
1

Hybrid RRAM/SRAM In-Memory Computing for
Robust DNN Acceleration

Gokul Krishnan∗, Student Member, IEEE, Zhenyu Wang∗, Student Member, IEEE, Injune Yeo∗, Member, IEEE,
Li Yang∗, Student Member, IEEE, Jian Meng∗, Student Member, IEEE, Maximilian Liehr†,

Rajiv V. Joshi‡, Fellow, IEEE, Nathaniel C. Cady†, Member, IEEE, Deliang Fan∗, Member, IEEE,
Jae-sun Seo∗, Senior Member, IEEE, Yu Cao∗, Fellow, IEEE

Abstract—RRAM-based in-memory computing (IMC) effec-
tively accelerates deep neural networks (DNNs) and other ma-
chine learning algorithms. On the other hand, in the presence
of RRAM device variations and lower precision, the mapping
of DNNs to RRAM-based IMC suffers from severe accuracy
loss. In this work, we propose a novel hybrid IMC architecture
that integrates an RRAM-based IMC macro with a digital
SRAM macro using a programmable shifter to compensate for
the RRAM variations and recover the accuracy. The digital
SRAM macro consists of a small SRAM memory array and an
array of multiply-and-accumulate (MAC) units. The non-ideal
output from the RRAM macro, due to device and circuit non-
idealities, is compensated by adding the precise output from the
SRAM macro. In addition, the programmable shifter allows for
different scales of compensation by shifting the SRAM macro
output relative to the RRAM macro output. On the algorithm
side, we develop a framework for the training of DNNs to
support the hybrid IMC architecture through ensemble learning.
The proposed framework performs quantization (weights and
activations), pruning, RRAM IMC-aware training, and employs
ensemble learning through different compensation scales by
utilizing the programmable shifter. Finally, we design a silicon
prototype of the proposed hybrid IMC architecture in the
65nm SUNY process to demonstrate its efficacy. Experimental
evaluation of the hybrid IMC architecture shows that the SRAM
compensation allows for a realistic IMC architecture with multi-
level RRAM cells (MLC) even though they suffer from high
variations. The hybrid IMC architecture achieves up to 21.9%,
12.65%, and 6.52% improvement in post-mapping accuracy over
state-of-the-art techniques, at minimal overhead, for ResNet-
20 on CIFAR-10, VGG-16 on CIFAR-10, and ResNet-18 on
ImageNet, respectively.

I. INTRODUCTION

Modern deep neural networks (DNNs) outperform humans

for a variety of applications such as computer vision and

natural language processing. Higher accuracy comes at the

cost of increased computational complexity, depth, and width

for the DNN. The increased DNN complexity poses great

challenges to traditional accelerator architectures that sepa-

rate both the memory and computation unit [1]. In contrast,

RRAM-based IMC accelerators combine both memory access

and computation into a single unit. RRAM is a two-terminal

device with programmable resistance representing the weights

∗Authors are with the School of Electrical, Computer, and Energy Engi-
neering, Arizona State University, Tempe 85287, AZ.
E-mail: {gkrish19, zwang586, iyeo3, lyang166, jmeng15, dfan, jseo28,
Yu.Cao}@asu.edu†Authors are with the State University of New York Polytechnic, NY, USA.
E-mail: {mliehr2, ncady}@sunypoly.edu‡Author is with the IBM T. J. Watson Research Center, NY, USA.
E-mail: {rvjoshi}@us.ibm.com

Manuscript received April 07, 2022; revised June 11, 2022; accepted July
05, 2022. This article was presented in the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES)
2022 and appears as part of the ESWEEK-TCAD special issue.

ResNet20
CIFAR-10

VGG16
CIFAR-10

ResNet18
ImageNet

40

60

80

100

A
cc

ur
ac

y
w

ith
R

R
A

M
IM

C
M

ac
ro

(%
) Baseline Quantization - 3W3A 3W3A + VAT

Quantization - 1W1A 1W1A + VAT

16.5
4.0

27.8

RRAM IMC - 64x64Numbers: Accuracy Loss

Fig. 1. Accuracy with RRAM IMC macro for three different DNNs for both
CIFAR-10 and ImageNet datasets. The baseline model deals with a 32-bit
floating-point model, quantization refers to fixed-point precision for activation
and weights (e.g., 3W3A means 3-bit weight and 3-bit activation), and VAT
refers to variation-aware training with the RRAM variations [5].

of the DNN and has high density, fast read speed, high

memory accessing bandwidth, and good compatibility with

CMOS fabrication technology. The crossbar-based RRAM-

based IMC provides a dense and parallel structure to achieve

high performance and energy efficiency for DNN acceleration.

Prior works with RRAM-based crossbar architectures have

shown up to 1,000× improvement in energy efficiency as com-

pared to CPUs/GPUs [2–4]. The enhanced energy-efficiency

is attributed to a full-custom design, higher density, and faster

memory bandwidth [2, 3].

However, RRAM device suffers from several non-idealities

such as limited resistance levels, device-to-device write vari-

ations, stuck-at-faults, and limited Roff/Ron ratio, posing a

significant challenge to designing reliable RRAM-based IMC

architectures [5–12]. The non-idealities within the RRAM

device results in a deviation of the programmed weight values

(resistance value), causing a significant reduction in post-

mapping accuracy for DNNs. Furthermore, the crossbar struc-

ture of the IMC, with its limited array size, requires splitting

of the large convolution (conv) or fully-connected (FC) layers

into partial operations. Such partial operation (conv/FC) results

in further error due to the limited precision of the peripheral

circuits of the RRAM-based IMC crossbar.

To mitigate the post-mapping accuracy loss in DNNs,

variation-aware training (VAT) and special encoding schemes

are employed [5–9, 13]. VAT exploits the inherent DNN redun-

dancy by embedding the device variations (σ), based on a log-

normal or normal distribution model, into the training process

to achieve a variation-tolerant model [5–9, 13]. To further

understand VAT, we evaluate the post-mapping accuracy for

three DNNs across CIFAR-10 and ImageNet datasets. We

perform in-training quantization for both weights [14] and ac-

tivations [15]. In addition, we extract RRAM device variation

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

2

from our 65nm SUNY 1T1R device (average variation (σavg)

of 0.3) to perform VAT. Finally, we perform a hardware-aware

training for the DNN by splitting the conv and FC layers

into partial operations based on the IMC crossbar size (we

use 64×64 [13]). Fig. 1 shows the accuracy of the quantized

VAT trained RRAM IMC macro. Although VAT improves

the accuracy, it does not achieve the same accuracy as the

baseline 32-bit floating-point (FP-32) model, with up to 27.8%

accuracy loss for ImageNet class DNNs. Hence, there is an

urgent need to bridge this gap in the accuracy for RRAM-

based IMC acceleration of DNNs.

To address this, in this work, we first propose a hybrid

RRAM/SRAM IMC architecture for robust DNN acceleration.

The proposed hybrid architecture utilizes an RRAM-based

IMC macro, an SRAM-based macro, and a programmable

shifter. The RRAM macro consists of the RRAM IMC cross-

bar, decoder, and associated peripheral circuits. The SRAM

macro consists of an SRAM memory array, buffers, and an out-

put stationary CMOS-based multiply-and-accumulate (MAC)

engine. The output from the SRAM macro (clean) is added to

the noisy RRAM macro output to create an ensemble model

and achieve bit-level compensation. Furthermore, the degree

of compensation is controlled by utilizing a programmable

shifter. Depending on the DNN, different scales of the shift

operation are performed on the SRAM macro output to achieve

varying degrees of compensation for the RRAM macro output.

To illustrate the efficacy of the architecture, we design a test-

chip in the 65nm SUNY process [16] to demonstrate the

proposed hybrid RRAM/SRAM IMC architecture. We utilize

an RRAM macro with a 64×64 IMC and associated peripheral

circuits, and a dedicated control logic. Furthermore, we design

an SRAM macro with a 32×64 SRAM memory array and an

output stationary MAC engine [17]. Finally, a custom control

logic is designed to synchronize both RRAM and SRAM

macro. The programmable shifter is implemented outside the

chip for simplicity.

Next, on the algorithm side, we develop a framework for the

training of the DNNs to support the hybrid IMC architecture.

The proposed framework performs in-training quantization for

both weights and activations following [14, 15], structured

pruning [18], RRAM IMC-aware training, and support for dif-

ferent compensation scales through the programmable shifter.

