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It has been a continuing challenge to carry out simulations at time and spatial scales compatible with practical
experimental observations. Here we implement a novel scalar auxiliary variable (SAV) scheme introduced in
(Shen et al., 2018) for phase-field equations to drastically improve the numerical accuracy, efficiency and sta-
bility. We first bench-marked two representative phase-field method applications involving three-dimensional
(3D) grain growth and spinodal phase separation. By implementing the SAV scheme within the state-of-the-art
semi-implicit Fourier spectral scheme we achieved an order of magnitude improvement for the single-order-
parameter Allen-Cahn equation and at least a 100% improvement for a set of multi-order-parameter Allen-
Cahn equations for grain growth problems and the Cahn-Hilliard equation for compositional phase separation.
More importantly, the efficiency enhancement of SAV becomes more dramatic as interfaces become sharper. Its
application to the growth morphology and kinetics of p’-MgyNd precipitates demonstrates a remarkable
improvement of more than 50 times in computational time. This work is expected to further stimulate the ap-

plications of phase-field simulations of a broad range of materials processes.

1. Introduction

Phase-field method is a versatile and yet computationally expensive
method that has been applied to modeling, understanding, and pre-
dicting microstructure evolution in a wide variety of material processes
[1]. There are continuing demands for large-scale three-dimensional
(3D) simulations [2,3] with realistic time scales and spatial resolutions
that are compatible with experimental observations. Many attempts
have been made to develop and implement advanced algorithms to
improve the efficiency and accuracy of the numerical solutions for
phase-field evolution equations [4-21]. A number of progresses have
been made in demonstrating significant efficiency improvement with
good applicability across different phase-field models [4,6] as well as in
optimizing existing algorithms and numerical treatments [18,19,22].
Among these efforts, the application of the semi-implicit Fourier spectral
method to phase-field equations by Chen et al. [6] plays an important
role, bringing in 2-3 orders of magnitude efficiency upgrade after
solving the elliptical terms semi-implicitly with the help of Fourier
spectral method. This greatly helps the algorithm development in
different aspects of phase-field applications such as coupled Cahn-
Hillard/Navier-Stokes system by Badalassi et al. [4], polycrystal
growth under multiple coupled Allen-Cahn equations [23,24] and
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ferroelectric domain evolution coupling with elastics [25].

Recently, an unconditionally energy stable and efficient numerical
scheme called Invariant Energy Quadratization (IEQ) scheme has been
developed by Yang et al. [21] which is successfully implemented to solve
phase-field equations. The seminal idea of this work was to evolve the
gradient energy term and other energy terms separately while keeping
the kinetics and energy dissipation law very similar, so the non-linear
system can be simplified to coupling linear system which can be effi-
ciently solved. However, the IEQ scheme has drawbacks such as variable
coefficients while solving the linear equations and the requirement that
energy density should be bounded below. Shen et al. [14] then proposed
a novel Scalar Auxiliary Variable (SAV) scheme which inherits the ad-
vantages in IEQ scheme such as the separation of evolving different
energy terms, good accuracy and unconditionally energy stability,
where the energy of the system always decreases regardless of time
stepping. See ref. [14] and the supplemental material for the proof.
Moreover, in the SAV scheme, a variable has been introduced to help
evolve the non-gradient free energy term while linear equations with
constant coefficients are solved. Also, the requirement of non-linear
energy density being bounded from below has been alleviated. For the
SAV scheme, stability analyses are performed in [14,26] and asymptotic
behavior is discussed in [27,28] which proves the scheme is accurate in
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Allen-Cahn and Cahn-Hillard equations in backward differentiation
formula (BDF). This newly-proposed scheme provides a way for accel-
erating phase-field simulations with good applicability.

In this paper, we implement the Scalar Auxiliary Variable (SAV)
scheme [14,29] to solve the phase-field evolution equations. With the
discretized evolution equations firstly derived in this work for Allen-
Cahn and Cahn-Hillard equations-based phase-field models, we will
demonstrate that the SAV scheme is not only easy to implement but also
numerically accurate, efficient and unconditionally stable in solving
phase-field equations. We first investigated its performance using two
typical application examples. One is the three-dimensional (3D) grain
growth kinetics by solving a large set of coupled Allen-Cahn equations,
and the other is spinodal phase separation described by Cahn-Hilliard
equations. We then applied it to model the growth morphology and
kinetics of precipitates in a Mg-alloy.

In the following, we present the SAV scheme in Section 2. Section 3
describes the implementation of the SAV scheme in solving phase-field
equations for 3D grain growth and 3D phase separation in combina-
tion with the semi-implicit Fourier-spectral scheme. Section 3 focuses on
benchmark testing results on 3D grain growth and phase separation and
discuss the efficiency, accuracy, and stability of the SAV scheme by
comparing with existing state-of-the-art semi-implicit Fourier spectral
scheme. Section 3 discusses the application of the SAV scheme to the
growth morphology and kinetics of a Mg-alloy incorporating coherency
strain energy contribution. The last section discusses the details about
implementing the SAV scheme and potential strategies to further
improve the efficiency.

