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A B S T R A C T   

It has been a continuing challenge to carry out simulations at time and spatial scales compatible with practical 
experimental observations. Here we implement a novel scalar auxiliary variable (SAV) scheme introduced in 
(Shen et al., 2018) for phase-field equations to drastically improve the numerical accuracy, efficiency and sta
bility. We first bench-marked two representative phase-field method applications involving three-dimensional 
(3D) grain growth and spinodal phase separation. By implementing the SAV scheme within the state-of-the-art 
semi-implicit Fourier spectral scheme we achieved an order of magnitude improvement for the single-order- 
parameter Allen-Cahn equation and at least a 100% improvement for a set of multi-order-parameter Allen- 
Cahn equations for grain growth problems and the Cahn-Hilliard equation for compositional phase separation. 
More importantly, the efficiency enhancement of SAV becomes more dramatic as interfaces become sharper. Its 
application to the growth morphology and kinetics of β’-Mg7Nd precipitates demonstrates a remarkable 
improvement of more than 50 times in computational time. This work is expected to further stimulate the ap
plications of phase-field simulations of a broad range of materials processes.   

1. Introduction 

Phase-field method is a versatile and yet computationally expensive 
method that has been applied to modeling, understanding, and pre
dicting microstructure evolution in a wide variety of material processes 
[1]. There are continuing demands for large-scale three-dimensional 
(3D) simulations [2,3] with realistic time scales and spatial resolutions 
that are compatible with experimental observations. Many attempts 
have been made to develop and implement advanced algorithms to 
improve the efficiency and accuracy of the numerical solutions for 
phase-field evolution equations [4-21]. A number of progresses have 
been made in demonstrating significant efficiency improvement with 
good applicability across different phase-field models [4,6] as well as in 
optimizing existing algorithms and numerical treatments [18,19,22]. 
Among these efforts, the application of the semi-implicit Fourier spectral 
method to phase-field equations by Chen et al. [6] plays an important 
role, bringing in 2–3 orders of magnitude efficiency upgrade after 
solving the elliptical terms semi-implicitly with the help of Fourier 
spectral method. This greatly helps the algorithm development in 
different aspects of phase-field applications such as coupled Cahn- 
Hillard/Navier-Stokes system by Badalassi et al. [4], polycrystal 
growth under multiple coupled Allen-Cahn equations [23,24] and 

ferroelectric domain evolution coupling with elastics [25]. 
Recently, an unconditionally energy stable and efficient numerical 

scheme called Invariant Energy Quadratization (IEQ) scheme has been 
developed by Yang et al. [21] which is successfully implemented to solve 
phase-field equations. The seminal idea of this work was to evolve the 
gradient energy term and other energy terms separately while keeping 
the kinetics and energy dissipation law very similar, so the non-linear 
system can be simplified to coupling linear system which can be effi
ciently solved. However, the IEQ scheme has drawbacks such as variable 
coefficients while solving the linear equations and the requirement that 
energy density should be bounded below. Shen et al. [14] then proposed 
a novel Scalar Auxiliary Variable (SAV) scheme which inherits the ad
vantages in IEQ scheme such as the separation of evolving different 
energy terms, good accuracy and unconditionally energy stability, 
where the energy of the system always decreases regardless of time 
stepping. See ref. [14] and the supplemental material for the proof. 
Moreover, in the SAV scheme, a variable has been introduced to help 
evolve the non-gradient free energy term while linear equations with 
constant coefficients are solved. Also, the requirement of non-linear 
energy density being bounded from below has been alleviated. For the 
SAV scheme, stability analyses are performed in [14,26] and asymptotic 
behavior is discussed in [27,28] which proves the scheme is accurate in 
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Allen-Cahn and Cahn-Hillard equations in backward differentiation 
formula (BDF). This newly-proposed scheme provides a way for accel
erating phase-field simulations with good applicability. 

In this paper, we implement the Scalar Auxiliary Variable (SAV) 
scheme [14,29] to solve the phase-field evolution equations. With the 
discretized evolution equations firstly derived in this work for Allen- 
Cahn and Cahn-Hillard equations-based phase-field models, we will 
demonstrate that the SAV scheme is not only easy to implement but also 
numerically accurate, efficient and unconditionally stable in solving 
phase-field equations. We first investigated its performance using two 
typical application examples. One is the three-dimensional (3D) grain 
growth kinetics by solving a large set of coupled Allen-Cahn equations, 
and the other is spinodal phase separation described by Cahn-Hilliard 
equations. We then applied it to model the growth morphology and 
kinetics of precipitates in a Mg-alloy. 

In the following, we present the SAV scheme in Section 2. Section 3 
describes the implementation of the SAV scheme in solving phase-field 
equations for 3D grain growth and 3D phase separation in combina
tion with the semi-implicit Fourier-spectral scheme. Section 3 focuses on 
benchmark testing results on 3D grain growth and phase separation and 
discuss the efficiency, accuracy, and stability of the SAV scheme by 
comparing with existing state-of-the-art semi-implicit Fourier spectral 
scheme. Section 3 discusses the application of the SAV scheme to the 
growth morphology and kinetics of a Mg-alloy incorporating coherency 
strain energy contribution. The last section discusses the details about 
implementing the SAV scheme and potential strategies to further 
improve the efficiency. 

2. SAV scheme and numerical implementation 

We consider a system described by a set of spatially dependent field 
variables with its total free energy F given by 

F =

∫

V

[

f ({ηi} ) +
∑N

p,q

κpq

2
∇ηp∇ηq

]

dV, (1)  

where f is the local free energy density as a function of N field variables 
η1,η2,⋯,ηN, and κ is the gradient coefficient matrix with components κpq. 