The parallel SRAM macro addition is performed in a layer-

wise manner. In addition, structured pruning is performed

on the SRAM macro weights to achieve minimal hardware

overhead. For efficient hardware execution, the precision of the

RRAM and SRAM macros, activations, and shift scale are kept

constant across all layers of the DNN. To accurately model the

RRAM device in the framework, RRAM data is collected from

a fully integrated 1T1R structure on a 300mm wafer, using a

custom RRAM module within the SUNY 65nm process. We

plan to open-source the algorithm framework upon acceptance

of this work.

We perform extensive experiments on four DNNs across

CIFAR-10 and ImageNet datasets at different precision

(weights and activations). We show that at higher RRAM

macro precision and SRAM macro precision, the proposed

method achieves near FP-32 accuracy (at 1× and 2× RRAM

variations of 65nm RRAM device). Furthermore, we show that

the proposed hybrid IMC architecture with SRAM compensa-

tion opens up the opportunity for a realistic IMC architecture

with multi-level RRAM cells (MLC) even though they suffer

from high variations. Compared to state-of-the-art methods,

the proposed hybrid IMC architecture achieves up to 21.9%,

12.65%, and 6.52% improvement in post-mapping accuracy

with minimal overhead for ResNet-20 on CIFAR-10, VGG-16

on CIFAR-10, and ResNet-18 on ImageNet, respectively.

In addition, we analyze the overhead from the SRAM

macro and programmable shifter. In terms of training time, the

proposed method incurs up to a 25% increase in training time

compared to the VAT method. We evaluate the hardware cost

overhead for the SRAM macro by extracting the post-layout

area and power measurements from the 65nm test-chip. The

proposed hybrid IMC architecture achieves small overhead in

terms of memory requirement (up to 24%), area (up to 20%),

and power (up to 2.6%) across different DNNs and datasets.

The major contributions of this work are as follows:

• We propose a novel hybrid RRAM/SRAM IMC architec-

ture that utilizes an RRAM IMC macro with MLC cells,

SRAM macro, and a programmable shifter for robust

DNN acceleration,

• We develop a training framework to enable the hybrid

IMC architecture that supports quantization, structured

pruning, RRAM IMC-aware training, and different com-

pensation scales through the programmable shifter,

• Experimental evaluation of the hybrid IMC architecture
shows that the SRAM compensation opens the opportunity
for a realistic IMC architecture with multi-level RRAM
cells. Compared to state-of-the-art methods, the proposed

hybrid IMC architecture achieves up to 21.9%, 12.65%,

and 6.52% improvement in post-mapping accuracy with

minimal overhead for ResNet-20 on CIFAR-10, VGG-16

on CIFAR-10, and ResNet-18 on ImageNet, respectively.

• Finally, we design a test-chip using the 65nm SUNY pro-

cess to demonstrate the proposed hybrid IMC architecture

and analyze the hardware performance.

II. RELATED WORK

A. RRAM-based IMC Architecture

RRAM-based IMC architectures provide a promising alter-

native to conventional von-Neumann architectures [2–4, 8, 19–

21]. The crossbar-based IMC structure efficiently combines

both memory access and analog-domain computation into a

single unit for DNN acceleration. In addition to the IMC cross-

bar array, peripheral circuits such as analog-to-digital converter

(ADC), WL drivers, decoder, and column multiplexers are

used. Furthermore, a digital-to-analog converter (DAC) [3]

or bit-serial computing with a shift and add circuit [2] is

employed for multi-bit activations. Finally, a point-to-point

or network-on-chip (NoC) interconnect is utilized to perform

the on-chip data movement. However, prior works focus more

on the hardware performance, with little focus on the effect

of non-idealities associated with an RRAM-based IMC on

DNN acceleration. To address this, in this work, we propose

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

3

a hybrid RRAM/SRAM IMC architecture and design a test-

chip in 65nm for robust DNN acceleration. The proposed

hybrid architecture incorporates the effect of device and circuit

properties into the accuracy estimation while ensuring the best

hardware performance.

B. Mitigation of Post-Mapping Accuracy Loss
Several methods have been proposed in prior works to

mitigate the post-mapping accuracy loss for RRAM-based in-

memory acceleration of DNNs [22]. Closed-Loop-on-Device

(CLD) and Open-Loop-off-Device (OLD) perform iterative

read-verify-write (R-V-W) operations at the RRAM device

till the resistance converges to the desired value [23]. [7, 24]

utilize VAT based on known device variation (σ) characterized

from RRAM devices, while [5] combines VAT with dynamic

precision quantization to mitigate the post-mapping accuracy

loss. [21] utilizes a post-mapping training by selecting a

random subset of weights and mapping them to an on-chip

memory to recover the accuracy. Meanwhile, [8] utilizes

knowledge distillation and online adaptation for accuracy

mitigation. The authors in [8] utilize an SRAM-based IMC as

the parallel network, while [21] propose to use a register file

and a randomization circuit. Neither works [8, 21] consider the

activation quantization, real RRAM mapping, and the actual

hardware implementation. At the same time, [6, 9] propose to

use a custom unary mapping scheme by mapping the MSB and

LSB of the weights to RRAM devices based on the individual

cell variations and bit significance. These approaches partially

recover the accuracy but fail to consider the effect of activation

quantization and the hardware implementation for the DNN

model. In addition, these methods assume a known RRAM

device variation for each RRAM device and utilize an average

scale of variation.
In contrast, in this work, we propose a hybrid

RRAM/SRAM IMC architecture that incorporates weight

and activation quantization, mapping of DNN to the IMC,

and overall hardware performance (through a test-chip

designed in 65nm SUNY process). Furthermore, the proposed

method utilizes bit-wise RRAM variations extracted from

our 65nm 1T1R RRAM device, thus having a one-to-one

correspondence with the hardware.

III. HYBRID IMC ARCHITECTURE

In this section, we detail the hybrid IMC architecture

proposed in this work. Fig. 2 shows the overall block diagram

of the proposed hybrid IMC architecture for one RRAM IMC

and SRAM macro. The architecture consists of an RRAM

IMC macro, an SRAM macro, a programmable shifter, adder,

buffers, and associated control logic. The proposed hybrid

IMC architecture utilizes an ensemble of the output from the

RRAM IMC macro and the SRAM macro combined using

a programmable shifter and an adder circuit. Each macro

functions independently with the associated control logic. The

control logic also handles the scale of the shifter to facilitate

different compensation of the RRAM macro by the SRAM

macro. Finally, each layer of the DNN utilizes a number

of RRAM IMC and SRAM macros to perform the DNN

acceleration.

A
dder

O
utput B

uffer
Control Logic

Input B
uffer

Program
m

able
Shifter

RRAM IMC Crossbar
Array & Peripheries

SRAM
Memory

MAC Array (N PEs)

N-bit

Buffer SRAM
Memory

MAC Array (N PEs)

N-bit

Buffer

Fig. 2. Block diagram of the proposed hybrid RRAM/SRAM IMC archi-
tecture. Both the RRAM and SRAM macros compute in a parallel manner
to generate the output. A programmable shifter allows for different scales of
compensation using the SRAM macro. The overall output is an ensemble of
the RRAM and SRAM macro outputs.

Column MUX (N:1) and PMOS Headers

ADC

W
L

D
riv

er
 a

nd
 L

ev
el

 S
hi

fte
r

BL and SL MUX

R
R

A
M

 D
ec

od
er

Shift and Add CircuitIn
pu

t/O
ut

pu
t

B
uf

fe
r

Fig. 3. Block diagram of the RRAM IMC macro within the hybrid archi-
tecture. The macro consists of a crossbar array of RRAM cells, a decoder,
PMOS headers, column multiplexers (mux), BL and SL mux, shift and add
circuit, and ADC.

A. RRAM IMC Macro

Fig. 3 shows the architecture of the RRAM IMC macro.

The RRAM macro consists of an RRAM-based IMC crossbar

structure of a specific size. Each cross-point in the array

consists of a 1T1R RRAM multi-level cell. The 1T1R cell con-

nects the transistor (gate) to the wordline (WL), while the two

terminals of the RRAM are connected to the select-line (SL)

and the bitline (BL). The RRAM-based IMC crossbar utilizes

analog domain computation to perform the MAC operation.