2. SAV scheme and numerical implementation

We consider a system described by a set of spatially dependent field
variables with its total free energy F given by

/ [ () + Y2 v, o, |av 8

where f is the local free energy density as a function of N field variables

1,12, 1y, and k is the gradient coefficient matrix with components k4.
The evolution of field variables 1 = (4,75, -, 7ly)" follows

om .
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where & =—(— A)L,(x=0,1) is a non-positive symmetric operator
corresponding to the Allen-Cahn (x = 0) or the Cahn-Hilliard (x = 1)
equation with L being the kinetic coefficient matrix, p represents the
driving force for the evolution of field variables n and is defined as

oF ,
p=o=-Dean+f({n}) 3
n
where D = Ly y +ily is the coefficient matrix with J and I being the
matrix of ones and the identity matrix, respectively, and f ({r;}) =
Of ({n:} )/0n1, of ({ni} ) /0na, -+, of ({n;} ) /ony )"
To solve the evolution equation (Eq. (2)), the SAV scheme introduces

a temporally evolving scalar auxiliary variable, r, with its initial value
defined as

r|l:0 = \/ ‘7L‘r:0 +Go (4)

where .7 = [,f({;} )dV is the total local free energy which evolves
according to the order parameter set {s;} and is bounded below
regardless of simulation time, i.e., a value of Cy such that Cy > —.7 to
ensure that the quantity inside the square root of Eq. (4) is always
positive. Following the SAV scheme [14], Eq. (3) is now rewritten as
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p= fDKAnJr\/i—JrCOf ({n.})- (5)

It should be noted that the scalar auxiliary variable r temporally evolves
independently in a sense thatr(t > 0) ~ /.7 | + Co, and the evolution of

r is described [14] by

dr 1 N,
& 2T+ co/vzqf‘f({

where f('l({ni}) = df({n;} )/0ong- According to [14], the SAV scheme as
described in Egs. (1), (2), (5), (6) is unconditionally energy-stable and
accurate based on appropriate discretization. It should be noted that the
SAV scheme is a numerical method which does not change the dynamics
of the evolution equation [14,26-28]. Since Eq. (6) is a full derivative of
the equation r = /7 + Cy, this means the coefficient -—_— reaches

unity when time stepping is sufficiently small.

In order to numerically evolve Egs. (2), (5), and (6), we discretize the
system using the 1% order backward differentiation formula (BDF) with
equal time stepping At within the semi-implicit scheme,

o
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where the superscripts n and n + 1 correspond to variables at the n and
the n + 1™ time steps, respectively. In this work, we assume no cross-
interaction between order parameters, i.e. kg = O(p # q), so Dk =k
after the assumption. In order to obtain the variables of the n + 1" step
based on the values of previous steps in semi-implicit scheme, an explicit

lth

approximation of the field variable matrix at the n + step, N1, is

needed, and we use
T =o' ! (10)

The approximated scalar auxiliary variable 71 can be expressed based
on Eq. (4) using the approximated field variable n*1:

e / FUITYIAV + Co. an
v

Combining Egs. (7)- (9)and eliminating p™**! and r**!, we find
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where b1 = <W bgT, ~~-,bl’{,“> = ({n} “} ) /r+1. By separating

the unknown variables and the known ones, the expression can be
rearranged as

A
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where (bg“,n;) = [,brL(V)y
the two scalar fields bj*! and n7. We further define (b"”,q") =

(05 m). (B7m) -

7(V) dV represents the inner product of

_ T
(b?flﬂh':r)) as the inner product matrix,
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C" ="+ At[r” - %ZS’ (bg“,ﬂ) ] Zb™as the constant matrix in Eq.

(13),and M = Iy + At- kA as the coefficient matrix for n"*1, so that the
field variables at the n + 1% step can be obtained by solving

A R R
Mnn+l _ {JI,N (bn+l , ’,In+]) :g)bn+l = C". (14)

Premultiply Eq. (14) with M1, take inner product of both sides with

respect to b1, and then premultiply both sides with J; y, one could get

T ) = S (0 ) (6T, M )

=L (b M), (15)

Now the unknown inner product term J; v (b"H,n"“> in Egs. (9) and

(14) can be explicitly expressed as

Jiw (0T, M)
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Combining Egs. (9), (14), and (16) the variables at then + 1th step can be
obtained,
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It should be noted that the premultiplication of J;y = (1,1,--,1) is
equivalent to taking summation of the original N x 1 matrix for all of its
components, and the operator M is diagonal since the gradient coeffi-
cient matrix k is diagonal. As a result, Eqs. (17) and (18) can be easily
and efficiently solved. In addition, Egs. (17) and (18) are general and
independent of the numerical schemes (e.g., finite difference, finite
element, Fourier spectral method, etc.) and specific free energy ex-
pressions. In the examples presented blow, the Fourier spectral scheme
is used. (See supplementary material S5 for the detailed strategy of
solving Egs. (17) and (18) utilizing Fourier transform).

It should be pointed out that a 2" order BDF based SAV scheme can
be discretized similarly, and the Crank-Nicolson (CN) scheme is also
applicable in the SAV approach with an even simpler implementation
(see supplementary material Section S1 and S2 for detailed imple-
mentation of 2" order BDF based and CN based SAV schemes).

