section we review the construction of Spin(7) orientifolds introduced in [4] and the
2d N = (0, 1) field theories arising on D1-branes probing them. We focus the overview on
a few key points relevant for subsequent sections, and refer the reader to this reference for
additional details.

Our starting point is a toric CY 4-fold singularity M8. When probed by a stack of D1-
branes at the singular point, the worldvolume theory corresponds to an N = (0, 2) quiver
gauge field theory. When M8 is toric, the structure of gauge groups, matter content and
interactions of these theories is nicely encoded by brane brick models [13, 19, 20] (see [21]
for an early related construction). Nevertheless, for our purposes it suffices to use the
quiver description, supplemented by the explicit expression of the interaction terms (J-
and E-terms).

We then perform an orientifold quotient by the action Ωσ, where Ω is worldsheet parity
and σ is an anti-holomorphic involution of M8 leaving a specific 4-form, that we call Ω(4),
invariant. Such 4-form is constructed from the CY holomorphic 4-form Ω(4,0) and the
Kähler form J (1,1) as

Ω(4) = Re
(
Ω(4,0)

)
+ 1

2J
(1,1) ∧ J (1,1) . (3.1)

If the quotient did not involve worldsheet parity, this quotient corresponds to Joyce’s
construction of Spin(7) geometries, with Ω(4) defining the invariant Cayley 4-form of such
varieties. To keep this connection in mind, the above orientifold quotients were dubbed
Spin(7) orientifolds in [4].
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This orientifold quotient has a natural counterpart on the D1-brane systems, and
naturally realizes a “real projection” of the 2d N = (0, 2) theories in [3], resulting in a 2d
N = (0, 1) gauge field theory. Its structure is determined by a set of rules analogous to
those of orientifold field theories in higher dimensions (see e.g. [22] in the 4d context), and
which were explicitly determined in [4]. Morally, it corresponds to identifying the gauge
factors and matter fields of the parent N = (0, 2) theory under an involution symmetry σ̃
of the quiver, compatible with the set of interactions.

To describe the orientifold action on the field theory in more detail, we label the
different nodes by an index i, and their orientifold images by i′ (with i′ = i corresponding
to nodes mapped to themselves under the orientifold action), and denote Xij and Λij the
bifundamental N = (0, 2) chiral or Fermi multiplets charged under the gauge factors i and
j (with j = i corresponding to adjoints). The results of [4] are:

1a. Two gauge factors U(N)i, U(N)i′ mapped to each other under the orientifold action
(namely i 6= i′) are identified and give rise to a single U(N) factor in the orientifold
theory.

1b. On the other hand, a gauge factor U(N)i mapped to itself (namely, i′ = i) is projected
down to SO(N) or USp(N).

2a. Two different chiral or Fermi bifundamental fields Xij and Xi′j′ , mapped to each
other under the orientifold action, become identified8 and lead to a single (chiral or
Fermi) bifundamental field. This holds even in special cases for the gauge factors,
such as i′ = i, or simultaneously i′ = i and j′ = j, and for the special case of fields in
the adjoint, j = i, j′ = i′.

2b. Two different chiral or Fermi bifundamental fields Xii′ and Yi′i, related each to the
(conjugate of the) other under the orientifold action, give rise to one field in the two-
index symmetric and one field in the two-index antisymmetric representation of the
corresponding SO /USp ith gauge factor in the orientifold quotient. The rule holds
also in the case of adjoint fields, namely i′ = i.

3a. A bifundamental field Xij that is mapped to itself by the orientifold action gives rise
to a real N = (0, 1) field transforming under the bifundamental of Gi×Gj , where Gi
and Gj are the same type of SO or USp gauge group.

3b. A bifundamental Fermi field Λii′ can only be mapped to itself (resp. minus itself) in
the case of a holomorphic transformation, and gives rise to a complex Fermi superfield
in the symmetric (resp. antisymmetric) representation of the resulting U(n)i group.

3c. Closely related to Rule 3b, an adjoint complex Fermi field Λii that is mapped to itself
(resp. minus itself) via a holomorphic transformation, gives rise to a complex Fermi

8In the presence of multiple sets of fields in these representations, the mapping may include a non-trivial
action on the flavor index, encoded in a matrix η. As explained in [4], the choice can impact on the
orientifold projection of the relevant gauge factors. We will encounter a non-trivial use of this freedom in
the example in section 5.1.
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field in the symmetric/antisymmetric (resp. antisymmetric/symmetric) representa-
tion of SO /USp.

3d. An adjoint complex scalar or Fermi field that is mapped to itself gives rise to two
real scalar or Fermi fields, one symmetric and one antisymmetric.

4a. A real Fermi ΛRii which transforms into ΛRi′i′ , with i′ 6= i, are projected down to a
single real Fermi ΛRii .

4b. A real Fermi ΛRii mapped to itself (resp. minus itself), with i′ 6= i, gives rise to a
symmetric (resp. antisymmetric) real Fermi for an SO (resp. USp) projection of the
node i.

These rules suffice to construct large classes of examples of 2d N = (0, 1) field theories,
in particular the explicit examples in coming sections.

Note that the N = (0, 1) theory obtained upon orientifolding the parent N = (0, 2)
may have non-abelian gauge anomalies. In such cases, the models require the introduction
of extra flavor branes (namely, D5- or D9-branes extending in the non-compact dimensions
of the CY 4-fold) for consistency. As already remarked in [4], very often the orientifolded
theories happen to be non-anomalous, and hence do not require flavor branes. This will be
the case in our examples later on.

The universal involution. We would like to conclude this overview by recalling from [4]
that any N = (0, 2) quiver gauge theory from D1-branes at toric CY 4-fold singularities
admits a universal anti-holomorphic involution. It corresponds to mapping each gauge
factor to itself (maintaining all with the same SO or USp projection), and mapping every
N = (0, 2) chiral or Fermi field to itself anti-holomorphically.

To be more explicit, let us introduce a set of matrices γΩi implementing the action
of the orientifold on the gauge degrees of freedom of the ith node.9 Then, the orientifold
projections for the universal involution read

Xij → γΩiX̄ijγ
−1
Ωj
, Λij → γΩiΛ̄ijγ−1

Ωj
, (3.2)

where, by Xij or Λij we mean any chiral or Fermi field present in the gauge theory. In
addition, the N = (0, 1) adjoint Fermi fields coming from N = (0, 2) vector multiplets
transform as

ΛRi → γΩiΛR T
i′ γ−1

Ωi
. (3.3)

There is relative sign between this projection and the one for gauge fields, which implies
that an SO or USp projection of the gauge group is correlated with a projection of ΛRi into a
symmetric or antisymmetric representation, respectively. These projections are consistent
with the invariance of the N = (0, 1) superpotential. Modding out by this orientifold
action, the resulting N = (0, 1) field theory is determined by applying the above rules.

9Actually, the matrices γΩi are a useful ingredient in implementing the orientifold projection, even in
examples beyond the universal involution, as we will exploit in explicit examples in later sections.
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Figure 6. The universal involution on N = (0, 2) triality results in N = (0, 1) triality.

From the geometric perspective, this universal involution corresponds to the conju-
gation of all generators of the toric CY 4-fold. The action on the holomorphic 4-form is
Ω(4,0) → Ω̄(0,4), suitable for the realization of an Spin(7) orientifold. The following section
focuses on models obtained via the universal involution.

4 N = (0, 1) triality and the universal involution

Let us consider what happens when the universal involution is applied to two gauge the-
ories associated to the same CY 4-fold, which are therefore related by N = (0, 2) triality.
Remarkably, we obtain two theories connected by precisely N = (0, 1) triality. By con-
struction, the two theories correspond to the same underlying Spin(7) orientifold, realizing
the general idea of N = (0, 1) triality arising from the non-uniqueness of the map between
Spin(7) orientifolds and gauge theories.

We illustrate this projection in figure 6, which shows the neighborhood of the quiver
around a dualized node 0.10 As in the previous section, nodes 1, 2 and 3 represent possibly

10The universal involution with USp projection is analogous.
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Figure 7. Toric diagram for H4.

multiple nodes which, in turn, might be connected to node 0 by different multiplicities of
fields. The red and black dashed lines represent the rest of the quiver, which might include
fields stretching between nodes 1, 2 and 3. If triality generates massive fields, they can be
integrated out.

An explicit example of a triality pairs associated to the universal involution will be
presented in section 4.1. However, in section 5, we will show how more general orientifold
actions lead to interesting generalizations of the basic N = (0, 1) triality. The general
strategy will be to focus on parent CY4 geometries with more than one N = (0, 2) triality
dual toric phases11 (see e.g. [7, 15]) and to consider anti-holomorphic involutions leading
to the same Spin(7) orientifold.

4.1 The universal involution of H4

As explained above, the universal involution works for every CY4. Therefore, it is sufficient
to present one example to illustrate the main features of the construction. Let us consider
the CY4 with toric diagram shown in figure 7, which is often referred to as H4. Below we
consider two toric phases for D1-branes probing H4 and construct the N = (0, 1) theories
that correspond to them via the universal involution.

4.1.1 Phase A

Figure 8 shows the quiver diagram for one of the toric phases of H4, which we denote phase
A. This theory was first introduced in [20].

The corresponding J- and E-terms are

J E

Λ1
11 : X14X41 −X13X32Z21 Y13X34Z41 −X12Y21

Λ2
11 : X14Y41 − Y13X32Z21 X12X21 −X13X34Z41

Λ3
11 : X14Z41 −X12Z21 X13X32Y21 − Y13X34X41

Λ1
13 : X32X21 −X34X41 Y13X33 −X14Z41Y13

Λ2
13 : X32Y21 −X34Y41 X12Z21X13 −X13X33

Λ1
42 : X21X14 − Z21X13X34 Z41Y13X32 − Y41X12

11We refer to a toric phase as one associated to a brane brick model [19], for which the connection to the
underlying CY4 is considerably simplified.
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Figure 8. Quiver diagram for phase A of H4.

Λ2
42 : Y21X14 − Z21Y13X34 X41X12 − Z41X13X32

Λ23 : X33X32 −X32Z21X12 Y21X13 −X21Y13

Λ43 : X33X34 −X34Z41X14 X41Y13 − Y41X13 .

(4.1)

The N = (0, 1) superpotential is then

W (0,1) = W (0,2) + Λ4R
11 (X†12X12 +X†14X14 +X†21X21 + Y †21Y21 + Z†21Z21+

+X†41X41 + Y †41Y41 + Z†41Z41 +X†13X13 + Y †13Y13)+
+ ΛR22(X†12X12 +X†32X32 +X†21X21 + Y †21Y21 + Z†21Z21)+
+ ΛR33(X†33X33 +X†32X32 +X†34X34 +X†13X13 + Y †13Y13)+
+ ΛR44(X†14X14 +X†34X34 +X†41X41 + Y †41Y41 + Z†41Z41) .

(4.2)

The generators of H4, which arises as the moduli space of the gauge theory, can be
determined for instance using the Hilbert Series (HS) [19, 23, 24] (see also [4]). We list them
in table 1, together with their expressions as mesons in terms of chiral fields in phase A.

The generators satisfy the following relations

I = 〈M1M4 = M2M3 ,M1M7 = M2M6 ,M1M7 = M3M5 ,M2M7 = M4M5 ,

M3M7 = M4M6 ,M1M8 = M5M6 ,M2M8 = M5M7 ,M3M8 = M6M7 ,

M4M8 = M2
7

〉
.

(4.3)

The universal involution acts on the fields of any theory as (3.2). This results in the
expected map of the generators

M1 → M̄1 , M2 → M̄2 , M3 → M̄3 , M4 → M̄4 ,

M5 → M̄5 , M6 → M̄6 , M7 → M̄7 , M8 → M̄8 .
(4.4)
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Meson Chiral superfields
M1 X33 = X14Z41 = Z21X12

M2 Y21X12 = Z41Y13X34

M3 X14Y41 = Z21Y13X32

M4 X32Y21Y13 = X34Y41Y13

M5 X21X12 = Z41X13X34

M6 X14X41 = Z21X13X32

M7 X32Y21X13 = X32X21Y13 = X34Y41X13 = X34X41Y13

M8 X32X21X13 = X34X41X13

Table 1. Generators of H4 in terms of fields in phase A.

The quiver for the 2d N = (0, 1) orientifold theory is shown in figure 9. It is rather
straightforward to write the projected superpotential but, for brevity, we will omit it here
and in the examples that follow.

4.1.2 Phase B

Let us now consider the so-called phase B of H4 [20]. Its quiver diagram is shown in
figure 10.

The J- and E-terms are

J E

Λ21 : X13X34Y42 − Y13X34X42 X21X14X41 −X23X32X21

Λ1
12 : X23X34Y42X21 −X21Y13X34X41 X13X32 −X14X42
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Figure 10. Quiver diagram for phase B of H4.

Λ2
12 : X21X13X34X41 −X23X34X42X21 Y13X32 −X14Y42

Λ34 : Y42X21X13 −X42X21Y13 X34X41X14 −X32X23X34

Λ1
43 : X34Y42X21X14 −X32X21Y13X34 X42X23 −X41X13

Λ2
43 : X32X21X13X34 −X34X42X21X14 Y42X23 −X41Y13 .

(4.5)

The corresponding W (0,1) is

W (0,1) = W (0,2) + ΛR11(X21X
†
21 +X41X

†
41 +X14X

†
14 +X13X

†
13 + Y13Y

†
13)+

+ ΛR22(X23X
†
23 +X21X

†
21 +X42X

†
42 +X32X

†
32 + Y42Y

†
42)+

+ ΛR33(X23X
†
23 +X32X

†
32 +X34X

†
34 +X13X

†
13 + Y13Y

†
13)+

+ ΛR44(X42X
†
42 +X41X

†
41 +X34X

†
34 +X14X

†
14 + Y42Y

†
42) .

(4.6)

Table 2 lists the generators of H4, this time expressed in terms of chiral fields in phase
B. They satisfy the same relations we presented in (4.3) when discussing Phase A.

Once again, we consider the universal involution, which acts on the fields of phase B
as in (3.2). This, in turn, maps the generators as in (4.4).

Figure 11, shows the resulting quiver for the orientifold theory. By construction, this
gauge theory corresponds to the same Spin(7) orientifold as the one constructed from phase
A in the previous section. In section 4.1.3, we will elaborate on the connection between
both theories.

4.1.3 Triality between the orientifolded theories

Let us now elaborate on the connection between the two theories that we have constructed
via the universal involution. Both of them correspond to the same Spin(7) orientifold of
H4. The parent theories, phases A and B of H4, are related by N = (0, 2) triality on
either node 2 or 4 of phase A (equivalently, by inverse triality on the same nodes of phase
B). This leads to a similar connection between the two orientifolded theories, this time via
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Figure 11. Quiver diagram for the Spin(7) orientifold of phase B of H4 using the universal
involution.

Meson Chiral superfields
M1 X23X32 = X41X14

M2 X34Y42X23 = X34X41Y13

M3 X21X14Y42 = X21Y13X32

M4 X34Y42X21Y13

M5 X34X42X23 = X34X41X13

M6 X21X14X42 = X21X13X32

M7 X42X21Y13X34 = Y42X21X13X34

M8 X42X21X13X34

Table 2. Generators of H4 in terms of fields in phase B.

N = (0, 1) triality on node 2 or 4. Figure 12 summarizes the interplay between triality and
orientifolding. This was expected, given our general discussion of the universal involution
in section 4.

It is important to emphasize that it is possible for two Spin(7) orientifolds to correspond
to the same geometric involution while differing in the choice of vector structure. In
practical terms, the appearance of the choices of vector structure in orientifolds arises when,
for a given geometry, there are different Z2 symmetries on the underlying quiver gauge
theory, which differ in the action on the quiver nodes. Such a discrete choice generalizes
beyond orbifold singularities, and it was studied in detail in [4], in anticipation of the
application of Spin(7) orientifolds to triality that we carry out in this paper. In order for
equivalent orientifold geometric involutions to actually produce dual theories, it is necessary
that they also agree on the choice of vector structure they implicitly define. This is the
case for all the examples considered in this paper.

Finally, it is interesting to note that, as we discussed in section 2.3, in orientifold
theories the number of “incoming flavors” at the dualized node is inherited from the parent.
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Figure 12. Phases A and B of H4 are connected by N = (0, 2) triality on node 2 (shown in green).
Upon orientifolding with the universal involution, the resulting theories are similarly connected by
N = (0, 1) triality.

5 Beyond the universal involution

In this section, we present theories that are obtained from N = (0, 2) triality dual parents
by Spin(7) orientifolds that do not correspond to the universal involution. We will see that
they lead to interesting generalizations of the basic N = (0, 1) triality.12

5.1 Q1,1,1

Let us now consider the cone over Q1,1,1, or Q1,1,1 for short, whose toric diagram is shown in
figure 13. The N = (0, 2) gauge theories, brane brick models and the triality web relating

12We will rightfully continue referring to the resulting equivalences between theories as trialities, due to
their connections to the basic trialities of SQCD-type theories. It is reasonable to expect that we can indeed
perform these transformations three times on the same quiver node. However, the three transformations,
can sometimes fall outside our analysis, provided they actually exist. This is due to our restriction to the
class of theories obtained as Spin(7) orientifolds of toric phases.
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Figure 14. Quiver diagram for phase A of Q1,1,1.

the toric phases for this geometry have been studied at length [7, 19, 25]. However, none
of its Spin(7) orientifolds has been presented in the literature. Below, we construct an
orientifold based on a non-universal involution.

5.1.1 Phase A

The toric phases for Q1,1,1 were studied in [7]. Figure 14 shows the quiver for the so-called
phase A.