Each IMC crossbar has associated peripheral circuits such

as analog-to-digital converter (ADC), PMOS header, column

multiplexer, BL and SL mux, WL driver and level shifters,

and RRAM decoder. The column multiplexer is used to share

the read-out circuit (ADC and PMOS header) across multiple

columns of the IMC crossbar array. The ADC performs the

conversion of the analog output to the digital domain. In

this work, instead of employing a digital-to-analog converter

(DAC), we perform bit-serial computing over multiple cycles

for multi-bit activations. The ADC output is accumulated

based on the input bit significance using shifter and adder

circuits to compute the MAC output. Finally, the overall result

is generated by accumulating the outputs from each IMC

crossbar array.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

4

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

SRAM Array (Weights)

B
uffer

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

SRAM Array (Weights)

B
uffer

Output

wgt

act

Multiplier

Adder0

0

1

0

1
0

1

0

1

0

add_enwgt_en

act_en

out_en

wgt

act

Multiplier

Adder0

0

1
0

1

0

add_enwgt_en

act_en

out_en

Fig. 4. Block diagram of the SRAM macros within the hybrid architecture.
An SRAM array stores the weights while an array of processing elements
(PE) perform the MAC operations.

B. SRAM+MAC Engine Macro

Fig. 4 shows the block diagram of the SRAM macro

within the hybrid IMC architecture. The SRAM macro consists

of an array of processing elements (PE) of MAC engines,

SRAM memory array, buffers, and associated control logic.

The SRAM memory array stores the weights while the inputs

are streamed into the PEs through the buffer. Each PE utilizes

an output stationary computation flow to reduce on-chip data

movement. The multiplier and adder support the fixed-point

MAC operations with the required precision for the SRAM

macro output. The final output is obtained pixel-wise across

feature maps and moved to the output buffer within the SRAM

macro. Note that the read word size of the SRAM memory

array is equal to the number of parallel PE to ensure maximum

utilization and throughput. The SRAM macro performs the

computations in parallel with the RRAM macro, thus avoiding

any reduction in the overall hardware performance.

C. Programmable Shifter

The programmable shifter performs the shift operation for

the output from the SRAM macro, as shown in Fig. 2. The

different scales of shifting allow for the compensation of

different bits of the RRAM macro output. The shift operation

follows a right shift within the hybrid IMC architecture. Fig. 5

shows an example of 1-bit, 2-bit, and 3-bit SRAM macro

output compensation for a 2-bit RRAM macro output. We

show three shift cases across all configurations. Fig. 5(a) shows

RRAM macro output at 2-bit and SRAM macro output at 1-bit.

First, the blue region shows the case when the SRAM macro

output compensates only for the MSB of the RRAM macro

output, i.e., no shift. Such compensation provides a larger

impact as the position of compensation of the RRAM macro

output has higher significance. Next, the grey region shows the

case when the SRAM macro output compensates only the LSB

of the RRAM macro output through a 1-bit shift. Finally, the

purple region shows a 2-bit shift for the SRAM macro output,

thus adding a higher precision for the RRAM macro output

by adding an extra bit. In this case, neither of the RRAM

output bits are individually compensated, while the extra bit

provides an increased precision to the overall output. Similarly,

Fig. 5(b) and Fig. 5(c) show the cases for 2-bit and 3-bit

SRAM macro compensation. The optimal choice of the scale

of shift depends on the DNN algorithm, dataset, the extent

of RRAM device variations, and the hardware performance

overhead (Section V-F).

D. 65nm Hybrid IMC Test Chip

To demonstrate the efficacy of the proposed hybrid IMC

architecture, we design a test-chip using a custom RRAM

module within the 65nm SUNY process. Fig. 6 shows the

layout of the 65nm test-chip of the hybrid IMC architecture.

The test-chip consists of a RRAM macro, an SRAM macro,

and associated testing structures such as scan chain. The shifter

circuit is implemented outside the chip for higher testing

flexibility. Finally, the test-chip is designed for an operating

frequency of 100MHz.

1) RRAM IMC Macro: The RRAM macro consists of a

64×64 IMC crossbar array of 1T1R cells. In addition to

the IMC crossbar array, peripheral circuits such as ADC,

PMOS header, BL/SL/column multiplexers, WL driver and

level shifter, and RRAM decoder are custom designed in the

65nm process. A 64-to-1 BL and SL one-hot multiplexer are

utilized for the programming of RRAM cells. Furthermore,

to share eight columns across each read-out circuit, an 8-to-

1 column multiplexer is designed using a transmission gate

and sized carefully to reduce the overall resistance of the

circuit. The read-out circuit within the RRAM macro utilizes

a flash ADC with a 3-bit resolution and a PMOS header. A

single column (BL) combined with the PMOS header forms

a resistance divider circuit, which converts the accumulated

current to voltage. The voltage is then used as the input to

the ADC, converting the analog output to the digital domain.

Overall, eight read-out circuit instances are utilized across the

64 columns of the IMC crossbar array. Note that the PMOS

header is sized appropriately to ensure that the resistance

is much lower than the minimum resistance from the IMC

crossbar array (with only one row turned on). Finally, input

and output buffers are used to store the activations.

The RRAM decoder performs the overall control of the

macro. The decoder utilizes a finite state machine (FSM)

with three main states to generate the required control sig-

nals. Furthermore, the decoder also performs the operation

of driving the inputs to the WL through the driver and level

shifters. During the write state, the RRAM cells can be

programmed one-by-one by choosing a specific WL, BL, and

SL. Next, the compute state performs the MAC operations

in a parallel fashion across rows and columns. The sharing

of the columns requires the column multiplexer to choose

columns sequentially to generate the output. Hence, 8 cycles

are required to perform the MAC operations with the 64×64

IMC crossbar array. Furthermore, during the compute state

the decoder enables the ADC to perform the analog to digital

conversion for the MAC output. The ADC output is then

moved to the buffer that holds the value until it is moved

outside the chip using the scan chain. Finally, the new input

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

5

SRAM

RRAM

SRAM

MSB LSBMSB LSB MSB LSBMSB LSB MSB LSBMSB LSB

C3 C2 C1C3 C2 C1 C3 C2 C1C3 C2 C1 C3 C2 C1C3 C2 C1

RRAM MSB LSBMSB LSB MSB LSBMSB LSB MSB LSBMSB LSB

C2 C1C2 C1 C2 C1C2 C1 C2 C1C2 C1

RRAM

SRAM

MSB LSBMSB LSB MSB LSBMSB LSB MSB LSBMSB LSB

C1 C1 C1

(a) 1-bit SRAM

(b) 2-bit SRAM

(c) 3-bit SRAM

Shift 2-bits

Shift 2-bitsShift 1-bit

Shift 1-bit

Shift 2-bitsShift 1-bit

H
ig

he
r P

re
ci

si
on

Fig. 5. Functioning of the programmable shifter within the hybrid IMC architecture. (a) 1-bit SRAM macro output compensates for the MSB in the blue
region, LSB in the grey region (1-bit shift), and adds an extra bit for increased precision in the purple region. A similar operation is performed for both (b)
2-bit and (c) 3-bit SRAM macro outputs.

RRAM Array and Decoder

Read-out Circuit

SRAM Memory Array

MAC Engine

Fig. 6. Layout of the 65nm test-chip of the proposed hybrid IMC architecture.
The prototype consists of a 64×64 1T1R RRAM crossbar array and associated
peripheral circuits. In addition, the prototype implements an SRAM memory
array of size 32x64 with a 16-word size and 16 MAC engines that utilize an
output stationary dataflow.

state is utilized within the decoder to accept the next stream

of input activations.

2) SRAM Macro: The SRAM macro consists of an SRAM

memory array, MAC engine array (PE array), and associated

control logic. The SRAM memory consists of a 32×64 SRAM

cells with a read-out word size of 16 bits. To match the SRAM

memory read-out size, the MAC engine consists of an array

of 16 PEs that implement an output stationary dataflow. The

memory read out, and the number of computation units is

matched to achieve the best performance and utilization. Next,

a custom control logic is implemented utilizing an FSM. The

FSM consists of 4 main states, namely, idle, load, compute,

and finish. The idle state is the default state the SRAM

macro assumes upon power-up of the chip. The load state is

utilized to perform the loading of the weights and activations

to the SRAM memory and local input buffer. The load state

triggers a counter that automatically moves the data from the

scan chain to the corresponding memory/buffer. The SRAM

memory with 64 columns is divided into 16 sets, with each

column multiplexer servicing four columns of the array. Next,

the compute state is utilized to perform the MAC operations.