3. Applications of SAV scheme
3.1. Shrinking of a 3D single antiphase domain

We benchmark the efficiency of the SAV scheme using the shrinking
rate of a 3D spherical antiphase domain as an example. A simplest form
of f(n) to describe the shrinking of a single antiphase domain is the
double-well energy density function [23,24]:

1 1
fln) = =3+, a9

2
where f(n) has two degenerated minima located at y = -1, + 1, rep-
resenting two antiphase domain states. For this example, the governing
evolution equation is

0 ,
a—? = LeAn—Lf (n), (20)
where
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Following Egs. (7)-(9), the discretized evolution equations based on the
SAV scheme with 1! order BDF are given by

nn+l 7’7n B il rn+l —
BTV —L<—’<A’7 +ﬁf (1) ), (22)
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71 and r"*! can then be obtained following Egs. (17) and (18) using
M=1-AtLka, C" = —At[r =4 (55T, ) LT, BT = f(5pT) /

r+land i+l = S f 1AV + Co with g+l = 25" —p*~! and Cp = V/4

where V is the volume of the system.

The simulation starts with one spherical antiphase domain with
radius Ry in a 3D periodic system. As illustrated in Fig. 1 (a), the initial
profile of  is defined as #(¢ — £o<Ro)|,_o = 1 and n(¢ — ¢o > Ro)|,_¢ =
—1, where / is the position vector for any points, and / is the position
vector for the center of the spherical domain. The simulation parameters
and their descriptions are listed in Table 1. The Lx, Ly and Lz are the
dimensions for the simulation region and Ax, Ay and Az are the di-
mensions for one mesh along, y and z directions, respectively. nx, ny and
nz are numbers of mesh points along the corresponding directions, e.g.,
nx = Lx/Ax. In this work, both cubic meshes (Ax = Ay = Az) and cubic
simulation region (Lx = Ly = Lz) are used. During the evolution, the
radius of the spherical antiphase domain will decrease with time, as
shown in Fig. 1(b) to minimize the total interfacial energy. When the
driving force or kinetic coefficient is small, i.e., L and « are small, the
radius R(t) of the shrinking domain can be expressed analytically as

R(t) = 4/R% — 4Lxt, which is used for quantifying the accuracy. As

shown in Fig. 1 (c), the simulated decreasing trend of R(t), under Ax =
0.33 and At = 0.5, agrees well with the reference solution. To further
quantify the simulation accuracy, we define % := (R% —R?(t) ) /4Lxt and
compare it with the reference value of 1.0 in Fig. 1 (d) as a function of
time. The parameter |1 —.%| is then used to quantify the error for the
current problem, which is <0.2% for the simulation example in Fig. 1.

We then systematically investigate the accuracy of the 1% and 2"
order BDF based SAV schemes (abbr. 1stSAV and 2ndSAV, respectively)
under different discretization grid sizes (Ax) and time step sizes (At) for
the current problem, and compare the simulation results with the
generally accepted discretization schemes in phase-field models, such as
explicit differentiation scheme [23,24] (in short, Explicit) and both 18t
and 2" BDF based semi-implicit (SI) schemes [6] (abbr. 1stSI and 2ndSI
respectively). (See supplemental material Section S3 for full descriptions
and equations for the numerical schemes that are not elaborated in the
main paper.) The Explicit scheme is implemented using the finite dif-
ference method whereas the other schemes use the Fourier spectral
method to avoid solving matrices [6].

A series of simulations are performed using the SAV-based scheme
with comparison of well-accepted discretization of phase-field models.
In Fig. 2, different time stepping Ats are used on the antiphase shrinking
problem to examine the accuracy of the models. As shown in Fig. 2 (a),
under x = 1, the error |1 —.%| increases with the increase of At, and
decreases with the increase of nx, until reaching a stable error value or
the numerical scheme diverges (e.g., At = 0.01, nx greater than 260 for
the explicit scheme). In addition, the critical value for nx for the error to
reach a stable magnitude decreases with the increase of At. These ob-
servations are consistent with the prediction from the truncation errors
of the numerical schemes. More importantly, the accuracy and appli-
cability range of the numerical schemes are different: the 1stSI is ac-
curate (|1 — .%| < 5%) only when At = 0.01 and nx > 100; the accuracies
of the 2ndSI, 1stSAV and 2ndSAV schemes are comparable when nx >
100 (Ax < 1) for all three At values, while 2ndSAV is not as accurate as
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Fig. 1. Simulation setup and demonstration for 3D single spherical grain shrinking problem and its accuracy quantification. (a) (b) the 3D view for the single
spherical grain at t = 0 and t = 200, respectively. In these plots, the region that 5 < 0 are set to be transparent to show the spherical grain. (c) (d) the grain radius R vs.
t plot and .77 := (Rg —R%(1) )/4L«t vs. t plot for the SAV incorporated model with nx = ny = nz = 300, At = 0.5, respectively, where nx = Lx/Ax. (d) provides a
clearer error estimation compared with (c). All simulations shown in this figure adopt parameters in Table 1.