The evolution of field variables η = (η1, η2, ⋯, ηN)
T follows 

∂η
∂t

= G μ, (2)  

where G = −( − Δ)
xL, (x = 0, 1) is a non-positive symmetric operator 

corresponding to the Allen-Cahn (x = 0) or the Cahn-Hilliard (x = 1) 
equation with L being the kinetic coefficient matrix, μ represents the 
driving force for the evolution of field variables η and is defined as 

μ ≡
δF
δη = −DκΔη + f ′

({ηi} ), (3)  

where D = 1
2JN,N +1

2IN is the coefficient matrix with J and I being the 
matrix of ones and the identity matrix, respectively, and f’({ηi} ) =

(∂f({ηi} )/∂η1, ∂f({ηi} )/∂η2, ⋯, ∂f({ηi} )/∂ηN )
T. 

To solve the evolution equation (Eq. (2)), the SAV scheme introduces 
a temporally evolving scalar auxiliary variable, r, with its initial value 
defined as 

r|t=0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F L|t=0 + C0

√

(4)  

where F L =
∫

Vf({ηi} )dV is the total local free energy which evolves 
according to the order parameter set {ηi} and is bounded below 
regardless of simulation time, i.e., a value of C0 such that C0 ≥ −F L to 
ensure that the quantity inside the square root of Eq. (4) is always 
positive. Following the SAV scheme [14], Eq. (3) is now rewritten as 

μ = −DκΔη +
r

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
F L + C0

√ f’({ηi} ). (5)  

It should be noted that the scalar auxiliary variable r temporally evolves 
independently in a sense that r(t > 0) ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
F L + C0

√
, and the evolution of 

r is described [14] by 

dr
dt

=
1

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
F L + C0

√

∫

V

∑N

q
f ’
q({ηi} )

∂ηq

∂t
dV (6)  

where f ’
q({ηi} ) ≡ ∂f({ηi} )/∂ηq. According to [14], the SAV scheme as 

described in Eqs. (1), (2), (5), (6) is unconditionally energy-stable and 
accurate based on appropriate discretization. It should be noted that the 
SAV scheme is a numerical method which does not change the dynamics 
of the evolution equation [14,26-28]. Since Eq. (6) is a full derivative of 
the equation r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
F L + C0

√
, this means the coefficient r̅̅̅̅̅̅̅̅̅̅̅̅

F L+C0
√ reaches 

unity when time stepping is sufficiently small. 
In order to numerically evolve Eqs. (2), (5), and (6), we discretize the 

system using the 1st order backward differentiation formula (BDF) with 
equal time stepping Δt within the semi-implicit scheme, 

ηn+1 − ηn

Δt
= G μn+1, (7)  

μn+1 = −κΔηn+1 +
rn+1

rn+1
f’({

ηn+1
i

} )
, (8)  

rn+1 − rn =
1

2rn+1

∫

V

∑N

q
f ’
q

({
ηn+1

i
} )(

ηn+1
q − ηn

q

)
dV, (9)  

where the superscripts n and n + 1 correspond to variables at the nth and 
the n + 1th time steps, respectively. In this work, we assume no cross- 
interaction between order parameters, i.e. κpq = 0(p ∕= q), so Dκ = κ 
after the assumption. In order to obtain the variables of the n + 1th step 
based on the values of previous steps in semi-implicit scheme, an explicit 
approximation of the field variable matrix at the n + 1th step, ηn+1, is 
needed, and we use 

ηn+1 = 2ηn − ηn−1 (10)  

The approximated scalar auxiliary variable rn+1 can be expressed based 
on Eq. (4) using the approximated field variable ηn+1: 

rn+1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

V
f ({ηn+1

i } )dV + C0

√

. (11)  

Combining Eqs. (7)- (9)and eliminating μn+1 and rn+1, we find 

ηn+1 − ηn = Δt⋅G

{

− κΔηn+1 + bn+1

[

rn +

∫

V

∑N

q

bn+1
q

2

(
ηn+1

q − ηn
q

)
dV

] }

,

(12)  

where bn+1 =
(

bn+1
1 , bn+1

2 , ⋯, bn+1
N

)T
= f’

({
ηn+1

i
} )/

rn+1. By separating 

the unknown variables and the known ones, the expression can be 
rearranged as 

ηn+1 + Δt⋅G κΔηn+1 −
Δt
2

∑N

q

(
bn+1

q , ηn+1
q

)
G bn+1

= ηn + Δt
[

rn −
1
2

∑N

q

(
bn+1

q , ηn
q

) ]

G bn+1, (13)  

where 
(

bn+1
q , ηn

q

)
=

∫

Vbn+1
q (V)ηn

q(V) dV represents the inner product of 

the two scalar fields bn+1
q and ηn

q. We further define 
(

bn+1, ηn
)

=

((
bn+1

1 , ηn
1

)
,
(

bn+1
2 , ηn

2

)
, ⋯,

(
bn+1

N , ηn
N

) )T
as the inner product matrix, 

R. Wang et al.                                                                                                                                                                                                                                   



Computational Materials Science 212 (2022) 111556

3

Cn = ηn + Δt
[
rn − 1

2
∑N

q

(
bn+1

q , ηn
q

) ]
G bn+1as the constant matrix in Eq. 

