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Abstract

Complex statistical methods are continuously developed across the fields of
ecology, evolution, and systematics (EES). These fields, however, lack stan-
dardized principles for evaluating methods, which has led to high variability
in the rigor with which methods are tested, a lack of clarity regarding their
limitations, and the potential for misapplication. In this review, we illustrate
the common pitfalls of method evaluations in EES, the advantages of testing
methods with simulated data, and best practices for method evaluations.We
highlight the difference between method evaluation and validation and re-
view how simulations, when appropriately designed, can refine the domain
in which a method can be reliably applied. We also discuss the strengths
and limitations of different evaluation metrics. The potential for misappli-
cation of methods would be greatly reduced if funding agencies, reviewers,
and journals required principled method evaluation.
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Method: a statistical
model, machine
learning algorithm,
and/or pipeline that is
used in hypothesis
testing, model
selection, prediction,
and/or forecasting

Nonrandom: samples
were not collected
with equal probability

Nonindependence:
samples are related in
some way (e.g., via
evolutionary history,
ecological interactions,
spatial or temporal
proximity)

Inference:
a conclusion reached
on the basis of
evidence and
reasoning

Evaluation:
a quantitative
comparison of how
well one or more
methods perform on
different data sets
and/or relative to each
other

Validation: providing
a body of evidence that
a method meets a set
of a priori criteria for a
specific real-world
application

Ground-truth data
set: information that is
known to be real or
true, provided by
direct simulation (in
silico) or measurement
(in situ)

1. INTRODUCTION

The fields of ecology, evolution, and systematics (EES) have been revolutionized by advances in
computation, data storage, sampling technology, and genomics over the last thirty years. With
these advancements, biologists can address increasingly complex questions spanning topics from
genes to ecosystems. The big data that result from these inquiries increasingly are being analyzed
using novel and often complex statistical methods.However,methods often see usage beyond their
intended application and before their behavior is fully understood.

New methods are constantly being developed because, as scientists, we seek tools that accom-
modate the complexities of the real world.The vast variety of life forms and ways of studying them
(and funding constraints) often result in nonrandom experimental designs (e.g., block designs or
stratified sampling) and/or nonindependence in the data that must be accounted for in statistical
analyses. Even random sampling designs may have nonindependence, due to spatial and/or
temporal autocorrelation, as well as shared eco-evolutionary history among species, populations,
individuals, and genes.New methods are also being developed to better account for nonlinearities
and interactions, which are common in biological data sets, and machine learning increasingly
is being applied to deal with these unique challenges (Lucas 2020, Schrider & Kern 2018). For
these reasons,EES are emerging as fields in which knowledge of statistics is as important as knowl-
edge of natural history so that methods can be reliably applied to complex data sets (Austin et al.
2006). However, proper application of methods and interpretation of the inferences they provide
requires rigorous evaluation to fully understand the methods’ behavior, strengths, and limitations.

1.1. Evaluation Versus Validation

The goal of method evaluations is to quantify the reliability of methods in different scenarios. In
comparing and testing methods, the terms evaluation and validation are often used interchange-
ably, but they are not the same. Evaluation is the process of assessing method(s) on ground-truth
data set(s). Ideally, method evaluation is based on simulated data that captures the complexities of
empirical data, as well as simulated data that is generated from alternative processes that have the
potential to confound the method (Figure 1). The result of a successful evaluation is an under-
standing of the strengths and limitations of the method(s).

Validation, however, is the process of determining the degree to which a method provides
accurate inference about the real world based on the intended uses of the method (AIAA 1998).
The best model in an evaluation study may still have high error rates or low predictability for a
particular situation. In other words, the best model may still be worse than no model at all. The
result of a successful validation is an understanding of how well the method is expected to perform
for a specific application or data set (Figure 1). Thus, important components of validation are the
a priori designation of the minimum criteria a method should meet for a specific application and
a quantitative evaluation of whether the method achieves these criteria (Natl. Res. Counc. 2012).

1.2. Why Test Methods with Simulations?

In this review, we illustrate common pitfalls of method evaluations in EES, the advantages of
testing methods with simulated data, and the role of carefully planned evaluations in preventing
the misuse of faulty methods. Testing methods with simulations offers a powerful approach
because the true underlying process that generated the data is known (Lotterhos et al. 2018,
Zurell et al. 2010). Much can be learned about black-box methods just by looking at what data
go in and what results come out (Bergstrom & West 2021, Lucas 2020). Simulations also have
the benefit of conducting many replicate experiments in silico when traditional experiments
may be more timely and costly or impossible. For example, Felsenstein (1985) used simulated
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Species distribution
models (SDMs):
empirical models that
relate species
occurrences to
environmental
predictor variables to
understand and predict
species distributions
across space and time

True biological process

Pattern

Data

Statistical analysis

Inferred process

True biological process

Refine domains of
applicability and

inference

Validation
criteria met

Validation criteria
not met

Evaluate
methods on
holdout data

Delineate
training and
holdout data

Define application
and a priori

validation criteria

Empirical data
Compare

methods and
experimental

designs

Simulations
Compare
different

processes and
adversarial
data sets

a   Traditional inference b   Method Evaluation c   Method Validation

Figure 1

An overview of method evaluation and validation in the sciences. (a) In traditional inference, it is not always known whether the
outcome of an analysis is representative of the true underlying biological process. (b) Method evaluation is the process of comparing
methods on data sets for which the truth is known and that include patterns of realism observed in empirical data, as well as adversarial
data sets (e.g., null or challenging data sets) that help to define the domains of applicability and inference for the methods. (c) Method
validation is the process of determining whether a method is good enough to apply to a specific situation and involves defining the
application and a set of a priori validation criteria (e.g., the required level of accuracy) for that application. When the evaluation and
validation criteria are met, the results add to the body of evidence that the method gives robust inference or predictions about the true
underlying biological process.

data to illustrate the failure of traditional statistical approaches and to evaluate a new method,
phylogenetic independent contrasts, that could account for phylogenetic relationships among
data points. This application of simulations not only revealed the reason that an existing method
failed but also catalyzed the development of phylogenetic comparative methods for decades.

2. METHODS IN EVOLUTION, ECOLOGY, AND SYSTEMATICS:
A CONSTANTLY SHIFTING LANDSCAPE

2.1. Methods Developed First, Broken Later
Now, here, you see, it takes all the running you can do, to keep in the same place.