The J- and E-terms are

J E

Λ1
24 : Y42X23Y34X42 − Y42X21X14X42 Y23X34 − Y21Y14

Λ2
24 : Y42Y21Y14X42 − Y42Y23X34X42 X23Y34 −X21X14

Λ3
24 : Y42X14Y21X42 − Y42X23X34X42 X21Y14 − Y23Y34 (5.1)

Λ4
24 : Y42X21Y14X42 − Y42Y23Y34X42 X23X34 − Y21X14

Λ1
31 : Y14X42X23 −X14X42Y23 X34Y42X21 − Y34Y42Y21

Λ2
31 : X14Y42Y23 − Y14Y42X23 X34X42X21 − Y34X42Y21 .

Finding the corresponding W (0,1) is a simple exercise, but we omit it here for brevity.
Table 3 lists the generators for Q1,1,1 written in terms of the gauge theory.

– 18 –



J
H
E
P
0
1
(
2
0
2
2
)
0
5
8

Field Chiral superfields
M1 Y42Y23X34 = Y42Y21Y14

M2 X42Y23X34 = X42Y21Y14

M3 Y42X23X34 = Y42Y21X14

M4 X42X23X34 = X42Y21X14

M5 Y42Y23Y34 = Y42X21Y14

M6 X42Y23Y34 = X42X21Y14

M7 Y42X23Y34 = Y42X21X14

M8 X42X23Y34 = X42X21X14

Table 3. Generators of Q1,1,1 in terms of fields in phase A.

The generators satisfy the following relations

I = 〈M1M7 = M3M5 ,M3M8 = M4M7 ,M1M4 = M2M3 ,M5M8 = M7M6 ,

M1M8 = M2M7 ,M3M6 = M4M5 ,M1M8 = M4M5 ,M1M6 = M5M2 ,

M2M8 = M4M6〉 .
(5.2)

Let us now consider the involution that maps all the four gauge groups to themselves
and has the following action on chiral fields

Y42 → −γΩ4X̄42γ
−1
Ω2
, X42 → γΩ4 Ȳ42γ

−1
Ω2
, X34 → γΩ3 Ȳ34γ

−1
Ω4
, Y34 → −γΩ3X̄34γ

−1
Ω4
,

X21 → −γΩ2 Ȳ21γ
−1
Ω1
, Y21 → γΩ2X̄21γ

−1
Ω1
, Y23 → γΩ2 Ȳ23γ

−1
Ω3
, X23 → γΩ2X̄23γ

−1
Ω3
,

Y14 → γΩ1 Ȳ14γ
−1
Ω4
, X14 → γΩ1X̄14γ

−1
Ω4
,

(5.3)
where we have used the γΩi matrices mentioned in footnote 9.

Invariance of W (0,1) further implies that the involution acts on Fermi fields as follows

Λ1
24 → −γΩ2Λ̄3

24γ
−1
Ω4
, Λ2

24 → −γΩ2Λ̄4
24γ
−1
Ω4
, Λ3

24 → γΩ2Λ̄1
24γ
−1
Ω4
,

Λ4
24 → γΩ2Λ̄2

24γ
−1
Ω4
, Λ1

31 → −γΩ3Λ̄2
31γ
−1
Ω1
, Λ2

31 → γΩ3Λ1
31γ
−1
Ω1
,

(5.4)

and

ΛR11 → γΩ1ΛR T
11 γ−1

Ω1
, ΛR22 → γΩ2ΛR T

22 γ−1
Ω2
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ4ΛR T

44 γ−1
Ω4
.

(5.5)
Interestingly, the involution in (5.3) and (5.4) involves a non-trivial action on flavor

indices (see e.g. the action on pairs of fields such as (X21, Y21)). As briefly mentioned
in section 3, this leads to a constraint on the matrices γΩi that encode the action of the
orientifold group on the gauge groups, which reads

γΩ1 = γΩ4 6= γΩ2 = γΩ3 . (5.6)

This constraint follows for requiring that the involution squares to the identity. For a de-
tailed discussion of this constraint and additional explicit examples, we refer the interested
reader to our previous work [4].
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Figure 15. Quiver diagram for the Spin(7) orientifold of phase A of Q1,1,1 using the involution in
eqs. (5.3), (5.4) and (5.5), together with our choice of γΩi

matrices.

For concreteness, we will focus on the following solution to the constraint

γΩ1 = γΩ4 = J ,

γΩ2 = γΩ3 = 1N ,
(5.7)

where J = iεN/2 is the symplectic matrix, and 1N is the identity matrix.
Using table 3, the involution in (5.3) translates into the following action at the level

of the geometry

M1 → −M̄6 , M2 → M̄5 , M3 → −M̄8 , M4 → M̄7 ,

M5 → M̄2 , M6 → −M̄1 , M7 → M̄4 , M8 → −M̄3 ,
(5.8)

which is clearly not the universal involution.
Figure 15 shows the quiver for the orientifold theory, which is free of gauge anomalies.

5.1.2 Phase S

Figure 16 shows the quiver for phase S of Q1,1,1 [7].
The J- and E-terms are

J E

Λ1
23 : X34Y42 − Y34W42 Y24X43 −X24Z43

Λ2
23 : X34X42 − Y34Z42 X24W43 − Y24Y43

Λ1
31 : X14Z43 − Y14W43 X34X41 − Y34Z41

Λ2
31 : X14X43 − Y14Y43 Y34W41 −X34Y41

Λ1
12 : Y24Z41 −X24W41 X14X42 − Y14Y42

Λ2
12 : Y24X41 −X24Y41 Y14W42 −X14Z42

Λ1
44 : Y43Y34 −X41X14 W41Y14 − Z42Y24
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Figure 16. Quiver diagram for phase S of Q1,1,1.

Λ2
44 : W41Y14 − Z43X34 X41X14 − Y42X24

Λ3
44 : Y41Y14 −X42Y24 W42X24 − Y43X34

Λ4
44 : W42X24 − Z41X14 X42Y24 − Z43Y34

Λ5
44 : Z42X24 −X43X34 Y24Y42 − Y41X14

Λ6
44 : W43Y34 − Y42Y24 X24Z42 − Z41Y14

Λ7
44 : W43X34 −W41X14 X41Y14 −X42X24

Λ8
44 : X41Y14 −X43Y34 W41X14 −W42Y24 .

(5.9)

Table 4 shows the generators of Q1,1,1 in terms of the gauge theory. They satisfy the
same relations given in (5.2).

Let us consider the involution that maps all gauge groups to themselves and acts on
chiral fields as follows

Z42→γΩ4X̄42γ
−1
Ω2
, X42→−γΩ4Z̄42γ

−1
Ω2
, Y24→−γΩ2X̄24γ

−1
Ω4
, X24→γΩ2 Ȳ24γ

−1
Ω4
,

Z43→−γΩ4X̄43γ
−1
Ω3
, X43→γΩ4Z̄43γ

−1
Ω3
, X34→γΩ3 Ȳ34γ

−1
Ω4
, Y34→−γΩ3X̄34γ

−1
Ω4
,

W41→−γΩ4X̄41γ
−1
Ω1
, X41→−γΩ4W̄41γ

−1
Ω1
, Z41→γΩ4 Ȳ41γ

−1
Ω1
, Y41→γΩ4Z̄41γ

−1
Ω1
,

W42→γΩ4 Ȳ42γ
−1
Ω2
, Y42→−γΩ4W̄42γ

−1
Ω2
, W43→−γΩ4 Ȳ43γ

−1
Ω3
, Y43→γΩ4W̄43γ

−1
Ω3
,

Y14→γΩ1 Ȳ14γ
−1
Ω4
, X14→γΩ1X̄14γ

−1
Ω4
.

(5.10)

As we will explain shortly, we have chosen this involution in order to connect to the
orientifold of phase A that we constructed in the previous section.

Invariance of W (0,1) implies the following action on Fermi fields

Λ1
23→γΩ2Λ̄1

23γ
−1
Ω3
, Λ2

23→γΩ2Λ̄2
23γ
−1
Ω3
, Λ1

31→−γΩ3Λ̄2
31γ
−1
Ω1
, Λ2

31→γΩ3Λ̄1
31γ
−1
Ω1
,

Λ1
12→−γΩ1Λ̄2

12γ
−1
Ω2
, Λ2

12→γΩ1Λ̄1
12γ
−1
Ω2
, Λ1

44→−γΩ4Λ̄7
44γ
−1
Ω4
, Λ7

44→−γΩ4Λ̄1
44γ
−1
Ω4
,
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Field Chiral superfields
M1 Z42Y24 = Z43X34 = W41Y14

M2 Z42X24 = X43X34 = Z41Y14

M3 W42Y24 = W43X34 = W41X14

M4 W42X24 = Y43X34 = Z41X14

M5 X42Y24 = Z43Y34 = Y41Y14

M6 X42X24 = X43Y34 = X41Y14

M7 Y42Y24 = W43Y34 = Y41X14

M8 Y42X24 = Y43Y34 = X41X14

Table 4. Generators of Q1,1,1 in terms of fields in phase S.

Λ2
44→−γΩ4Λ̄8

44γ
−1
Ω4
, Λ8

44→−γΩ4Λ̄2
44γ
−1
Ω4
, Λ3

44→−γΩ4Λ6 T
44 γ

−1
Ω4
, Λ6

44→−γΩ4Λ3 T
44 γ

−1
Ω4
,

Λ4
44→γΩ4Λ5 T

44 γ
−1
Ω4
, Λ5

44→γΩ4Λ4 T
44 γ

−1
Ω4
,

(5.11)

and

ΛR11 → γΩ1ΛR T
11 γ−1

Ω1
, ΛR22 → γΩ2ΛR T

22 γ−1
Ω2
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ4ΛR T

44 γ−1
Ω4
.

(5.12)
The involution on bifundamental fields leads to the same constraints on the γΩi ma-

trices as in (5.6). As for phase A, we pick

γΩ1 = γΩ4 = J ,

γΩ2 = γΩ3 = 1N .
(5.13)

Using table 4, (5.10) translates into the following action on the generators

M1 → −M̄6 , M2 → M̄5 , M3 → −M̄8 , M4 → M̄7 ,

M5 → M̄2 , M6 → −M̄1 , M7 → M̄4 , M8 → −M̄3 ,
(5.14)

which is the same geometric involution that we found for phase A in (5.8). Therefore,
the involutions considered on these two phases correspond to the same Spin(7) orientifold
of Q1,1,1. Figure 17 shows the quiver for the orientifold theory, which is free of gauge
anomalies.

5.1.3 Triality between the orientifolded theories

Figure 18 summarizes the connections between the theories considered in this section.
Again, we observe that the two theories we constructed for the same Spin(7) orientifold are
related by N = (0, 1) triality. More precisely, they are related by a simple generalization
of the basic triality reviewed in section 2.2. First, in this case, triality is applied to quivers
with multiple gauge nodes. More importantly, some of the nodes that act as flavor groups
are of a different type (in this example, USp) than the dualized node. As in previous
examples, the orientifold construction leads to a clear prescription on how to treat scalar
flavors, which is inherited from the parent theories.
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Figure 17. Quiver diagram for the Spin(7) orientifold of phase S of Q1,1,1 using the involution in
eqs. (5.10), (5.11) and (5.12), together with our choice of γΩi matrices.

4 3

21 2

2

2

2

2

2

4

8

4 3

21 2

2

2

2

4

24
2

4

■

■

4

USp(N)

3

SO(N)

2

SO(N)

1

USp(N)

2

2

2

2

2

2

4

8

■

9

■

4

USp(N)

3

SO(N)

2

SO(N)

1

USp(N)

2

2

2

2

4

24
2

4

N = (0, 2)

triality

N = (0, 1)

triality

Figure 18. Phases A and S of Q1,1,1 are connected by N = (0, 2) triality on node 2 (shown in
green). The orientifolded theories are similarly connected by N = (0, 1) triality.

– 23 –



J
H
E
P
0
1
(
2
0
2
2
)
0
5
8

x

y

z

Figure 19. Toric diagram for Q1,1,1/Z2.

5.2 Theories with unitary gauge groups: Q1,1,1/ZZZ2

All N = (0, 1) triality examples we constructed so far contain only SO(N) and USp(N)
gauge groups. Namely, the anti-holomorphic involutions of the parent N = (0, 2) theories,
universal or not, map all gauge groups to themselves. In this section we will construct
Spin(7) orientifolds giving rise to gauge theories that include U(N) gauge groups. To do
so, we focus on Q1,1,1/Z2, whose toric diagram is shown in figure 19.13 This CY4 has a rich
family of 14 toric phases. They were classified in [15], whose nomenclature we will follow.
We will restrict to a subset consisting of 5 of these toric phases. In order to streamline our
discussion, several details about these theories are collected in appendix C.

Let us first consider phase D, whose quiver diagram is shown in figure 20. We provide
a 3d representation of the quiver in order to make the action of the anti-holomorphic
involution that we will use to construct a Spin(7) orientifold more manifest.

The J- and E-terms for this theory are

J E

Λ1
13 : W34X41 − Y41Z34 X18X85Y53 −X53X85Y18

Λ2
13 : X41Y34 −X34Y41 X53Y18Y85 −X18Y53Y85

Λ1
37 : X72Y53Y25 −X53Y72Y25 X47Z34 −X34Y47

Λ2
37 : X72X25Y53 −X53X25Y72 Y34Y47 −W34X47

Λ1
86 : X64Y18Y41 −X18Y41Y64 X56Y85 −X85Z56

Λ2
86 : X41X64Y18 −X18X41Y64 W56X85 − Y56Y85

Λ1
62 : Y25Z56 −W56X25 X47X64Y72 −X72X47Y64

Λ2
62 : X25Y56 −X56Y25 X64Y72Y47 −X72Y47Y64

Λ1
45 : W56Y64 −W34Y53 X18X41X85 −X72X47X25

Λ2
45 : W56X64 −W34X53 X47X25Y72 −X41X85Y18

Λ3
45 : Y64Z56 − Y53Z34 X72X47Y25 −X18X85Y41

Λ4
45 : X64Z56 −X53Z34 X85Y18Y41 −X47Y72Y25

13More precisely, this is the Z2 orbifold of the real cone over Q1,1,1.
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Λ5
45 : Y56Y64 − Y34Y53 X72X25Y47 −X18X41Y85

Λ6
45 : X64Y56 −X53Y34 X41Y18Y85 −X25Y72Y47

Λ7
45 : X56Y64 −X34Y53 X18Y41Y85 −X72Y47Y25

Λ8
45 : X56X64 −X34X53 Y72Y47Y25 − Y18Y41Y85 .

(5.15)

The generators of Q1,1,1/Z2 in terms of the chiral fields in phase D are listed in ta-
ble 7. Note that the generators and their relations are common to all the phases, but their
realizations in terms of chiral superfields in each of them are different. Let us consider an
anti-holomorphic involution of phase D which acts on figure 20 as a reflection with respect
to the vertical plane that contains nodes 3, 4, 5 and 6. The nodes on the plane map to
themselves, while the following pairs 1 ↔ 7 and 2 ↔ 8 get identified. This leads to the
anticipated mixture of SO /USp and U gauge groups.

The involution on chiral fields is
X18 → γΩ7 Ȳ72γ

−1
Ω2
, Y18 → γΩ7X̄72γ

−1
Ω2
, X72 → γΩ1 Ȳ18γ

−1
Ω8
, Y72 → γΩ1X̄18γ

−1
Ω8
,

X34 → γΩ3X̄34γ
−1
Ω4
, Y34 → γΩ3Z̄34γ

−1
Ω4
, Z34 → γΩ3 Ȳ34γ

−1
Ω4
, W34 → γΩ3W̄34γ

−1
Ω4
,

X41 → γΩ4X̄47γ
−1
Ω7
, Y41 → γΩ4 Ȳ47γ

−1
Ω7
, X47 → γΩ4X̄41γ

−1
Ω1
, Y47 → γΩ4 Ȳ41γ

−1
Ω1
,

X53 → γΩ5 Ȳ53γ
−1
Ω3
, Y53 → γΩ5X̄53γ

−1
Ω3
, X56 → γΩ5X̄56γ

−1
Ω6
, Y56 → γΩ5Z̄56γ

−1
Ω6
,

Z56 → γΩ5 Ȳ56γ
−1
Ω6
, W56 → γΩ5W̄56γ

−1
Ω6
, X64 → γΩ6 Ȳ64γ

−1
Ω4
, Y64 → γΩ6X̄64γ

−1
Ω4
,

X25 → γΩ8X̄85γ
−1
Ω5
, Y25 → γΩ8 Ȳ85γ

−1
Ω5
, X85 → γΩ2X̄25γ

−1
Ω5
, Y85 → γΩ2 Ȳ25γ

−1
Ω5
.

(5.16)
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Invariance of W (0,1) implies the following action on Fermi fields

Λ1
13 → −γΩ3Λ2

37γ
−1
Ω7
, Λ2

13 → γΩ3Λ1
37γ
−1
Ω7
, Λ1

37 → γΩ1Λ2
13γ
−1
Ω3
, Λ2

37 → −γΩ3Λ1
37γ
−1
Ω7
,

Λ1
86 → −γΩ6Λ2

62γ
−1
Ω8
, Λ2

86 → −γΩ6Λ1
62γ
−1
Ω8
, Λ1

62 → −γΩ8Λ2
86γ
−1
Ω6
, Λ2

62 → −γΩ8Λ1
86γ
−1
Ω6
,

Λ1
45 → γΩ4Λ̄2

45γ
−1
Ω5
, Λ2

45 → γΩ4Λ̄1
45γ
−1
Ω5
, Λ3

45 → γΩ4Λ̄6
45γ
−1
Ω5
, Λ4

45 → γΩ4Λ̄5
45γ
−1
Ω5
,

Λ5
45 → γΩ5Λ̄4

45γ
−1
Ω5
, Λ6

45 → γΩ5Λ̄3
45γ
−1
Ω5
, Λ7

45 → γΩ5Λ̄8
45γ
−1
Ω5
, Λ8

45 → γΩ5Λ̄7
45γ
−1
Ω5
,

(5.17)
and

ΛR11 → γΩ7ΛR T
77 γ−1

Ω7
, ΛR22 → γΩ8ΛR T

88 γ−1
Ω8
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ4ΛR T

44 γ−1
Ω4
,

ΛR55 → γΩ5ΛR T
55 γ−1

Ω5
, ΛR66 → γΩ6ΛR T

66 γ−1
Ω6
, ΛR77 → γΩ1ΛR T

11 γ−1
Ω1
, ΛR88 → γΩ2ΛR T

22 γ−1
Ω2
.