-9 -6 -3 0 3 6 9

-6

-3

0

3

6

-9 -6 -3 0 3 6 9

LRSHRS
Cycle-to-Cycle Switching Variation

Die Position (X)

D
ie

Po
si

tio
n

(Y
)

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

Die Position (X)

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

Fig. 7. HRS (left) and LRS (right) cycle-to-cycle switching variation across
the 300mm wafer at 65nm [16]. HRS state has a higher variation than LRS.

A counter is triggered such that it reads the weights from

the SRAM memory and the input buffer to perform the MAC

operation within the PEs. All PEs operate in a parallel fashion

on different data, thus providing high throughput. Each PE

performs the computations for a pixel within an output feature

map. Through this, one pixel across 16 different output feature

maps is generated. In addition, PE control is generated to

enable the D flip-flops (DFF) at the input and the subsequent

datapath to follow the output stationary dataflow. Finally, the

finish state is utilized to denote the completion of the MAC

operations and the transfer of the output data to the scan

chain. We note that, for the increased flexibility of testing,

we perform the computation of multi-bit inputs with bit-serial

processing. The output is then post-processed outside the chip

to obtain the final result.

IV. HYBRID IMC TRAINING FRAMEWORK

In this section, we detail the algorithm framework developed

for the hybrid RRAM/SRAM IMC architecture. The overall

framework is developed using the Python programming lan-

guage and the PyTorch deep learning framework.

A. Statistical RRAM Device Models
To accurately model the RRAM device, data is collected

from a fully integrated 1T1R RRAM structure on a 300mm

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

6

30 40 60 90 120 160 260 460
0

25

50

75

100

125

RRAM Resistance Measurement at different Compliance Current
for the SUNY 65nm 1T1R Device

��������	
 ��

�� ����

�
�
�
��
��
�
�
�
	

�
�

HRS

LRS

Fig. 8. Box and whisker plot showing the eight distinct resistance levels (6
LRS and 2 HRS) within our 65nm 1T1R RRAM device. Different compliance
currents lead to different resistance levels.

TABLE I
RRAM DEVICE VARIATION FOR DIFFERENT BIT

Level 0 1 2 3 4 5 6 7

RRAM State LRS HRS

Average Variation
(σ)

1-bit 0.1035 NA

2-bit 0.1035 0.2760 NA

3-bit 0.1035 0.2760 0.2259 0.3549

wafer (at room temperature), using a custom RRAM module

within the SUNY 65nm process [10]. In this work, we focus

on a multi-level RRAM device. Each RRAM device has a

size of 100nm×100nm and utilizes a device stack comprised

of a 6nm HfO2 mem-resistive switching layer, a 6nm PVD Ti

oxygen exchange layer (OEL), and TiN electrodes (top and

bottom). Pulses with a magnitude of 1V – 1.2V and width of

10μs are used for the set/reset operation of RRAM devices.

Fig. 7 shows the wafer-level cycle-to-cycle switching vari-

ations for the 65nm RRAM device measured using the pulse-

based switching technique. The high-resistance state (HRS)

has a higher variation up to 0.6 σ, while the low-resistance

state (LRS) has a lower variation up to 0.2 σ. The average

variation (σavg) for the entire range of HRS and LRS across

the wafer amounts to 0.3. To further understand the RRAM

variations, we analyze the distinct resistance levels that can be

achieved for the 65nm 1T1R RRAM device. Fig. 8 shows the

box and whisker plot of the measured resistance at different

compliance currents for the multi-level 65nm RRAM device.

The 65nm RRAM device achieves up to 8 distinct levels with

6 LRS and 2 HRS states. Furthermore, at the single device

level, the LRS achieves a lower variation compared to HRS.

Hence, the 65nm RRAM device can support up to 3-bit data.

Next, we analyze the variations for each bit when mapped

to the 65nm 1T1R RRAM device. Table I summarizes the

level-wise and bit-wise RRAM device variation up to 3-bits

for the 65nm 1T1R RRAM device. For a 1-bit value, only two

levels are needed to map the data to the RRAM device. Hence,

the lowest two resistance levels (LRS) can be utilized, thus

reducing the overall RRAM device variations. Simultaneously,

for a 2-bit value, four levels are required to map the data

to the RRAM device. The first two levels utilize the lowest

two resistance levels from the 1-bit case, while the third and

Algorithm 1: Training Methodology for the hybrid

RRAM/SRAM IMC architecture

1 Input: DNN, RRAM weight precision (WRRAM),

RRAM output precision (ARRAM), SRAM weight

precision (WSRAM), SRAM output precision

(ASRAM), overall activation precision (A), shift scale

(bshift), SRAM pruning group size (Gprune),

Training epochs M and N, and bit-wise RRAM

variations (σbit)

2 Output: Trained Hybrid RRAM/SRAM IMC model

3 for RRAM Model do
4 Initialize DNN model randomly

5 Perform in-training quantization for weights

(WRRAM) and activations (ARRAM)

/* Model A */
6 Layer-wise split conv and FC layer into partial

conv/FC based on RRAM crossbar size

7 Load trained quantized weights from Model A
8 Add partial conv/FC outputs to generate final

layer-wise output

9 for Epoch ≤ M do
10 Add RRAM variations (bit-wise) to weights

11 Train DNN model

12 end
13 end

/* Model B */
14 for SRAM Model do
15 Create parallel SRAM model layer-wise with size

100% of RRAM model and randomly

initialize weights

/* Model C */
16 Add Model B output layer-wise to the Model C

output with bshift shift

/* Model D */
17 for Epoch ≤ N do
18 Perform in-training quantization and group-wise

pruning (Gprune) for Model C weights

(WSRAM) at activation precision ASRAM

19 Perform in-training quantization for overall

layer-wise activation output to A
20 Backpropagation: Freeze Model B weights with

no update. Only update Model C weights
21 end
22 end
23 Save final trained Model D and perform inference

fourth levels utilize higher resistance levels (LRS) with higher

variation, as shown in Fig. 8. Finally, for a 3-bit data, eight

resistance levels are required to map to the RRAM device.

The first four levels utilize the same resistance levels as that

for the 2-bit case. Meanwhile, the third bit further utilizes four

resistance states of which two are LRS and two are HRS for

the 65nm RRAM device. Hence, for accurate RRAM variation

modeling, we utilize the bit-wise variation models within the

hybrid IMC training framework.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

7

B. Training for Hybrid IMC Architecture

Algorithm 1 details the methodology utilized to train the

DNN for the hybrid RRAM/SRAM IMC architecture.

1) RRAM Macro Training: The training of the RRAM

macro is performed in two stages. The first stage performs

in-training quantization for the DNN model, while the second

stage performs the RRAM IMC-aware training in the presence

of quantization. First, the DNN model weights are randomly

initialized. Next, we perform in-training quantization for the

weights with precision WRRAM and RRAM macro output

(ARRAM) and train the DNN to generate Model A. In this

work, we keep the weight and activation precision the same

for the RRAM macro model (WRRAM equal to ARRAM).

We utilize the quantization method in [14] for the weights

and [15] for the activations. Next, we split each conv and FC

layer into partial MAC operations based on the IMC crossbar

size. For our test-chip, we utilize a 64×64 IMC crossbar

array. Finally, the output from each partial MAC operation

is accumulated to generate layer-wise output activations. The

quantized weights from Model A are then loaded to the partial

conv/FC operations, and RRAM variations (σbit) are added

using the log-normal distribution [8] (at each epoch) in a bit-

wise manner following Table I. Finally, the model is trained

for M epochs to generate the RRAM IMC-aware trained model

(Model B). Lines 3–13 of Algorithm 1 show the RRAM macro

model training.

2) Training SRAM Macro and Programmable Shifter: Once

the RRAM macro is trained (Model B), we perform the

training for the SRAM macro with the programmable shifter.