Table 1

Parameters used in the 3D single spherical grain shrinking simulation. x and L
are the parameters introduced in Egs. (2), (3) and (20), while x and L are reduced
to scalars from matrices since only one order parameter is used, i.e. N = 1. Lx, Ly
and Lz are the dimensions of the simulation system along x,y and z direction,
respectively, while Ax, Ay and Az are the dimensions of the discretized mesh.

K L N Lx( =Ly =Lz) Ax(= Ay = Az) At Ro

0.01-1 1 1 100 0.5 0.01-20 40

the other two schemes when nx < 100 (Ax > 1). Thus, in terms of the
current domain shrinking problem, the accuracy and applicability of
1stSAV scheme is better than 2ndSAV for most of the testing ranges of
0.33 < Ax < 2 and 0.01 < At < 7.7; moreover, under a fixed Ax, its
adoptable At value is over an order of magnitude larger than the best
reference schemes (explicit and SI schemes) at a comparable accuracy.
The 2ndSAV scheme is the most accurate when both Ax and At are small.

Another potential advantage of the SAV scheme is its capability to
dealing with microstructure evolution problems with a very thin inter-
facial thickness. We performed a series of simulations under a fixed
mesh size Ax = 0.5 while varying At and the gradient coefficient values,
x=1,0.1 and 0.01, which is positively correlated to the equilibrium
interfacial thickness based on the form of Eq. (1). In this work, the
interfacial thickness is defined as the area with 5 € [0.1,0.9]. For the

simulation results shown in Fig. 2 (b)-(d), we determine whether a result
is accurate based on the following two criteria: (1) The error for the
radius of the shrinking domain should be <5%, i.e., |1 —.%|(5%; (2) the
maximum value of the order parameter inside the shrinking domain,
Nmax> deviates no more than 5% from its equilibrium value (7 = 1), i.e.,
[Mmax —11(5%. In Fig. 2 (b)-(d), a cross mark is labeled when a simulation
result does not meet either of the two criteria. According to Fig. 2 (b), for
the x =1 case, the explicit scheme diverges when At > 0.04. For SI
schemes, even though they are stable for larger At, the accuracy drops as
At increases: the 1stSI scheme results in an inaccurate radius for At >
0.1, while the error in the order parameter values for 2ndSI scheme fails
to satisfy the criterion |;,,,, —1|(5% for At > 0.6. On the other hand, for
the SAV schemes, the At ranges which yield sufficient solution accu-
racies are significantly expanded: the maximum accurate At for 1stSAV
(Atmax = 7.7) and 2ndSAV (Atpax = 3.0) schemes are 13 times and 5
times greater than those of the widely-used referencing SI schemes. In
addition, for both SI and SAV simulations, the 2™ order BDF scheme is
more accurate than the 1% order BDF scheme at small At (At < 0.6 for SI
and At < 0.2 for SAV). However, for SAV simulations with larger At, the
1% order BDF scheme is more accurate due to the local truncation errors
of the numerical schemes. For At«1, the local truncation error for the
2™ order BDF is second order in time, whereas the higher order terms of
At become dominant when At becomes larger. As a result, its accuracy
drops faster than the 1% order BDF scheme. In this sense, although the
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Fig. 2. Simulation results for 3D single spherical grain shrinking problem. (a)
the error plots as function of nx (Ax) while At is fixed at 0.01, 0.1 and 0.5,
respectively. All the errors in the plots are calculated as |1 —.%|. (b)-(d) The
error plot as function of At for different discretization schemes within 100 x
100 x 100 system and nx = 200 (Ax = 0.5) for k = 1, 0.1 and 0.01, respectively.
The other parameters used can be found in Table 1. Besides, the simulation is
considered incorrect and the corresponding plot is marked with red cross
thereafter if the error is greater than 5% or the maximum value of the order
parameter in the bulk deviates by 5%.

accuracy of the domain-shrinking problem can only be strictly guaran-
teed under small At and fixed Ax, our current benchmark simulations
show that under given accuracy requirements, the SAV schemes allows a
much larger At for stable numerical solutions.

For cases with thinner interfaces, e.g., x = 0.1 shown in Fig. 2 (c),
while the referencing semi-implicit schemes are accurate with a limited
At, the SAV schemes are accurate with a larger maximum At compared
with the x = 1 case. For extremely thin interfaces shown in Fig. 2 (d), i.
e., k = 0.01, the semi-implicit schemes fail to provide accurate results
for all At values whereas the SAV schemes overcome numerical pinning
and provide accurate domain shrinking trend for At > 1.5 and remain
accurate up to At as large as 50. The results show a greater advantage for
the SAV schemes over the semi-implicit schemes on the thinner
interfaces.
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3.2. 3D grain growth with multiple grains

In this section, the SAV scheme is applied to polycrystal growth with
multiple order parameters. The performance of the SAV based schemes
(1stSAV and 2ndSAV) are compared with the well-established explicit,
1stSI and 2ndSI reference schemes. These reference schemes demon-
strate very good efficiency in different works for the last two decades
[6,9,18,30,31].

