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Abstract

Nowadays, one practical limitation of deep neural net-
work (DNN) is its high degree of specialization to a single
task or domain (e.g., one visual domain). It motivates re-
searchers to develop algorithms that can adapt DNN model
to multiple domains sequentially, while still performing well
on the past domains, which is known as multi-domain learn-
ing. Almost all conventional methods only focus on improv-
ing accuracy with minimal parameter update, while ignor-
ing high computing and memory cost during training, which
makes it difficult to deploy multi-domain learning into more
and more widely used resource-limited edge devices, like
mobile phone, IoT, embedded system, etc. During our study
in multi-domain training process, we observe that large
memory used for activation storage is the bottleneck that
largely limits the training time and cost on edge devices. To
reduce training memory usage, while keeping the domain
adaption accuracy performance, we propose Dynamic Ad-
ditive Attention Adaption (D A3 ), a novel memory-efficient
on-device multi-domain learning method. DA3? learns a
novel additive attention adaptor module, while freezing the
weights of the pre-trained backbone model for each domain.
Differentiating from prior works, our proposed DA? mod-
ule not only mitigates activation memory buffering for re-
ducing memory usage during training, but also serves as dy-
namic gating mechanism to reduce the computation cost for
fast inference. We validate D A3 on multiple dataset against
state-of-the-art methods, which shows great improvement in
both accuracy and training time. Moreover, we deploy D A3
into the popular NIVDIA Jetson Nano edge GPU, where
the measured experimental results show our proposed D A3
reduces the on-device training memory consumption by 5-
37 %, and training time by 2 X, in comparison to the baseline
methods (e.g., standard fine-tuning, Parallel and Series Res.
adaptor, Piggyback and TinyTL).
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Figure 1. An example of adapting ResNet50 (pre-trained on Ima-
geNet dataset) to Flower dataset [16]. Top: model parameters and
activation memory of three different methods. Bottom: training
time of one epoch on two different platforms: one powerful GPU
(Quadro RTX 5000) and one edge GPU (Jetson Nano)

1. Introduction

Nowadays, one practical limitation of deep neural net-
work (DNN) is its high degree of specialization to a sin-
gle task or domain (e.g., one visual domain). It moti-
vates researchers to develop algorithms that can adapt DNN
model to multiple domains sequentially, while still perform-
ing well on the past domains. This process of gradually
adapting DNN model to learn from different domain in-
puts over time is known as multi-domain learning. Nowa-
days, the utilization of IoT devices is greatly increased (e.g.,
250 billion microcontrollers in the world today'), that col-
lect massive new data crossing various domains/tasks in our
daily life. To process the new data, a general way is to per-
form learning/training on cloud servers, and then transfer
the learned DNN model back to IoT/edge devices for in-
ference only. However, such method (i.e., learning-on-

Uhttps://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-
opportunity/
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cloud and inference-on-device) is inefficient or unaccept-
able due to the huge communication cost between cloud
and IoT/edge devices, as well as data-privacy concern (e.g.,
sensitive health care application). These challenges lead to
a recently rising research direction about ‘on-device multi-
domain learning’.

Conventional multi-domain learning methods can be
mainly divided into three directions: fine-tuning based
method, adaptor-based method, and mask-based method.
As the first approach, inspired by the success of transfer
learning, fine-tuning [4, I1] is a natural approach to op-
timize the whole pre-trained model from old domains to
new target domains. However, the training cost is huge
since all the parameters need to be updated, and the over-
all size of parameters will increase linearly w.r.t the num-
ber of domains. One alternative method is to only fine-tune
the batchnorm and last classifier, but suffering from lim-
ited domain adaption capacity [15]. In the second approach,
[2, 17, 18] propose an adapter-based method, which learns
a domain-specific residual adaptor while freezing the pre-
trained model. In addition, such method also needs to fine-
tune the batchnorm layer of the pre-trained model to avoid
domain shift. Different from that, Piggyback [13], as a rep-
resentative work of the third mask-based learning approach,
proposes to only learn a binary element-wise mask ({0, 1})
w.r.t all weights, while keeping the pre-trained model fixed.

To investigate the training cost of on-device multi-
domain learning, we tested three representative methods on
these three directions respectively, in both powerful GPU
(Nvidia RTX5000 used in desktop or cloud server training)
and edge GPU (Nvidia Jetson Nano GPU used in edge de-
vice training). The measured training memory usage and
training time are shown in Fig.1.