First, we add a parallel model (Model C) for the SRAM

macro with the same size as that of RRAM macro model and

randomly initialize weights in a layer-wise manner (100% size

as that of the RRAM macro model). Next, we add the output

from Model C to that of Model B in a layer-wise manner. The

Model C output is shifted based on the scale of shifting (bshift)
utilized in the programmable shifter. We note that the scale of

shift is kept constant across all layers of the DNN. Through

this, we generate the DNN structure that follows the hybrid

IMC architecture (Model D). Thereafter, Model D is trained

such that the weights of the SRAM Macro model (Model

C) are quantized to WSRAM and the activations to ASRAM

following the methodology in [14] and [15], respectively.

Furthermore, the output from each layer within Model D (after

adding the Model B and shifted Model C outputs) is quantized

to the overall layer-wise activation precision A. During the

training of Model D, the weights of Model B are frozen

without any update during backpropagation while the Model

C weights are updated. Hence, the RRAM macro model serves

as the backbone model while the SRAM macro model assists

it.

Next, to reduce the overhead from the SRAM macro, we

utilize group-wise pruning [18] with a group-size of Gprune

for the Model C weights. The pruning utilizes weight-penalty

clipping with a self-adapting threshold [18], as shown below:

L̂ = L(f(x; {Wl}Ll=1), t) + λ

L∑

l=1

Gi∑

i=1

min(‖Wl,i‖2; δl) (1)

1-bit 2-bit 3-bit

86

88

90

92

94

Po
st

M
ap

pi
ng

A
cc

ur
ac

y
(%

)

RRAM Macro Precision (#)

SRAM Macro Precision 1-bit 2-bit 3-bit
Baseline (floating-point 32-bit)

ResNet-20 on CIFAR-10 with Device Variations and
100%SRAM Compensation

Fig. 9. Post-mapping accuracy with the proposed hybrid IMC architecture
for ResNet-20 on CIFAR-10. A higher SRAM macro precision leads to better
compensation across different RRAM precision.

δl = α.
1

Gl

Gi∑

i=1

‖Wl,i‖2 (2)

where δl denotes the layer-wise self-adapting clipping thresh-

old, L is the number of layers, Gl is the number of groups in

the SRAM macro model for the l-th layer, λ is the hyper-

parameter to be tuned based on the dataset, and α is the

scaling coefficient. The pruning is performed group-wise along

the output channel dimension: for layer l with SRAM macro

weight matrix Wl ∈ RQ
Nof×Nif×Kx×Ky , we choose a group

of size Gprune along the Nif dimension, where the maximum

value of Gprune is determined by the number of PEs in the

SRAM macro (RQ denotes quantized SRAM macro weights).

The training for Model D is performed for N epochs, where

N is less than M. Overall, the trained model consists of an

RRAM macro model with weight precision WRRAM and out-

put activation precision ARRAM , a structured sparse SRAM

macro model with weight precision WSRAM output activation

precision ASRAM , overall layer-wise activation precision A,

and a shift scale of bshift. Lines 14–22 of Algorithm 1 show

the SRAM macro with programmable shifter model training.

V. EXPERIMENTS AND RESULTS

We perform extensive experiments to evaluate the proposed

hybrid RRAM/SRAM IMC architecture from both an algo-

rithm and a hardware standpoint. The algorithm experiments

are performed on a Nvidia Quadro RTX 8000 GPU by

utilizing the algorithm framework developed in this work (Sec-

tion IV). We evaluate four different DNNs across two datasets:

ResNet-20 on CIFAR-10 (0.27M), VGG-16 on CIFAR-10

(15M), ResNet-18 for ImageNet (11.5M), and MobileNet-

v2 for ImageNet (3.4M). All experiments performed uti-

lize the device models extracted (at room temperature) for

the 65nm 1T1R RRAM device with up to 8 levels (Sec-

tion IV-A). The weight and output activation precision values

are kept the same within each macro (WRRAM=ARRAM and

WSRAM=ASRAM) throughout the DNN. The experiments

utilize a RRAM crossbar size of 64×64 for consistency with

the 65nm test-chip. Furthermore, we evaluate up to a 3-bit

RRAM macro weight and activation precision, a 3-bit SRAM

macro weight and activation precision, a 6-bit overall layer-

wise activation precision, and a 3-bit shift scale. Finally, for the

hardware performance, we utilize the post-layout performance

of the 65nm test-chip at 100MHz. The results obtained through

VAT refer to the variation-aware training method in [5].

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

8

TABLE II
COMPREHENSIVE EVALUATION OF THE CHOICE OF PROGRAMMABLE SHIFTER ACROSS DIFFERENT DNNS FOR CIFAR-10 DATASET.

(*AT SAME RRAM AND OVERALL ACTIVATION PRECISION). VAT – VARIATION-AWARE TRAINING [5].

Network RRAM Macro
Precision

Accuracy with
VAT Only* (%)

SRAM Macro
Precision

Activation
Precision

Shifter Scale
for SRAM Macro

Post-Mapping
Accuracy - Ours (%)

Improvement in Accuracy
over VAT only (%)

ResNet-20

2-bit 87.40 1-bit 3-bit
0-bit 90.28 2.88

1-bit 90.33 2.93

2-bit 89.68 2.28

3-bit 87.45 3-bit 6-bit

0-bit 90.92 3.47

1-bit 90.73 3.28

2-bit 90.87 3.42

3-bit 90.80 3.35

VGG-16

1-bit 89.02 2-bit 3-bit
0-bit 92.56 3.54

1-bit 92.54 3.52

3-bit 91.06 3-bit 6-bit

0-bit 92.97 1.91

1-bit 92.96 1.90

2-bit 92.92 1.86

3-bit 92.90 1.84

A. Effect of different Scales of SRAM Compensation
We analyse the effect of different scales of SRAM com-

pensation by varying the SRAM macro precision. Fig. 9

shows the post-mapping accuracy for ResNet-20 on CIFAR-10

across different RRAM macro and SRAM macro precisions.

No pruning is performed for the SRAM macro weights, and

no shift is applied. The baseline FP-32 ResNet-20 model

for CIFAR-10 dataset achieves 91.34% accuracy. Consider an

RRAM macro precision of 1-bit. At an SRAM macro precision

of 1-bit, the SRAM compensates entirely for the variations

within the RRAM macro. Meanwhile, at a higher SRAM

macro precision, in addition to the variation compensation the

SRAM adds additional bits to increase the dynamic range and

the precision of the RRAM macro output for the DNN layer.

Hence, at higher SRAM macro precisions, higher accuracy is

achieved with up to 90.2%.

Simultaneously, consider an RRAM macro precision of 3-

bits. A 3-bit RRAM macro precision provides higher density

and better hardware performance, but suffers from higher

RRAM device variations. At an SRAM macro precision of

1-bit, the MSB of the RRAM macro is compensated, thus

providing a high degree of compensation. Hence, the higher

RRAM macro precision and the MSB compensation result in

a higher post-mapping accuracy of 90.01%. At an SRAM

macro precision of 2-bit, both the MSB and the second

bit are compensated, thus providing a higher accuracy of

90.7%. Finally, at a 3-bit SRAM macro precision, all the

three bits of the RRAM macro output are compensated, thus

providing maximum accuracy of 90.92%. Hence, the SRAM

macro compensates for the RRAM macro variations, thus

achieving higher accuracy. Through this, the SRAM macro

compensation, the hybrid IMC architecture helps exploit the

advantage within MLC RRAM cells.

B. Optimal Shifter Configuration

In this section, we analyze the effect of the scale of shift

utilized in the hybrid IMC architecture on the post-mapping

accuracy. We note that no pruning is performed on the SRAM

macro in this experiment. Table II shows the post-mapping

accuracy for different DNNs on CIFAR-10 dataset across

varying RRAM and SRAM macro precisions at different

shifting scales. Consider ResNet-20 on CIFAR-10 at 2-bit

RRAM macro precision and 1-bit SRAM macro precision.

We utilize a 3-bit overall activation precision across layers.

At a 0-bit shift scale, the SRAM output compensates for the

MSB of the RRAM macro output, achieving a post-mapping

accuracy of 90.28%. At the same time, a 1-bit shift for the

SRAM macro compensates the LSB of the RRAM macro

output, achieving an accuracy of 90.33% (within statistical

error range). Finally, a 3-bit shift for the SRAM macro output

results in the extension of the precision of the output with

no compensation for the MSB and LSB of the RRAM macro

output. Such a scale of shift results in reduced post-mapping

accuracy (89.68%) due to the effect of the RRAM variations

on the output. Similarly, we evaluate a 3-bit RRAM macro

precision and a 3-bit SRAM macro precision. A 0-bit shift

provides the best post-mapping accuracy as the SRAM macro

compensates for all the bits of the RRAM macro output.