—The Red Queen, Through the Looking Glass by Lewis Carroll

New methods that seem to do the same thing as existing methods—but have nuanced differ-
ences that may be critically important—are being developed constantly. For example, as of 2019,
over 400 methods were available to analyze single-cell RNA sequencing data (Weber et al. 2019).
Here, we illustrate the constantly shifting landscape of methods development, application (ap-
proximated as citation rate), and evaluation on three categories of widely used methods in EES:
genome scans for local adaptation via outlier tests for genetic differentiation (Hoban et al. 2016),
tests of differential diversification in systematics (Ng&Smith 2014), and species distributionmod-
els (SDMs) in ecology (Elith & Leathwick 2009) (for detailed methods, see Supplemental Meth-
ods). For each category, we plotted citation rates for different methods relative to when one or
more highly cited evaluation study was published (Figure 2).
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a   Outlier tests for genetic differentiation b   Tests of differential diversification
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Figure 2

The citation rates for methods in different ecology, evolution, and systematics applications, in relation to publication of the evaluations
of those methods (indicated by arrows). The methods indicated with a dotted line showed good or poor performance in the evaluation.
(a) FST outlier methods (Bayescan, FDIST, hapFLK, LOSITAN, OutFLANK, PCAdapt) relative to when negative evaluations of
FDIST/LOSITAN were published. FST is a measure of genetic differentiation. (b) Diversification tests (BAMM, BiSSE, CVPD,
HiSSE, LASER, SCC) relative to a negative evaluation of BiSSE. (c) Species distribution models (BIOCLIM, DOMAIN, ENFA,
GARP, GRASP, MaxEnt, MAXLIKE) relative to a positive evaluation of MaxEnt.

These three scenarios illustrate different dynamics between method development, application,
and evaluation. For example, in the category of outlier tests for genetic differentiation, a method
called FDIST and its extensions (LOSITAN) was widely used for ∼15 years, until four evalua-
tions between 2010 and 2014 (Lotterhos &Whitlock 2014,Narum&Hess 2011, Pérez-Figueroa
et al. 2010, Whitlock & Lotterhos 2015) used simulations to show that the algorithm had high
false positive rates under more realistic species demographies. The citation rates for FDIST and
LOSITAN started to decrease between 2015 and 2020 (Figure 2a). Likewise in systematics, a
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Verification: process
of determining how
accurately a computer
program correctly
implements the
equations of the
mathematical or
statistical model

method called BiSSE was widely used for ∼5 years before a 2015 evaluation of state dependent
diversification methods (Rabosky & Goldberg 2015) demonstrated that BiSSE had an inflated
false positive rate because it frequently chose the most complex model among all models con-
sidered (Figure 2b). This led to an increase in the use of alternatives like BAMM and HiSSE,
which do not suffer from this shortcoming (Figure 2b) (Beaulieu & O’Meara 2016). For SDMs,
use of a method known as MaxEnt (Phillips & Dudík 2008) exploded in part due to its favorable
performance in a large model evaluation study (Elith et al. 2006) and its implementation in a user-
friendly software interface (Figure 2c). These examples demonstrate that although methods are
constantly being developed, evaluation studies can lead to decreased citation rates for poorly per-
forming methods and increased citation rates for highly performing methods, which reflects the
frequency with which the method is used. There is, however, typically a several-year lag between
the publication of an evaluation and any change in citation rate.

2.2. Pitfalls in Developing Methods

Different (not mutually exclusive) hypotheses may explain the shifting landscape of methods de-
velopment and use. On one hand, the scientific process itself is cyclical: As hypotheses are tested,
the outcomes lead to new hypotheses to test.On the other hand, if newmethods are not rigorously
evaluated when they are first developed, they can become widely used for some time until their
limitations are known, after which they fall out of use. Published studies comparing a new method
to existing methods may be (intentionally or unintentionally) biased in favor of the new method
(Boulesteix et al. 2017, 2018; Weber et al. 2019).

A number of pitfalls can occur during method development that result in a biased evaluation.
For example, rather than using ground-truth data sets, it is not uncommon for methods to
be evaluated using only empirical data (as in Elith et al. 2006) (Figure 2c) or simulations that
align with the assumptions of the method (which leads to verification rather than evaluation or
validation) (Natl. Res. Counc. 2012). An extension of the latter case is subjectivity in the choice
of simulated (or empirical) data sets that are used to test the proposed method, which results in
bias in favor of the proposed method (Weber et al. 2019). Other common pitfalls result from
familiarity with the proposed method (when the developer tunes the parameters for the proposed
method but uses default parameters for the other methods) and subjectivity in the choice of
evaluation metrics used to compare methods, both of which can bias results in favor of the
proposed method (Weber et al. 2019).

Once a method is published, it becomes available for application, and if the assumptions and
limitations of the method—and how to determine them—are not well described, then the method
could be applied incorrectly. There are unquantified costs associated with the improper use of
methods, such as conducting analyses to understand why changing a method led to a different
result on the same data set, conducting assays to confirm results, and in worst case scenarios, using
erroneous results to guide decision-making in health or conservation contexts.

3. GOALS IN TESTING METHODS
Every algorithm, no matter how well it performs generally,may have an Achilles’ heel—some weakness
that will cause it to stumble when faced with a certain problem.

—Natl. Res. Counc. (2012, p. 24)

The lack of standards in EES for method evaluations creates challenges for researchers who
seek to apply methods to their data. These challenges share the common question of whether the
user is making the correct inference based on the method output. Here, we review four common
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Table 1 Challenges, goals, and metrics in method evaluation

Challenge in applying method
to data Goal of method evaluation Evaluation metrics

Does applying this method to the
data give a true result in a
hypothesis test?

Evaluate errors in hypothesis test
Determine which method(s) have the
lowest error rates

Determine whether the error rates are
acceptable for application

True positive rate
False positive rate
False discovery rate
Area Under the Precision-Recall Curve
Area Under the Receiver-Operator Curve

Is the prediction from this method
accurate and precise?

Quantify bias and error of method
prediction

Evaluate whether the prediction is
accurate and precise

If ground truth is categorical and method
prediction is categorical:

Classification accuracy

If ground truth is categorical and method
prediction is a probability:

Brier score
Validation metric applied to probabilistic
predictions

If ground truth is continuous and method
prediction is continuous:

Root mean square error
Accuracy/bias
Precision

Did the pattern in the data result
from a different process from
that assumed?

Evaluate equifinality
Develop an understanding of confounding
factors, hidden variables, and other
possible processes

Model comparison metrics:

Akaike information criteria
Bayes information criteria
Likelihood ratio test
Bayes factor
Posterior probability

Were correct decisions made when
designing the experiment,
filtering data, and choosing a
method?

Evaluate nuanced decisions
Illustrate best practices in the scientific
method

Any of the above metrics, depending on the
context

challenges that arise when applying methods to data, and the associated goal of method evalua-
tion that is important for addressing each challenge (Table 1), with examples. To illustrate how
method evaluations have helped to achieve these goals, we reviewed 37 evaluation studies in EES
(Supplemental Table 1).

3.1. Challenge #1: How Does One Know if Applying a Given Method
to the Data Gave a True Result in a Hypothesis Test?

In the null hypothesis statistical framework, one tests the probability of obtaining the data, given
a null hypothesis. Accurate results of a null hypothesis test depend on whether the data meet the
assumptions of the method. A major goal when testing methods is to determine the frequency
with which a method returns a true positive or false positive result (Table 1).