(13), and M = IN + Δt⋅G κΔ as the coefficient matrix for ηn+1, so that the 
field variables at the n + 1th step can be obtained by solving 

Mηn+1 −
Δt
2

J1,N
(
bn+1, ηn+1)

G bn+1 = Cn. (14)  

Premultiply Eq. (14) with M−1, take inner product of both sides with 
respect to bn+1, and then premultiply both sides with J1,N, one could get 

J1,N
(
bn+1, ηn+1)

−
Δt
2

J1,N
(
bn+1, ηn+1)

J1,N
(
bn+1, M−1G bn+1)

= J1,N
(
bn+1, M−1Cn)

. (15)  

Now the unknown inner product term J1,N

(
bn+1, ηn+1

)
in Eqs. (9) and 

(14) can be explicitly expressed as 

J1,N
(
bn+1, ηn+1)

=
J1,N

(
bn+1, M−1Cn)

1 − Δt
2 J1,N

(
bn+1, M−1G bn+1). (16)  

Combining Eqs. (9), (14), and (16) the variables at the n + 1th step can be 
obtained, 

ηn+1 = M−1Cn +
Δt
2

J1,N
(
bn+1, M−1Cn)

1 − Δt
2 J1,N

(
bn+1, M−1G bn+1)M−1G bn+1, (17)  

rn+1 = rn +
J1,N

(
bn+1, M−1Cn)

2 − Δt⋅J1,N
(
bn+1, M−1G bn+1) −

1
2
J1,N

(
bn+1, ηn)

. (18)  

It should be noted that the premultiplication of J1,N = (1, 1, ⋯, 1) is 
equivalent to taking summation of the original N × 1 matrix for all of its 
components, and the operator M is diagonal since the gradient coeffi
cient matrix κ is diagonal. As a result, Eqs. (17) and (18) can be easily 
and efficiently solved. In addition, Eqs. (17) and (18) are general and 
independent of the numerical schemes (e.g., finite difference, finite 
element, Fourier spectral method, etc.) and specific free energy ex
pressions. In the examples presented blow, the Fourier spectral scheme 
is used. (See supplementary material S5 for the detailed strategy of 
solving Eqs. (17) and (18) utilizing Fourier transform). 

It should be pointed out that a 2nd order BDF based SAV scheme can 
be discretized similarly, and the Crank-Nicolson (CN) scheme is also 
applicable in the SAV approach with an even simpler implementation 
(see supplementary material Section S1 and S2 for detailed imple
mentation of 2nd order BDF based and CN based SAV schemes). 

3. Applications of SAV scheme 

3.1. Shrinking of a 3D single antiphase domain 

We benchmark the efficiency of the SAV scheme using the shrinking 
rate of a 3D spherical antiphase domain as an example. A simplest form 
of f(η) to describe the shrinking of a single antiphase domain is the 
double-well energy density function [23,24]: 

f (η) = −
1
2
η2 +

1
4
η4, (19)  

where f(η) has two degenerated minima located at η = −1, + 1, rep
resenting two antiphase domain states. For this example, the governing 
evolution equation is 

∂η
∂t

= LκΔη − Lf ′

(η), (20)  

where 

f ′

(η) = − η + η3. (21)  

Following Eqs. (7)-(9), the discretized evolution equations based on the 
SAV scheme with 1st order BDF are given by 

ηn+1 − ηn

Δt
= − L

(

− κΔηn+1 +
rn+1

rn+1
f ′ (ηn+1

)
)

, (22)  

rn+1 − rn =
1

2rn+1

∫

V
f ’

(
ηn+1

)(
ηn+1 − ηn)

dV. (23)  

ηn+1 and rn+1 can then be obtained following Eqs. (17) and (18) using 

M = 1 −Δt⋅LκΔ, Cn = ηn −Δt
[
rn −1

2

(
bn+1, ηn

) ]
Lbn+1, bn+1 = f’

(
ηn+1

)/

rn+1 and rn+1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

Vf(ηn+1)dV + C0

√

with ηn+1 = 2ηn −ηn−1 and C0 = V/4 
where V is the volume of the system. 

The simulation starts with one spherical antiphase domain with 
radius R0 in a 3D periodic system. As illustrated in Fig. 1 (a), the initial 
profile of η is defined as η(ℓ − ℓ0⩽R0)|t=0 = 1 and η(ℓ − ℓ0 > R0)|t=0 =

−1, where l is the position vector for any points, and l 0 is the position 
vector for the center of the spherical domain. The simulation parameters 
and their descriptions are listed in Table 1. The Lx, Ly and Lz are the 
dimensions for the simulation region and Δx, Δy and Δz are the di
mensions for one mesh along, y and z directions, respectively. nx, ny and 
nz are numbers of mesh points along the corresponding directions, e.g., 
nx = Lx/Δx. In this work, both cubic meshes (Δx = Δy = Δz) and cubic 
simulation region (Lx = Ly = Lz) are used. During the evolution, the 
radius of the spherical antiphase domain will decrease with time, as 
shown in Fig. 1(b) to minimize the total interfacial energy. When the 
driving force or kinetic coefficient is small, i.e., L and κ are small, the 
radius R(t) of the shrinking domain can be expressed analytically as 

R(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
0 − 4Lκt

√

, which is used for quantifying the accuracy. As 
shown in Fig. 1 (c), the simulated decreasing trend of R(t), under Δx =
0.33 and Δt = 0.5, agrees well with the reference solution. To further 
quantify the simulation accuracy, we define R :=

(
R2

0 −R2(t)
)/

4Lκt and 
compare it with the reference value of 1.0 in Fig. 1 (d) as a function of 
time. The parameter |1 − R | is then used to quantify the error for the 
current problem, which is <0.2% for the simulation example in Fig. 1. 

We then systematically investigate the accuracy of the 1st and 2nd 

order BDF based SAV schemes (abbr. 1stSAV and 2ndSAV, respectively) 
under different discretization grid sizes (Δx) and time step sizes (Δt) for 
the current problem, and compare the simulation results with the 
generally accepted discretization schemes in phase-field models, such as 
explicit differentiation scheme [23,24] (in short, Explicit) and both 1st 

and 2nd BDF based semi-implicit (SI) schemes [6] (abbr. 1stSI and 2ndSI 
respectively). (See supplemental material Section S3 for full descriptions 
and equations for the numerical schemes that are not elaborated in the 
main paper.) The Explicit scheme is implemented using the finite dif
ference method whereas the other schemes use the Fourier spectral 
method to avoid solving matrices [6]. 