We repeat the same experiment with VGG-16 for CIFAR-

10. For a 1-bit RRAM macro precision and a 2-bit SRAM

macro precision, a 0-bit shift provides the highest accuracy.

Similarly, a 0-bit shift provides the highest accuracy of 92.97%

for a 3-bit RRAM and SRAM macro precision. We conclude

that the optimal scale of shift depends on the DNN struc-

ture, RRAM and SRAM macro precisions, and the overall

activation precision. To provide further context, we compare

the post-mapping accuracy of the two DNNs to the FP-32

baseline accuracy. For ResNet-20 on CIFAR-10, the FP-32

model achieves 91.34% accuracy, while the best configuration

hybrid IMC model achieves 90.92% accuracy. For VGG-

16 on CIFAR-10, the hybrid IMC model achieves 92.97%

accuracy compared to 93.04% for the FP-32 model. Finally,

we compare the post-mapping accuracy with the hybrid IMC

architecture to that with VAT only. The proposed method

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

9

82
84
86
88
90
92
94

1-bit 2-bit 3-bit

20

40

60

80

1-bit 2-bit 3-bit

Po
st

M
ap

pi
ng

A
cc

ur
ac

y
(%

)

SRAM Macro Precision 1-bit 2-bit 3-bit
ResNet-20 on CIFAR-10 with Device Variations and SRAM Pruning

Pruning Group Size: 16 Pruning Group Size: 4

28.2
15.7 8.0

68.7
51.6

28.1

64.0 66.3 61.8

31.2 31.6
23.8

87.9 77.9
60.6

82.6 83.8

63.8

(a) (c)

(d)

RRAM Macro Precision

SR
A

M
Pr

un
in

g
R

at
io

(%
)

(b)

RRAM Macro Precision
Fig. 10. Post-mapping accuracy for ResNet-20 on CIFAR-10 at different RRAM macro and SRAM macro precision. (a) Post-mapping accuracy with SRAM
macro at Gprune of 16 and (b) Pruning ratio of the SRAM macro weights across different RRAM and SRAM precision at Gprune of 16, (c) Post-mapping
accuracy for a Gprune of 4 for the SRAM macro weights, and (d) Pruning ratio of the SRAM macro weights at Gprune of 4. A lower group size leads to
higher pruning at the same accuracy.

TABLE III
COMPREHENSIVE EVALUATION OF THE POST-MAPPING ACCURACY ACROSS DIFFERENT DNNS AND DATASETS WITH THE PROPOSED HYBRID IMC

ARCHITECTURE. SRAM IS PRUNED WITH A GROUP SIZE OF 4. (*TOP-1 ACCURACY, **AT SAME RRAM PRECISION).

Network Dataset RRAM
Precision

VAT Only
Accuracy (%)**

SRAM
Precision

Activation
Precision

Shifter
Scale

SRAM Pruning
Ratio (%)

Post-Mapping
Accuracy - Ours (%)

Accuracy Improvement
over VAT only (%)

ResNet-20 CIFAR-10 2-bit 87.40 1-bit 3-bit 1-bit 87.8 90.73 3.3

VGG-16 CIFAR-10 3-bit 91.06 3-bit 6-bit 0-bit 98.9 92.75 1.7

ResNet-18 ImageNet 3-bit 63.79 2-bit 5-bit 2-bit 99.7 69.21* 5.4

MobileNet-v2 ImageNet 3-bit 36.60 2-bit 5-bit 2-bit 36.6 61.6* 25.0

consistently outperforms the VAT method and achieves near

baseline (Floating-point 32-bit) accuracy.

C. Pruning Analysis of SRAM
The addition of the SRAM macro and programmable shifter

results in an overhead for the hardware architecture. Hence,

to reduce the overhead, we utilize group-wise pruning of the

weights within the SRAM macro, as detailed in Section IV-B.

Fig. 10 shows the post-mapping accuracy and the SRAM

macro pruning ratio for two different pruning group sizes for

ResNet-20 on CIFAR-10. The pruning ratio gives the amount

of sparsity achieved through pruning. We note that we perform

the pruning for the optimal configurations of the shift scale.

We explore 1-bit to 3-bit precisions for both the RRAM and

SRAM macros. Fig. 10(a) shows the post-mapping accuracy

across different configurations for a pruning group size of 16.

A higher SRAM macro precision allows for higher compensa-

tion for the RRAM macro output in the presence of sparsity.

Next, we analyze the pruning ratio achieved with pruning

across the different configurations, as shown in Fig. 10(b).

For the 1-bit RRAM macro precision, a lower pruning ratio

(sparsity) is obtained for best post-mapping accuracy since

the SRAM macro output provides both compensation and

increased precision and range. Meanwhile, a higher precision

for the RRAM macro weights results in a higher accuracy

compared to a binary model. Therefore, for 2-bit and 3-

bit RRAM macro precision, the SRAM macro compensation

is easier, allowing the pruning method to generate a higher

pruning ratio for the SRAM macro. We repeat the same

experiment for a smaller group size of 4, as shown in Fig. 10(c)

and (d). The hybrid IMC architecture achieves similar post-

mapping accuracy as that for the 16 group size. In addition,

a higher pruning ratio is achieved for the SRAM in all cases

due to the ability of the pruning algorithm to remove smaller

groups of weights compared to a group size of 16. Hence,

we conclude that a smaller group size and a higher RRAM

precision is preferred as it provides higher sparsity (lower

overhead), higher RRAM density, and similar post-mapping

accuracy with the hybrid IMC architecture.

D. Overall Accuracy Results

Table III shows the overall comprehensive results for the

hybrid IMC architecture. The baseline (floating-point 32-bit)

accuracy for the DNNs are as follows; ResNet-20 - 91.32%,

VGG-16 - 93.04%, ResNet-18 - 69.57%, and MobileNet-v2 -

71.87%. The choice of the optimal configuration is determined

based on the post-mapping accuracy and the SRAM macro

pruning ratio. For example, for VGG-16 on CIFAR-10 with

3-bit RRAM macro precision, an SRAM macro precision of 2-

bit with a 2-bit shift achieves 92.76% post-mapping accuracy

with a 95% SRAM pruning ratio. At the same time, a 3-bit

SRAM macro precision with a 0-bit shift results in 92.75%

accuracy at a 98.9% SRAM pruning ratio. Hence, we choose

the 3-bit RRAM 3-bit SRAM configuration considering both

the accuracy and SRAM macro pruning ratio.

We compare the post-mapping accuracy of the hybrid IMC

architecture with that of the conventional VAT technique. For

fair comparison, we utilize the same RRAM macro precision

(weights and activation) for both approaches. For ResNet-20

on CIFAR-10, the hybrid IMC architecture achieves 3.3%

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

10

TABLE IV
POST-MAPPING ACCURACY AND SRAM MACRO PRUNING RATIO FOR 1X

AND 2X RRAM VARIATION. WE USE A PRUNING GROUP SIZE OF 4.

RRAM
Precision

SRAM
Precision

Post-Mapping
Accuracy (%)

SRAM Macro Pruning
Ratio (%)

1x Var 2x Var 1x Var 2x Var

1-bit
1-bit 82.68 83.50 31.20 29.10

2-bit 85.59 85.37 31.63 31.10

3-bit 88.18 88.00 27.78 27.30

2-bit
1-bit 90.73 90.11 87.88 67.11

2-bit 90.78 90.41 77.90 73.70

3-bit 90.84 90.39 60.52 50.60

3-bit
1-bit 90.65 90.59 82.62 54.80

2-bit 90.83 90.75 83.79 74.11

3-bit 90.90 90.90 63.81 44.90

higher accuracy, while for VGG-16 on CIFAR-10 the hy-

brid architecture achieves 1.7% improvement in post-mapping

accuracy. At the same time, for ImageNet models ResNet-

18 and MobileNet-v2, the proposed hybrid IMC architecture

achieves 5.4% and 25% improvement, respectively. For all

the networks except MobileNet-v2, the proposed hybrid IMC

architecture achieves greater than 87% sparsity (pruning ratio)

for the SRAM macro. MobileNet-v2 being a small model for

the ImageNet dataset requires highly accurate weights in the

RRAM macro, i.e., a higher degree of compensation to ensure

high post-mapping accuracy.