We consider a general 3D inhomogeneous system consisting of
multiple grains, where a set of phase-field variables 7, 7, -+, 7y are used
to represent each of these grains. A simplest form of f for such a model
system as a function of the phase-field variables is [23,24]:

2
1 1 1
) = =35 () 43I 20

In this case, f({#;} ) has 2N degenerated minima located at ( + 1,0, ---, 0),
(0,+£1,--,0),...,(0,0, ---,£1). The evolution of these order parameters is
governed by Allen-Cahn equations, i.e., x = 0 in Eq. (2). The dis-
cretization of the governing equations involving multiple phase-field
variables based on SAV scheme is similar to that of single phase-field
variable as described in Section 3.1, by applying partial derivatives of
non-linear free energy expression df({n;})/oy; following Eq. (24) into
Eq. (8), one would evolve Egs. (17) and (18) as the governing equations
for the grain-growth model within SAV scheme.

The simulations are performed with parameters listed in Table 2. The
system is initialized with a total of N spherical grain seeds with a uni-
form radius rseeq located at random positions. That is, for the i-th particle
with an initial radius rseq and center position vector 7, the order
parameter i is initialized as:;, (€ — Co<Tseed)| g =
1,7;(€ — €0 > Tseed)|;—o = 0. The matrix phase is defined after the system
initialization as the mesh points with no finite grain order parameters.
To avoid unnecessary numerical issues, no more than one finite grain
order parameter is assigned to a certain mesh point. Periodic boundary
condition (PBC) is applied along x-, y- and z- directions of the simulation
domain. Fig. 3 shows the comparison of 1stSAV and 2ndSI schemes with
At = 0.1 on the morphology of the grains using Ax = 1 (nx = 100) and
the same initial random seeds. According to Fig. 3 (a)-(h), the SAV based
simulation yields an identical evolution process with the reference nu-
merical scheme. Fig. 3 (i) plots the average grain sizes as functions of
time for the model with the two different schemes. The figure demon-
strates that the model with SAV schemes show consistent results with
the model with referencing 2ndSI scheme. Table 3 lists the maximum At
for each scheme based on the same initial condition and the following
accuracy judging criteria: i) the maximum summation of order param-
eters Ziqiz must lie in [0.95, 1.05], ii) the average grain diameter should
not deviate more than 10% compared with an accurate reference. Ac-
cording to Table 3, SAV schemes show better performance than explicit
and semi-implicit schemes with a maximum accurate At being 1.2 for
1stSAV and 1.7 for 2ndSAV, but the advantage drops to about 2 times.
According to Eq. (5), r serves as the prefactor for the gradient term in the
evolution equation. For the case where only one order parameter is
evolving (N = 1), the convergence is greatly enhanced since the coef-
ficientr/\/7 [ + Co changes with time to balance the local and gradient
driving forces. However, for grain growth involving multiple grain order
parameters, one r cannot account for the evolutions of all the order
parameters as accurately as the single grain case, so the maximum ac-
curate At for SAV scheme cannot be as large as that of the single crystal
case.

Table 2

Parameters used in the 3D grain growth simulation.
K L N Lx(=Ly=Lz) Ax(= Ay = Az) At Tseed
2 1 100 100 0.33-3.3 0.001-6.0 10
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Fig. 3. Simulation results for polycrystalline evolution starting from the same initial condition with identical nuclei for the 1stSAV scheme and 2ndSI scheme. Both
simulations use At = 0.1 and Ax = Ay = Az = 1. (a)-(h) the morphological plots for the reference 2ndSI model and the SAV based model at t = 0, 20, 100 and 500,
respectively. (i) the average grain size as functions of simulation time for the SAV based model and the reference 2ndSI model.

Table 3

Efficiency and accuracy comparison for the SAV based models and the reference
models on the multi-grain growth problems. The simulations use identical initial
grain seed distribution and the Ax = Ay = Az = 1 for all simulation cases. The
maximum At is obtained using two judging criterions: i) the maximum sum-
mation of order parameters > _;#? must lie in [0.95, 1.05], ii) the average grain
size should not deviate more than 10% when the number of active grains is
larger than 10.

Scheme Explicit 1stSI 2ndSI 1stSAV 2ndSAV

Max At 0.08 1.0 0.6 1.2 1.7

3.3. Spinodal decomposition problem

Spinodal decomposition describes the spontaneous separation of an
unstable solution to form multiple composition domains, which can be
described by the Cahn-Hillard (CH) equation. For a general 3D inho-
mogeneous system with a single composition field #, we adopt Eq. (19)
and Eq. (21) as a simple form of f and its derivative. For this spinodal
decomposition problem, we have 2 = AL in Eq. (2), so the evolution
equation becomes

o _

5 = LA(=xAn+f (1). (25)

The discretized evolution equations using 1% order BDF based SAV
scheme can be expressed as
nn+1 _ ',In B B il LH , —
- LA( kAn +ran (1) ), (26)
The evolution of r is governed by Eq. (23). The numerical solutions are
expressed in Egs. (17) and (18). For the other schemes (i.e., 2ndSAV,
1stSI and 2ndSI) used in this Section, please refer to supplementary
material S4 for the detailed implementations.