A series of simulations are performed using the SAV-based scheme 
with comparison of well-accepted discretization of phase-field models. 
In Fig. 2, different time stepping Δts are used on the antiphase shrinking 
problem to examine the accuracy of the models. As shown in Fig. 2 (a), 
under κ = 1, the error |1 − R | increases with the increase of Δt, and 
decreases with the increase of nx, until reaching a stable error value or 
the numerical scheme diverges (e.g., Δt = 0.01, nx greater than 260 for 
the explicit scheme). In addition, the critical value for nx for the error to 
reach a stable magnitude decreases with the increase of Δt. These ob
servations are consistent with the prediction from the truncation errors 
of the numerical schemes. More importantly, the accuracy and appli
cability range of the numerical schemes are different: the 1stSI is ac
curate (|1 − R | < 5%) only when Δt = 0.01 and nx ≥ 100; the accuracies 
of the 2ndSI, 1stSAV and 2ndSAV schemes are comparable when nx ≥
100 (Δx ≤ 1) for all three Δt values, while 2ndSAV is not as accurate as 
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the other two schemes when nx ≤ 100 (Δx ≥ 1). Thus, in terms of the 
current domain shrinking problem, the accuracy and applicability of 
1stSAV scheme is better than 2ndSAV for most of the testing ranges of 
0.33 ≤ Δx ≤ 2 and 0.01 ≤ Δt ≤ 7.7; moreover, under a fixed Δx, its 
adoptable Δt value is over an order of magnitude larger than the best 
reference schemes (explicit and SI schemes) at a comparable accuracy. 
The 2ndSAV scheme is the most accurate when both Δx and Δt are small. 

Another potential advantage of the SAV scheme is its capability to 
dealing with microstructure evolution problems with a very thin inter
facial thickness. We performed a series of simulations under a fixed 
mesh size Δx = 0.5 while varying Δt and the gradient coefficient values, 
κ = 1, 0.1 and 0.01, which is positively correlated to the equilibrium 
interfacial thickness based on the form of Eq. (1). In this work, the 
interfacial thickness is defined as the area with η ∈ [0.1, 0.9]. For the 

simulation results shown in Fig. 2 (b)-(d), we determine whether a result 
is accurate based on the following two criteria: (1) The error for the 
radius of the shrinking domain should be <5%, i.e., |1 −R |〈5%; (2) the 
maximum value of the order parameter inside the shrinking domain, 
ηmax, deviates no more than 5% from its equilibrium value (η = 1), i.e., 
|ηmax −1|〈5%. In Fig. 2 (b)-(d), a cross mark is labeled when a simulation 
result does not meet either of the two criteria. According to Fig. 2 (b), for 
the κ = 1 case, the explicit scheme diverges when Δt ≥ 0.04. For SI 
schemes, even though they are stable for larger Δt, the accuracy drops as 
Δt increases: the 1stSI scheme results in an inaccurate radius for Δt ≥
0.1, while the error in the order parameter values for 2ndSI scheme fails 
to satisfy the criterion |ηmax −1|〈5% for Δt ≥ 0.6. On the other hand, for 
the SAV schemes, the Δt ranges which yield sufficient solution accu
racies are significantly expanded: the maximum accurate Δt for 1stSAV 
(Δtmax = 7.7) and 2ndSAV (Δtmax = 3.0) schemes are 13 times and 5 
times greater than those of the widely-used referencing SI schemes. In 
addition, for both SI and SAV simulations, the 2nd order BDF scheme is 
more accurate than the 1st order BDF scheme at small Δt (Δt < 0.6 for SI 
and Δt < 0.2 for SAV). However, for SAV simulations with larger Δt, the 
1st order BDF scheme is more accurate due to the local truncation errors 
of the numerical schemes. For Δt≪1, the local truncation error for the 
2nd order BDF is second order in time, whereas the higher order terms of 
Δt become dominant when Δt becomes larger. As a result, its accuracy 
drops faster than the 1st order BDF scheme. In this sense, although the 

Fig. 1. Simulation setup and demonstration for 3D single spherical grain shrinking problem and its accuracy quantification. (a) (b) the 3D view for the single 
spherical grain at t = 0 and t = 200, respectively. In these plots, the region that η < 0 are set to be transparent to show the spherical grain. (c) (d) the grain radius R vs. 
t plot and R :=

(
R2

0 − R2(t)
)/

4Lκt vs. t plot for the SAV incorporated model with nx = ny = nz = 300, Δt = 0.5, respectively, where nx = Lx/Δx. (d) provides a 
clearer error estimation compared with (c). All simulations shown in this figure adopt parameters in Table 1. 

Table 1 
Parameters used in the 3D single spherical grain shrinking simulation. κ and L 
are the parameters introduced in Eqs. (2), (3) and (20), while κ and L are reduced 
to scalars from matrices since only one order parameter is used, i.e. N = 1. Lx, Ly 
and Lz are the dimensions of the simulation system along x,y and z direction, 
respectively, while Δx, Δy and Δz are the dimensions of the discretized mesh.  

κ L N Lx( = Ly = Lz) Δx( = Δy = Δz) Δt R0  

0.01–1 1 1 100  0.5  0.01–20 40  
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accuracy of the domain-shrinking problem can only be strictly guaran
teed under small Δt and fixed Δx, our current benchmark simulations 
show that under given accuracy requirements, the SAV schemes allows a 
much larger Δt for stable numerical solutions. 

For cases with thinner interfaces, e.g., κ = 0.1 shown in Fig. 2 (c), 
while the referencing semi-implicit schemes are accurate with a limited 
Δt, the SAV schemes are accurate with a larger maximum Δt compared 
with the κ = 1 case. For extremely thin interfaces shown in Fig. 2 (d), i. 
e., κ = 0.01, the semi-implicit schemes fail to provide accurate results 
for all Δt values whereas the SAV schemes overcome numerical pinning 
and provide accurate domain shrinking trend for Δt > 1.5 and remain 
accurate up to Δt as large as 50. The results show a greater advantage for 
the SAV schemes over the semi-implicit schemes on the thinner 
interfaces. 