(5.18)
Using table 7, we find the corresponding geometric involution on the generators of

Q1,1,1/Z2

M1 → M̄27 , M2 → M̄24 , M3 → M̄21 , M4 → M̄18 , M5 → M̄12 ,

M6 → M̄6 , M7 → M̄26 , M8 → M̄23 , M9 → M̄20 , M10 → M̄17 ,

M11 → M̄11 , M12 → M̄5 , M13 → M̄25 , M14 → M̄22 , M15 → M̄19 ,

M16 → M̄16 , M17 → M̄10 , M18 → M̄4 , M19 → M̄15 , M20 → M̄9 ,

M21 → M̄3 , M22 → M̄14 , M23 → M̄8 , M24 → M̄2 , M25 → M̄13 ,

M26 → M̄7 , M27 → M̄1 .

(5.19)

The orientifolded theory has gauge group U(N)1×U(N)2×
∏6
i=3Gi(N). The involution

of fields connecting nodes 3, 4, 5 and 6 gives rise to the constraint

γΩ3 = γΩ4 = γΩ5 = γΩ6 . (5.20)

Let us set the four matrices equal to 1N , i.e. project the corresponding gauge groups
to SO(N). Figure 21 shows the quiver for the resulting theory, which is free of gauge
anomalies.

Let us pause for a moment to think about a possible interpretation on this theory. We
note that it has two distinct types of nodes. First, we have U(N) nodes with adjoint Fermi
fields, which can be combined into N = (0, 2) vector multiplets. Second, there are SO(N)
nodes with symmetric Fermi fields which, contrary to the previous case, are inherently N =
(0, 1). This is because the adjoint of SO(N) is instead the antisymmetric representation.
We can similarly consider whether it is possible to combine the bifundamental fields into
N = (0, 2) multiplets, which may or may not be broken by the superpotential. In this
example, all bifundamental fields come in pairs so, leaving the superpotential aside, they
can form N = (0, 2) multiplets. Broadly speaking, we can therefore regard this theory
as consisting of coupled N = (0, 1) and N = (0, 2) sectors.14 This discussion extends to
the other orientifolds of Q1,1,1/Z2 considered in this section and is a generic phenomenon.

14A similar interpretation in terms of coupled N = (0, 1) and N = (0, 2) sectors was proposed in the
analysis of non-compact models in [3].
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Figure 21. Quiver diagram for the Spin(7) orientifold of phase D of Q1,1,1/Z2 using the involution
in eqs. (5.16), (5.17) and (5.18), together with our choice of γΩi

matrices.

Interestingly, we will see below that Spin(7) orientifolds produce theories in which triality
acts on either of these two sectors.

In order to find other N = (0, 1) theories associated with the same Spin(7) orientifold,
one needs to find the field-theoretic involutions of other toric phases of Q1,1,1/Z2 leading to
U(N)2×SO(N)4 gauge theories, whose geometric involution is the same as (5.19). Scanning
the 14 toric phases of Q1,1,1/Z2, we found that only 5 of them (including phase D) admit
N = (0, 1) orientifolds with U(N)2 × SO(N)4 gauge symmetry. Let us first present the
N = (0, 2) triality web for these 5 phases in figure 22, which can be regarded as a portion
of the whole triality web for Q1,1,1/Z2 in [15].

Colored arrows connecting different phases indicate N = (0, 2) triality transformations
between them. Furthermore, the quiver node on which triality acts is shown in the same
color as the corresponding arrow. Note that from phase D to phase H there are two triality
steps, where the intermediate stage is the so-called phase C in [15]. However, since phase
C does not give rise to a U(N)2 × SO(N)4 orientifold, we do not show its quiver here.

Similarly to phase D, we consider the anti-holomorphic involutions of phases E, H,
J and L which act on their quivers shown in figure 22 as reflections with respect to the
vertical plane that contains nodes 3, 4, 5 and 6. Then, the nodes on the plane map to
themselves, while the pairs 1↔ 7 and 2↔ 8 get identified. In all these cases, we choose the
γΩi matrices as for phase D, so they have U(N)2×SO(N)4 gauge group. The construction
of the N = (0, 1) theories associated with the Spin(7) orientifold for these phases is detailed
in appendix C. The crucial point is that they all correspond to the same Spin(7) orientifold
of Q1,1,1/Z2, since they are all associated to the same geometric involution as that of phase
D, given in (5.19).

From a field theory perspective, we find that the orientifolds of phases D, E, J and L
are connected by N = (0, 1) triality transformation on various SO(N) gauge groups (with
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Figure 22. N = (0, 2) triality web for phases D, E, H, J and L of Q1,1,1/Z2.

the obvious generalization to more general flavor groups). These are the first examples of
N = (0, 1) triality in the presence of U(N) gauge groups. Interestingly, the orientifolds of
phases D and H are not connected by the usual N = (0, 1) triality on an SO(N) node, but
by triality on node 1, which is of U(N) type. This transformation locally follows the rules
of N = (0, 2) triality. Such U(N) triality in N = (0, 1) gauge theories is a new phenomenon
which, to the best of our knowledge, has not appeared in the literature before. Following
our earlier discussion, it can be nicely interpreted as N = (0, 2) triality in the presence of
an N = (0, 1) sector. In our Spin(7) orientifold construction, the U(N) triality has a clear
origin: the two N = (0, 2) trialities that connect phases D and H passing through phase C
are projected onto a single U(N) triality connecting the orientifolds of phases D and H. In
the case of nodes that are not mapped to themselves, an even number of trialities in the
parent is necessary in order to get a new phase that is also symmetric under the involution.
Figure 23 summarizes the web of trialities for the Spin(7) orientifolds under consideration.

6 Conclusions

D1-branes probing singularities provide a powerful framework for engineering 2d gauge
theories. In our previous work [4], these constructions were extended to N = (0, 1) theories
with the introduction of Spin(7) orientifolds.
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Figure 23. Triality web for the N = (0, 1) theories associated with the Spin(7) orientifolds under
consideration for phases D, E, H, J and L of Q1,1,1/Z2.

In this paper we introduced a new, geometric, perspective on the triality of 2d N =
(0, 1) gauge theories, by showing that it arises from the non-uniqueness of the correspon-
dence between Spin(7) orientifolds and the gauge theories on D1-brane probes.

Let us reflect on how 2d trialities with different amounts of SUSY are manifested in
D1-branes at singularities. N = (0, 2) triality similarly arises from the fact that multiple
gauge theories can be associated to the same underlying CY4 [7]. We explained that
Spin(7) orientifolds based on the universal involution give rise to exactly the N = (0, 1)
triality of [3]. But our work shows that the space of possibilities is far richer. Indeed,
general Spin(7) orientifolds extend triality to theories that can be regarded as consisting
of coupled N = (0, 2) and (0, 1) sectors. The geometric construction of these theories
therefore leads to extensions of triality that interpolate between the pure N = (0, 2) and
(0, 1) cases.

On the practical side, Spin(7) orientifolds also give a precise prescription for how scalar
flavors transform under triality in general quivers, which is inherited from the transforma-
tion of the corresponding chiral flavors in the parent.
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A 2d N = (0, 1) formalism

In this appendix we review the 2d N = (0, 1) field theory formalism as we did in [4]. Let
us introduce the 2d N = (0, 1) superspace

(
x0, x1, θ+), on which we can define three types

of supermultiplets:

• vector multiplet:

V+ = θ+(A0(x) +A1(x)) ,
V− = A0(x)−A1(x) + θ+λ−(x) .

(A.1)

It contains a gauge boson A± and a left-moving Majorana-Weyl fermion λ− in the
adjoint representation.

• Scalar multiplet:
Φ(x, θ) = φ(x) + θ+ψ+(x) . (A.2)

It has a real scalar field φ and a right-moving Majorana-Weyl fermion ψ+.

• Fermi multiplet:
Λ(x, θ) = ψ−(x) + θ+F (x) . (A.3)

It has a left-moving Majorana-Weyl spinor as its only on-shell degree of freedom.
Here F is an auxiliary field.

The kinetic terms for matter fields and their gauge couplings are given by

Ls + LF =
∫
dθ+

(
i

2
∑
i

(D+ΦiD−Φi)−
1
2
∑
a

(ΛaD+Λa)
)
, (A.4)

where D± are super-covariant derivatives [3].
We need also to introduce the N = (0, 1) analog of the N = (0, 2) J-term interaction,

which is given by
LJ ≡

∫
dθ+W (0,1) =

∫
dθ+∑

a

(ΛaJa(Φi)) , (A.5)
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where Ja(Φi) are real functions of scalar fields. We refer to W (0,1) as the superpotential.
Both the field content and gauge symmetry (i.e., the quiver for the theories considered in
this paper) and W (0,1) are necessary for fully specifying an N = (0, 1) gauge theory.

After integrating out the auxiliary fields Fa, LJ produces various interactions, including
Yukawa-like couplings ∑

a

λ−a
∂Ja

∂φi
ψ+i , (A.6)

as well as a scalar potential
1
2
∑
a

(Ja(φi))2 . (A.7)

A.1 N = (0, 2) gauge theories in N = (0, 1) superspace

For the construction of Spin(7) manifolds, it is useful to express N = (0, 2) gauge theories
in N = (0, 1) language. Here, we briefly sketch the decomposition, referring to [4] for
details:

1. An N = (0, 2) vector multiplet V (0,2)
i decomposes into an N = (0, 1) vector multiplet

Vi and an N = (0, 1) Fermi multiplet ΛRi .

2. An N = (0, 2) chiral multiplet Φ(0,2)
m decomposes into two N = (0, 1) scalar multiplets

Φa
m with a = 1, 2. It can then be further re-expressed in an N = (0, 1) complex scalar

multiplet Φm.

3. AnN = (0, 2) Fermi multiplet Λ(0,2)
m decomposes into twoN = (0, 1) Fermi multiplets

Λam, with a = 1, 2, that form an N = (0, 1) complex Fermi multiplet Λm.

The J- and E-terms of the N = (0, 2) gauge theory become part of W (0,1) upon
the decomposition of Fermi and chiral multiplets in N = (0, 1) language. The interactions
between N = (0, 2) vector and chiral multiplets also contribute toW (0,1) couplings between
scalar multiplets and N = (0, 1) Fermi multiplets ΛRi coming from the N = (0, 2) vector
multiplets. The full N = (0, 1) superpotential reads

W (0,1) =
∑
a

∫
dθ+[Λa(Ja(Φm) + E†a(Φ†m)) + Λ†a(Ea(Φm) + J†a(Φ†m))] +

∑
i

∑
n

ΛRi Φ†nΦn ,

(A.8)

where n runs over all complex scalar multiplets transforming under a given gauge group i.

B Anomalies

Here, we list the possible contributions to 2d gauge anomalies coming from fields in the
representations considered in this paper. Generically, 2d anomalies are obtained by a 1-
loop diagram as shown in figure 24, where left- and right-moving fermions running in the
loop contribute oppositely.

In the case of gauge groups, anomalies must vanish for consistency of the theory at the
quantum level. This leads to important constraints in our construction of 2d N = (0, 1)
theories, which may require the introduction of extra flavors to cancel anomalies.

– 31 –



J
H
E
P
0
1
(
2
0
2
2
)
0
5
8

Figure 24. Generic 1-loop diagram associated with 2d anomalies.

SU(N) fundamental adjoint antisymmetric symmetric
vector multiplet × −N × ×

Fermi multiplet −1
2 −N −N+2

2
−N−2

2

scalar multiplet 1
2 N N−2

2
N+2

2

Table 5. Anomaly contributions of the 2d N = (0, 1) multiplets in various representations of
SU(N). Since anomalies are quadratic in 2d, the same contributions apply for the conjugate repre-
sentations.

Unlike gauge symmetries, global symmetries may indeed be anomalous. They are
also preserved by RG flows, so they are useful for testing dualities between two or more
theories. Examples of using global anomalies to check dualities in 2d N = (0, 1) theories
can be found in [3].

Generically, the gauge theories on D1-branes probing Spin(7) orientifolds that we con-
struct in this paper have non-vanishing Abelian gauge anomalies. However, similarly to
the discussion in [20, 25], we expect that such anomalies are canceled by the bulk fields
in the closed string sector via a generalized Green-Schwarz (GS) mechanism (see [16, 17]
for derivations in 4d N = 1 and 2d N = (0, 2) theories realized at orbifolds/orientifold
singularities). For this reason, we mainly focus on non-Abelian anomalies.

Let us consider pure non-Abelian G2 gauge or global anomalies, where G is SU(N),
SO(N) or USp(N) group. The corresponding anomaly is given by

Tr[γ3JGJG] , (B.1)

where γ3 is the chirality matrix in 2d and JG is the current associated to G. The resulting
anomaly from a field in representation ρ of G can be computed in terms of the Dynkin
index T (ρ):

T (ρ) = C2(ρ) d(ρ)
d(adjoint) , (B.2)

where C2(ρ) is the quadratic Casimir for representation ρ. In table 5 we present anomaly
contributions for superfields in the most common representations of SU(N). In table 6, we
present anomaly contributions for various representations of SO(N) and USp(N) groups,
computed using Dynkin indices listed in [26].

C Details on Q1,1,1/ZZZ2

In section 5.2, we introduced a web of trialities that contains a Spin(7) orientifold of phase
D of Q1,1,1/Z2 and summarized it in figure 23. In this appendix, we collect all the relevant
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SO(N) fundamental antisymmetric (adjoint) symmetric
vector multiplet × −N + 2 ×
Fermi multiplet −1 −N + 2 −N − 2
scalar multiplet 1 N − 2 N + 2

USp(N) fundamental antisymmetric symmetric (adjoint)
vector multiplet × × −N − 2
Fermi multiplet −1 −N + 2 −N − 2
scalar multiplet 1 N − 2 N + 2

Table 6. Anomaly contributions of the 2d N = (0, 1) multiplets in various representations of
SO(N) and USp(N).
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Figure 25. Quiver diagram for phase E of Q1,1,1/Z2.

information for the other theories in this web.

C.1 Phase E

The quiver for phase E is shown in figure 25.
The corresponding J- and E-terms are given by

J E

Λ1
86 : X64Y41Y18 − Y64Y41X18 Y85X56 −X85Z56

Λ2
86 : Y64X41X18 −X64X41Y18 Y85W56 −X85Y56

Λ1
26 : Y64Y47X72 −X64Y47Y72 Y25X56 −X25W56

Λ2
26 : X64X47Y72 − Y64X47X72 Y25Z56 −X25Y56
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Λ1
75 : Y56Y64X47 −W56Y64Y47 X73X35 −X72X25

Λ2
75 : Z56X64X47 −X56X64Y47 Y73Y35 − Y72Y25

Λ3
75 : X56Y64Y47 − Z56Y64X47 Y73X35 −X72Y25

Λ4
75 : W56X64Y47 −X64Y56X47 X73Y35 − Y72X25

Λ1
43 : Y35Y56X64 −X35Y56Y64 X47X73 −X41X13

Λ2
43 : Y35X56X64 −X35X56Y64 Y47Y73 − Y41Y13

Λ3
43 : X35W56Y64 − Y35W56X64 Y47X73 −X41Y13

Λ4
43 : X35Z56Y64 − Y35Z56X64 X47Y73 − Y41X13

Λ1
15 : Z56Y64Y41 − Y56Y64X41 X13X35 −X18X85

Λ2
15 : X56X64Y41 −W56X64X41 Y13Y35 − Y18Y85

Λ3
15 : W56Y64X41 −X56Y64Y41 Y13X35 −X18Y85

Λ4
15 : X64Y56X41 −X64Z56Y41 X13Y35 − Y18X85 .

(C.1)

Finally, the generators of the moduli space expressed in terms of the chiral fields are
listed in table 8.

U(N)2× SO(N)4 orientifold Let us consider an anti-holomorphic involution of phase
E which acts on the nodes in figure 25 as 1↔ 7, 2↔ 8 and maps all other nodes mapped
to themselves. Chiral fields transform according to

X41 → γΩ4X̄47γ
−1
Ω7
, Y41 → γΩ4 Ȳ47γ

−1
Ω7
, X72 → γΩ1 Ȳ18γ

−1
Ω8
, Y72 → γΩ1X̄18γ

−1
Ω8
,

X18 → γΩ7 Ȳ72γ
−1
Ω2
, Y18 → γΩ7X̄72γ

−1
Ω2
, X64 → γΩ6 Ȳ64γ

−1
Ω4
, Y64 → γΩ6X̄64γ

−1
Ω4
,

X25 → γΩ8X̄85γ
−1
Ω5
, Y25 → γΩ8 Ȳ85γ

−1
Ω5
, X85 → γΩ2X̄25γ

−1
Ω5
, Y85 → γΩ2 Ȳ25γ

−1
Ω5
,

X35 → γΩ3 Ȳ35γ
−1
Ω5
, Y35 → γΩ3X̄35γ

−1
Ω5
, X47 → γΩ4X̄41γ

−1
Ω1
, Y47 → γΩ4 Ȳ41γ

−1
Ω1
,

X56 → γΩ5X̄56γ
−1
Ω6
, Y56 → γΩ5 Ȳ56γ

−1
Ω6
, Z56 → γΩ5W̄56γ

−1
Ω6
, W56 → γΩ5Z̄56γ

−1
Ω6
,

X13 → γΩ7X̄73γ
−1
Ω3
, Y13 → γΩ7 Ȳ73γ

−1
Ω3
, X73 → γΩ1X̄13γ

−1
Ω3
, Y73 → γΩ1 Ȳ13γ

−1
Ω3
.