This is a common goal in the evaluation of genome scanmethods,which are statistical tests that
are used to determine the genetic basis of a trait or detect selection in sequence data. In this case,
simulations have been used to evaluate how the degree of adaptation, population demography,
recombination, admixture, and sampling design affect error rates in genome scans (Capblancq
et al. 2018; Forester et al. 2018; Lotterhos 2019; Lotterhos & Whitlock 2014, 2015; Luu et al.
2017) (Supplemental Table 1). For example, Forester et al. simulated genomes under selection
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Equifinality:
when several
parameterizations exist
that equally fit a given
data set (also known as
nonidentifiability)

by different types of spatial heterogeneity and used these data sets to compare univariate and
multivariate methods for detecting selection (Forester et al. 2016). They showed that multivariate
methods had lower false positive rates, but also lower power, than univariate methods (Forester
et al. 2016).

SDMs also are frequently evaluated for their ability to discriminate presence from nonpresence
(i.e., true absence, pseudoabsence, or background data). In one such study,Qiao et al. (2015) tested
8 SDM algorithms using 14 virtual species simulated with different niches in environmental space,
with and without barriers to dispersal in geographic space. They found that no single algorithm
performed best in all instances, with performance depending on the particular traits of the virtual
species being modeled.

3.2. Challenge #2: Is the Prediction from This Method Accurate and Precise?

Methods are used to make predictions in a variety of ways, ranging from parameter estimation
on a biological process [e.g., branch length estimation in phylogenetic trees (Brown et al. 2010)]
to the development of a model that predicts response variable(s) from explanatory variable(s) [as
in statistics and machine learning (Lucas 2020)]. For methods like SDMs that are routinely used
to inform management decisions, it is especially important to determine whether models assign
the correct probabilities to a given outcome (Chivers et al. 2014). Thus, another goal of testing
methods is to quantify the bias and precision of a method prediction (Table 1).

This is a common goal of methods that estimate population parameters (such as population
size, niche breadth, or recombination rate) or individual values (such as fitness or a trait value). For
instance, the threshold model for discrete character evolution estimates an unmeasured continu-
ous trait value that leads to the observed discrete trait. In implementing this method, simulations
provided ground-truth data sets for which this unobserved value was known, and this allowed for
an evaluation of the method that would otherwise be impossible (Revell 2014).

This challenge also extends to the Bayesian model selection framework. For instance, phylo-
genetics methods seek to accurately infer the posterior probabilities for the correct tree topology
among a number of hypothesized topologies. The Bayesian star tree paradox occurs when (in-
formative) data with many nucleotides lead to an inaccurate phylogenetic tree with a high pos-
terior probability, while (uninformative) data with a single nucleotide lead to accurate posterior
probabilities for a set of hypothesized trees (Lewis et al. 2005). This result was paradoxical be-
cause the performance of methods is expected to improve with the use of a larger number of
nucleotides. Simulations have been used to show that the paradox occurred because the true tree
from which data were generated was not among the hypotheses being considered in the Bayesian
analysis and to demonstrate how better algorithms can lead to more accurate results (Lewis et al.
2005).

3.3. Challenge #3: Equifinality: Did the Pattern in the Data Result
from a Process Other Than the Process Originally Assumed?

Research in EES often aims to infer the process(es) responsible for a given pattern based on statis-
tical analysis of that pattern alone.This can be challenging because a number of different processes
can result in the same pattern in the data (Dormann et al. 2012,Oreskes et al. 1994).This is known
as the problem of equifinality, which can confound method evaluation, for example, when several
parameterizations of the model are statistically unidentifiable (many parameter estimates produce
an equally good fit to the data) (Dormann et al. 2012). Thus, another goal of testing methods is
to develop an understanding of confounding factors, hidden variables, and other processes that
could change the inference of the underlying phenomenon (Table 1).
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The use of simulations can help to identify these confounding processes and demonstrate (or
rule out) equifinality, which can lead to more realistic interpretations of empirical data. In phylo-
genetics, Louca & Pennell (2020) used simulations to show that when diversification is correlated
with fluctuating environments, a single phylogenetic tree can be consistent with a myriad of di-
versification histories (Supplemental Table 1). In ecological genomics, empirical studies have
found a negative relationship between population size and a machine-learning prediction of ge-
nomic vulnerability, which was inferred to be driven by signals of selection in the genome (Bay
et al. 2018, Ruegg et al. 2018). However, a simulation study showed that neutral demographic
processes resulting from genetic drift could produce the same pattern (Láruson et al. 2022), illus-
trating that the empirical observation may not have been driven by the process of selection, as was
first inferred (Supplemental Table 1).

Another example comes from the use of so-called joint SDMs that infer signals of biotic inter-
actions from residual covariation between species (Ovaskainen et al. 2017). Patterns of residual co-
variation in joint SDMs could also arise from statistical artifacts related to missing environmental
covariates or poor model fit. In a simulation study, whether residual covariation from joint SDMs
reflected biotic interactions depended on the spatial scale, prevalence of the modeled species, the
nature of the interaction between species, and other factors (Zurell et al. 2018) (Supplemental
Table 1).

3.4. Challenge #4: Were Correct Decisions Made When Designing
the Experiment, Filtering Data, or Choosing a Method?

Inferences gained from research in EES are also sensitive to the numerous nuanced decisions
made when designing experiments and analyzing data. Failing to detect an effect in a study (e.g.,
a nonsignificant result) raises questions about whether there truly was an effect and whether the
experimental design had enough power to detect an effect. Thus, the fourth major goal of testing
methods is to illustrate best practices for the scientific method, including experimental design and
data filtering steps, among other nuanced decisions (Table 1).

Simulation studies have been useful for evaluating nuanced decisions. For example, simula-
tions have been used to show that experimental designs in ecology with many levels and fewer
replicates per level (but that were not necessarily fully factorial) can yield accurate parameter esti-
mates while also requiring less experimental effort (Blanquart et al. 2013, Cottingham et al. 2005,
Inouye 2001) (Supplemental Table 1). Simulations are also becoming commonplace for evaluat-
ing SDMs and the numerous methodological decisions that go into fitting such models (Meynard
et al. 2019). One consequential decision often encountered when fitting SDMs is determining
how, where, and how many pseudoabsences (also known as background data in certain contexts)
should be generated to build reliable models. Several studies have used simulations to inform se-
lection strategies and have shown that the best approach depends on the nature of the occurrence
data, study region, and statistical algorithm being used to fit SDMs, among other factors (Barbet-
Massin et al. 2012, Liu et al. 2019, Lobo & Tognelli 2011).