3.2. 3D grain growth with multiple grains 

In this section, the SAV scheme is applied to polycrystal growth with 
multiple order parameters. The performance of the SAV based schemes 
(1stSAV and 2ndSAV) are compared with the well-established explicit, 
1stSI and 2ndSI reference schemes. These reference schemes demon
strate very good efficiency in different works for the last two decades 
[6,9,18,30,31]. 

We consider a general 3D inhomogeneous system consisting of 
multiple grains, where a set of phase-field variables η1, η2, ⋯, ηN are used 
to represent each of these grains. A simplest form of f for such a model 
system as a function of the phase-field variables is [23,24]: 

f ({ηi} ) = −
1
2

∑N

q
η2

q +
1
4

(
∑N

q
η2

q

)2

+
1
2

∑N

q

∑N

p>q
η2

pη2
q. (24)  

In this case, f({ηi} ) has 2N degenerated minima located at ( ± 1, 0, ⋯, 0),

(0, ±1, ⋯, 0), ...,(0, 0, ⋯, ±1). The evolution of these order parameters is 
governed by Allen-Cahn equations, i.e., x = 0 in Eq. (2). The dis
cretization of the governing equations involving multiple phase-field 
variables based on SAV scheme is similar to that of single phase-field 
variable as described in Section 3.1, by applying partial derivatives of 
non-linear free energy expression ∂f({ηi} )/∂ηi following Eq. (24) into 
Eq. (8), one would evolve Eqs. (17) and (18) as the governing equations 
for the grain-growth model within SAV scheme. 

The simulations are performed with parameters listed in Table 2. The 
system is initialized with a total of N spherical grain seeds with a uni
form radius rseed located at random positions. That is, for the i-th particle 
with an initial radius rseed and center position vector l 0, the order 
parameter ηi is initialized as:ηi, (ℓ − ℓ0⩽rseed)|t=0 =

1,ηi(ℓ − ℓ0 > rseed)|t=0 = 0. The matrix phase is defined after the system 
initialization as the mesh points with no finite grain order parameters. 
To avoid unnecessary numerical issues, no more than one finite grain 
order parameter is assigned to a certain mesh point. Periodic boundary 
condition (PBC) is applied along x-, y- and z- directions of the simulation 
domain. Fig. 3 shows the comparison of 1stSAV and 2ndSI schemes with 
Δt = 0.1 on the morphology of the grains using Δx = 1 (nx = 100) and 
the same initial random seeds. According to Fig. 3 (a)-(h), the SAV based 
simulation yields an identical evolution process with the reference nu
merical scheme. Fig. 3 (i) plots the average grain sizes as functions of 
time for the model with the two different schemes. The figure demon
strates that the model with SAV schemes show consistent results with 
the model with referencing 2ndSI scheme. Table 3 lists the maximum Δt 
for each scheme based on the same initial condition and the following 
accuracy judging criteria: i) the maximum summation of order param
eters 

∑
iη2

i must lie in [0.95, 1.05], ii) the average grain diameter should 
not deviate more than 10% compared with an accurate reference. Ac
cording to Table 3, SAV schemes show better performance than explicit 
and semi-implicit schemes with a maximum accurate Δt being 1.2 for 
1stSAV and 1.7 for 2ndSAV, but the advantage drops to about 2 times. 
According to Eq. (5), r serves as the prefactor for the gradient term in the 
evolution equation. For the case where only one order parameter is 
evolving (N = 1), the convergence is greatly enhanced since the coef
ficient r/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
F L + C0

√
changes with time to balance the local and gradient 

driving forces. However, for grain growth involving multiple grain order 
parameters, one r cannot account for the evolutions of all the order 
parameters as accurately as the single grain case, so the maximum ac
curate Δt for SAV scheme cannot be as large as that of the single crystal 
case. 

Fig. 2. Simulation results for 3D single spherical grain shrinking problem. (a) 
the error plots as function of nx (Δx) while Δt is fixed at 0.01, 0.1 and 0.5, 
respectively. All the errors in the plots are calculated as |1 − R |. (b)-(d) The 
error plot as function of Δt for different discretization schemes within 100 ×
100 × 100 system and nx = 200 (Δx = 0.5) for κ = 1, 0.1 and 0.01, respectively. 
The other parameters used can be found in Table 1. Besides, the simulation is 
considered incorrect and the corresponding plot is marked with red cross 
thereafter if the error is greater than 5% or the maximum value of the order 
parameter in the bulk deviates by 5%. 

Table 2 
Parameters used in the 3D grain growth simulation.  

κ L N Lx( = Ly = Lz) Δx( = Δy = Δz) Δt rseed  

2 1 100 100 0.33–3.3 0.001–6.0 10   
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3.3. Spinodal decomposition problem 

Spinodal decomposition describes the spontaneous separation of an 
unstable solution to form multiple composition domains, which can be 
described by the Cahn-Hillard (CH) equation. For a general 3D inho
mogeneous system with a single composition field η, we adopt Eq. (19) 
and Eq. (21) as a simple form of f and its derivative. For this spinodal 
decomposition problem, we have G = ΔL in Eq. (2), so the evolution 
equation becomes 

∂η
∂t

= LΔ( − κΔη + f ′

(η) ). (25)  

The discretized evolution equations using 1st order BDF based SAV 
scheme can be expressed as 

ηn+1 − ηn

Δt
= LΔ

(

− κΔηn+1 +
rn+1

rn+1
f ′ (ηn+1

)
)

, (26)  

The evolution of r is governed by Eq. (23). The numerical solutions are 
expressed in Eqs. (17) and (18). For the other schemes (i.e., 2ndSAV, 
1stSI and 2ndSI) used in this Section, please refer to supplementary 
material S4 for the detailed implementations. 