(C.2)

Requiring the invariance of W 0,1, the Fermi fields transform as

Λ1
86 → γΩ2Λ̄1

26γ
−1
Ω6
, Λ2

86 → γΩ2Λ̄2
26γ
−1
Ω6
, Λ1

26 → γΩ8Λ̄1
86γ
−1
Ω6
, Λ2

26 → γΩ8Λ̄2
86γ
−1
Ω6
,

Λ1
75 → γΩ1Λ̄4

15γ
−1
Ω5
, Λ2

75 → γΩ1Λ̄3
15γ
−1
Ω5
, Λ3

75 → γΩ1Λ̄2
15γ
−1
Ω5
, Λ4

75 → γΩ1Λ̄1
15γ
−1
Ω5
,

Λ1
43 → −γΩ4Λ̄2

43γ
−1
Ω3
, Λ2

43 → −γΩ4Λ̄1
43γ
−1
Ω3
, Λ3

43 → −γΩ4Λ̄4
43γ
−1
Ω3
, Λ4

43 → −γΩ4Λ̄3
43γ
−1
Ω3
,

Λ1
15 → γΩ7Λ̄4

75γ
−1
Ω5
, Λ2

15 → γΩ7Λ̄3
75γ
−1
Ω5
, Λ3

15 → γΩ7Λ̄2
75γ
−1
Ω5
, Λ4

15 → γΩ7Λ̄1
75γ
−1
Ω5
,

(C.3)
and

ΛR11 → γΩ7ΛR T
77 γ−1

Ω7
, ΛR22 → γΩ8ΛR T

88 γ−1
Ω8
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ4ΛR T

44 γ−1
Ω4
,

ΛR55 → γΩ5ΛR T
55 γ−1

Ω5
, ΛR66 → γΩ6ΛR T

66 γ−1
Ω6
, ΛR77 → γΩ1ΛR T

11 γ−1
Ω1
, ΛR88 → γΩ2ΛR T

22 γ−1
Ω2
.

(C.4)
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Figure 26. Quiver diagram for the Spin(7) orientifold of phase E of Q1,1,1/Z2 using the involution
in eqs. (C.2), (C.3) and (C.4), together with our choice of γΩi

matrices.

Using table 8, the corresponding geometric involution acting on the generators reads

M1 → M̄27 , M2 → M̄24 , M3 → M̄21 , M4 → M̄18 , M5 → M̄12 ,

M6 → M̄6 , M7 → M̄26 , M8 → M̄23 , M9 → M̄20 , M10 → M̄17 ,

M11 → M̄11 , M12 → M̄5 , M13 → M̄25 , M14 → M̄22 , M15 → M̄19 ,

M16 → M̄16 , M17 → M̄10 , M18 → M̄4 , M19 → M̄15 , M20 → M̄9 ,

M21 → M̄3 , M22 → M̄14 , M23 → M̄8 , M24 → M̄2 , M25 → M̄13 ,

M26 → M̄7 , M27 → M̄1 .

(C.5)

This geometric involution is the same of (5.19).
The γΩi matrices are constrained as in (5.20). As for phase D, we choose

γΩ3 = γΩ4 = γΩ5 = γΩ6 = 1N . (C.6)

The resulting orientifold is shown in figure 26.

C.2 Phase H

The quiver for phase H is shown in figure 27.
The J- and E-terms are

J E

Λ1
26 : Y64Z42 −X64W42 Y25X56 −X25Z56

Λ7
26 : Y64X42 − Y42X64 X25W56 − Y25Y56

Λ1
27 : X74W42 − Y74Y42 Y25X53X37 −X25X53Y37

Λ7
27 : X74Z42 − Y74X42 X25Y53Y37 − Y25Y53X37
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Figure 27. Quiver diagram for phase H of Q1,1,1/Z2.

Λ1
68 : X85W56 − Y85Z56 X64Y48 − Y64X48

Λ7
68 : X85Y56 − Y85X56 Y64Z48 −X64W48

Λ1
81 : X14W48 − Y14Y48 X85X53Y31 − Y85X53X31

Λ7
81 : X14Z48 − Y14X48 Y85Y53X31 −X85Y53Y31

Λ1
54 : W48Y85 −W42Y25 X53X31X14 −X56X64

Λ7
54 : Z48Y85 − Z42Y25 X56Y64 − Y53X31X14

Λ3
54 : W48X85 − Y42Y25 Y56X64 −X53Y31X14

Λ4
54 : Z48X85 −X42Y25 Y53X37Y74 − Y56Y64

Λ5
54 : Y48Y85 −W42X25 Z56X64 −X53X31Y14

Λ6
54 : X48Y85 − Z42X25 Y53Y37X74 − Z56Y64

Λ2
54 : Y48X85 − Y42X25 X53Y37Y74 −W56X64

Λ8
54 :X48X85 −X42X25 W56Y64 − Y53Y37Y74

Λ1
43 : Y31Y14 − Y37Y74 Y48X85X53 −X48X85Y53

Λ7
43 : X31Y14 − Y37X74 X48Y85Y53 −W42X25X53

Λ3
43 : Y31X14 −X37Y74 Z48X85Y53 − Y42Y25X53

Λ4
43 :X31X14 −X37X74 W42Y25X53 − Z42Y25Y53 .

(C.7)

The generators of the moduli space expressed in terms of the chiral fields are listed in
table 9.

U(N)2× SO(N)4 orientifold Let us consider an anti-holomorphic involution of phase
H which acts on the nodes in figure 27 as 1 ↔ 7 and 2 ↔ 8 and maps all other nodes
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mapped to themselves. Chiral fields transform according to

Y64 → γΩ6X̄64γ
−2
Ω4
, X64 → γΩ6 Ȳ64γ

−2
Ω4
, Z42 → γΩ4 Ȳ48γ

−2
Ω8
, Y48 → γΩ4Z̄42γ

−2
Ω2
,

W42 → γΩ4X̄48γ
−2
Ω8
, X48 → γΩ4W̄42γ

−2
Ω2
, Y25 → γΩ8X̄85γ

−2
Ω5
, X85 → γΩ2 Ȳ25γ

−2
Ω5
,

X56 → γΩ5W̄56γ
−2
Ω6
, W56 → γΩ5X̄56γ

−2
Ω6
, X25 → γΩ8 Ȳ85γ

−2
Ω5
, Y85 → γΩ2X̄25γ

−2
Ω5
,

Z56 → γΩ5Z̄56γ
−2
Ω6
, X42 → γΩ4W̄48γ

−2
Ω8
, W48 → γΩ4X̄42γ

−2
Ω2
, Y42 → γΩ4Z̄48γ

−2
Ω8
,

Z48 → γΩ4 Ȳ42γ
−2
Ω2
, Y56 → γΩ5 Ȳ56γ

−2
Ω6
, X74 → γΩ1 Ȳ14γ

−2
Ω4
, Y14 → γΩ7X̄74γ

−2
Ω4
,

Y74 → γΩ1X̄14γ
−2
Ω4
, X14 → γΩ7 Ȳ74γ

−2
Ω4
, X53 → γΩ5 Ȳ53γ

−2
Ω3
, Y53 → γΩ5X̄53γ

−2
Ω3
,

X37 → γΩ3 Ȳ31γ
−2
Ω1
, Y31 → γΩ3X̄37γ

−2
Ω7
, Y37 → γΩ3X̄31γ

−2
Ω1
, X31 → γΩ3 Ȳ37γ

−2
Ω7
.

(C.8)
Requiring the invariance of W (0,1), the Fermi fields transform as

Λ2
26 → γΩ6Λ1

68γ
−2
Ω8
, Λ8

26 → −γΩ6Λ2
68γ
−2
Ω8
, Λ2

27 → −γΩ8Λ̄2
81γ
−2
Ω1
, Λ8

27 → −γΩ8Λ̄1
81γ
−2
Ω1
,

Λ2
68 → γΩ2Λ1

26γ
−2
Ω6
, Λ8

68 → −γΩ2Λ2
26γ
−2
Ω6
, Λ2

81 → −γΩ2Λ̄2
27γ
−2
Ω7
, Λ8

81 → −γΩ2Λ̄1
27γ
−2
Ω7
,

Λ2
54 → −γΩ5Λ̄8

54γ
−2
Ω4
, Λ8

54 → −γΩ5Λ̄7
54γ
−2
Ω4
, Λ5

54 → −γΩ5Λ̄4
54γ
−2
Ω4
, Λ6

54 → −γΩ5Λ̄3
54γ
−2
Ω4
,

Λ3
54 → −γΩ5Λ̄6

54γ
−2
Ω4
, Λ4

54 → −γΩ5Λ̄5
54γ
−2
Ω4
, Λ1

54 → −γΩ5Λ̄2
54γ
−2
Ω4
, Λ7

54 → −γΩ5Λ̄1
54γ
−2
Ω4
,

Λ2
43 → −γΩ4Λ̄4

43γ
−2
Ω3
, Λ8

43 → −γΩ4Λ̄2
43γ
−2
Ω3
, Λ5

43 → −γΩ4Λ̄3
43γ
−2
Ω3
, Λ6

43 → −γΩ4Λ̄1
43γ
−2
Ω3
,

(C.9)
and

ΛR11 → γΩ7ΛR T
77 γ−1

Ω7
, ΛR22 → γΩ8ΛR T

88 γ−1
Ω8
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ4ΛR T

44 γ−1
Ω4
,

ΛR55 → γΩ5ΛR T
55 γ−1

Ω5
, ΛR66 → γΩ6ΛR T

66 γ−1
Ω6
, ΛR77 → γΩ1ΛR T

11 γ−1
Ω1
, ΛR88 → γΩ2ΛR T

22 γ−1
Ω2
.

(C.10)
Using table 9, the corresponding geometric involution acting on the generators reads

M1 → M̄27 , M2 → M̄24 , M3 → M̄21 , M4 → M̄18 , M5 → M̄12 ,

M6 → M̄6 , M7 → M̄26 , M8 → M̄23 , M9 → M̄20 , M10 → M̄17 ,

M11 → M̄11 , M12 → M̄5 , M13 → M̄25 , M14 → M̄22 , M15 → M̄19 ,

M16 → M̄16 , M17 → M̄10 , M18 → M̄4 , M19 → M̄15 , M20 → M̄9 ,

M21 → M̄3 , M22 → M̄14 , M23 → M̄8 , M24 → M̄2 , M25 → M̄13 ,

M26 → M̄7 , M27 → M̄1 .

(C.11)

Once again, this is the same involution of phase D in (5.19).
The γΩi matrices are constrained as in (5.20). As for phase D, we choose

γΩ3 = γΩ4 = γΩ5 = γΩ6 = 1N . (C.12)

Figure 28 shows the quiver for the resulting orientifold of phase H.

C.3 Phase J

The quiver for phase J is shown in figure 29.

– 37 –



J
H
E
P
0
1
(
2
0
2
2
)
0
5
8

1

U(N)

3

SO(N)

4
SO(N)

5
SO(N)

6

SO(N)

2

U(N)

4

4

8

4

4

8

442

2

2

Figure 28. Quiver diagram for the Spin(7) orientifold of phase H of Q1,1,1/Z2 using the involution
in eqs. (C.8), (C.9) and (C.10), together with our choice of γΩi

matrices.
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Figure 29. Quiver diagram for phase J of Q1,1,1/Z2.

The J- and E-terms are

J E

Λ1
14 : Y46Y61 −X46W61 Y13X34 −X13Y34

Λ2
14 : Y46X61 −X46Z61 X13W34 − Y13Z34

Λ1
15 : Y56W61 −W56Z61 X18X85 −X13X35

Λ2
15 : Z56Z61 −X56W61 X18Y85 − Y13X35
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Λ3
15 : Y56Y61 −W56X61 X13Y35 − Y18X85

Λ4
15 : X56Y61 − Z56X61 Y18Y85 − Y13Y35

Λ1
86 : Y61Y18 −W61X18 X85Y56 − Y85X56

Λ2
86 : X61Y18 − Z61X18 Y85Z56 −X85W56

Λ1
47 : X73W34 − Y73Y34 X46Z67 − Y46X67

Λ2
47 : X73Z34 − Y73X34 Y46Y67 −X46W67

Λ1
63 : Y35W56 −W34Y46 X61X13 −X67X73

Λ2
63 : Y35Z56 − Z34Y46 Y67X73 −X61Y13

Λ3
63 : Y35Y56 − Y34Y46 X67Y73 − Y61X13

Λ4
63 : Y35X56 −X34Y46 Y61Y13 − Y67Y73

Λ5
63 : X35W56 −W34X46 Z67X73 − Z61X13

Λ6
63 : X35Z56 − Z34X46 Z61Y13 −W67X73

Λ7
63 : X35Y56 − Y34X46 W61X13 − Z67Y73

Λ8
63 : X35X56 −X34X46 W67Y73 −W61Y13

Λ1
62 : X25W56 − Y25Y56 X67Y72 − Z67X72

Λ2
62 : X25Z56 − Y25X56 W67X72 − Y67Y72

Λ1
57 : Y72Y25 − Y73Y35 Y56X67 −X56Y67

Λ2
57 : Y72X25 −X73Y35 Z56Y67 −W56X67

Λ3
57 : X72Y25 − Y73X35 X56W67 − Y56Z67

Λ4
57 : X72X25 −X73X35 W56Z67 − Z56W67 .

(C.13)

Once again, the generators can be found in table 10.

U(N)2× SO(N)4 orientifold Let us consider an anti-holomorphic involution of phase
J which acts on the nodes in figure 29 as 1 ↔ 7 and 2 ↔ 8 and maps all other nodes
mapped to themselves. Chiral fields transform according to

Y46 → γΩ4X̄46γ
−1
Ω6
, X46 → γΩ4 Ȳ46γ

−1
Ω6
, Y61 → γΩ6Z̄67γ

−1
Ω7
, Z67 → γΩ6 Ȳ61γ

−1
Ω1
,

W61 → γΩ6X̄67γ
−1
Ω7
, X67 → γΩ6W̄61γ

−1
Ω1
, Y13 → γΩ7X̄73γ

−1
Ω3
, X73 → γΩ1 Ȳ13γ

−1
Ω3
,

X13 → γΩ7 Ȳ73γ
−1
Ω3
, Y73 → γΩ1X̄13γ

−1
Ω3
, X34 → γΩ3W̄34γ

−1
Ω4
, W34 → γΩ3X̄34γ

−1
Ω4
,

Y34 → γΩ3 Ȳ34γ
−1
Ω4
, X61 → γΩ6W̄67γ

−1
Ω7
, W67 → γΩ6X̄61γ

−1
Ω1
, Z61 → γΩ6 Ȳ67γ

−1
Ω7
,

Y67 → γΩ6Z̄61γ
−1
Ω1
, Z34 → γΩ3Z̄34γ

−1
Ω4
, Y56 → γΩ5 Ȳ56γ

−1
Ω6
, W56 → γΩ5X̄56γ

−1
Ω6
,

X56 → γΩ5W̄56γ
−1
Ω6
, X35 → γΩ3 Ȳ35γ

−1
Ω5
, Y35 → γΩ3X̄35γ

−1
Ω5
, X18 → γΩ7 Ȳ72γ

−1
Ω2
,

Y72 → γΩ1X̄18γ
−1
Ω8
, X85 → γΩ2 Ȳ25γ

−1
Ω5
, Y25 → γΩ8X̄85γ

−1
Ω5
, Z56 → γΩ5Z̄56γ

−1
Ω6
,

Y18 → γΩ7X̄72γ
−1
Ω2
, X72 → γΩ1 Ȳ18γ

−1
Ω8
, Y85 → γΩ2X̄25γ

−1
Ω5
, X25 → γΩ8 Ȳ85γ

−1
Ω5
,

Y46 → γΩ4X̄46γ
−1
Ω4
, X46 → γΩ4 Ȳ46γ

−1
Ω6
.

(C.14)
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Requiring the invariance of W (0,1), the Fermi fields transform as

Λ1
14 → γΩ4Λ1

47γ
−1
Ω7
, Λ2

14 → −γΩ4Λ2
47γ
−1
Ω7
, Λ1

15 → γΩ5Λ1
57γ
−1
Ω7
, Λ2

15 → γΩ5Λ2
57γ
−1
Ω7
,

Λ3
15 → −γΩ5Λ3

57γ
−1
Ω7
, Λ4

15 → γΩ5Λ4
57γ
−1
Ω7
, Λ1

86 → −γΩ6Λ1
62γ
−1
Ω2
, Λ2

86 → γΩ6Λ2
62γ
−1
Ω2
,

Λ1
47 → γΩ1Λ1

14γ
−1
Ω4
, Λ2

47 → −γΩ4Λ2
47γ
−1
Ω7
, Λ1

63 → γΩ6Λ̄8
63γ
−1
Ω3
, Λ2

63 → γΩ6Λ̄6
63γ
−1
Ω3
,

Λ3
63 → γΩ6Λ̄7

63γ
−1
Ω3
, Λ4

63 → γΩ6Λ̄5
63γ
−1
Ω3
, Λ5

63 → γΩ6Λ̄4
63γ
−1
Ω3
, Λ6

63 → γΩ6Λ̄2
63γ
−1
Ω3
,

Λ7
63 → γΩ6Λ̄3

63γ
−1
Ω3
, Λ8

63 → γΩ6Λ̄1
63γ
−1
Ω3
, Λ1

62 → −γΩ8Λ1
86γ
−1
Ω6
, Λ2

62 → γΩ8Λ2
86γ
−1
Ω6
,

Λ1
57 → γΩ1Λ1

15γ
−1
Ω5
, Λ2

57 → γΩ1Λ2
15γ
−1
Ω5
, Λ3

57 → −γΩ1Λ3
15γ
−1
Ω5
, Λ4

57 → γΩ1Λ4
15γ
−1
Ω5
.

(C.15)
and

ΛR11 → γΩ7ΛR T
77 γ−1

Ω7
, ΛR22 → γΩ8ΛR T

88 γ−1
Ω8
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ4ΛR T

44 γ−1
Ω4
,

ΛR55 → γΩ5ΛR T
55 γ−1

Ω5
, ΛR66 → γΩ6ΛR T

66 γ−1
Ω6
, ΛR77 → γΩ1ΛR T

11 γ−1
Ω1
, ΛR88 → γΩ2ΛR T

22 γ−1
Ω2
.