The SAV scheme for spinodal decomposition is firstly tested by
comparing with an accurate 1D reference with spatiotemporal evolution

profiles, using parameters listed in Table 4. This reference profile uses
1stSIscheme with Ax = 0.5 and At = 0.02. The accuracy of this reference

Table 4
Parameters used in the 1D and 3D spinodal decomposition simulations.

K L N At Initial profile (1D)
1 (1D), 0.01-1 (3D) 1 1 0.005-5.0 "o = sinz—g,x € 0,L]
Lx( =Ly = Lz) Ax(= Ay = Az)

100 0.5

profile is validated by performing a series of testing simulations with
smaller Ax, At and different numerical schemes; and then finding the
maximum relative error # between the testing profiles and the reference
profile at all positions and simulation times. As shown in Table 5, the
reference case shows no more than 3 x 10 difference compared to
either the cases with smaller At and/or Ax with the same numerical
scheme or the cases with the same At and Ax but different numerical
schemes. These results validate the accuracy of the reference case and
indicate the four numerical schemes in Table 5 are consistent at small Ax
and At. The validated reference is then compared with simulation cases
with different At and numerical schemes. The results are shown in Fig. 4.
The allowable error threshold is set to 5%, as shown by the dashed grey
line in Fig. 4. According to the results, the SAV schemes are shown to be
accurate and consistent for a range of At values up to 0.60, similar to SI
schemes.

3D simulations of spinodal decomposition are then performed using
different numerical schemes with different At and the parameters in
Table 4. The initial composition corresponds to uniform distribution
near 0 with a magnitude of 0.002, i.e., #,_¢(/) ~ U[—0.001,0.001]
where / is the position vector of any mesh points. Due to the sensitivity
of the evolved profiles to At values, only the criterion |, —1[(5% is
adopted to judge if a simulation is acceptable. The simulation results are
summarized in Table 6. According to the results, 2ndSAV scheme sim-
ulates with the largest Atyax, Which is about 1.5-2 times the 1stSI and
1stSAV schemes for xk = 0.1 and 1 cases while 2ndSI scheme has the
smallest Atyax. For the case with x = 0.01, all numerical schemes with
fixed At end up with a small Aty = 0.01 because of the numerical
pinning and large driving force near the thin interfaces. However, with
the implementation of the adaptive At algorithm [32] (see supplemen-
tary material S6 for details), the SAV scheme-based models can be
greatly accelerated. The simulation results with 1stSAV + adaptive At
scheme for x = 0.01 are shown in Fig. 5. The results show typical spi-
nodal decomposition patterns. On the other hand, we are not able to
increase Atpyax using adaptive At for the semi-implicit schemes. This can
be attributed to the different mechanisms that lead to the failure of the

Table 5
The errors between selected simulation cases and the referencing case for 1D
spinodal decomposition problem.

Case No. Scheme At Ax Error &
Ref 1stSI 0.02 0.5 0

1 1stSI 0.005 0.5 1.29 x 103
2 1stSI 0.005 0.25 1.29 x 10°°
3 2ndSI 0.02 0.5 1.38 x 103
4 1stSAV 0.02 0.5 2.32 x 10°®
5 2ndSAV 0.02 0.5 1.38 x 103
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Fig. 4. Comparison between the reference case within 1stSI at Ax = 0.5, At =
0.02 and the testing cases with 1stSI, 2ndSI, 1stSAV and 2ndSAV numerical
schemes at different At.

Table 6

The performance of different numerical schemes on 3D spinodal decomposition
problems with « =0.01,0.1 and 1. The Atp.x is judged by the criterion
[max —1[(5%. That is, Atmax is the maximum At for certain scheme and « to
satisfy the criterion |n,,,, —1](5% throughout the simulation.

Numerical Adaptive At + 1stSAV ~ 2ndSAV  1stSI 2ndSI
scheme SAV

Atmax k = 0.01 >5 ~0.01 ~0.01 ~0.01 ~0.01
Atpmax & = 0.1 >5 0.16 0.31 0.16 0.01
Atpax k = 1 >5 2.4 3.8 2.0 0.41

SAV and SI schemes under fixed large At. For SAV schemes, the limit for
the time step size is the large driving force in the early stage of the
simulation whereas for SI schemes, the limit for the time step size is the
kinetic equations and conditional numerical stability. Since the
currently adopted adaptive At scheme automatically updates At based
on the driving force of the previous time step, it works well for SAV
schemes using small At values at the beginning of the simulation and
then increasing to larger values as the driving force decreases for later
stages. In contrast, the adaptive At + SI schemes could not enjoy such
advantage since At could not exceed a certain threshold. As a result, with

@) s |

t=20000

-1
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the implementation of adaptive At algorithm, the SAV schemes can
achieve more than 100-time larger At than the semi-implicit Fourier
spectral schemes with good accuracy.

3.4. 3D coherent precipitate growth morphology

Precipitation of second-phase particles is a common process in
strengthening metallic alloys [33-35]. As an example, we apply the SAV
scheme to solve the phase-field equations describing the growth
morphology of  -Mg;Nd precipitates in Mg-Nd alloys [35]. We employ
three structural order parameters to distinguish the three orientation
variants of § precipitates and one composition field (composition of Nd)
to describe the compositional distributions in the precipitate-matrix two
phase system. The elastic strain energy contribution to the thermody-
namic driving force for # evolution and the anisotropic Mg/f interfa-
cial energies are considered.