Method evaluations using simulations have also played an important role in genomic research
that requires a large number of choices at each step in the pipeline. For example, simulations have
been used to illustrate how (a) bias in allele frequencies arises from the way tissue was prepared
for sequencing (Arnold et al. 2013, Flanagan & Jones 2018, Gautier et al. 2013), (b) sequencing
depth can influence error rates from different sequencing platforms (Harismendy et al. 2009),
(c) bias in genetic diversity statistics is generated from de novo transcriptome assembly (Freedman
et al. 2021, Hölzer & Marz 2019), and (d) failure to filter data properly for linkage disequilibrium
can lead to false positive results in genome scans for selection (Lotterhos 2019) (for details on
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Domain of
applicability: a region
of a domain space in
which a method
returns acceptably
accurate results

Domain of inference:
the processes that can
be deduced or
concluded from a
method based on
evidence and
reasoning

Adversarial data sets:
data sets that challenge
a method because they
capture the extreme
characteristics of data
that might be used in a
method

these simulation studies, see Supplemental Table 1). Simulations are critical for determining the
context and boundaries within which data interpretations are valid, as well as providing guidance
on decision-making for research.

4. PRINCIPLED METHOD EVALUATION AND VALIDATION
FOR EVOLUTION, ECOLOGY, AND SYSTEMATICS

While a mathematical understanding of the algorithms involved in a method can provide a con-
ceptual understanding of its pitfalls and how it could lead to false inference, it is not essential.
However, it is essential that simulations be carefully designed to ensure the simulated data provide
a proper test of the variety of applications that a method may encounter. This includes consider-
ing which features of the data may confound a method and what kind of processes could lead to
similar patterns in data.

4.1. Phase I: Plan Development

The first phase in a simulation study is to develop a conceptual plan that describes the problem
to be addressed. Based on the assumptions of the methods or the way they are parameterized, it
should be possible to hypothesize a domain of applicability that delineates the specific situations
and data sets to which that method can be applied (sensu Natl. Res. Counc. 2012). For example,
Zurell et al. (2009) simulated a spatially explicit multi-species dynamic population model with
range shifts and tested how well SDMs predicted the simulated changes in species distributions.
They found that some SDMs could accurately forecast range shifts when species were able to
rapidly track climate change (via long-distance dispersal, a slow rate of climate change, and/or a
range contraction rather than shift), which helped to define the domain of applicability for SDMs
in forecasting range dynamics (Zurell et al. 2009) (Supplemental Table 1).

We also postulate that a domain of inference (what could be inferred from the method output)
should be hypothesized. For example, a horseshoe pattern in a principal components analysis of
microbial data was commonly inferred to be a statistical artifact for which a correction should be
applied (Morton et al. 2017). However, Morton et al. (2017) showed with simulated data that the
horseshoe pattern could be caused by niche differentiation along an ecological gradient, which
altered the domain of inference (Supplemental Table 1).

These domains should be informed by the goal of the methods to be evaluated (Table 1). Once
these domains are hypothesized, the next step is to brainstorm ways to challenge the methods with
adversarial data sets (sensu Molnar 2021) that will help to define these domains and also capture
biological realism inherent in the empirical data that the methods may encounter in the future.
In machine learning, the term adversarial is commonly used to describe challenging data sets
that substantially degrade performance and thereby help determine the domain of applicability
(Hendrycks et al. 2021, Molnar 2021). Here, we use adversarial to refer to data sets that capture
the extreme characteristics of data that users may choose to analyze with a given method, although
they might not cause performance to degrade.

4.2. Phase II: Simulation

The second phase in a simulation study is to create a set of ground-truth data sets that will be used
for evaluating methods. How to construct simulations from a biologically reasonable description
of the system has been reviewed elsewhere (Otto & Day 2011, chapter 2). Here, we review helpful
techniques for focusing the simulations in the face of real-world complexity by using contrasting
cases or response surface designs and by simulating signals on real data.
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a   Contrasting cases b   Response surface design c   Simulate on real data
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Figure 3

Techniques that can be used to guide simulations. (a) Contrasting cases present different scenarios while controlling for important
features of the data. In this example, the distribution of FST (genetic differentiation) is contrasted for different demographies, while the
overall mean FST (vertical red line) is controlled for. The demography that produces each distribution of FST is visualized on the left,
with populations represented by dots and paths of migration represented by lines. In the expansion from refuge (bottom), the population
initially occupies the black location and spreads to the grey locations over time. (b) Response surface designs study the response variable
across many levels of the explanatory variables. In this example, a method evaluation seeks to explore the performance of a species
distribution model across the dispersal rate and niche breadth of a virtual species. The matrix represents the total parameter space,
while the dots represent the combination of parameter values that were simulated. Simulation levels could follow a factorial design (top)
or a Latin hypercube that requires fewer total levels to cover a similar response space (bottom). (c) Simulations can also be performed on
real data. In this example, a Markov model of trait evolution is based on a matrix that describes the probability that one trait (in rows)
mutates to another trait (in columns) per unit time. Here, the traits are diurnal or nocturnal behavior. This model is then simulated on
an empirical phylogeny to produce a data set of simulated traits that can be used to test methods.

4.2.1. Contrasting cases. Contrasting cases are a set of simulations that differ in important
ways that may challenge methods, but these cases avoid confounding by controlling for important
features of the data. As an example of contrasting cases, Lotterhos & Whitlock (2014) contrasted
the performance of genome scans to identify outliers for themetric FST,which describes the degree
of genetic differentiation between two or more populations at a locus. Spatially divergent selec-
tion can cause affected loci to have larger values of FST than the genome-wide background, and
outlier identification can be used to discover the genetic basis of local adaptation. They used sim-
ulations that had the same mean FST but different variance in FST, which was created by different
demographies (Figure 3a). Importantly, to create data sets with the same mean FST, they did not
use the same dispersal or deme size among demographies (Lotterhos & Whitlock 2014). A
challenge with contrasting cases is to determine which features of the data to control for. While
many of the method evaluations in our review fit into the category of using contrasting cases
(Supplemental Table 1), few described whether features of the data were controlled for in
different scenarios.

4.2.2. Response surface designs. In the absence of prior knowledge on the simulation behavior
across a range of input parameters, a simple rule of thumb is to explore as much of the input region
as possible. Different approaches to response surface designs include sequential designs (Ranjan
et al. 2008), Latin hypercube designs (McKay et al. 1979), and variants thereof (Lin et al. 2010,
Tang 1993). In the context of statistical sampling, a Latin square contains one simulated data set
in each row and each column, while the rows contain different levels of one parameter and the
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columns contain different levels of a second parameter (Figure 3b). A Latin hypercube maintains
these criteria in many dimensions and allows the parameter space to be covered at a reduced effort
compared to fully factorial designs.

In our literature review, sequential designs, in which several values of each parameter are simu-
lated, were the most used type of response surface design (Supplemental Table 1). For example,
Liu et al. (2019) generated virtual species at three levels of prevalence (the proportion of sites oc-
cupied) and then fit ten different SDM algorithms to these virtual species using a varying number
of training presences and pseudoabsences. They showed that the number of pseudoabsences that
maximized model performance depended on the modeling technique, species prevalence, and the
number of training presences (Supplemental Table 1). In general, Latin hypercube designs are
rarely used in EES research (but for recent examples, seeMellin et al. 2016, Santini et al. 2021), in-
dicating that existing packages for experimental design in both R (Carnell 2021) and Python (Lee
2015) could be leveraged for this purpose. A caveat with response surface designs is that changing a
single parametermay affectmultiple features of the data in a way that is confounding to the analysis
(e.g., if migration rate is increased, both the mean and the variance of the FST distribution change).