(C.16)
Using table 10, the corresponding geometric involution acting on the generators reads

M1 → M̄27 , M2 → M̄24 , M3 → M̄21 , M4 → M̄18 , M5 → M̄12 ,

M6 → M̄6 , M7 → M̄26 , M8 → M̄23 , M9 → M̄20 , M10 → M̄17 ,

M11 → M̄11 , M12 → M̄5 , M13 → M̄25 , M14 → M̄22 , M15 → M̄19 ,

M16 → M̄16 , M17 → M̄10 , M18 → M̄4 , M19 → M̄15 , M20 → M̄9 ,

M21 → M̄3 , M22 → M̄14 , M23 → M̄8 , M24 → M̄2 , M25 → M̄13 ,

M26 → M̄7 , M27 → M̄1 . xs

(C.17)

Notice, again, that this is the same geometric action that we have found for phase D
in (5.19).

The γΩi matrices are constrained as in (5.20). As for phase D, we choose

γΩ3 = γΩ4 = γΩ5 = γΩ6 = 1N . (C.18)

The resulting orientifold of phase J is shown in figure 30.

C.4 Phase L

The last N = (0, 2) quiver we consider is phase L, shown in figure 31.
The J- and E-terms are

J E

Λ1
15 : B54Y41 −D54X41 X13X35 −X18X85

Λ2
15 : C54X41 −A54Y41 X13Y35 − Y18X85

Λ3
15 : W54X41 − Y54Y41 Y13X35 −X18Y85

Λ4
15 : Z54X41 −X54Y41 Y18Y85 − Y13Y35

Λ1
34 : Y41Y13 − Y47Y73 X35Y54 − Y35X54

Λ2
34 : X41Y13 − Y47X73 Y35Z54 −X35W54
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Figure 30. Quiver diagram for the Spin(7) orientifold of phase J of Q1,1,1/Z2 using the involution
in eqs. (C.14), (C.15) and (C.16), together with our choice of γΩi

matrices.

1 73

4
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4

4

4

4

4
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2
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22

2 2

2
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22

22

Figure 31. Quiver diagram for phase L of Q1,1,1/Z2.

Λ3
34 : Y41X13 −X47Y73 Y35A54 −X35B54

Λ4
34 : X41X13 −X47X73 X35D54 − Y35C54

Λ1
48 : X85D54 − Y85W54 X46X68 −X41X18

Λ2
48 : X85C54 − Y85Z54 X41Y18 − Y46X68

Λ3
48 : X85B54 − Y85Y54 Y41X18 −X46Y68

Λ4
48 : X85A54 − Y85X54 Y46Y68 − Y41Y18

Λ1
42 : X25D54 − Y25B54 X47X72 −X46X62

Λ2
42 : X25C54 − Y25A54 Y46X62 −X47Y72
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Λ3
42 : X25W54 − Y25Y54 X46Y62 − Y47X72

Λ4
42 : X25Z54 − Y25X54 Y47Y72 − Y46Y62

Λ1
75 : W54Y47 −D54X47 X72X25 −X73X35

Λ2
75 : Z54Y47 − C54X47 X73Y35 − Y72X25

Λ3
75 : Y54Y47 −B54X47 Y73X35 −X72Y25

Λ4
75 : X54Y47 −A54X47 Y72Y25 − Y73Y35

Λ1
56 : Y68Y85 − Y62Y25 X54Y46 − Y54X46

Λ2
56 : X68Y85 − Y62X25 W54X46 − Z54Y46

Λ3
56 : Y68X85 −X62Y25 B54X46 −A54Y46

Λ4
56 : X68X85 −X62X25 C54Y46 −D54X46 .

(C.19)

U(N)2 × SO(N)4 orientifold. We can, again, look for an involution that maps the
nodes in figure 31 1 ↔ 7 and 2 ↔ 8 and all the other nodes to themselves. The map on
the fields is

B54 → γΩ5Z̄54γ
−1
Ω4
, Z54 → γΩ5B̄54γ

−1
Ω4
, D54 → γΩ5C̄54γ

−1
Ω4
, C54 → γΩ5D̄54γ

−1
Ω4
,

Y41 → γΩ4 Ȳ47γ
−1
Ω7
, Y47 → γΩ4 Ȳ41γ

−1
Ω1
, X41 → γΩ4X̄47γ

−1
Ω7
, X47 → γΩ4X̄41γ

−1
Ω1
,

X13 → γΩ7X̄73γ
−1
Ω3
, X73 → γΩ1X̄13γ

−1
Ω3
, X35 → γΩ3 Ȳ35γ

−1
Ω5
, Y35 → γΩ3X̄35γ

−1
Ω5
,

X18 → γΩ7 Ȳ72γ
−1
Ω2
, Y72 → γΩ1X̄18γ

−1
Ω8
, X85 → γΩ2X̄25γ

−1
Ω5
, X25 → γΩ8X̄85γ

−1
Ω5
,

A54 → γΩ5W̄54γ
−1
Ω4
, W54 → γΩ5Ā54γ

−1
Ω4
, Y18 → γΩ7X̄72γ

−1
Ω2
, X72 → γΩ1 Ȳ18γ

−1
Ω8
,

Y13 → γΩ7 Ȳ73γ
−1
Ω3
, Y73 → γΩ1 Ȳ13γ

−1
Ω3
, Y85 → γΩ2 Ȳ25γ

−1
Ω5
, Y25 → γΩ8 Ȳ85γ

−1
Ω5
,

Y54 → γΩ5X̄54γ
−1
Ω4
, X54 → γΩ5 Ȳ54γ

−1
Ω4
, X46 → γΩ4 Ȳ46γ

−1
Ω6
, Y46 → γΩ4X̄46γ

−1
Ω6
,

Y68 → γΩ6 Ȳ62γ
−1
Ω2
, Y62 → γΩ6 Ȳ68γ

−1
Ω8
, X68 → γΩ6X̄62γ

−1
Ω2
, X62 → γΩ6X̄68γ

−1
Ω8
.

(C.20)
Requiring the invariance of the W (0,1) superpotential, we obtain also the following

transformations for the Fermi fields:

Λ1
15 → γΩ7Λ̄2

75γ
−1
Ω5
, Λ2

15 → −γΩ7Λ̄1
75γ
−1
Ω5
, Λ3

15 → −γΩ7Λ̄4
75γ
−1
Ω5
, Λ4

15 → −γΩ7Λ̄3
75γ
−1
Ω5
,

Λ1
34 → −γΩ3Λ̄1

34γ
−1
Ω4
, Λ2

34 → −γΩ3Λ̄3
34γ
−1
Ω4
, Λ3

34 → −γΩ3Λ̄2
34γ
−1
Ω4
, Λ4

34 → −γΩ3Λ̄4
34γ
−1
Ω4
,

Λ1
48 → γΩ4Λ̄2

42γ
−1
Ω2
, Λ2

48 → γΩ4Λ̄1
42γ
−1
Ω2
, Λ3

48 → γΩ4Λ̄4
42γ
−1
Ω2
, Λ4

48 → γΩ4Λ̄3
42γ
−1
Ω2
,

Λ1
42 → γΩ4Λ̄2

48γ
−1
Ω8
, Λ2

42 → γΩ4Λ̄1
48γ
−1
Ω8
, Λ3

42 → γΩ4Λ̄4
48γ
−1
Ω8
, Λ4

42 → γΩ4Λ̄3
48γ
−1
Ω8
,

Λ1
75 → −γΩ1Λ̄2

15γ
−1
Ω5
, Λ2

75 → γΩ1Λ̄1
15γ
−1
Ω5
, Λ3

75 → −γΩ1Λ̄4
15γ
−1
Ω5
, Λ4

75 → −γΩ1Λ̄3
15γ
−1
Ω5
,

Λ1
56 → −γΩ5Λ̄1

56γ
−1
Ω6
, Λ2

56 → −γΩ5Λ̄3
56γ
−1
Ω6
, Λ3

56 → −γΩ5Λ̄2
56γ
−1
Ω6
, Λ4

56 → −γΩ5Λ̄4
56γ
−1
Ω6
,

(C.21)

and
ΛR11 → γΩ7ΛR T

77 γ−1
Ω7
, ΛR22 → γΩ8ΛR T

88 γ−1
Ω8
, ΛR33 → γΩ3ΛR T

33 γ−1
Ω3
, ΛR44 → γΩ4ΛR T

44 γ−1
Ω4
,

ΛR55 → γΩ5ΛR T
55 γ−1

Ω5
, ΛR66 → γΩ1ΛR T

11 γ−1
Ω1
, ΛR77 → γΩ1ΛR T

11 γ−1
Ω1
, ΛR88 → γΩ2ΛR T

22 γ−1
Ω2
.

(C.22)
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Figure 32. Quiver diagram for the Spin(7) orientifold of phase L of Q1,1,1/Z2 using the involution
in eqs. (C.20), (C.21) and (C.22), together with our choice of γΩi

matrices.

Using table 11, the corresponding geometric involution acting on the generators reads

M1 → M̄27 , M2 → M̄24 , M3 → M̄21 , M4 → M̄18 , M5 → M̄12 ,

M6 → M̄6 , M7 → M̄26 , M8 → M̄23 , M9 → M̄20 , M10 → M̄17 ,

M11 → M̄11 , M12 → M̄5 , M13 → M̄25 , M14 → M̄22 , M15 → M̄19 ,

M16 → M̄16 , M17 → M̄10 , M18 → M̄4 , M19 → M̄15 , M20 → M̄9 ,

M21 → M̄3 , M22 → M̄14 , M23 → M̄8 , M24 → M̄2 , M25 → M̄13 ,

M26 → M̄7 , M27 → M̄1 .

(C.23)

This is, once again, the same geometric involution.
The γΩi matrices are constrained as in (5.20). As for phase D, we choose

γΩ3 = γΩ4 = γΩ5 = γΩ6 = 1N . (C.24)

The resulting orientifold is shown in figure 32.

C.5 Generators of Q1,1,1/ZZZ2

In tables 7, 8, 9, 10 and 11 we list the generators of Q1,1,1/Z2 in terms of the chiral fields
of phases D, E, H, J and L.

The relations among the generators are the same for all phases, and they are:

I=〈M1M3=M2
2 ,M1M5=M2M4 ,M2M6=M3M5 ,M1M8=M2M7 ,M2M9=M3M8 ,M1M10=M4M7 ,

M3M12=M6M9 ,M1M13=M2
7 ,M7M14=M8M13 ,M3M15=M2

9 ,M8M15=M9M14 ,M13M15=M2
14 ,

M7M16=M10M13 ,M13M17=M14M16 ,M9M18=M12M15 ,M14M18=M15M17 ,M1M19=M2
4 ,

M4M20=M5M19 ,M3M21=M2
6 ,M5M21=M6M20 ,M19M21=M2

20 ,M4M22=M10M19 ,
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M19M23=M20M22 ,M6M24=M12M21 ,M20M24=M21M23 ,M10M25=M16M22 ,M13M25=M2
16 ,

M19M25=M2
22 ,M16M26=M17M25 ,M22M26=M23M25 ,M12M27=M18M24 ,M15M27=M2

18 ,

M17M27=M18M26 ,M21M27=M2
24 ,M23M27=M24M26 ,M25M27=M2

26 ,M1M6=M2M5=M3M4 ,

M1M9=M2M8=M3M7 ,M1M14=M2M13=M7M8 ,M2M15=M3M14=M8M9 ,

M7M15=M8M14=M9M13 ,M1M16=M4M13=M7M10 ,M3M18=M6M15=M9M12 ,

M13M18=M14M17=M15M16 ,M1M20=M2M19=M4M5 ,M2M21=M3M20=M5M6 ,

M4M21=M5M20=M6M19 ,M1M22=M4M10=M7M19 ,M3M24=M6M12=M9M21 ,

M19M24=M20M23=M21M22 ,M4M25=M10M22=M16M19 ,M7M25=M10M16=M13M22 ,

M13M26=M14M25=M16M17 ,M19M26=M20M25=M22M23 ,M6M27=M12M24=M18M21 ,

M9M27=M12M18=M15M24 ,M14M27=M15M26=M17M18 ,M16M27=M17M26=M18M25 ,

M20M27=M21M26=M23M24 ,M22M27=M23M26=M24M25 ,M1M11=M2M10=M4M8=M5M7 ,

M2M12=M3M11=M5M9=M6M8 ,M7M17=M8M16=M10M14=M11M13 ,

M8M18=M9M17=M11M15=M12M14 ,M4M23=M5M22=M10M20=M11M19 ,

M5M24=M6M23=M11M21=M12M20 ,M10M26=M11M25=M16M23=M17M22 ,

M11M27=M12M26=M17M24=M18M23 ,M1M15=M2M14=M3M13=M7M9=M2
8 ,

M1M21=M2M20=M3M19=M4M6=M2
5 ,M1M25=M4M16=M7M22=M2

10=M13M19 ,

M3M27=M6M18=M9M24=M2
12=M15M21 ,M13M27=M14M26=M15M25=M16M18=M2

17 ,

M19M27=M20M26=M21M25=M22M24=M2
23 ,M1M12=M2M11=M3M10=M4M9=M5M8=M6M7 ,

M1M17=M2M16=M4M14=M5M13=M7M11=M8M10 ,M2M18=M3M17=M5M15=M6M14=M8M12=

=M9M11 ,M7M18=M8M17=M9M16=M10M15=M11M14=M12M13 ,M1M23=M2M22=M4M11=

=M5M10=M7M20=M8M19 ,M2M24=M3M23=M5M12=M6M11=M8M21=M9M20 ,M4M24=M5M23=

=M6M22=M10M21=M11M20=M12M19 ,M4M26=M5M25=M10M23=M11M22=M16M20=M17M19 ,

M7M26=M8M25=M10M17=M11M16=M13M23=M14M22 ,M5M27=M6M26=M11M24=M12M23=M17M21=

=M18M20 ,M8M27=M9M26=M11M18=M12M17=M14M24=M15M23 ,M10M27=M11M26=M12M25=

=M16M24=M17M23=M18M22 ,M1M18=M2M17=M3M16=M4M15=M5M14=M6M13=M7M12=M8M11=

=M9M10 ,M1M24=M2M23=M3M22=M4M12=M5M11=M6M10=M7M21=M8M20=M9M19 ,M1M26=

=M2M25=M4M17=M5M16=M7M23=M8M22=M10M11=M13M20=M14M19 ,M2M27=M3M26=

=M5M18=M6M17=M8M24=M9M23=M11M12=M14M21=M15M20 ,M4M27=M5M26=M6M25=M10M24=

=M11M23=M12M22=M16M21=M17M20=M18M19 ,M7M27=M8M26=M9M25=M10M18=M11M17=

=M12M16=M13M24=M14M23=M15M22 ,M1M27=M2M26=M3M25=M4M18=M5M17=M6M16=M7M24=

=M8M23=M9M22=M10M12=M2
11=M13M21=M14M20=M15M19 .〉

(C.25)
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Field Chiral superfields
M1 X72X47X64Y56Y25 = X72X47X53Y34Y25 = X18X64X85Y41Y56 =

= X18X53X85Y34Y41

M2 X72X47X64X25Y56 = X72X47X56X64Y25 = X72X47X53X25Y34 =
= X72X34X47X53Y25 = X18X56X64X85Y41 = X18X41X64X85Y56 =

= X18X41X53X85Y34 = X18X34X53X85Y41

M3 X72X47X56X64X25 = X72X34X47X53X25 = X18X41X56X64X85 =
= X18X34X41X53X85

M4 X64X85Y18Y41Y56 = X53X85Y18Y34Y41 = X47X64Y72Y56Y25 =
= X47X53Y72Y34Y25 = X72X47Y56Y64Y25 = X72X47Y34Y53Y25 =

= X18X85Y41Y56Y64 = X18X85Y34Y41Y53

M5 X56X64X85Y18Y41 = X47X64X25Y72Y56 = X47X56X64Y72Y25 =
= X47X53X25Y72Y34 = X41X64X85Y18Y56 = X41X53X85Y18Y34 =
= X34X53X85Y18Y41 = X34X47X53Y72Y25 = X72X47X25Y56Y64 =
= X72X47X25Y34Y53 = X72X47X56Y64Y25 = X72X34X47Y53Y25 =
= X18X56X85Y41Y64 = X18X41X85Y56Y64 = X18X41X85Y34Y53 =

= X18X34X85Y41Y53

M6 X47X56X64X25Y72 = X41X56X64X85Y18 = X34X47X53X25Y72 =
= X34X41X53X85Y18 = X72X47X56X25Y64 = X72X34X47X25Y53 =

= X18X41X56X85Y64 = X18X34X41X85Y53

M2 X72X64Y47Y56Y25 = X72X53Y34Y47Y25 = X18X64Y41Y56Y85 =
= X18X53Y34Y41Y85 = W56X72X47X64Y25 = W56X18X64X85Y41 =

= W34X72X47X53Y25 = W34X18X53X85Y41

M8 X72X64X25Y47Y56 = X72X56X64Y47Y25 = X72X53X25Y34Y47 =
= X72X47X64Y25Z56 = X72X47X53Y25Z34 = X72X34X53Y47Y25 =
= X18X64X85Y41Z56 = X18X56X64Y41Y85 = X18X53X85Y41Z34 =
= X18X41X64Y56Y85 = X18X41X53Y34Y85 = X18X34X53Y41Y85 =