The SAV scheme for spinodal decomposition is firstly tested by 
comparing with an accurate 1D reference with spatiotemporal evolution 
profiles, using parameters listed in Table 4. This reference profile uses 
1stSI scheme with Δx = 0.5 and Δt = 0.02. The accuracy of this reference 

profile is validated by performing a series of testing simulations with 
smaller Δx, Δt and different numerical schemes; and then finding the 
maximum relative error E between the testing profiles and the reference 
profile at all positions and simulation times. As shown in Table 5, the 
reference case shows no more than 3 × 10-3 difference compared to 
either the cases with smaller Δt and/or Δx with the same numerical 
scheme or the cases with the same Δt and Δx but different numerical 
schemes. These results validate the accuracy of the reference case and 
indicate the four numerical schemes in Table 5 are consistent at small Δx 
and Δt. The validated reference is then compared with simulation cases 
with different Δt and numerical schemes. The results are shown in Fig. 4. 
The allowable error threshold is set to 5%, as shown by the dashed grey 
line in Fig. 4. According to the results, the SAV schemes are shown to be 
accurate and consistent for a range of Δt values up to 0.60, similar to SI 
schemes. 

3D simulations of spinodal decomposition are then performed using 
different numerical schemes with different Δt and the parameters in 
Table 4. The initial composition corresponds to uniform distribution 
near 0 with a magnitude of 0.002, i.e., ηt=0(l ) ∼ U[−0.001, 0.001]

where l is the position vector of any mesh points. Due to the sensitivity 
of the evolved profiles to Δt values, only the criterion |ηmax −1|〈5% is 
adopted to judge if a simulation is acceptable. The simulation results are 
summarized in Table 6. According to the results, 2ndSAV scheme sim
ulates with the largest Δtmax, which is about 1.5–2 times the 1stSI and 
1stSAV schemes for κ = 0.1 and 1 cases while 2ndSI scheme has the 
smallest Δtmax. For the case with κ = 0.01, all numerical schemes with 
fixed Δt end up with a small Δtmax ≈ 0.01 because of the numerical 
pinning and large driving force near the thin interfaces. However, with 
the implementation of the adaptive Δt algorithm [32] (see supplemen
tary material S6 for details), the SAV scheme-based models can be 
greatly accelerated. The simulation results with 1stSAV + adaptive Δt 
scheme for κ = 0.01 are shown in Fig. 5. The results show typical spi
nodal decomposition patterns. On the other hand, we are not able to 
increase Δtmax using adaptive Δt for the semi-implicit schemes. This can 
be attributed to the different mechanisms that lead to the failure of the 

Fig. 3. Simulation results for polycrystalline evolution starting from the same initial condition with identical nuclei for the 1stSAV scheme and 2ndSI scheme. Both 
simulations use Δt = 0.1 and Δx = Δy = Δz = 1. (a)-(h) the morphological plots for the reference 2ndSI model and the SAV based model at t = 0, 20, 100 and 500, 
respectively. (i) the average grain size as functions of simulation time for the SAV based model and the reference 2ndSI model. 

Table 3 
Efficiency and accuracy comparison for the SAV based models and the reference 
models on the multi-grain growth problems. The simulations use identical initial 
grain seed distribution and the Δx = Δy = Δz = 1 for all simulation cases. The 
maximum Δt is obtained using two judging criterions: i) the maximum sum
mation of order parameters 

∑
iη2

i must lie in [0.95, 1.05], ii) the average grain 
size should not deviate more than 10% when the number of active grains is 
larger than 10.  

Scheme Explicit 1stSI 2ndSI 1stSAV 2ndSAV 

Max Δt  0.08  1.0  0.6  1.2  1.7  

Table 4 
Parameters used in the 1D and 3D spinodal decomposition simulations.  

κ L N Δt Initial profile (1D) 

1 (1D), 0.01–1 (3D) 1 1 0.005–5.0 η0 = sin
2πx
Lx

, x ∈ [0, Lx]

Lx( = Ly = Lz) Δx( = Δy = Δz)

100 0.5  

Table 5 
The errors between selected simulation cases and the referencing case for 1D 
spinodal decomposition problem.  

Case No. Scheme Δt Δx Error E 

Ref 1stSI  0.02  0.5 0 
1 1stSI  0.005  0.5 1.29 × 10-3 

2 1stSI  0.005  0.25 1.29 × 10-3 

3 2ndSI  0.02  0.5 1.38 × 10-3 

4 1stSAV  0.02  0.5 2.32 × 10-3 

5 2ndSAV  0.02  0.5 1.38 × 10-3  
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SAV and SI schemes under fixed large Δt. For SAV schemes, the limit for 
the time step size is the large driving force in the early stage of the 
simulation whereas for SI schemes, the limit for the time step size is the 
kinetic equations and conditional numerical stability. Since the 
currently adopted adaptive Δt scheme automatically updates Δt based 
on the driving force of the previous time step, it works well for SAV 
schemes using small Δt values at the beginning of the simulation and 
then increasing to larger values as the driving force decreases for later 
stages. In contrast, the adaptive Δt + SI schemes could not enjoy such 
advantage since Δt could not exceed a certain threshold. As a result, with 

the implementation of adaptive Δt algorithm, the SAV schemes can 
achieve more than 100-time larger Δt than the semi-implicit Fourier 
spectral schemes with good accuracy. 

3.4. 3D coherent precipitate growth morphology 

Precipitation of second-phase particles is a common process in 
strengthening metallic alloys [33-35]. As an example, we apply the SAV 
scheme to solve the phase-field equations describing the growth 
morphology of β’-Mg7Nd precipitates in Mg-Nd alloys [35]. We employ 
three structural order parameters to distinguish the three orientation 
variants of β’ precipitates and one composition field (composition of Nd) 
to describe the compositional distributions in the precipitate-matrix two 
phase system. The elastic strain energy contribution to the thermody
namic driving force for β’ evolution and the anisotropic Mg/β’ interfa
cial energies are considered. 