4.2.3. Simulating on real data. Simulating signals on real data has the advantage of capturing
features of the data, such as nonindependence among samples, that are difficult to model. For
example, signals of selection can be simulated on landscape genomic data by generating allele
frequency shifts on real data as a function of fake environments (e.g., Berg & Coop 2014), by sim-
ulating data using an observed covariance structure among populations (e.g., Gautier 2015), or
by drawing from posterior estimates of demographic parameters from empirical data (e.g., Harris
et al. 2018) (Supplemental Table 1). Similarly, trait values can be simulated on empirically in-
ferred phylogenies and used to investigate methods in phylogenic inference (Figure 3c) (Rabosky
& Goldberg 2015) (Supplemental Table 1). While we recommend that this technique is em-
ployed whenever possible, also note that there can be subjectivity and bias in the way signals are
generated.

4.3. Phase III: Evaluation

In the evaluation phase, each method is evaluated across different simulations and possibly com-
pared to other methods. The metrics that are used in evaluation depend on the type of data used
for ground truth, the type of metric output by the method, and the goal of the method evaluation.

4.3.1. Evaluation metrics: discrimination for binary classification. Many methods output a
statistic that represents the strength of evidence for a specific hypothesis (the signal, e.g., P value,
Bayes factor, or similar probability). Hypothesis testing is often based on a binary classification
(e.g., null hypothesis rejected or not; comparison of one hypothesis to another, as in Bayes fac-
tors; species present or absent, as in an SDM). In this case, we wish to evaluate the performance
of the method in its ability to discriminate between true positives (which should have the most
extreme signals) and true negatives (which should have the least extreme signals). Although true
positive rates, false positive rates, and false discovery rates are commonly used to evaluate bi-
nary classifiers, these metrics depend on arbitrary thresholds. For this reason, the performance of
methods is best compared using threshold-independent metrics, most notably the area under the
precision-recall graph (AUC-PR) and the area under the receiver operating characteristic curve
(AUC-ROC) (Davis & Goadrich 2006). AUC-PR is based on a plot of precision (the proportion
of positive hits that are true positives) on the y-axis versus true positive rate (sensitivity or recall)
on the x-axis. AUC-ROC is based on a plot of true positive rate (recall) on the y-axis versus false
positive rate on the x-axis.
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Figure 4

Approaches for quantifying the performance of a method for binary outcomes (hypothesis test). Comparison of (a) AUC-PR and
(b) AUC-ROC for different methods applied to the same data set. In this data set, there are 10 positive cases (e.g., loci under selection,
species presences) and 90 negative cases (e.g., neutral loci, species absences), to which four methods are applied. Cases refer to the true
state—not the test result. Note that recall (the x-axis in panel a) and sensitivity (the y-axis in panel b) are different names for the true
positive rate. The true positive rate is the proportion of positive cases that the method infers are positive cases. The false positive rate is
the proportion of negative cases that the method infers are positive cases. Abbreviations: AUC-PR, area under the precision-recall
curve; AUC-ROC, area under the receiver operating characteristic curve.

We illustrate the differences between AUC-PR and AUC-ROC in Figure 4, which compares
four hypothetical methods (the Perfect Method, Good Method A, Good Method B, and the Poor
Method) applied to an imbalanced data set with 10 positive cases and 90 negative cases (e.g.,
10 loci affected by selection and 90 neutral loci in a genomics data set, or 10 species presences
and 90 species absences in an SDM). Note that here we use positive cases and negative cases to
refer to the true state—not the test result. In both analogies, outcomes with the highest signals
output by a method (e.g., top hits) are inferred to be positive cases. The Perfect Method correctly
ranks all 10 positive cases as having the highest signals and has an AUC-PR and AUC-ROC of 1
(Figure 4). In contrast, the Poor Method randomly ranks positive cases among negative cases and
has an AUC-PR of 0.1 and an AUC-ROC of 0.55 (an AUC-ROC of 0.5 is expected by chance)
(Figure 4).

Which metric to use depends on the characteristics of the data being tested and the relative
importance of different types of errors on model evaluation. For imbalanced data, namely few
positive cases and many negative cases (as in Figure 4), AUC-PR can better capture method
performance than AUC-ROC. This is because AUC-ROC incorporates false positive rates (i.e.,
negative cases that are falsely inferred to be positive cases), which can remain comparatively low
when negative cases far outnumber positive cases (Fawcett 2004, Saito & Rehmsmeier 2015,
Sofaer et al. 2019). Although AUC-ROC remains widely used in SDM, simulation studies have
demonstrated how AUC-ROC can be inflated when analyses incorporate a large number of pseu-
doabsences or background points distributed beyond the species range; this led to some methods
outperforming others solely due to different numbers of background points ( Jiménez-Valverde
2012, Sofaer et al. 2019). Sofaer et al. (2019) used simulations to show that AUC-PR can be a useful
complement to AUC-ROC when evaluating model fit using unbalanced data, but suggested that
no single evaluation metric can fully characterize method performance (Supplemental Table 1).

The advantage of the AUC-ROC score is that it more accurately reflects the costs of validation
compared to AUC-PR. In the analogy of a genome scan in which each hit would be validated with
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gene editing, the locus with the highest signal (top hit) would be tested first, followed by the
next highest signal, and so on. Ideally, one would want to discover as many true positives (e.g.,
loci that affect the trait) as possible with the minimum number of validation tests. In Figure 4,
Good Method A returned five of the ten loci under selection in the top six hits, but the remaining
five were interspersed with neutral loci. Good Method B returned eight of the ten loci under
selection in the top 20 hits, but only one of them was in the top five hits. Good Method A has a
higher AUC-PR than Good Method B, which reflects that more of the top hits are true positives
for Good Method A compared to Good Method B (Figure 4a). However, Good Method B has a
higher AUC-ROC than GoodMethod A,which reflects that a greater proportion of true positives
would be discovered with a lower number of total validation tests for Good Method B compared
to Good Method A (Figure 4b; for calculations, see Supplemental Appendix 1).

Our literature review of methods evaluations revealed that the application of AUC metrics
in EES was highly variable. In the evaluation of genome scans, method performance was based
more often on arbitrary thresholds of true positive rates, false positive rates, and false discovery
rates (Supplemental Table 1). In SDM evaluations, AUC-ROC curves have been widely applied
(despite underlying issues for imbalanced data, as described above), but AUC-PR was rarely used.
When relevant, requiring both AUC-PR and AUC-ROC for publication would increase the rigor
of method evaluations.