E. Evaluation with 2× RRAM Variation

In this section, we evaluate the post-mapping accuracy for

the hybrid IMC architecture with 2× the bit-wise variations

(σ) in Table I. Note that we perform shifting and pruning

for the SRAM macro in this experiment. Table IV shows the

comparison of the post-mapping accuracy and SRAM pruning

ratio for ResNet-20 on CIFAR-10 at 1× and 2× RRAM

variations. For each RRAM macro precision, the proposed hy-

brid IMC architecture achieves similar post-mapping accuracy

for both 1× and 2× RRAM variations. At the same time,

a 1× RRAM variations results in a higher SRAM pruning

ratio and a lower SRAM macro overhead. The increased

overhead for 2× RRAM variations is attributed to the higher

SRAM compensation needed for better accuracy. Furthermore,

for a given RRAM macro precision, the optimal SRAM

macro precision results in higher accuracy for both 1× and

2× RRAM variations. Hence, the hybrid IMC architecture

provides a scalable solution that opens the opportunity for

multi-level RRAM devices for the acceleration of a wide range

of DNNs across different datasets.

F. SRAM Macro and Shifter Overhead Analysis

We analyze the overhead for the SRAM and programmable

shifter from an algorithm and hardware standpoint in the

proposed hybrid IMC architecture. Note that we utilize the

optimal hybrid IMC architecture model for each of the DNNs.

Fig. 11(a) shows the training time overhead for the SRAM

macro as a percentage of the training time for the RRAM

15

20

25

30

ResNet-20
CIFAR-10

VGG-16
CIFAR-10

ResNet-18
ImageNet

MobileNet-v2
ImageNet

0

10

20

30

Tr
ai

ni
ng

Ti
m

e
O

ve
rh

ea
d

(%
) Training Time

(a)

(b)

SRAM Macro Overhead as a Percentage of RRAM Macro

M
em

or
y

O
ve

rh
ea

d
(%

) Memory Overhead

0.004MB 0.22MB 0.20MB

0.31MBNumbers: SRAM Memory Required
(#SRAM Wegiths*Precision)

Fig. 11. (a) Training time overhead for the SRAM macro and the shifter.
The proposed hybrid IMC architecture incurs at most 25% (compared to time
of RRAM macro) overhead in training time. (b) Memory overhead for the
SRAM macro compared to the RRAM macro. The hybrid IMC architecture
incurs at most 24% overhead (compared to the memory of RRAM macro).

0

5

10

15

20

ResNet-20
CIFAR-10

VGG-16
CIFAR-10

ResNet-18
ImageNet

MobileNet-v2
ImageNet

0

1

2

3
A

re
a

O
ve

rh
ea

d
(%

)

(a)

(b)

SRAM Macro Hardware Overhead as a Percentage of RRAM Macro

Po
w

er
O

ve
rh

ea
d

(%
)

Fig. 12. (a) Area overhead and (b) power overhead of the SRAM macro as
a percentage of the total RRAM macro area and power. The proposed hybrid
IMC architecture results in a very low overhead with up to 20% area and
2.6% power overhead for state-of-the-art accuracy across different DNNs.

macro. For ResNet-20 and VGG-16 on CIFAR-10, the hybrid

IMC architecture results in 12% and 23% overhead in training

time. The increased overhead for VGG-16 is attributed to the

larger model size compared to ResNet-20 (15M for VGG-16

compared to 0.27M for ResNet-20). At the same time, for

ResNet-18 and MobileNet-v2, a 16% and 25% overhead in

training time are incurred. Hence, the hybrid IMC architecture

at most incurs a training time overhead of 25% of the RRAM

macro training time. Next, we compare the overhead for

the hybrid IMC training to the traditional read-verify-write

(R-V-W) method utilized to achieve accurate RRAM device

resistance levels. The R-V-W method requires time of the order

of days to verify and write 100% of the RRAM cells [8]. At

the same time, the proposed hybrid IMC architecture requires

time of the order of a couple of hours to achieve near baseline

(FP-32) accuracy, thus, providing a scalable solution.

Next, we evaluate the memory overhead as a percentage of

the total RRAM memory requirement. Based on the SRAM

pruning ratio, we evaluate the total number of non-zero bits

that need to be stored within the SRAM macro. The structured

pruning method employed allows the skipping of the zero

weights in the SRAM macro. Fig. 11(b) shows the memory

overhead for the hybrid IMC architecture. For ResNet-20

and VGG-16 on CIFAR-10, the hybrid IMC architecture

incurs 6.5% (0.004MB SRAM to 0.067MB RRAM) and 4%

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

11

TABLE V
COMPARISON OF POST-MAPPING ACCURACY WITH STATE-OF-THE-ART METHODS. OURS-A SRAM MACRO WEIGHTS PRUNED;

OURS-B#: SRAM MACRO WEIGHTS NOT PRUNED. (**PRECISION NOT REPORTED IN THE MANUSCRIPT)

Method Weight Precision Activation Precision Post-Mapping Accuracy (%) Accuracy Improvement by Our Work (%)

ResNet-20 on CIFAR-10

Model Stability [10] 8-bit 8-bit 68.83 21.9

ReSNA [12] 8-bit 8-bit 88.43 2.3

Ours-A 2-bit RRAM &
1-bit SRAM 3-bit 90.73 -

VGG-16 on CIFAR-10

DFP+DVA [5] 8-bit ** 80.1 12.65

Go Unary [6] 8-bit ** 87.94 4.84

KD+OSA [8] 4-bit 32-bit 92.57 0.18

Unary Opt [9] 8-bit ** 92.77 0.20 (Compared to Ours-B)

Ours-A 3-bit RRAM & SRAM 6-bit 92.75 -

Ours-B# 3-bit RRAM & SRAM 6-bit 92.97 -

ResNet-18 on ImageNet (Top-1)

Unary Opt [9] 8-bit ** 62.69 6.52

Ours-A 3-bit RRAM &
2-bit SRAM 5-bit 69.21 -

(0.22MB SRAM to 5.63MB RRAM) overhead in the memory

requirement. At the same time, for the ImageNet dataset, a

4.7% (0.2MB SRAM to 4.32MB RRAM) and 24% (0.31MB

SRAM to 1.3MB RRAM) overhead in memory is incurred

for ResNet-18 and MobileNet-v2, respectively. The increased

overhead for MobileNet-v2 is attributed to the lower SRAM

pruning ratio due to the need for higher compensation.
Finally, we evaluate the overhead in terms of the hardware

performance (area and power) for the hybrid IMC architecture.

We utilize the post-layout area and power measurements at

100MHz from the designed 65nm test-chip. The area and

power of the RRAM macro consists of the RRAM IMC cross-

bar array, WL driver and shifter, RRAM decoder, flash ADCs

(3-bits), PMOS headers, and BL/SL/column multiplexers. The

power is measured by evaluating the total current drawn by

each supply voltage (1.2V and 3.3V) and taking the product of

the voltage and current. The PMOS header and ADC account

for 90% of the power of the RRAM macro. The SRAM macro

consists of the SRAM memory array, PE array, and buffers. A

similar area and power estimation as that of the RRAM macro

is performed for the SRAM macro.
Fig. 12(a) and Fig. 12(b) show the area and power overhead

for the SRAM macro as a percentage of the RRAM macro. For

ResNet-20 on CIFAR-10, an area and power overhead of 3.7%

and 0.5% are incurred for the SRAM macro, respectively. At

the same time, for VGG-16 on CIFAR-10, an area and power

overhead of 2.3% and 0.3% are incurred for the SRAM macro,

respectively. Meanwhile, MobileNet-v2 incurs the highest area

and power overhead of 20% and 2.6%, respectively. The higher

overhead is attributed to the higher compensation requirement

resulting in a lower SRAM macro pruning ratio.

G. Comparison with Other Work
We compare the post-mapping accuracy for the proposed

hybrid RRAM/SRAM IMC architecture with state-of-the-art

methods. Table V shows the comparison for ResNet-20 and

VGG-16 on CIFAR-10, and ResNet-18 on the ImageNet

dataset. For ResNet-20 on CIFAR-10, compared to the method

in [10] and [12], the proposed hybrid IMC architecture

achieves 21.9% and 2.3% improvement in post-mapping ac-

curacy at lower weight and activation precision, respectively.