The free energy density, fi, is given by

T An3) = fuoca (% {1, }) + Foraa ({V1,3) +Fu ({1, }), 27)

where the order parameter set {1, } = {if;,,, 73} represents the spatial
distributions of the three structural variants of § precipitates, {Vr,} =
{Vn1, Vi, Vns} is the gradient in structural order parameters, and x is
the local composition of Nd. In Eq. (27), the free energy density includes
the contributions from the gradient energy density fyaa({V7,}), local

bulk energy density fiocar (X, {#7,}), and elastic energy density fu({#,}),

Sioca (%, {n,}) = ”)<IZflh(ﬂi)>+fﬂ Z h(n;) + @fn ({n,} ),

(28)
eraa ({V1,}) ZZF Ko Vi, Vi, (29)
S ==Ciju (e,j + 0g;j — € ) (E;d + beyy — 82,). (30)

In Eq. (28), f%, f/, x* and x* are the free energy densities and Nd
compositions in @-Mg (matrix) phase and § precipitate phase, respec-
tively, h(n;) = 3n? —2#3 is the interpolation function, and fy, is a double-
well type potential, with @ being the barrier height. The Kim-Kim-

200 400 600
Steps

0

Fig. 5. 3D spinodal simulation results based on 1stSAV + adaptive At scheme for x = 0.01. (a)-(d) evolutionary profiles for the order parameter at t = 0, 10, 400 and
20,000, respectively. (e) the At-steps profile, indicating an increasing At trending for simulations based on SAV schemes, the At is manually bounded from above at

At = 5.
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Suzuki model [36] is adopted to compute the compositions in each
phase. Eq. (29) describes the gradient energy density, and «; ; are the
anisotropic gradient coefficients. Eq. (30) is the elastic energy density
which can be obtained based on the microelasticity theory of Khacha-
turyan et al. [37].

Based on Eq. (27), the evolution equations for composition and order

parameters are:

ox 5f1m1({'7,,}7x)

Fri V~MV<T>7 (€29
an Ufioca 3, &

R € (RSP E (UD)) R

To implement the SAV scheme, we solve the Allen-Cahn equation (Eq.
(32)) with & = —L and the Cahn-Hillard diffusion equation with & =
AM (Eq. (31)) with gradient coefficient k = 0. For evolving the scalar r,
we use f = fioeal (X, {1, }) + fu({#,} ) in calculating Eq. (4) and (11).

With the SAV scheme, we perform a 3D phase-field simulations of
growth morphology. Three orientations of precipitates with 24 nuclei
each are initially introduced in a 200 Ax*200 Ax*200 Ax (grid size:
Ax = 0.25 nm) system with randomized distribution and size. The initial
Nd composition is xo = 0.00625. Other simulation parameters can be
found in reference [35].

Fig. 6 (a) — (c) are the evolution profiles of the  precipitates. It is
shown that the growth of the precipitate is anisotropic arising from the
elastic interactions and the anisotropic interfacial energy. To quantify
the accuracy and efficiency of the SAV scheme in solving the coupled
Allen-Cahn equation, diffusion equation, and the mechanical equilib-
rium equation, we employed the following two judging criteria: The
model is considered accurate only when (1) the maximum value of any
order parameter 7; ., deviates no more than 5% from the equilibrium
value 1, and (2) the volume fraction V(t) should not deviate more than
10% from the reference case where semi-implicit Fourier spectral
scheme with dt = 10~* is used. Fig. 6 (d) shows the efficiency compar-
ison of SAV-based and semi-implicit Fourier spectral scheme-based
(abbr. SI-based) simulations. Both simulations are performed using 1
core in AMD EPYC Processor located at Bridges-2 server, and the details
of efficiency comparison between the two schemes are summarized in
Table 7. According to the simulations, the maximum order parameter
;. max decreases in SI-based simulations after the initial relaxation of the
model, which violates judging criterion (1) at and beyond dt ~ 0.001
whereas the SAV-based simulations show good convergence in 7; .
until dt~0.07 (See supplemental material S7 for more information).
Meanwhile, both simulations follow criterion (2) even for the afore-
mentioned extreme cases for criterion (1), as shown in the inset of Fig. 6
(d). On the other hand, the average CPU time cost per step in SAV-based
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Table 7

The performance comparison between the SAV scheme- and semi-implicit
Fourier spectral scheme (SI)-based simulations of f-Mg;Nd precipitate evolu-
tion in Mg-Nd alloys. Atpax represents the maximum time step that satisfies both
following criteria (1) and (2) |5, —1|(5% volume fraction V; of precipitates
should not deviate 10% at any time compared with a reference simulation with
small At. The factors restricting the application of larger At are also summarized
herein.