4.3.2. Evaluation metrics: accuracy. Accuracy is how close a prediction from a method is to
the true value. If the goal of evaluation is to determine the accuracy of a prediction, the approach
depends on the type of data that is used as ground truth and the type of prediction made by the
method. If the ground-truth data is categorical and the method prediction is also categorical, then
classification accuracy is typically calculated as the proportion of ground-truth classes that fall
into each predicted class (Figure 5a). For example, machine learning has been used in genomic
research to predict the type of positive selection that affects different regions of the genome.
Schrider & Kern (2016) trained a machine learning algorithm to classify the genome into hard
sweeps, soft sweeps, and neutral regions. However, they evaluated the algorithm with data simu-
lated under an equilibrium demography, and when the algorithm was trained with data simulated
under more realistic demographies (including bottlenecks and migration) the performance of the
algorithm substantially degraded (Harris et al. 2018) (Supplemental Table 1).

If the ground-truth data is categorical and the method prediction is a probability, the accu-
racy of the method can be assessed in terms of whether the method correctly predicts the class
probability (Pearce & Ferrier 2000). Methods that predict a continuous probability of discrete
outcomes are commonly used in SDMs, which calculate the probability that a species is present in
a particular habitat. In this case,metrics like the Brier score (Brier 1950) and the recently proposed
validation metric applied to probabilistic predictions (VMAPP) (Chivers et al. 2014) can be used
for accuracy evaluation. The Brier score is equivalent to the mean squared error and ranges from
0 to 1, where 0 indicates complete agreement between observation and prediction, and 1 indicates
complete disagreement (Figure 5b), whereas VMAPP is a goodness-of-fit metric that measures
the magnitude and direction of bias and how bias changes across the prediction range. In con-
trast, metrics of discrimination like AUC-ROC and AUC-PR quantify the ability of the model to
correctly distinguish between classes (i.e., for SDMs, the extent to which predicted probabilities
for occupied sites are higher than those for unoccupied sites), regardless of the accuracy of the
predicted class probability. Given the different insights that assessments of discrimination capac-
ity and accuracy provide, model evaluation ideally should consider both of these components of
predictive performance (Norberg et al. 2019, Pearce & Ferrier 2000). For example,Maguire et al.

www.annualreviews.org • Testing the Tests 6.13

, .•
·�-

Review in Advance first posted 
on July 29, 2022. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. E

co
l. 

Ev
ol

. S
ys

t. 
20

22
.5

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 N

or
th

ea
st

er
n 

U
ni

ve
rs

ity
 o

n 
08

/0
4/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ES53CH06_Lotterhos ARjats.cls July 20, 2022 15:32

a   Classification accuracy b   Brier score (MSE) c   RMSE
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Figure 5

Approaches for calculating prediction accuracy. (a) If the ground-truth data is categorical and the method prediction is also categorical,
classification accuracy is calculated for each true class as the fraction of ground-truth classes that fall into each predicted class. On the
diagonal are true positive rates. In this example, a method seeks to classify data corresponding to a region of the genome into hard
sweep, soft sweep, and neutral classes. (b) If the ground truth data is categorical and the method prediction is a probability (dots), the
Brier score is calculated as the MSE between the probability of the ground-truth class (in this example, 0 means species absent, and
1 means species present) and the probability predicted by the method. The MSE is visually represented as squaring the lines
corresponding to each dot and then taking the mean. (c) If the ground-truth parameter is numerical and the method predicts an
estimate of the parameter (in this example, branch length on a phylogenetic tree), then the RMSE is calculated between the ground
truth and the prediction. The RMSE is visually represented as squaring the lines corresponding to each dot, taking the mean, and then
taking the square root. Abbreviations: MSE, mean square error; RMSE, route mean square error.

(2016) used both the AUC-ROC and Brier score to evaluate different strategies (single-species
versus community-level modeling) for predicting shifts in the distributions of species in response
to climate change.

If the ground-truth data is numerical and the method prediction is also numerical, the method
can be assessed in terms of the accuracy and precision of the estimation. Evaluation metrics such
as mean absolute error and root mean square error (RMSE) (Figure 5c) increase as the predic-
tion becomes more biased and imprecise but do not reflect the direction of bias (for examples
and R code, see Supplemental Appendix 2). For example, Flagel et al. (2019) simulated DNA
sequences to evaluate whether convolutional neural networks could be trained to estimate popu-
lation genetic parameters from alignment images. They used RMSE to compare the algorithm’s
estimate of historical population recombination rate to the true value (Flagel et al. 2019). Evalu-
ation metrics such as mean error or percent error (mean error scaled by the true value) increase
as the prediction becomes more biased and also reflect the direction of bias but are unaffected by
dispersion (Supplemental Appendix 2). For instance, in an evaluation of methods for building
extremely large phylogenies, Beaulieu & O’Meara (2018) used percent error in branch-length es-
timates to show that branch-length estimation was robust in the face of missing data, except for
very short branches.

Sometimes when both the ground-truth data and prediction are numerical, the method pre-
diction is not in the same units as the ground-truth data. For example, methods that are used
to predict the degree of maladaptation when genotypes are moved to a new environment could
be based on genetic distance, environmental distance, or both (Láruson et al. 2022, Rellstab et al.
2021). In this case, the units of the ground-truth data is the change in fitness of the genotype when
moved to a new environment, but the units of the method prediction depends on what model was
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Model averaging:
combining multiple
models to make
forecasts or perform
inference; often
models are weighted
based on explanatory
power

Validation criteria:
quantities of interest
that are used to assess
the accuracy of a
method based on its
intended use

Validation tolerance:
the a priori required
level of accuracy for
validation criteria

Holdout data: data
not used in training an
algorithm that
provides a final
estimate of method
performance; also
called testing data

used. Thus, RMSE would be inappropriate as an evaluation metric because it assumes the method
prediction and ground-truth data are both in the same units. Instead, the correlation between
each predicted degree of maladaptation and fitness (the ground truth from simulated data) can be
used to compare the performance of methods (for an example, see Láruson et al. 2022). It is im-
portant to keep in mind that the use of correlation as an evaluation metric is limited because it
measures the extent to which two variables are linearly related (e.g., a measure of precision) and
does not capture other aspects of the evaluation such as bias or different rates of change.

A number of other summary statistics, such as sum of absolute log-ratios, log-modulus, and
cross-entropy, can also be used to summarize model fit to the evaluation data (these metrics are
reviewed in further detail in Weber et al. 2019).