Observation 1. training process is memory-intensive,
where the intermediate activation buffering in memory
during back-propagation is the bottleneck (at least 3X more
than model itself as shown in Fig.1), to limit the speed of on-
edge-device learning.

During training, the memory usage for activation stor-
age (defined as activation memory in this work) is almost
3X larger than the model itself. Such large training mem-
ory is not an issue (assuming with the same training time) in
a powerful GPU with large enough memory capacity. How-
ever, for memory-limited edge GPU typically used in edge
device training, such large memory usage becomes the bot-
tleneck to limit training speed, and correspondingly lead-
ing to significantly different training speeds across different
training methods for the same network and dataset as shown
in Fig.1. Almost all prior domain adaption schemes only
emphasize improving accuracy with minimal parameter up-
date, while ignoring the computing- and memory-intensive
nature of their methods, which makes it in-efficient to de-

ploy into resource-limited edge-based training devices, like
mobile phones, embedded system, IoT, etc.

In this work, we propose Dynamic Additive Attention
Adaption (DA3 ), a new training scheme for memory-
efficient on-device multi-domain learning (simplified as on-
device learning in this work). Differentiating from prior
works, our D A? is designed to eliminate the storage of in-
termediate activation feature map (i.e., dominating memory
usage during on-device learning) to greatly reduce overall
memory usage. Furthermore, to improve the adaption accu-
racy performance, D A? is embedded with a novel dynamic
additive attention adaptor module, which is not only de-
signed to avoid activation buffering for memory saving dur-
ing training, but also reduces the computation cost through
a dynamic gating mechanism. In summary, our technical
contributions include:

 First, we present a complete analysis of memory con-
sumption during training to prove that activation mem-
ory buffering is the key memory bottleneck during
on-device multi-domain learning. More importantly,
based on this analysis, we further discover an impor-
tant observation to guide our design: the complete ac-
tivation map (i.e., dominating memory usage) needs to
be stored for backward propagation during training if
it has multiplicative relationship with learned param-
eters (i.e., weight, mask), while the additive relation-
ship (i.e., bias) is activation free.

* Motivated by our memory usage analysis, we propose
a novel training method, called Dynamic Additive At-
tention Adaption (DA3 ), for memory-efficient on-
device multi-domain learning. The main idea of D A3
is that it freezes the parameters which have a multi-
plicative relationship with input activation, and only
updates the learnable parameters that have an additive
relationship. By doing so, there is no need to store
the memory-dominating activation feature map during
backward propagation. Moreover, to further enrich the
adaption capacity, we propose a novel additive atten-
tion adaptor module that not only follows the addi-
tive principle to eliminate dominating activation mem-
ory buffering, but also implements a dynamic gating
mechanism to reduce inference computation complex-
ity. Such adaptor can plug in and play on any popu-
lar backbone model architectures for memory-efficient
multi-domain learning.

* We conduct extensive experiments of the proposed
D A3 method comparing with prior competitive base-
lines. DA? could achieve state-of-the-art accuracy on
popular multi-domain adaption dataset. More impor-
tantly, unlike previous methods, we, for the first time,
test the training cost (in terms of time and memory us-
age) on an edge GPU (i.e., NVIDIA Jetson Nano) to
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prove D A? could greatly reduce both the training time
and memory in real device. The experimental results
show that D A3 reduces the on-device training mem-
ory consumption by 5-37x and actual training time
by 2x in comparison to the baseline methods (e.g.,
standard fine-tuning [7], Parallel and Series Res. adap-
tor [17, 18], Piggyback [13] and TinyTL [2])