Numerical Atmax Atpax restricted by Time used per Efficiency

scheme step (SI=1) Sr=1)

SAV 0.07 Criterion 0.92 76
(1) ~1|<5%

SI 0.001 Criterion 1 1

(1: [y —11<5%

simulations is 92% compared with that of SI-based simulations, indi-
cating a 76-time overall efficiency enhancement of the SAV scheme over
the SI scheme.

4. Discussions

We demonstrated dramatic efficiency enhancement by implement-
ing the SAV scheme with the semi-implicit spectral scheme which is one
of the most efficient schemes for solving phase-field equations. How-
ever, to ensure the performance enhancement of the SAV scheme, it is
important to consider the following two important strategies.

1. Adaptive time stepping: Although the SAV based schemes show un-
conditional energy stability regardless of At, large At values could
lead to inaccurate simulation results such as abnormal morphology
and incorrect kinetics. As discussed in Section 3.3, the implementa-
tion of an adaptive At algorithm could potentially mitigate or even
eliminate such issues, but the At value used in the simulation still
needs to be carefully selected. In addition to the example in Fig. 5,
another example is the inaccurate grain growth behavior predicted
by the SAV model with At > 5 in the incipient stage of polycrystal
growth (t <100). In this case, the bulk driving force is large when the
matrix is present while the driving force significantly decreases after
the matrix is fully consumed by the grains (t > 100). To overcome
this issue, the adaptive At algorithm may be implemented with care
to ensure the accuracy of the model at start using smaller At, while
increasing At when the driving force decreases to accelerate the
simulation with adequate accuracy. Details of adaptive At algorithm
has been reported in ref. [29], and it is shown to work well when the
criteria for adapting At are correctly chosen. In addition, while using
adaptive At, one should keep in mind that Eq. (10) should be
modified for the explicit approximation of order parameters for the

o) 1400- ‘—V,-sAV—;ﬁ—- I i
( ) 0.124 o v,Sl-dt0.001
1200+ o :
0.08
» 10004{>" i
£ 0.04
+= 8004 E
5 0.00
= 600+ 001 01 1 10 J
= t
2 4004 -
n — Sl
200, ——SAV
0
0 5 10 15 20

CPU time (hour)

Fig. 6. 3D evolutionary profiles for § precipitations in Mg-Nd alloy. (a)-(c) evolutionary profiles for the order parameters at t = 0, 5 and 50, respectively. (d)
Efficiency comparison between SI-based and SAV-based simulations based on the same accuracy judging criteria. The inset shows the evolution of volume fraction of

the precipitates by different simulations compared with the referencing simulation.
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next time step, that is, At is different for n-1% step and nth step, so that
the At values should be applied to weigh Eq. (10) if a constant
temporal derivative for 5 is assumed for the next-step approximation
of 5. Also, the accuracy of the simulation may be very sensitive to the
selection of the At across steps.

2. Proper splitting of the free energy: For the simulation cases where the
absolute value of the non-gradient term F({;} ) is much higher than
that of the gradient term, e.g., grain growth with a small gradient
energy coefficient «, the simulation can become unreliable with large
At values. In this situation, one may split the free energy expression
of the grain growth model [29] as follows:

q N
7= [|(Fmp = > s ) + 30 (5w, + sit) [av (33)
Vv N q

where a positive parameter S is introduced in order to reduce the impact
of the non-gradient term. The evolution equations remain similar to Egs.
(17) and (18) despite differences in the expression of r based on Eq. (4)
and the definition of matrix M in Eq. (14). This modification can be very
effective for problems with thin interfaces [29].

In addition, a multiple scalar auxiliary variable (MSAV) scheme is
recently proposed by Cheng et al. [38] which offers another strategy to
improve the performance of the SAV scheme when the nonlinear terms
consist of multiple disparate terms. This scheme enjoys the same accu-
racy and efficiency as the SAV scheme with multiple new scalar auxiliary
variables to represent the multiple disparate nonlinear terms. Recently,
the SAV scheme has been extended by introducing a Lagrange multiplier
[39] and then generalized to a function including a given invertible
function [40] instead of an auxiliary variable. This helps evolve the
governing order parameter without the restriction that the non-linear
energy should be bounded below. Thus, the SAV scheme is generally
applicable to enhance the performance of a wide range of phase-field
simulations.

5. Conclusions

We implemented the scalar auxiliary variable (SAV) scheme for
solving the phase-field equations. It is demonstrated that the SAV
scheme can be more than an order of magnitude more efficient than the
state-of-the-art semi-implicit Fourier-spectral scheme for a single Allen-
Cahn equation and a 100% improvement for multiple Allen-Cahn
equations. It is demonstrated that this improvement becomes more
dramatic as the interfaces become thinner. Combining with an adaptive
time-stepping, the implemented SAV scheme is shown to be about two
orders of magnitude more efficient over semi-implicit Fourier spectrum
scheme for solving the Cahn-Hilliard equation. In addition, the SAV
scheme is adopted to predict the diffusion-controlled evolution of alloy
precipitates with strain energy contributions, which demonstrates more
than 50-time acceleration over the semi-implicit Fourier spectral
scheme. The implementation and test results in this work highlight the
potential of the SAV scheme in enhancing the efficiency for simulating a
broad range of phase-field models due to its stability and versality.
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