4.3.3. Evaluation metrics: model comparison. Many methods require users to choose among
models as part of the analysis [e.g., in phylogenetic inference, a DNA model is often chosen
(Lanfear et al. 2017)]. This is a crucial step, since inference using incorrect models can lead
to systematic errors (Cunningham et al. 1998). Akaike information criterion (AIC), Bayesian
information criterion (BIC), Bayes factors, and likelihood ratio tests are the most commonly ap-
plied metrics to choose among competing models. AIC and BIC have become increasingly com-
mon in EES partly because these metrics do not require models to be nested. When comparing
two models with these metrics, general rules are typically applied where differences greater than
2.5 (AIC) or 2.0 (BIC) indicate at least some support for the model with the lower score (Anderson
& Burnham 2004). Alternatively, Akaike model weights have been used to provide relative sup-
port for competing models. For instance, in an ancestral state estimate of ant colony traits, Akaike
model weights were used to pick a best model for inference (Borowiec et al. 2021). Though less
common, Akaike model weights can also be used with model averaging to produce parameter es-
timates that do not rely on any single model (Anderson & Burnham 2004). This approach was
recently illustrated for analyses of genetic architecture (Blackmon & Demuth 2016).

4.3.4. Completing the evaluation process. The evaluation process is complete when the do-
main of applicability and domain of inference for a method have been well defined. Critically,
these domains can be well defined only if there are evaluation results for data sets both within and
outside of the domains.

4.4. Phase IV: Validation

Validation is the process of assessing whether or not quantities of interest (validation criteria) are
within an a priori specified validation tolerance for a specific application. The goal of validation
is to determine how well the method performs for a specific application and involves two steps.
In the first step, the method is parameterized by one set of data, and then in the second step, the
method is tested against an independent set of empirical holdout data from the specific application
(Figure 1). While method validation is not a focus of this review, we cover it briefly because the
term is often used interchangeably with evaluation in the EES literature. Principles in method
validation—and its differences from evaluation—have been widely developed in the engineering
and physical sciences (AIAA 1998, Natl. Res. Counc. 2012, Thacker et al. 2004) but rarely applied
to EES. Method validation is especially crucial when models are to be used to inform decision
making, as is often the case with SDMs. The validation process determines whether there is suf-
ficient evidence that the model is accurate for its intended use—it cannot prove that a model is
correct and accurate for all possible scenarios (Thacker et al. 2004).

The first step of the validation process is to define the intended use of the method the
holdout data that will be used in validation, the validation criteria that will be used to determine
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Acceptable
agreement:
a prespecified
tolerance within which
holdout data are
determined to validate
a method

performance, and the level of performance needed (or validation tolerance) for that intended
use (Figure 1). This step should include consultation with stakeholders and others with subject-
matter expertise. By necessity, the validation process should be closely integrated with empirical
research within the proposed intended use (Guillera-Arroita et al. 2015). Careful a priori consid-
eration of validation tolerances and preregistration of validation plans and experiments (Nosek
et al. 2018) provide extra rigor for a validation study.

4.4.1. Completing the validation process. The method is considered suitable for its intended
use when acceptable agreement between the holdout data andmethod results is achieved (Thacker
et al. 2004). Care should be taken to conduct the validation on the holdout data only once to avoid
circularity by fine-tuning the model to fit the holdout data. Ideally, multiple data sets and metrics
are used in determining acceptable agreement, and multiobjective optimization (Miettinen 2012)
may prove useful in this determination. Even complex models are often only a rough approxi-
mation to reality: The validation process determines if they are close enough to be useful (Box
1979). Although it may be possible to prove a method is invalid for a specific situation, the generic
term valid model does not make sense (Natl. Res. Counc. 2012, Oreskes et al. 1994). There is, at
most, a body of evidence that can be presented to suggest that the model produces results that are
consistent with reality (Natl. Res. Counc. 2012).

4.4.2. The role of simulation tests in validation. Simulations are probably most commonly
used to invalidate specific methods for specific applications. However, phenomena in EES that
operate across large spatial and/or temporal extents, such as species diversification, demographic
inference, or forecasts of range shifts, cannot be directly validated (Oreskes et al. 1994) and there-
fore necessitate the use of simulations for quasi-validation. For example, posterior predictive simu-
lations for a DNA evolution model can play a key role in determining whether the model selected
is adequate for the analyzed data (Gelman et al. 1996, Höhna et al. 2018). With this approach,
model parameters are estimated from the empirical data and used to generate thousands of simu-
lated data sets. A range of summary statistics are then chosen and calculated for both the empirical
and simulated data sets. If a summary statistic for the empirical data is an outlier relative to the
distribution of the statistic calculated for the simulated data, the model fails to capture some im-
portant aspect(s) of the actual biological process generating the data (e.g., acceptable agreement is
not reached). By examining a range of summary statistics, this approach elucidates when models
work, how models fail, and how to design more appropriate models for future analysis (Pennell
et al. 2015, Rice & Mayrose 2021). Note, however, that using simulations in this way for method
validation does not necessarily protect against cases of equifinality, and potential for equifinality
should still be addressed as part of the larger validation process.

5. BEST PRACTICES

In contrast to research on clinical trial design, there has been little research on how to minimize
cognitive bias and conflicts of interest in the development of statistical methods (Boulesteix
et al. 2018). Here, we review best practices and cautionary principles for method evaluation and
validation.

5.1. Use Ground-Truth Benchmark Data Sets, Including Adversarial Examples
That Can Refine the Domains of Applicability and Inference

In EES it is common for developers to create custom simulations to evaluate a new method.
As a result, methods are not compared on a common ground. In machine learning and image
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Benchmark data sets:
simulated or empirical
data sets for which the
underlying truth is
known and that are
used as a standard for
evaluating methods

Biological relevance:
an effect considered by
expert judgment to be
important and
meaningful

recognition, advancements have been achieved using standard benchmark data sets. For example,
the MNIST database of handwritten digits (LeCun et al. 1998) allowed for advancements in
computational image recognition. Properly designed benchmarks that include adversarial data
sets within and outside of a method’s domain of applicability and inference could drive similar
advances in EES. While the development of benchmarks in EES is growing and now includes a
standard library of population genetic models (Adrion et al. 2020) and variation benchmarks
(Sarkar et al. 2020, Thompson et al. 1999), the standardized use of benchmarks for methods
development and evaluation is still rare in EES.

5.2. Conduct the Comparison Neutrally with Double Blinding

Anecdotal evidence supports the idea that differences in user expertise can lead to a variety of out-
comes despite the same method being applied to the same data set (Gilbert et al. 2012, Lotterhos
et al. 2016). A neutral comparison (sensu Boulesteix et al. 2017) is a comparison that is designed
such that user expertise does not favor certain methods. Thus, evaluators should report the steps
they took to apply an equivalent level of parameter tuning for each method, such that each method
is compared under its best performance. A best practice, therefore, is for the user to simulate data
sets blind to the methods and for the evaluator to tune the method blind to the ground truth in
the simulated data (analogous to double-blind clinical trials). Among the 37 method evaluations
in our literature review, none of them reported double blinding, illustrating that this should be
encouraged by journals and reviewers.