Next, for VGG-16 on CIFAR-10, the proposed hybrid IMC

architecture achieves 92.75% accuracy at 3-bit RRAM and

SRAM macro precision with a 6-bit activation precision.

Compared to [5, 6, 8], the hybrid IMC architecture achieves

12.65%, 4.84%, and 0.18% improvement in post-mapping

accuracy, respectively. Furthermore, if the SRAM macro is

not pruned, the proposed method achieves 92.97% accuracy,

a 0.2% improvement in post-mapping accuracy compared

to [9]. For ResNet-18 on ImageNet, compared to [9], the

proposed hybrid IMC architecture achieves 6.52% higher

post-mapping accuracy at 3-bit RRAM macro precision, 2-

bit SRAM macro precision, and a 5-bit activation precision.

Authors in [5, 6, 8, 9] do not discuss the quantization activation

precision. The hybrid IMC architecture with a lower activation

precision provides higher hardware performance and accuracy.

Furthermore, [8] utilizes the larger ImageNet VGG-16 model

with 3 FC layers for the CIFAR-10 dataset (134M parameters).

In this work, we utilize the smaller CIFAR-10 model for

VGG-16 with 15M parameters. Finally, both [6] and [9]

utilize a unary mapping scheme, thus requiring exact variation

measurements for each cell in the RRAM IMC crossbar.

A complete R-V-W (takes up to many days) needs to be

performed to quantify the variations at the cell level. Hence,

the proposed hybrid IMC architecture provides a more scalable

solution for robust DNN acceleration. Overall, the improved

accuracy is attributed to the hybrid IMC architecture with the

optimal scale of SRAM compensation achieved through the

programmable shifter. We carefully tune the precision (weights

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

12

and activations), the sparsity for the SRAM MAC engine

macro, and the scale of shit for the SRAM macro output to

obtain the best accuracy.

VI. CONCLUSION
In this work, we propose a novel hybrid RRAM/SRAM

IMC architecture for robust DNN acceleration. The hybrid

IMC architecture utilizes an RRAM IMC macro with MLC

cells, an SRAM macro, and a programmable shifter. The

output from the RRAM macro is compensated by the SRAM

macro output to create an ensemble model and achieve bit-

level compensation. The scale of compensation is controlled

by using a programmable shifter for the SRAM macro output.

Next, we develop a training framework to enable the hybrid

IMC architecture that supports quantization, structured prun-

ing, RRAM IMC-aware training, and different compensation

scales through the programmable shifter. Finally, we design a

test-chip using the 65nm SUNY process to demonstrate the

efficacy of the proposed hybrid IMC architecture.
We perform detailed experiments across different DNNs

and datasets to demonstrate the performance of the proposed

hybrid IMC architecture. Compared to the conventional VAT

method, the proposed hybrid IMC architecture achieves up

to 25% improvement in post-mapping accuracy. In addition,

compared to state-of-the-art methods, the proposed hybrid

IMC architecture provides a scalable solution that achieves up

to 21.9%, 12.65%, and 6.52% improvement in post-mapping

accuracy with minimal overhead for ResNet-20 on CIFAR-

10, VGG-16 on CIFAR-10, and ResNet-18 on ImageNet,

respectively. Finally, through the experimental evaluation of

the hybrid IMC architecture, we show that the SRAM compen-

sation opens the opportunity for a realistic IMC architecture

with multi-level RRAM cells.

VII. ACKNOWLEDGEMENTS

This work was supported by C-BRIC, one of six centers in

JUMP, a Semiconductor Research Corporation (SRC) program

sponsored by DARPA, National Science Foundation under

Grant No. 2144751, and SUNY Polytechnic Institute authors

acknowledge AFRL award FA8750-19-1-0014.

REFERENCES

[1] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss

v2: A Flexible Accelerator for Emerging Deep Neural

Networks on Mobile Devices,” IEEE JETCAS, 2019.

[2] G. Krishnan et al., “Interconnect-aware Area and Energy

Optimization for In-Memory Acceleration of DNNs,”

IEEE Design & Test, 2020.

[3] A. Shafiee et al., “ISAAC: A Convolutional Neural

Network Accelerator with In-Situ Analog Arithmetic in

Crossbars,” in ISCA. ACM/IEEE, 2016.

[4] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim:

In-memory Acceleration of Deep Neural Network Train-

ing with High Precision,” in ISCA. IEEE, 2019.

[5] Y. Long, X. She, and S. Mukhopadhyay, “Design of

Reliable DNN Accelerator with Un-Reliable ReRAM,”

in DATE. IEEE, 2019.

[6] C. Ma et al., “Go Unary: A Novel Synapse Coding and

Mapping Scheme for Reliable Reram-based Neuromor-

phic Computing,” in DATE. IEEE, 2020.

[7] I. Chakraborty, M. F. Ali, D. E. Kim, A. Ankit, and

K. Roy, “GENIEx: A Generalized Approach to Emu-

lating Non-Ideality in Memristive Xbars using Neural

Networks,” in DAC. IEEE, 2020.

[8] G. Charan et al., “Accurate Inference with Inaccurate

RRAM Devices: Statistical Data, Model Transfer, and

On-line Adaptation,” in DAC. IEEE, 2020.

[9] Y. Sun et al., “Unary Coding and Variation-Aware

Optimal Mapping Scheme for Reliable ReRAM-based

Neuromorphic Computing,” IEEE TCAD, 2021.

[10] G. Krishnan et al., “Robust RRAM-based In-Memory

Computing in Light of Model Stability,” in IRPS, 2021.

[11] V. Joshi et al., “Accurate Deep Neural Network Inference

using Computational Phase-Change Memory,” Nature
communications, 2020.

[12] X. Yang et al., “Multi-Objective Optimization of ReRAM

Crossbars for Robust DNN Inferencing under Stochastic

Noise,” in ICCAD. IEEE/ACM, 2021.

[13] Z. He et al., “Noise Injection Adaption: End-to-end

Reram Crossbar Non-Ideal Effect Adaption for Neural

Network Mapping,” in DAC. IEEE/ACM, 2019.

[14] S. Zhou et al., “Dorefa-net: Training Low Bitwidth

Convolutional Neural Networks with Low Bitwidth Gra-

dients,” arXiv preprint arXiv:1606.06160, 2016.

[15] J. Choi et al., “Pact: Parameterized clipping activa-

tion for quantized neural networks,” arXiv preprint
arXiv:1805.06085, 2018.

[16] M. Liehr, J. Hazra, K. Beckmann, S. Rafiq, and N. Cady,

“Impact of Switching Variability of 65nm CMOS In-

tegrated Hafnium Dioxide-based ReRAM Devices on

Distinct Level Operations,” in IIRW. IEEE, 2020.

[17] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “Optimizing

Loop Operation and Dataflow in FPGA Acceleration

of Deep Convolutional Neural Networks,” in ISFPGA,

2017.

[18] L. Yang, Z. He, and D. Fan, “Harmonious Coexistence

of Structured Weight Pruning and Ternarization for Deep

Neural Networks,” in AAAI, 2020.

[19] B. K. Joardar, A. Deshwal, J. R. Doppa, P. P. Pande,

and K. Chakrabarty, “High-Throughput Training of Deep

CNNs on ReRAM-based Heterogeneous Architectures

via Optimized Normalization Layers,” IEEE TCAD,

2021.

[20] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A

Pipelined Reram-Based Accelerator for Deep Learning,”

in HPCA. IEEE, 2017.

[21] A. Mohanty et al., “Random sparse adaptation for accu-

rate inference with inaccurate multi-level RRAM arrays,”

in IEDM. IEEE, 2017.

[22] W. Zhang et al., “A circuit-algorithm codesign method

to reduce the accuracy drop of rram based computing-

in-memory chip,” in ICTA. IEEE, 2020, pp. 108–109.

[23] B. Liu et al., “Reduction and IR-drop Compensations

Techniques for Reliable Neuromorphic Computing Sys-

tems,” in ICCAD. IEEE, 2014.

[24] L. Chen et al., “Accelerator-Friendly Neural-Network

Training: Learning Variations and Defects in RRAM

Crossbar,” in DATE. IEEE, 2017.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3197516

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 17:47:40 UTC from IEEE Xplore. Restrictions apply.