= W56X72X47X64X25 = W56X18X41X64X85 = W34X72X47X53X25 =
= W34X18X41X53X85

M9 X72X56X64X25Y47 = X72X47X64X25Z56 = X72X47X53X25Z34 =
= X72X34X53X25Y47 = X18X41X64X85Z56 = X18X41X56X64Y85 =

= X18X41X53X85Z34 = X18X34X41X53Y85

M10 X64Y72Y47Y56Y25 = X64Y18Y41Y56Y85 = X53Y72Y34Y47Y25 =
= X53Y18Y34Y41Y85 = X72Y47Y56Y64Y25 = X72Y34Y47Y53Y25 =

= X18Y41Y56Y64Y85 = X18Y34Y41Y53Y85 = W56X64X85Y18Y41 =
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Field Chiral superfields
= W56X47X64Y72Y25 = W56X72X47Y64Y25 = W56X18X85Y41Y64 =
= W34X53X85Y18Y41 = W34X47X53Y72Y25 = W34X72X47Y53Y25 =

= W34X18X85Y41Y53

M11 X64X85Y18Y41Z56 = X64X25Y72Y47Y56 = X56X64Y72Y47Y25 =
= X56X64Y18Y41Y85 = X53X85Y18Y41Z34 = X53X25Y72Y34Y47 =
= X47X64Y72Y25Z56 = X47X53Y72Y25Z34 = X41X64Y18Y56Y85 =
= X41X53Y18Y34Y85 = X34X53Y72Y47Y25 = X34X53Y18Y41Y85 =
= X72X25Y47Y56Y64 = X72X25Y34Y47Y53 = X72X56Y47Y64Y25 =
= X72X47Y64Y25Z56 = X72X47Y53Y25Z34 = X72X34Y47Y53Y25 =
= X18X85Y41Y64Z56 = X18X85Y41Y53Z34 = X18X56Y41Y64Y85 =
= X18X41Y56Y64Y85 = X18X41Y34Y53Y85 = X18X34Y41Y53Y85 =

= W56X47X64X25Y72 = W56X41X64X85Y18 = W56X72X47X25Y64 =
= W56X18X41X85Y64 = W34X47X53X25Y72 = W34X41X53X85Y18 =

= W34X72X47X25Y53 = W34X18X41X85Y53

M12 X56X64X25Y72Y47 = X47X64X25Y72Z56 = X47X53X25Y72Z34 =
= X41X64X85Y18Z56 = X41X56X64Y18Y85 = X41X53X85Y18Z34 =
= X34X53X25Y72Y47 = X34X41X53Y18Y85 = X72X56X25Y47Y64 =
= X72X47X25Y64Z56 = X72X47X25Y53Z34 = X72X34X25Y47Y53 =
= X18X41X85Y64Z56 = X18X41X85Y53Z34 = X18X41X56Y64Y85 =

= X18X34X41Y53Y85

M13 W56X72X64Y47Y25 = W56X18X64Y41Y85 = W34X72X53Y47Y25 =
= W34X18X53Y41Y85

M14 X72X64Y47Y25Z56 = X72X53Y47Y25Z34 = X18X64Y41Y85Z56 =
= X18X53Y41Y85Z34 = W56X72X64X25Y47 = W56X18X41X64Y85 =

= W34X72X53X25Y47 = W34X18X41X53Y85

M15 X72X64X25Y47Z56 = X72X53X25Y47Z34 = X18X41X64Y85Z56 =
= X18X41X53Y85Z34

M16 W56X64Y72Y47Y25 = W56X64Y18Y41Y85 = W56X72Y47Y64Y25 =
= W56X18Y41Y64Y85 = W34X53Y72Y47Y25 = W34X53Y18Y41Y85 =

= W34X72Y47Y53Y25 = W34X18Y41Y53Y85

M17 X64Y72Y47Y25Z56 = X64Y18Y41Y85Z56 = X53Y72Y47Y25Z34 =
= X53Y18Y41Y85Z34 = X72Y47Y64Y25Z56 = X72Y47Y53Y25Z34 =
= X18Y41Y64Y85Z56 = X18Y41Y53Y85Z34 = W56X64X25Y72Y47 =

= W56X41X64Y18Y85 = W56X72X25Y47Y64 = W56X18X41Y64Y85 =

– 46 –



J
H
E
P
0
1
(
2
0
2
2
)
0
5
8

Field Chiral superfields
= W34X53X25Y72Y47 = W34X41X53Y18Y85 = W34X72X25Y47Y53 =

= W34X18X41Y53Y85

M18 X64X25Y72Y47Z56 = X53X25Y72Y47Z34 = X41X64Y18Y85Z56 =
= X41X53Y18Y85Z34 = X72X25Y47Y64Z56 = X72X25Y47Y53Z34 =

= X18X41Y64Y85Z56 = X18X41Y53Y85Z34

M19 X85Y18Y41Y56Y64 = X85Y18Y34Y41Y53 = X47Y72Y56Y64Y25 =
= X47Y72Y34Y53Y25

M20 X56X85Y18Y41Y64 = X47X25Y72Y56Y64 = X47X25Y72Y34Y53 =
= X47X56Y72Y64Y25 = X41X85Y18Y56Y64 = X41X85Y18Y34Y53 =

= X34X85Y18Y41Y53 = X34X47Y72Y53Y25

M21 X47X56X25Y72Y64 = X41X56X85Y18Y64 = X34X47X25Y72Y53 =
= X34X41X85Y18Y53

M27 Y72Y47Y56Y64Y25 = Y72Y34Y47Y53Y25 = Y18Y41Y56Y64Y85 =
= Y18Y34Y41Y53Y85 = W56X85Y18Y41Y64 = W56X47Y72Y64Y25 =

= W34X85Y18Y41Y53 = W34X47Y72Y53Y25

M23 X85Y18Y41Y64Z56 = X85Y18Y41Y53Z34 = X25Y72Y47Y56Y64 =
= X25Y72Y34Y47Y53 = X56Y72Y47Y64Y25 = X56Y18Y41Y64Y85 =
= X47Y72Y64Y25Z56 = X47Y72Y53Y25Z34 = X41Y18Y56Y64Y85 =
= X41Y18Y34Y53Y85 = X34Y72Y47Y53Y25 = X34Y18Y41Y53Y85 =

= W56X47X25Y72Y64 = W56X41X85Y18Y64 = W34X47X25Y72Y53 =
= W34X41X85Y18Y53

M24 X56X25Y72Y47Y64 = X47X25Y72Y64Z56 = X47X25Y72Y53Z34 =
= X41X85Y18Y64Z56 = X41X85Y18Y53Z34 = X41X56Y18Y64Y85 =

= X34X25Y72Y47Y53 = X34X41Y18Y53Y85

M25 W56Y72Y47Y64Y25 = W56Y18Y41Y64Y85 = W34Y72Y47Y53Y25 =
= W34Y18Y41Y53Y85

M26 Y72Y47Y64Y25Z56 = Y72Y47Y53Y25Z34 = Y18Y41Y64Y85Z56 =
= Y18Y41Y53Y85Z34 = W56X25Y72Y47Y64 = W56X41Y18Y64Y85 =

= W34X25Y72Y47Y53 = W34X41Y18Y53Y85

M27 X25Y72Y47Y64Z56 = X25Y72Y47Y53Z34 = X41Y18Y64Y85Z56 =
= X41Y18Y53Y85Z34

Table 7. Generators of Q1,1,1/Z2 in Phase D.
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Field Chiral superfields
M1 W56X35X47X64Y73 = W56X18X64X85Y41 = W56X13X35X64Y41 =

= W56X72X47X64Y25

M2 X35X47X64Y73Y56 = W56X35X64Y73Y47 = X18X64X85Y41Y56 =
= X13X35X64Y41Y56 = W56X18X64Y41Y85 = X72X47X64Y56Y25 =

= W56X72X64Y47Y25 = W56X35X64Y13Y41

M3 X35X64Y73Y47Y56 = X18X64Y41Y56Y85 = X72X64Y47Y56Y25 =
= X35X64Y13Y41Y56

M4 W56X47X64Y73Y35 = W56X35X47Y73Y64 = W56X13X64Y35Y41 =
= W56X18X85Y41Y64 = W56X13X35Y41Y64 = W56X72X47Y64Y25 =

= W56X47X64Y72Y25 = W56X64X85Y18Y41

M5 X47X64Y73Y35Y56 = X35X47Y73Y56Y64 = W56X64Y73Y35Y47 =
= W56X35Y73Y47Y64 = X13X64Y35Y41Y56 = X18X85Y41Y56Y64 =
= X13X35Y41Y56Y64 = W56X18Y41Y64Y85 = X72X47Y56Y64Y25 =
= X47X64Y72Y56Y25 = W56X72Y47Y64Y25 = W56X64Y72Y47Y25 =
= W56X64Y13Y35Y41 = W56X35Y13Y41Y64 = X64X85Y18Y41Y56 =

= W56X64Y18Y41Y85

M6 X64Y73Y35Y47Y56 = X35Y73Y47Y56Y64 = X18Y41Y56Y64Y85 =
= X72Y47Y56Y64Y25 = X64Y72Y47Y56Y25 = X64Y13Y35Y41Y56 =

= X35Y13Y41Y56Y64 = X64Y18Y41Y56Y85

M2 X35X47X56X64Y73 = W56X18X41X64X85 = W56X13X35X41X64 =
= W56X72X47X64X25 = W56X73X35X47X64 = X18X56X64X85Y41 =

= X13X35X56X64Y41 = X72X47X56X64Y25

M8 X18X41X64X85Y56 = X13X35X41X64Y56 = X72X47X64X25Y56 =
= X73X35X47X64Y56 = X35X47X64Y73Z56 = X35X56X64Y73Y47 =
= W56X72X64X25Y47 = W56X73X35X64Y47 = X18X64X85Y41Z56 =
= X13X35X64Y41Z56 = W56X18X41X64Y85 = X18X56X64Y41Y85 =
= X72X47X64Y25Z56 = X72X56X64Y47Y25 = W56X35X41X64Y13 =

= X35X56X64Y13Y41

M9 X72X64X25Y47Y56 = X73X35X64Y47Y56 = X35X64Y73Y47Z56 =
= X18X41X64Y56Y85 = X18X64Y41Y85Z56 = X72X64Y47Y25Z56 =

= X35X41X64Y13Y56 = X35X64Y13Y41Z56

M10 X47X56X64Y73Y35 = X35X47X56Y73Y64 = W56X13X41X64Y35 =
= W56X73X47X64Y35 = W56X18X41X85Y64 = W56X13X35X41Y64 =
= W56X72X47X25Y64 = W56X73X35X47Y64 = W56X47X64X25Y72 =
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Field Chiral superfields
= X13X56X64Y35Y41 = X18X56X85Y41Y64 = X13X35X56Y41Y64 =
= X72X47X56Y64Y25 = X47X56X64Y72Y25 = W56X41X64X85Y18 =

= X56X64X85Y18Y41

M11 X13X41X64Y35Y56 = X73X47X64Y35Y56 = X18X41X85Y56Y64 =
= X13X35X41Y56Y64 = X72X47X25Y56Y64 = X73X35X47Y56Y64 =
= X47X64X25Y72Y56 = X47X64Y73Y35Z56 = X35X47Y73Y64Z56 =
= X56X64Y73Y35Y47 = X35X56Y73Y47Y64 = W56X73X64Y35Y47 =

= W56X72X25Y47Y64 = W56X73X35Y47Y64 = W56X64X25Y72Y47 =
= X13X64Y35Y41Z56 = X18X85Y41Y64Z56 = X13X35Y41Y64Z56 =
= W56X18X41Y64Y85 = X18X56Y41Y64Y85 = X72X47Y64Y25Z56 =
= X47X64Y72Y25Z56 = X72X56Y47Y64Y25 = X56X64Y72Y47Y25 =

= W56X41X64Y13Y35 = W56X35X41Y13Y64 = X56X64Y13Y35Y41 =
= X35X56Y13Y41Y64 = X41X64X85Y18Y56 = X64X85Y18Y41Z56 =

= W56X41X64Y18Y85 = X56X64Y18Y41Y85

M12 X73X64Y35Y47Y56 = X72X25Y47Y56Y64 = X73X35Y47Y56Y64 =
= X64X25Y72Y47Y56 = X64Y73Y35Y47Z56 = X35Y73Y47Y64Z56 =
= X18X41Y56Y64Y85 = X18Y41Y64Y85Z56 = X72Y47Y64Y25Z56 =
= X64Y72Y47Y25Z56 = X41X64Y13Y35Y56 = X35X41Y13Y56Y64 =
= X64Y13Y35Y41Z56 = X35Y13Y41Y64Z56 = X41X64Y18Y56Y85 =

= X64Y18Y41Y85Z56

M13 X18X41X56X64X85 = X13X35X41X56X64 = X72X47X56X64X25 =
= X73X35X47X56X64

M14 X18X41X64X85Z56 = X13X35X41X64Z56 = X72X47X64X25Z56 =
= X73X35X47X64Z56 = X72X56X64X25Y47 = X73X35X56X64Y47 =

= X18X41X56X64Y85 = X35X41X56X64Y13

M15 X72X64X25Y47Z56 = X73X35X64Y47Z56 = X18X41X64Y85Z56 =
= X35X41X64Y13Z56

M16 X13X41X56X64Y35 = X73X47X56X64Y35 = X18X41X56X85Y64 =
= X13X35X41X56Y64 = X72X47X56X25Y64 = X73X35X47X56Y64 =

= X47X56X64X25Y72 = X41X56X64X85Y18

M17 X13X41X64Y35Z56 = X73X47X64Y35Z56 = X18X41X85Y64Z56 =
= X13X35X41Y64Z56 = X72X47X25Y64Z56 = X73X35X47Y64Z56 =
= X47X64X25Y72Z56 = X73X56X64Y35Y47 = X72X56X25Y47Y64 =
= X73X35X56Y47Y64 = X56X64X25Y72Y47 = X18X41X56Y64Y85 =
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Field Chiral superfields
= X41X56X64Y13Y35 = X35X41X56Y13Y64 = X41X64X85Y18Z56 =

= X41X56X64Y18Y85

M18 X73X64Y35Y47Z56 = X72X25Y47Y64Z56 = X73X35Y47Y64Z56 =
= X64X25Y72Y47Z56 = X18X41Y64Y85Z56 = X41X64Y13Y35Z56 =

= X35X41Y13Y64Z56 = X41X64Y18Y85Z56

M19 W56X47Y73Y35Y64 = W56X13Y35Y41Y64 = W56X47Y72Y64Y25 =
= W56X85Y18Y41Y64

M20 X47Y73Y35Y56Y64 = W56Y73Y35Y47Y64 = X13Y35Y41Y56Y64 =
= X47Y72Y56Y64Y25 = W56Y72Y47Y64Y25 = W56Y13Y35Y41Y64 =

= X85Y18Y41Y56Y64 = W56Y18Y41Y64Y85

M21 Y73Y35Y47Y56Y64 = Y72Y47Y56Y64Y25 = Y13Y35Y41Y56Y64 =
= Y18Y41Y56Y64Y85

M27 X47X56Y73Y35Y64 = W56X13X41Y35Y64 = W56X73X47Y35Y64 =
= W56X47X25Y72Y64 = X13X56Y35Y41Y64 = X47X56Y72Y64Y25 =

= W56X41X85Y18Y64 = X56X85Y18Y41Y64

M23 X13X41Y35Y56Y64 = X73X47Y35Y56Y64 = X47X25Y72Y56Y64 =
= X47Y73Y35Y64Z56 = X56Y73Y35Y47Y64 = W56X73Y35Y47Y64 =
= W56X25Y72Y47Y64 = X13Y35Y41Y64Z56 = X47Y72Y64Y25Z56 =
= X56Y72Y47Y64Y25 = W56X41Y13Y35Y64 = X56Y13Y35Y41Y64 =
= X41X85Y18Y56Y64 = X85Y18Y41Y64Z56 = W56X41Y18Y64Y85 =

= X56Y18Y41Y64Y85

M24 X73Y35Y47Y56Y64 = X25Y72Y47Y56Y64 = Y73Y35Y47Y64Z56 =
= Y72Y47Y64Y25Z56 = X41Y13Y35Y56Y64 = Y13Y35Y41Y64Z56 =

= X41Y18Y56Y64Y85 = Y18Y41Y64Y85Z56

M25 X13X41X56Y35Y64 = X73X47X56Y35Y64 = X47X56X25Y72Y64 =
= X41X56X85Y18Y64

M26 X13X41Y35Y64Z56 = X73X47Y35Y64Z56 = X47X25Y72Y64Z56 =
= X73X56Y35Y47Y64 = X56X25Y72Y47Y64 = X41X56Y13Y35Y64 =

= X41X85Y18Y64Z56 = X41X56Y18Y64Y85

M27 X73Y35Y47Y64Z56 = X25Y72Y47Y64Z56 = X41Y13Y35Y64Z56 =
= X41Y18Y64Y85Z56

Table 8. Generators of Q1,1,1/Z2 in Phase E.
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Field Chiral superfields
M1 X42X56X64X25 = X48X56X64X85 = X14X31X42X53X25 =