The free energy density, ftotal, is given by 

f (x, {ηi} ) = flocal
(
x, {ηp}

)
+ fgrad

({
∇ηp}

)
+ fel

({
ηp

} )
, (27)  

where the order parameter set {ηp} = {η1, η2, η3} represents the spatial 
distributions of the three structural variants of β’ precipitates, 

{
∇ηp

}
=

{∇η1, ∇η2, ∇η3} is the gradient in structural order parameters, and x is 
the local composition of Nd. In Eq. (27), the free energy density includes 
the contributions from the gradient energy density fgrad

({
∇ηp}

)
, local 

bulk energy density flocal
(
x, {ηp}

)
, and elastic energy density fel

({
ηp

} )
,

flocal
(
x, {ηp}

)
= f α(xα)

(

1 −
∑3

i=1
h(ηi)

)

+ f β’ (
xβ’ )∑3

i=1
h(ηi) + ωfdw

({
ηp

} )
,

(28)  

fgrad
({

∇ηp}
)

=
1
2

∑3

p=1
κo

p,ij∇iηp∇jηp, (29)  

fel =
1
2
Cijkl

(
εij + δεij − ε0

ij

)(
εkl + δεkl − ε0

kl

)
. (30)  

In Eq. (28), fα, fβ’ , xα and xβ’ are the free energy densities and Nd 
compositions in α-Mg (matrix) phase and β’ precipitate phase, respec
tively, h(ηi) = 3η2

i −2η3
i is the interpolation function, and fdw is a double- 

well type potential, with ω being the barrier height. The Kim-Kim- 

Fig. 4. Comparison between the reference case within 1stSI at Δx = 0.5, Δt =
0.02 and the testing cases with 1stSI, 2ndSI, 1stSAV and 2ndSAV numerical 
schemes at different Δt. 

Table 6 
The performance of different numerical schemes on 3D spinodal decomposition 
problems with κ = 0.01, 0.1 and 1. The Δtmax is judged by the criterion 
|ηmax −1|〈5%. That is, Δtmax is the maximum Δt for certain scheme and κ to 
satisfy the criterion |ηmax −1|〈5% throughout the simulation.  

Numerical 
scheme 

Adaptive Δt þ
SAV 

1stSAV 2ndSAV 1stSI 2ndSI 

Δtmax κ = 0.01 >5  ~0.01  ~0.01  ~0.01  ~0.01 
Δtmax κ = 0.1 >5  0.16  0.31  0.16  0.01 
Δtmax κ = 1 >5  2.4  3.8  2.0  0.41  

Fig. 5. 3D spinodal simulation results based on 1stSAV + adaptive Δt scheme for κ = 0.01. (a)-(d) evolutionary profiles for the order parameter at t = 0, 10, 400 and 
20,000, respectively. (e) the Δt-steps profile, indicating an increasing Δt trending for simulations based on SAV schemes, the Δt is manually bounded from above at 
Δt = 5. 
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Suzuki model [36] is adopted to compute the compositions in each 
phase. Eq. (29) describes the gradient energy density, and κo

p,ij are the 
anisotropic gradient coefficients. Eq. (30) is the elastic energy density 
which can be obtained based on the microelasticity theory of Khacha
turyan et al. [37]. 

Based on Eq. (27), the evolution equations for composition and order 
parameters are: 

∂x
∂t

= ∇⋅M∇

(∂flocal
({

ηp}, x
)

∂x

)

, (31)  

∂ηp

∂t
= −L

(
∂flocal

∂ηp

({
ηp}, x

)
−

∑3

i,j
κo

p,ij∇i∇jηp +
∂fel

∂ηp

({
ηp}

)
)

, (32)  

To implement the SAV scheme, we solve the Allen-Cahn equation (Eq. 
(32)) with G = −L and the Cahn-Hillard diffusion equation with G =

ΔM (Eq. (31)) with gradient coefficient κ = 0. For evolving the scalar r, 
we use f = flocal

(
x, {ηp}

)
+ fel

({
ηp

} )
in calculating Eq. (4) and (11). 

With the SAV scheme, we perform a 3D phase-field simulations of β’ 

growth morphology. Three orientations of precipitates with 24 nuclei 
each are initially introduced in a 200 Δx*200 Δx*200 Δx (grid size: 
Δx = 0.25 nm) system with randomized distribution and size. The initial 
Nd composition is x0 = 0.00625. Other simulation parameters can be 
found in reference [35]. 

Fig. 6 (a) – (c) are the evolution profiles of the β’ precipitates. It is 
shown that the growth of the precipitate is anisotropic arising from the 
elastic interactions and the anisotropic interfacial energy. To quantify 
the accuracy and efficiency of the SAV scheme in solving the coupled 
Allen-Cahn equation, diffusion equation, and the mechanical equilib
rium equation, we employed the following two judging criteria: The 
model is considered accurate only when (1) the maximum value of any 
order parameter ηi,max deviates no more than 5% from the equilibrium 
value 1, and (2) the volume fraction Vf (t) should not deviate more than 
10% from the reference case where semi-implicit Fourier spectral 
scheme with dt = 10−4 is used. Fig. 6 (d) shows the efficiency compar
ison of SAV-based and semi-implicit Fourier spectral scheme-based 
(abbr. SI-based) simulations. Both simulations are performed using 1 
core in AMD EPYC Processor located at Bridges-2 server, and the details 
of efficiency comparison between the two schemes are summarized in 
Table 7. According to the simulations, the maximum order parameter 
ηi, max decreases in SI-based simulations after the initial relaxation of the 
model, which violates judging criterion (1) at and beyond dt ≈ 0.001 
whereas the SAV-based simulations show good convergence in ηi, max 

until dt≈0.07 (See supplemental material S7 for more information). 
Meanwhile, both simulations follow criterion (2) even for the afore
mentioned extreme cases for criterion (1), as shown in the inset of Fig. 6 
(d). On the other hand, the average CPU time cost per step in SAV-based 

simulations is 92% compared with that of SI-based simulations, indi
cating a 76-time overall efficiency enhancement of the SAV scheme over 
the SI scheme. 