5.3. Separate Holdout Data and Training Data, if Applicable

Some methods require data to train an algorithm. In this case, it is necessary to partition each
simulated data set into a subset that serves as training data for parameterization (which may in-
clude cross-validation) and a subset that serves as holdout data for evaluation. Evaluators should
avoid the circularity of using the same data for training and evaluation, which can inflate the per-
formance statistics of the method (Grimm et al. 2015,Molnar 2021). Take, for example, simulated
data sets of virtual species that are used to test SDMs: a sample of observations from each sim-
ulation should be used to train the SDM (training data), and a different subset of observations
from the same simulation should be used to evaluate whether the algorithm correctly predicts
the species distribution (holdout data) (e.g., Meynard & Quinn 2007, Norberg et al. 2019). How
best to partition the data into training and holdout subsets [e.g., using spatial blocking versus ran-
dom selection (Norberg et al. 2019) or leave-one-population-out selection (Rellstab et al. 2021,
Roberts et al. 2017)] is an active area of research for different methods. As a cautionary principle,
cross-validation is not always the same as method validation because it is only a summary of model
fit, which can still suffer from equifinality; furthermore,model accuracy is only a small component
of the validation process (Lotterhos et al. 2018).

5.4. Consider Biological Relevance When Assessing Method Performance

Biological relevance implies a biological effect of interest that is considered important based on
expert judgment (EFSA Scientific Committee 2011,Martínez-Abraín 2008,Whitlock & Schluter
2020). Evaluations can assess the biological relevance of method outputs in two ways, and well-
designed evaluation studies can help elucidate cases when the method output can be used to make
robust inference.

The first way evaluations can assess the biological relevance of method outputs is to test
whether a causal pattern is inferred when none exists. Simulation studies have shown this is
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a significant problem for methods that are sensitive to unrelated information, sometimes due
to correlation in the data. In a particularly funny example, Fourcade et al. (2018) showed that
classical paintings (as in works of art) georeferenced to the extent of European geographic space
could successfully be used as predictors in SDMs, sometimes outperforming real environmental
variables, despite having no biological relevance. Similarly, Robosky & Goldberg (2015) showed
that the numbers of letters in a species name can predict diversification rates. Where applicable,
including these types of nonsensical data sets in an evaluation study can highlight the limitations
of methods (or lack thereof ) and/or the risk of assuming correlation is the same as causation.

A second way evaluations can assess the biological relevance of method predictions is to eval-
uate the relationship between method performance and effect size. The effect size refers to the
magnitude of a response in the data. Ideally, a method has good performance across a range of ef-
fect sizes, including effect sizes of zero (e.g., a null hypothesis). For example, methods that detect
correlated trait evolution for discrete characters can infer causality between traits when it does
not exist (Maddison & FitzJohn 2015). In general, it is as important for methods to perform well
when the effect size is so small that it has little biological interest as it is for methods to perform
well when effect sizes are large. Evaluation studies that simulate data across a range of effect sizes,
with different amounts of intrinsic noise, help users understand method performance across this
continuum.

In general, biological relevance should be considered along with performance metrics when
interpreting the results of an evaluation. It is possible to calculate the theoretical maximum per-
formance of an ideal method from simulated data, although to our knowledge this is not practiced.
For example, if the best method in an evaluation study explains 10% percent of variation in the
data when an ideal method could explain 50%, evaluators should assess whether this is enough
variation explained for the method to be useful in its intended application. For some applications,
explaining 10% of variance may be an improvement, while for others it may not be explaining
enough of the biology to be useful.

5.5. Summarizing Variation in the Simulations

Evaluators should think carefully about how to present variation in method performance among
data sets simulated with the same parameters that vary due to the amount of intrinsic error sim-
ulated. On one hand, for a simulation study of a method that shows a mismatch between the
estimate and reality, it is relevant to show that enough simulations were done to ensure robust
inference. The standard error of simulation results is an important measure of whether enough
replicate simulations were run. On the other hand, standard error can be artificially decreased by
running more replicates, which could make it seem that the variability in performance is much
lower than it is. For this reason, method performance should be presented in a way that captures
the variability in the simulations for each set of parameters (e.g., standard deviation), in addition
to justification that enough replicates were done (e.g., standard error).

5.6. Additional Best Practices

Other best practices include comparing multiple methods on the same data sets, making the data
set and code publicly available (Meynard et al. 2019), and assessing the assumptions of eachmethod
prior to evaluating them.Of the 37 evaluation studies we reviewed, 34 of them compared multiple
methods, and 24 of them made the data and/or code publicly available (Supplemental Table 1).
These studies, however, rarely stated whether the assumptions of each method were assessed prior
to evaluation (Supplemental Table 1).
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6. FUTURE DIRECTIONS AND CHALLENGES

6.1. Establishing Domains of Applicability and Inference for Decision-Making

The domains of applicability and inference are helpful for communicating the conditions for
which methods can be trusted. Establishing these domains will continue to challenge EES
researchers, because even accurately modeled physical systems lack a formal mathematical
framework for defining such a domain (Natl. Res. Counc. 2012). Thus, the development of logical
principles to establish these domains is an important area for future research.

Method evaluation and validation can assist decision makers in making informed choices about
an intended application.While others have reviewed how models should be used as scientific sup-
port for decision-making (reviewed in Natl. Res. Counc. 2007, Starfield 1997), less attention has
been paid to how error rates and/or uncertainty from method evaluation should be incorporated
into the decision-making process. Decision makers must weigh the potential benefits of applying
a method to the potential risks of the method returning an inaccurate result. An important area
of future research is therefore how to design the evaluation and validation process such that the
results can be incorporated into decision theory and multiobjective optimization. Decision the-
ory offers a formal framework for determining the optimal choice in the face of these costs and
benefits, given their relative probabilities, and includes frameworks for making decisions under ig-
norance (Peterson 2009, Pratt et al. 2008). Multiobjective optimization involves the development
of mathematical optimization functions for determining the optimal decision in the presence of
trade-offs between two or more conflicting objectives (Miettinen 2012).

6.2. Requiring Principled Method Evaluation for Publication

It is unrealistic to believe that, during method development, one could foresee every way a method
could be (mis)applied. However, some authors have called for systematic evaluation of new meth-
ods using simulations before those methods are applied to real data (Austin et al. 2006). Develop-
ing robust methods involves practicing evaluation and validation as a cyclical process (Figure 1)
until the domains of applicability and inference are fully understood. With increased integration
between method development, evaluation, empirical research, and validation, we can reduce the
hidden costs associated with methods being developed first and broken later.

Achieving this increased integration will continue to challenge EES until standardized cri-
teria for method evaluation are widely used. The current lack of standardized criteria leads to
high variability in the rigor with which methods are evaluated. What constitutes a comprehen-
sive set of benchmarks for groups of methods and how to conduct principled evaluation on those
benchmarks required for publication are important areas for future research. Comparisons of the
performance of different methods on benchmark data sets could be made more efficient through
a shared database system, but funding for developing such a system is scarce in EES. Developing
a culture of principled method evaluation will continue to be a major challenge in EES until it is
supported and required by funding agencies, reviewers, and journals.
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