= X74X37X42X53X25 = X14X31X48X53X85 = X74X37X48X53X85

M2 X37X42X53X25Y74 = X37X48X53X85Y74 = X56X64X25Z42 =
= X14X31X53X25Z42 = X74X37X53X25Z42 = X14X42X53X25Y31 =

= X14X48X53X85Y31 = X42X64X25Y56 = X48X64X85Y56 =
= X48X56X64Y85 = X14X31X48X53Y85 = X74X37X48X53Y85

M3 X37X53X25Y74Z42 = X14X53X25Y31Z42 = X64X25Y56Z42 =
= X37X48X53Y74Y85 = X14X48X53Y31Y85 = X48X64Y56Y85

M4 X56X64X85Y48 = X14X31X53X85Y48 = X74X37X53X85Y48 =
= X56X64X25Y42 = X14X31X53X25Y42 = X74X37X53X25Y42 =

= X42X56X25Y64 = X48X56X85Y64 = X14X31X42X25Y53 =
= X74X37X42X25Y53 = X14X31X48X85Y53 = X74X37X48X85Y53

M5 X37X53X85Y74Y48 = X37X53X25Y74Y42 = W42X56X64X25 =
= W42X14X31X53X25 = W42X74X37X53X25 = X14X53X85Y31Y48 =

= X14X53X25Y31Y42 = X56X25Y64Z42 = X37X42X25Y74Y53 =
= X37X48X85Y74Y53 = X14X31X25Y53Z42 = X74X37X25Y53Z42 =

= X14X42X25Y31Y53 = X14X48X85Y31Y53 = X64X85Y48Y56 =
= X64X25Y42Y56 = X42X25Y56Y64 = X48X85Y56Y64 =

= X56X64Y48Y85 = X14X31X53Y48Y85 = X74X37X53Y48Y85 =
= X48X56Y64Y85 = X14X31X48Y53Y85 = X74X37X48Y53Y85

M6 W42X37X53X25Y74 = W42X14X53X25Y31 = X37X25Y74Y53Z42 =
= X14X25Y31Y53Z42 = W42X64X25Y56 = X25Y56Y64Z42 =

= X37X53Y74Y48Y85 = X14X53Y31Y48Y85 = X37X48Y74Y53Y85 =
= X14X48Y31Y53Y85 = X64Y48Y56Y85 = X48Y56Y64Y85

M2 X31X42X53X25Y14 = X31X48X53X85Y14 = X56X64X85Z48 =
= X14X31X53X85Z48 = X74X37X53X85Z48 = X74X42X53X25Y37 =

= X74X48X53X85Y37 = X42X64X25Z56 = X48X64X85Z56 =
= X42X56X64Y25 = X14X31X42X53Y25 = X74X37X42X53Y25

M8 X37X53X85Y74Z48 = X31X53X25Y14Z42 = X42X53X25Y74Y37 =
= X48X53X85Y74Y37 = X74X53X25Y37Z42 = X42X53X25Y14Y31 =

= X48X53X85Y14Y31 = X14X53X85Y31Z48 = X64X85Y56Z48 =
= X64X25Z42Z56 = W56X42X64X25 = W56X48X64X85 =

= X31X48X53Y14Y85 = X56X64Y85Z48 = X14X31X53Y85Z48 =
= X74X37X53Y85Z48 = X74X48X53Y37Y85 = X48X64Y85Z56 =
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Field Chiral superfields
= X37X42X53Y74Y25 = X56X64Y25Z42 = X14X31X53Y25Z42 =

= X74X37X53Y25Z42 = X14X42X53Y31Y25 = X42X64Y56Y25

M9 X53X25Y74Y37Z42 = X53X25Y14Y31Z42 = W56X64X25Z42 =
= X37X53Y74Y85Z48 = X48X53Y74Y37Y85 = X48X53Y14Y31Y85 =

= X14X53Y31Y85Z48 = X64Y56Y85Z48 = W56X48X64Y85 =
= X37X53Y74Y25Z42 = X14X53Y31Y25Z42 = X64Y56Y25Z42

M10 X31X53X85Y14Y48 = W48X56X64X85 = W48X14X31X53X85 =
= W48X74X37X53X85 = X31X53X25Y14Y42 = X74X53X85Y37Y48 =

= X74X53X25Y37Y42 = X56X85Y64Z48 = X31X42X25Y14Y53 =
= X31X48X85Y14Y53 = X14X31X85Y53Z48 = X74X37X85Y53Z48 =

= X74X42X25Y37Y53 = X74X48X85Y37Y53 = X64X85Y48Z56 =
= X64X25Y42Z56 = X42X25Y64Z56 = X48X85Y64Z56 =

= X56X64Y42Y25 = X14X31X53Y42Y25 = X74X37X53Y42Y25 =
= X42X56Y64Y25 = X14X31X42Y53Y25 = X74X37X42Y53Y25

M11 W48X37X53X85Y74 = W42X31X53X25Y14 = X53X85Y74Y37Y48 =
= X53X25Y74Y37Y42 = W42X74X53X25Y37 = X53X85Y14Y31Y48 =
= W48X14X53X85Y31 = X53X25Y14Y31Y42 = X37X85Y74Y53Z48 =
= X31X25Y14Y53Z42 = X42X25Y74Y37Y53 = X48X85Y74Y37Y53 =
= X74X25Y37Y53Z42 = X42X25Y14Y31Y53 = X48X85Y14Y31Y53 =

= X14X85Y31Y53Z48 = W48X64X85Y56 = X85Y56Y64Z48 =
= W42X64X25Z56 = X25Y64Z42Z56 = W56X64X85Y48 =
= W56X64X25Y42 = W56X42X25Y64 = W56X48X85Y64 =

= X31X53Y14Y48Y85 = W48X56X64Y85 = W48X14X31X53Y85 =
= W48X74X37X53Y85 = X74X53Y37Y48Y85 = X56Y64Y85Z48 =

= X31X48Y14Y53Y85 = X14X31Y53Y85Z48 = X74X37Y53Y85Z48 =
= X74X48Y37Y53Y85 = X64Y48Y85Z56 = X48Y64Y85Z56 =

= X37X53Y74Y42Y25 = W42X56X64Y25 = W42X14X31X53Y25 =
= W42X74X37X53Y25 = X14X53Y31Y42Y25 = X56Y64Y25Z42 =

= X37X42Y74Y53Y25 = X14X31Y53Y25Z42 = X74X37Y53Y25Z42 =
= X14X42Y31Y53Y25 = X64Y42Y56Y25 = X42Y56Y64Y25

M12 W42X53X25Y74Y37 = W42X53X25Y14Y31 = X25Y74Y37Y53Z42 =
= X25Y14Y31Y53Z42 = W42W56X64X25 = W56X25Y64Z42 =

= W48X37X53Y74Y85 = X53Y74Y37Y48Y85 = X53Y14Y31Y48Y85 =
= W48X14X53Y31Y85 = X37Y74Y53Y85Z48 = X48Y74Y37Y53Y85 =
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Field Chiral superfields
= X48Y14Y31Y53Y85 = X14Y31Y53Y85Z48 = W48X64Y56Y85 =

= Y56Y64Y85Z48 = W56X64Y48Y85 = W56X48Y64Y85 =
= W42X37X53Y74Y25 = W42X14X53Y31Y25 = X37Y74Y53Y25Z42 =

= X14Y31Y53Y25Z42 = W42X64Y56Y25 = Y56Y64Y25Z42

M13 X31X53X85Y14Z48 = X74X53X85Y37Z48 = X64X85Z48Z56 =
= X31X42X53Y14Y25 = X74X42X53Y37Y25 = X42X64Y25Z56

M14 X53X85Y74Y37Z48 = X53X85Y14Y31Z48 = W56X64X85Z48 =
= X31X53Y14Y85Z48 = X74X53Y37Y85Z48 = X64Y85Z48Z56 =

= X31X53Y14Y25Z42 = X42X53Y74Y37Y25 = X74X53Y37Y25Z42 =
= X42X53Y14Y31Y25 = X64Y25Z42Z56 = W56X42X64Y25

M15 X53Y74Y37Y85Z48 = X53Y14Y31Y85Z48 = W56X64Y85Z48 =
= X53Y74Y37Y25Z42 = X53Y14Y31Y25Z42 = W56X64Y25Z42

M16 W48X31X53X85Y14 = W48X74X53X85Y37 = X31X85Y14Y53Z48 =
= X74X85Y37Y53Z48 = W48X64X85Z56 = X85Y64Z48Z56 =

= X31X53Y14Y42Y25 = X74X53Y37Y42Y25 = X31X42Y14Y53Y25 =
= X74X42Y37Y53Y25 = X64Y42Y25Z56 = X42Y64Y25Z56

M17 W48X53X85Y74Y37 = W48X53X85Y14Y31 = X85Y74Y37Y53Z48 =
= X85Y14Y31Y53Z48 = W48W56X64X85 = W56X85Y64Z48 =

= W48X31X53Y14Y85 = W48X74X53Y37Y85 = X31Y14Y53Y85Z48 =
= X74Y37Y53Y85Z48 = W48X64Y85Z56 = Y64Y85Z48Z56 =

= W42X31X53Y14Y25 = X53Y74Y37Y42Y25 = W42X74X53Y37Y25 =
= X53Y14Y31Y42Y25 = X31Y14Y53Y25Z42 = X42Y74Y37Y53Y25 =
= X74Y37Y53Y25Z42 = X42Y14Y31Y53Y25 = W42X64Y25Z56 =

= Y64Y25Z42Z56 = W56X64Y42Y25 = W56X42Y64Y25

M18 W48X53Y74Y37Y85 = W48X53Y14Y31Y85 = Y74Y37Y53Y85Z48 =
= Y14Y31Y53Y85Z48 = W48W56X64Y85 = W56Y64Y85Z48 =

= W42X53Y74Y37Y25 = W42X53Y14Y31Y25 = Y74Y37Y53Y25Z42 =
= Y14Y31Y53Y25Z42 = W42W56X64Y25 = W56Y64Y25Z42

M19 X56X85Y48Y64 = X56X25Y42Y64 = X14X31X85Y48Y53 =
= X74X37X85Y48Y53 = X14X31X25Y42Y53 = X74X37X25Y42Y53

M20 W42X56X25Y64 = X37X85Y74Y48Y53 = X37X25Y74Y42Y53 =
= W42X14X31X25Y53 = W42X74X37X25Y53 = X14X85Y31Y48Y53 =

= X14X25Y31Y42Y53 = X85Y48Y56Y64 = X25Y42Y56Y64 =
= X56Y48Y64Y85 = X14X31Y48Y53Y85 = X74X37Y48Y53Y85
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Field Chiral superfields
M21 W42X37X25Y74Y53 = W42X14X25Y31Y53 = W42X25Y56Y64 =

= X37Y74Y48Y53Y85 = X14Y31Y48Y53Y85 = Y48Y56Y64Y85

M27 W48X56X85Y64 = X31X85Y14Y48Y53 = W48X14X31X85Y53 =
= W48X74X37X85Y53 = X31X25Y14Y42Y53 = X74X85Y37Y48Y53 =

= X74X25Y37Y42Y53 = X85Y48Y64Z56 = X25Y42Y64Z56 =
= X56Y42Y64Y25 = X14X31Y42Y53Y25 = X74X37Y42Y53Y25

M23 W48X37X85Y74Y53 = W42X31X25Y14Y53 = X85Y74Y37Y48Y53 =
= X25Y74Y37Y42Y53 = W42X74X25Y37Y53 = X85Y14Y31Y48Y53 =
= W48X14X85Y31Y53 = X25Y14Y31Y42Y53 = W48X85Y56Y64 =

= W42X25Y64Z56 = W56X85Y48Y64 = W56X25Y42Y64 =
= W48X56Y64Y85 = X31Y14Y48Y53Y85 = W48X14X31Y53Y85 =
= W48X74X37Y53Y85 = X74Y37Y48Y53Y85 = Y48Y64Y85Z56 =
= W42X56Y64Y25 = X37Y74Y42Y53Y25 = W42X14X31Y53Y25 =

= W42X74X37Y53Y25 = X14Y31Y42Y53Y25 = Y42Y56Y64Y25

M24 W42X25Y74Y37Y53 = W42X25Y14Y31Y53 = W42W56X25Y64 =
= W48X37Y74Y53Y85 = Y74Y37Y48Y53Y85 = Y14Y31Y48Y53Y85 =

= W48X14Y31Y53Y85 = W48Y56Y64Y85 = W56Y48Y64Y85 =
= W42X37Y74Y53Y25 = W42X14Y31Y53Y25 = W42Y56Y64Y25

M25 W48X31X85Y14Y53 = W48X74X85Y37Y53 = W48X85Y64Z56 =
= X31Y14Y42Y53Y25 = X74Y37Y42Y53Y25 = Y42Y64Y25Z56

M26 W48X85Y74Y37Y53 = W48X85Y14Y31Y53 = W48W56X85Y64 =
= W48X31Y14Y53Y85 = W48X74Y37Y53Y85 = W48Y64Y85Z56 =

= W42X31Y14Y53Y25 = Y74Y37Y42Y53Y25 = W42X74Y37Y53Y25 =
= Y14Y31Y42Y53Y25 = W42Y64Y25Z56 = W56Y42Y64Y25

M27 W48Y74Y37Y53Y85 = W48Y14Y31Y53Y85 = W48W56Y64Y85 =
= W42Y74Y37Y53Y25 = W42Y14Y31Y53Y25 = W42W56Y64Y25

Table 9. Generators of Q1,1,1/Z2 in Phase H.

Field Chiral superfields
M1 X18X56X61X85 = X13X34X46X61 = X13X35X56X61 = X73X34X46X67 =

= X72X56X67X25 = X73X35X56X67

M2 X13X46X61Z34 = X73X46X67Z34 = X72X56X67Y25 = X34X46X67Y73 =
= X35X56X67Y73 = X18X61X85Z56 = X13X35X61Z56 = X72X67X25Z56 =

= X73X35X67Z56 = X18X56X85Y61 = X13X34X46Y61 = X13X35X56Y61
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Field Chiral superfields
M3 X46X67Y73Z34 = X72X67Y25Z56 = X35X67Y73Z56 = X13X46Y61Z34 =

= X18X85Y61Z56 = X13X35Y61Z56

M4 X13X56X61Y35 = X73X56X67Y35 = X56X67X25Y72 = X13X34X61Y46 =
= X73X34X67Y46 = X73X34X46Z67 = X72X56X25Z67 = X73X35X56Z67 =

= X18X56X85Z61 = X13X34X46Z61 = X13X35X56Z61 = X56X61X85Y18

M5 X56X67Y73Y35 = X56X67Y72Y25 = X13X61Y35Z56 = X73X67Y35Z56 =
= X67X25Y72Z56 = X13X61Y46Z34 = X73X67Y46Z34 = X34X67Y73Y46 =
= X73X46Z34Z67 = X72X56Y25Z67 = X34X46Y73Z67 = X35X56Y73Z67 =
= X72X25Z56Z67 = X73X35Z56Z67 = X13X56Y35Y61 = X13X34Y46Y61 =

= X13X46Z34Z61 = X18X85Z56Z61 = X13X35Z56Z61 = W61X18X56X85 =
= W61X13X34X46 = W61X13X35X56 = X61X85Y18Z56 = X56X85Y18Y61

M6 X67Y73Y35Z56 = X67Y72Y25Z56 = X67Y73Y46Z34 = X46Y73Z34Z67 =
= X72Y25Z56Z67 = X35Y73Z56Z67 = X13Y35Y61Z56 = X13Y46Y61Z34 =
= W61X13X46Z34 = W61X18X85Z56 = W61X13X35Z56 = X85Y18Y61Z56

M2 X13X46X61Y34 = X73X46X67Y34 = X18X61X85Y56 = X13X35X61Y56 =
= X72X67X25Y56 = X73X35X67Y56 = X18X56X61Y85 = X73X34X46Y67 =

= X72X56X25Y67 = X73X35X56Y67 = X34X46X61Y13 = X35X56X61Y13

M8 W34X13X46X61 = W34X73X46X67 = X46X67Y73Y34 = X72X67Y56Y25 =
= X35X67Y73Y56 = W56X18X61X85 = W56X13X35X61 = W56X72X67X25 =
= W56X73X35X67 = X18X61Y85Z56 = X73X46Y67Z34 = X72X56Y67Y25 =
= X34X46Y73Y67 = X35X56Y73Y67 = X72X25Y67Z56 = X73X35Y67Z56 =
= X13X46Y34Y61 = X18X85Y56Y61 = X13X35Y56Y61 = X18X56Y61Y85 =
= X46X61Y13Z34 = X35X61Y13Z56 = X34X46Y13Y61 = X35X56Y13Y61

M9 W34X46X67Y73 = W56X72X67Y25 = W56X35X67Y73 = X46Y73Y67Z34 =
= X72Y67Y25Z56 = X35Y73Y67Z56 = W34X13X46Y61 = W56X18X85Y61 =

= W56X13X35Y61 = X18Y61Y85Z56 = X46Y13Y61Z34 = X35Y13Y61Z56

M10 X13X61Y35Y56 = X73X67Y35Y56 = X67X25Y72Y56 = X13X61Y34Y46 =
= X73X67Y34Y46 = X73X56Y35Y67 = X56X25Y72Y67 = X73X34Y46Y67 =

= X73X46Y34Z67 = X72X25Y56Z67 = X73X35Y56Z67 = W67X73X34X46 =
= W67X72X56X25 = W67X73X35X56 = X13X46Y34Z61 = X18X85Y56Z61 =

= X13X35Y56Z61 = X18X56Y85Z61 = X56X61Y13Y35 = X34X61Y13Y46 =
= X34X46Y13Z61 = X35X56Y13Z61 = X61X85Y18Y56 = X56X61Y18Y85

M11 X67Y73Y35Y56 = X67Y72Y56Y25 = W56X13X61Y35 = W56X73X67Y35 =
= W56X67X25Y72 = W34X13X61Y46 = W34X73X67Y46 = X67Y73Y34Y46 =
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Field Chiral superfields
= X56Y73Y35Y67 = X56Y72Y67Y25 = X73Y35Y67Z56 = X25Y72Y67Z56 =

= X73Y46Y67Z34 = X34Y73Y46Y67 = W34X73X46Z67 = X46Y73Y34Z67 =
= X72Y56Y25Z67 = X35Y73Y56Z67 = W56X72X25Z67 = W56X73X35Z67 =

= W67X73X46Z34 = W67X72X56Y25 = W67X34X46Y73 = W67X35X56Y73 =
= W67X72X25Z56 = W67X73X35Z56 = X13Y35Y56Y61 = X13Y34Y46Y61 =

= W34X13X46Z61 = W56X18X85Z61 = W56X13X35Z61 = X18Y85Z56Z61 =
= W61X13X46Y34 = W61X18X85Y56 = W61X13X35Y56 = W61X18X56Y85 =

= X61Y13Y35Z56 = X61Y13Y46Z34 = X56Y13Y35Y61 = X34Y13Y46Y61 =
= X46Y13Z34Z61 = X35Y13Z56Z61 = W61X34X46Y13 = W61X35X56Y13 =