4. Discussions 

We demonstrated dramatic efficiency enhancement by implement
ing the SAV scheme with the semi-implicit spectral scheme which is one 
of the most efficient schemes for solving phase-field equations. How
ever, to ensure the performance enhancement of the SAV scheme, it is 
important to consider the following two important strategies. 

1. Adaptive time stepping: Although the SAV based schemes show un
conditional energy stability regardless of Δt, large Δt values could 
lead to inaccurate simulation results such as abnormal morphology 
and incorrect kinetics. As discussed in Section 3.3, the implementa
tion of an adaptive Δt algorithm could potentially mitigate or even 
eliminate such issues, but the Δt value used in the simulation still 
needs to be carefully selected. In addition to the example in Fig. 5, 
another example is the inaccurate grain growth behavior predicted 
by the SAV model with Δt > 5 in the incipient stage of polycrystal 
growth (t <100). In this case, the bulk driving force is large when the 
matrix is present while the driving force significantly decreases after 
the matrix is fully consumed by the grains (t > 100). To overcome 
this issue, the adaptive Δt algorithm may be implemented with care 
to ensure the accuracy of the model at start using smaller Δt, while 
increasing Δt when the driving force decreases to accelerate the 
simulation with adequate accuracy. Details of adaptive Δt algorithm 
has been reported in ref. [29], and it is shown to work well when the 
criteria for adapting Δt are correctly chosen. In addition, while using 
adaptive Δt, one should keep in mind that Eq. (10) should be 
modified for the explicit approximation of order parameters for the 

Fig. 6. 3D evolutionary profiles for β’ precipitations in Mg-Nd alloy. (a)-(c) evolutionary profiles for the order parameters at t = 0, 5 and 50, respectively. (d) 
Efficiency comparison between SI-based and SAV-based simulations based on the same accuracy judging criteria. The inset shows the evolution of volume fraction of 
the precipitates by different simulations compared with the referencing simulation. 

Table 7 
The performance comparison between the SAV scheme- and semi-implicit 
Fourier spectral scheme (SI)-based simulations of β’-Mg7Nd precipitate evolu
tion in Mg-Nd alloys. Δtmax represents the maximum time step that satisfies both 
following criteria (1) and (2) |ηmax −1|〈5% volume fraction Vf of precipitates 
should not deviate 10% at any time compared with a reference simulation with 
small Δt. The factors restricting the application of larger Δt are also summarized 
herein.  

Numerical 
scheme 

Δtmax Δtmax restricted by Time used per 
step (SI = 1) 

Efficiency 
(SI = 1) 

SAV  0.07 Criterion  
(1):|ηmax −1|<5% 

0.92 76 

SI  0.001 Criterion  
(1):|ηmax −1|<5% 

1 1  
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next time step, that is, Δt is different for n-1th step and nth step, so that 
the Δt values should be applied to weigh Eq. (10) if a constant 
temporal derivative for η is assumed for the next-step approximation 
of η. Also, the accuracy of the simulation may be very sensitive to the 
selection of the Δt across steps.  

2. Proper splitting of the free energy: For the simulation cases where the 
absolute value of the non-gradient term F({ηi} ) is much higher than 
that of the gradient term, e.g., grain growth with a small gradient 
energy coefficient κ, the simulation can become unreliable with large 
Δt values. In this situation, one may split the free energy expression 
of the grain growth model [29] as follows: 

F =

∫

V

[(

F({ηi} ) −
∑q

N
Sη2

q

)

+
∑N

q

(κq

2
∇2ηq + Sη2

q

)
]

dV (33)  

where a positive parameter S is introduced in order to reduce the impact 
of the non-gradient term. The evolution equations remain similar to Eqs. 
(17) and (18) despite differences in the expression of r based on Eq. (4) 
and the definition of matrix M in Eq. (14). This modification can be very 
effective for problems with thin interfaces [29]. 

In addition, a multiple scalar auxiliary variable (MSAV) scheme is 
recently proposed by Cheng et al. [38] which offers another strategy to 
improve the performance of the SAV scheme when the nonlinear terms 
consist of multiple disparate terms. This scheme enjoys the same accu
racy and efficiency as the SAV scheme with multiple new scalar auxiliary 
variables to represent the multiple disparate nonlinear terms. Recently, 
the SAV scheme has been extended by introducing a Lagrange multiplier 
[39] and then generalized to a function including a given invertible 
function [40] instead of an auxiliary variable. This helps evolve the 
governing order parameter without the restriction that the non-linear 
energy should be bounded below. Thus, the SAV scheme is generally 
applicable to enhance the performance of a wide range of phase-field 
simulations. 

5. Conclusions 

We implemented the scalar auxiliary variable (SAV) scheme for 
solving the phase-field equations. It is demonstrated that the SAV 
scheme can be more than an order of magnitude more efficient than the 
state-of-the-art semi-implicit Fourier-spectral scheme for a single Allen- 
Cahn equation and a 100% improvement for multiple Allen-Cahn 
equations. It is demonstrated that this improvement becomes more 
dramatic as the interfaces become thinner. Combining with an adaptive 
time-stepping, the implemented SAV scheme is shown to be about two 
orders of magnitude more efficient over semi-implicit Fourier spectrum 
scheme for solving the Cahn-Hilliard equation. In addition, the SAV 
scheme is adopted to predict the diffusion-controlled evolution of alloy 
precipitates with strain energy contributions, which demonstrates more 
than 50-time acceleration over the semi-implicit Fourier spectral 
scheme. The implementation and test results in this work highlight the 
potential of the SAV scheme in enhancing the efficiency for simulating a 
broad range of phase-field models due to its stability and versality. 
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