= W56X61X85Y18 = X61Y18Y85Z56 = X85Y18Y56Y61 = X56Y18Y61Y85

M12 W56X67Y73Y35 = W56X67Y72Y25 = W34X67Y73Y46 = Y73Y35Y67Z56 =
= Y72Y67Y25Z56 = Y73Y46Y67Z34 = W34X46Y73Z67 = W56X72Y25Z67 =

= W56X35Y73Z67 = W67X46Y73Z34 = W67X72Y25Z56 = W67X35Y73Z56 =
= W56X13Y35Y61 = W34X13Y46Y61 = W34W61X13X46 = W56W61X18X85 =

= W56W61X13X35 = W61X18Y85Z56 = Y13Y35Y61Z56 = Y13Y46Y61Z34 =
= W61X46Y13Z34 = W61X35Y13Z56 = W56X85Y18Y61 = Y18Y61Y85Z56

M13 X18X61Y56Y85 = X73X46Y34Y67 = X72X25Y56Y67 = X73X35Y56Y67 =
= X46X61Y13Y34 = X35X61Y13Y56

M14 W56X18X61Y85 = W34X73X46Y67 = X46Y73Y34Y67 = X72Y56Y67Y25 =
= X35Y73Y56Y67 = W56X72X25Y67 = W56X73X35Y67 = X18Y56Y61Y85 =

= W34X46X61Y13 = W56X35X61Y13 = X46Y13Y34Y61 = X35Y13Y56Y61

M15 W34X46Y73Y67 = W56X72Y67Y25 = W56X35Y73Y67 = W56X18Y61Y85 =
= W34X46Y13Y61 = W56X35Y13Y61

M16 X73Y35Y56Y67 = X25Y72Y56Y67 = X73Y34Y46Y67 = W67X73X46Y34 =
= W67X72X25Y56 = W67X73X35Y56 = X18Y56Y85Z61 = X61Y13Y35Y56 =

= X61Y13Y34Y46 = X46Y13Y34Z61 = X35Y13Y56Z61 = X61Y18Y56Y85

M17 Y73Y35Y56Y67 = Y72Y56Y67Y25 = W56X73Y35Y67 = W56X25Y72Y67 =
= W34X73Y46Y67 = Y73Y34Y46Y67 = W34W67X73X46 = W67X46Y73Y34 =

= W67X72Y56Y25 = W67X35Y73Y56 = W56W67X72X25 = W56W67X73X35 =
= W56X18Y85Z61 = W61X18Y56Y85 = W56X61Y13Y35 = W34X61Y13Y46 =

= Y13Y35Y56Y61 = Y13Y34Y46Y61 = W34X46Y13Z61 = W56X35Y13Z61 =
= W61X46Y13Y34 = W61X35Y13Y56 = W56X61Y18Y85 = Y18Y56Y61Y85
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Field Chiral superfields
M18 W56Y73Y35Y67 = W56Y72Y67Y25 = W34Y73Y46Y67 = W34W67X46Y73 =

= W56W67X72Y25 = W56W67X35Y73 = W56W61X18Y85 = W56Y13Y35Y61 =
= W34Y13Y46Y61 = W34W61X46Y13 = W56W61X35Y13 = W56Y18Y61Y85

M19 X73X56Y35Z67 = X56X25Y72Z67 = X73X34Y46Z67 = X13X56Y35Z61 =
= X13X34Y46Z61 = X56X85Y18Z61

M20 X56Y73Y35Z67 = X56Y72Y25Z67 = X73Y35Z56Z67 = X25Y72Z56Z67 =
= X73Y46Z34Z67 = X34Y73Y46Z67 = X13Y35Z56Z61 = X13Y46Z34Z61 =
= W61X13X56Y35 = W61X13X34Y46 = X85Y18Z56Z61 = W61X56X85Y18

M21 Y73Y35Z56Z67 = Y72Y25Z56Z67 = Y73Y46Z34Z67 = W61X13Y35Z56 =
= W61X13Y46Z34 = W61X85Y18Z56

M27 X73Y35Y56Z67 = X25Y72Y56Z67 = X73Y34Y46Z67 = W67X73X56Y35 =
= W67X56X25Y72 = W67X73X34Y46 = X13Y35Y56Z61 = X13Y34Y46Z61 =

= X56Y13Y35Z61 = X34Y13Y46Z61 = X85Y18Y56Z61 = X56Y18Y85Z61

M23 Y73Y35Y56Z67 = Y72Y56Y25Z67 = W56X73Y35Z67 = W56X25Y72Z67 =
= W34X73Y46Z67 = Y73Y34Y46Z67 = W67X56Y73Y35 = W67X56Y72Y25 =

= W67X73Y35Z56 = W67X25Y72Z56 = W67X73Y46Z34 = W67X34Y73Y46 =
= W56X13Y35Z61 = W34X13Y46Z61 = W61X13Y35Y56 = W61X13Y34Y46 =
= Y13Y35Z56Z61 = Y13Y46Z34Z61 = W61X56Y13Y35 = W61X34Y13Y46 =
= W56X85Y18Z61 = Y18Y85Z56Z61 = W61X85Y18Y56 = W61X56Y18Y85

M24 W56Y73Y35Z67 = W56Y72Y25Z67 = W34Y73Y46Z67 = W67Y73Y35Z56 =
= W67Y72Y25Z56 = W67Y73Y46Z34 = W56W61X13Y35 = W34W61X13Y46 =

= W61Y13Y35Z56 = W61Y13Y46Z34 = W56W61X85Y18 = W61Y18Y85Z56

M25 W67X73Y35Y56 = W67X25Y72Y56 = W67X73Y34Y46 = Y13Y35Y56Z61 =
= Y13Y34Y46Z61 = Y18Y56Y85Z61

M26 W67Y73Y35Y56 = W67Y72Y56Y25 = W56W67X73Y35 = W56W67X25Y72 =
= W34W67X73Y46 = W67Y73Y34Y46 = W56Y13Y35Z61 = W34Y13Y46Z61 =

= W61Y13Y35Y56 = W61Y13Y34Y46 = W56Y18Y85Z61 = W61Y18Y56Y85

M27 W56W67Y73Y35 = W56W67Y72Y25 = W34W67Y73Y46 = W56W61Y13Y35 =
= W34W61Y13Y46 = W56W61Y18Y85

Table 10. Generators of Q1,1,1/Z2 in Phase J.
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Field Chiral superfields
M1 A54X18X41Y85 = A54X46X68Y85 = A54X46X25Y62 = A54X73X35Y47 =

= A54X72X25Y47 = A54X35X41Y13

M2 X18X41X54Y85 = X46X54X68Y85 = X46X54X25Y62 = A54X13X35X41 =
= A54X18X41X85 = A54X73X35X47 = A54X72X47X25 = A54X46X62X25 =

= A54X46X68X85 = X73X35X54Y47 = X72X54X25Y47 = X35X41X54Y13

M3 X13X35X41X54 = X18X41X54X85 = X73X35X47X54 = X72X47X54X25 =
= X46X54X62X25 = X46X54X68X85

M4 B54X18X41Y85 = B54X46X68Y85 = B54X46X25Y62 = A54X68Y46Y85 =
= A54X25Y46Y62 = B54X73X35Y47 = B54X72X25Y47 = A54X73Y35Y47 =

= A54X25Y72Y47 = A54X41Y18Y85 = B54X35X41Y13 = A54X41Y13Y35

M5 X18X41Y54Y85 = X46X68Y54Y85 = X46X25Y54Y62 = B54X13X35X41 =
= B54X18X41X85 = B54X73X35X47 = B54X72X47X25 = B54X46X62X25 =

= B54X46X68X85 = X54X68Y46Y85 = X54X25Y46Y62 = A54X62X25Y46 =
= A54X68X85Y46 = X73X35Y47Y54 = X72X25Y47Y54 = A54X13X41Y35 =
= A54X73X47Y35 = X73X54Y35Y47 = A54X47X25Y72 = X54X25Y72Y47 =

= X41X54Y18Y85 = A54X41X85Y18 = X35X41Y13Y54 = X41X54Y13Y35

M6 X13X35X41Y54 = X18X41X85Y54 = X73X35X47Y54 = X72X47X25Y54 =
= X46X62X25Y54 = X46X68X85Y54 = X54X62X25Y46 = X54X68X85Y46 =

= X13X41X54Y35 = X73X47X54Y35 = X47X54X25Y72 = X41X54X85Y18

M2 A54X46Y68Y85 = A54X46Y62Y25 = X18X41Y85C54 = X46X68Y85C54 =
= X46X25Y62C54 = A54X72Y47Y25 = X73X35Y47C54 = X72X25Y47C54 =

= A54X18Y41Y85 = A54X35Y73Y47 = X35X41Y13C54 = A54X35Y13Y41

M8 X46X54Y68Y85 = X46X54Y62Y25 = X18X41Y85Z54 = X46X68Y85Z54 =
= X46X25Y62Z54 = A54X72X47Y25 = A54X46X62Y25 = A54X46X85Y68 =

= X13X35X41C54 = X18X41X85C54 = X73X35X47C54 = X72X47X25C54 =
= X46X62X25C54 = X46X68X85C54 = X72X54Y47Y25 = X73X35Y47Z54 =
= X72X25Y47Z54 = X18X54Y41Y85 = A54X13X35Y41 = A54X18X85Y41 =

= A54X35X47Y73 = X35X54Y73Y47 = X35X41Y13Z54 = X35X54Y13Y41

M9 X72X47X54Y25 = X46X54X62Y25 = X46X54X85Y68 = X13X35X41Z54 =
= X18X41X85Z54 = X73X35X47Z54 = X72X47X25Z54 = X46X62X25Z54 =

= X46X68X85Z54 = X13X35X54Y41 = X18X54X85Y41 = X35X47X54Y73

M10 B54X46Y68Y85 = B54X46Y62Y25 = D54X18X41Y85 = D54X46X68Y85 =
= D54X46X25Y62 = A54Y46Y68Y85 = A54Y46Y62Y25 = X68Y46Y85C54 =

= X25Y46Y62C54 = B54X72Y47Y25 = D54X73X35Y47 = D54X72X25Y47 =
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Field Chiral superfields
= B54X18Y41Y85 = X73Y35Y47C54 = A54Y72Y47Y25 = X25Y72Y47C54 =
= B54X35Y73Y47 = A54Y73Y35Y47 = X41Y18Y85C54 = A54Y18Y41Y85 =
= D54X35X41Y13 = B54X35Y13Y41 = X41Y13Y35C54 = A54Y13Y35Y41

M11 X46Y54Y68Y85 = X46Y54Y62Y25 = W54X18X41Y85 = W54X46X68Y85 =
= W54X46X25Y62 = B54X72X47Y25 = B54X46X62Y25 = B54X46X85Y68 =

= D54X13X35X41 = D54X18X41X85 = D54X73X35X47 = D54X72X47X25 =
= D54X46X62X25 = D54X46X68X85 = X54Y46Y68Y85 = X54Y46Y62Y25 =
= X68Y46Y85Z54 = X25Y46Y62Z54 = A54X62Y46Y25 = A54X85Y46Y68 =

= X62X25Y46C54 = X68X85Y46C54 = X72Y47Y54Y25 = W54X73X35Y47 =
= W54X72X25Y47 = X18Y41Y54Y85 = B54X13X35Y41 = B54X18X85Y41 =
= X13X41Y35C54 = X73X47Y35C54 = X73Y35Y47Z54 = A54X13Y35Y41 =
= A54X47Y72Y25 = X47X25Y72C54 = X54Y72Y47Y25 = X25Y72Y47Z54 =
= B54X35X47Y73 = X35Y73Y47Y54 = A54X47Y73Y35 = X54Y73Y35Y47 =
= X41Y18Y85Z54 = X41X85Y18C54 = X54Y18Y41Y85 = A54X85Y18Y41 =
= W54X35X41Y13 = X35Y13Y41Y54 = X41Y13Y35Z54 = X54Y13Y35Y41

M12 X72X47Y54Y25 = X46X62Y54Y25 = X46X85Y54Y68 = W54X13X35X41 =
= W54X18X41X85 = W54X73X35X47 = W54X72X47X25 = W54X46X62X25 =

= W54X46X68X85 = X54X62Y46Y25 = X54X85Y46Y68 = X62X25Y46Z54 =
= X68X85Y46Z54 = X13X35Y41Y54 = X18X85Y41Y54 = X13X41Y35Z54 =
= X73X47Y35Z54 = X13X54Y35Y41 = X47X54Y72Y25 = X47X25Y72Z54 =

= X35X47Y73Y54 = X47X54Y73Y35 = X41X85Y18Z54 = X54X85Y18Y41

M13 X46Y68Y85C54 = X46Y62Y25C54 = X72Y47Y25C54 = X18Y41Y85C54 =
= X35Y73Y47C54 = X35Y13Y41C54

M14 X46Y68Y85Z54 = X46Y62Y25Z54 = X72X47Y25C54 = X46X62Y25C54 =
= X46X85Y68C54 = X72Y47Y25Z54 = X18Y41Y85Z54 = X13X35Y41C54 =

= X18X85Y41C54 = X35X47Y73C54 = X35Y73Y47Z54 = X35Y13Y41Z54

M15 X72X47Y25Z54 = X46X62Y25Z54 = X46X85Y68Z54 = X13X35Y41Z54 =
= X18X85Y41Z54 = X35X47Y73Z54

M16 D54X46Y68Y85 = D54X46Y62Y25 = Y46Y68Y85C54 = Y46Y62Y25C54 =
= D54X72Y47Y25 = D54X18Y41Y85 = Y72Y47Y25C54 = D54X35Y73Y47 =

= Y73Y35Y47C54 = Y18Y41Y85C54 = D54X35Y13Y41 = Y13Y35Y41C54

M17 W54X46Y68Y85 = W54X46Y62Y25 = D54X72X47Y25 = D54X46X62Y25 =
= D54X46X85Y68 = Y46Y68Y85Z54 = Y46Y62Y25Z54 = X62Y46Y25C54 =

= X85Y46Y68C54 = W54X72Y47Y25 = W54X18Y41Y85 = D54X13X35Y41 =
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Field Chiral superfields
= D54X18X85Y41 = X13Y35Y41C54 = X47Y72Y25C54 = Y72Y47Y25Z54 =
= D54X35X47Y73 = W54X35Y73Y47 = X47Y73Y35C54 = Y73Y35Y47Z54 =

= Y18Y41Y85Z54 = X85Y18Y41C54 = W54X35Y13Y41 = Y13Y35Y41Z54

M18 W54X72X47Y25 = W54X46X62Y25 = W54X46X85Y68 = X62Y46Y25Z54 =
= X85Y46Y68Z54 = W54X13X35Y41 = W54X18X85Y41 = X13Y35Y41Z54 =

= X47Y72Y25Z54 = W54X35X47Y73 = X47Y73Y35Z54 = X85Y18Y41Z54

M19 B54X68Y46Y85 = B54X25Y46Y62 = B54X73Y35Y47 = B54X25Y72Y47 =
= B54X41Y18Y85 = B54X41Y13Y35

M20 X68Y46Y54Y85 = X25Y46Y54Y62 = B54X62X25Y46 = B54X68X85Y46 =
= B54X13X41Y35 = B54X73X47Y35 = X73Y35Y47Y54 = B54X47X25Y72 =

= X25Y72Y47Y54 = X41Y18Y54Y85 = B54X41X85Y18 = X41Y13Y35Y54

M21 X62X25Y46Y54 = X68X85Y46Y54 = X13X41Y35Y54 = X73X47Y35Y54 =
= X47X25Y72Y54 = X41X85Y18Y54

M27 B54Y46Y68Y85 = B54Y46Y62Y25 = D54X68Y46Y85 = D54X25Y46Y62 =
= D54X73Y35Y47 = B54Y72Y47Y25 = D54X25Y72Y47 = B54Y73Y35Y47 =

= D54X41Y18Y85 = B54Y18Y41Y85 = D54X41Y13Y35 = B54Y13Y35Y41

M23 Y46Y54Y68Y85 = Y46Y54Y62Y25 = W54X68Y46Y85 = W54X25Y46Y62 =
= B54X62Y46Y25 = B54X85Y46Y68 = D54X62X25Y46 = D54X68X85Y46 =
= D54X13X41Y35 = D54X73X47Y35 = W54X73Y35Y47 = B54X13Y35Y41 =
= B54X47Y72Y25 = D54X47X25Y72 = Y72Y47Y54Y25 = W54X25Y72Y47 =
= B54X47Y73Y35 = Y73Y35Y47Y54 = W54X41Y18Y85 = D54X41X85Y18 =

= Y18Y41Y54Y85 = B54X85Y18Y41 = W54X41Y13Y35 = Y13Y35Y41Y54

M24 X62Y46Y54Y25 = X85Y46Y54Y68 = W54X62X25Y46 = W54X68X85Y46 =
= W54X13X41Y35 = W54X73X47Y35 = X13Y35Y41Y54 = X47Y72Y54Y25 =

= W54X47X25Y72 = X47Y73Y35Y54 = W54X41X85Y18 = X85Y18Y41Y54

M25 D54Y46Y68Y85 = D54Y46Y62Y25 = D54Y72Y47Y25 = D54Y73Y35Y47 =
= D54Y18Y41Y85 = D54Y13Y35Y41

M26 W54Y46Y68Y85 = W54Y46Y62Y25 = D54X62Y46Y25 = D54X85Y46Y68 =
= D54X13Y35Y41 = D54X47Y72Y25 = W54Y72Y47Y25 = D54X47Y73Y35 =

= W54Y73Y35Y47 = W54Y18Y41Y85 = D54X85Y18Y41 = W54Y13Y35Y41

M27 W54X62Y46Y25 = W54X85Y46Y68 = W54X13Y35Y41 = W54X47Y72Y25 =
= W54X47Y73Y35 = W54X85Y18Y41

Table 11. Generators of Q1,1,1/Z2 in Phase L.
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