2. Related Work
2.1. Multi-Domain Learning

Multi-domain learning [4, 14, 17-19,24] aims to build a
model, which can adapt a task into multiple domains with-
out forgetting previous knowledge, meanwhile learning as
few parameters as possible. Series Res. Adaptor [17] ad-
dresses this challenge by learning additional residual adap-
tor for each layer while freezing the original pre-trained
model except batch norm layer. Based on the same idea, the
authors further update the topology of the residual adapter
to be parallel rather than serial [18], resulting in better per-
formance. Furthermore, [1] proposes Budget-ware Adaptor
which aims to reduce the model parameters to enable effi-
cient inference, but has no benefit for training. [24] achieves
training-efficiency by reducing the training run-times for
different tasks. However, the training procedure is memory-
intensive, which is impractical for resource-limited on-
device learning. [19] proposes to recombine the weights of
the backbone model via controller modules in channel-wise.
In short, all these methods above tackle the multi-domain
challenge by learning additional domain-specific modules.
Different from that, Piggyback [13] learns task-specific bi-
nary masks for each task. It achieves this by first gener-
ating the real-value masks which own the same size with
weights, then passing through a binarization function to ob-
tain binary masks that are then applied to existing weights.
Furthermore, [14,26] combine the binary mask with addi-
tional reparametrization methods to increase adaption ca-
pacity, but suffering from even more computation and mem-
ory cost during the training procedure.

2.2. Memory-Efficient Training

There are two conventional techniques to reduce the ac-
tivation memory: gradient checkpointing [3] and reversible
network [6]. Gradient checking only stores a subset of the
network activations instead of all. As a consequence, the ac-
tivations that are not stored must be recomputed during the
backward pass. Furthermore, reversible network achieves
backpropagation without storing activations, however, that
means each layer’s activations have to be recomputed ex-
actly from that of the next layer. These two methods re-
duce the activation memory usage by involving additional
computation. As mentioned in [21], for a 30% increase in
computing overhead, checkpointing can reduce the memory

required for the activations by 5.8x. [6] also shows that the
reversible network has roughly 50% computational over-
head than ordinary backpropagation in practice. More re-
cently, TinyTL [2] proposes a lite residual learning module
to lower the activation memory in transfer learning. How-
ever, this method involves additional training and searching
procedure to find the suitable sub-network architecture for
each target task.

2.3. Attention and Dynamic Mechanism

Attention mechanism has proven to be a promising
method to enhance DNN accuracy. SE-Net [9] is the first
that presents an effective mechanism to learn channel at-
tention and achieves good performance. Later, CBAM [25]
combines channel and spatial attention to enhance feature
aggregation. Furthermore, inspired by the attention mecha-
nism, dynamic pruning aims to reduce the computation cost
for fast inference. [22] proposes a spatial dynamic convolu-
tion method, which adapts a residual block where a small
gating branch learns which spatial positions are evaluated.
All of the above methods focus on developing sophisticated
attention modules for better performance of a single task.
They optimize these attention modules jointly with the orig-
inal model. Different from them, we aim to utilize the at-
tention mechanism to enhance the adaption capacity of the
pre-trained model on multi-domain learning.

3. Memory Analysis in Multi-Domain Training

In this section, we first explore the training memory us-
age under different multi-domain learning methods. Then,
we will conduct a quantitative analysis of memory usage
for each layer of DNN model. Moreover, such analysis will
guide us to investigate a possible solution to achieve on-
device memory-efficient learning method.

Fine-tuning and adaptor-based methods Both Fine-
tuning and adaptor-based training schemes are popular in
this research area, which requires fine-tuning all or part
of parameters in the pre-trained model. Fine-tuning based
training method on the target dataset domain is intuitive
to understand. But, to explain the adaptor-based method,
we illustrate the architecture of two popular adaptor-based
methods. Such method needs to fine-tune the additional
convolution layer and the original batchnorm (BN) layers.
To understand the training memory consumption, let’s as-
sume a linear layer whose forward process be modeled as:
a;+1 = a;W + b, then its back-propagation process is
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According to Eq. 1, to conduct conventional back propaga-
tion based training for entire model, model weights-W, gra-
dients and activation-a; all need to be stored for computing,
leading to large memory usage. However, it is interesting to
see that, if only updating bias, which has an additive rela-
tionship with activation-a;, no activation storage is needed
since previous activation a; is not involved in the backward
computation. The same phenomena can also be found in
both Conv and BN layers.

Mask-based learning method For the mask-based learn-
ing method, assuming a linear layer whose forward process
is given as: a; 11 = a;(W - M) 4+ b, where M is the mask
to be learned with the same size as W. The weights-W is
fixed, while only training the mask-M. Then the backward
process can be shown as:

oL 0L\ OL_ oL
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Eq.2 shows that learning mask needs to store not only
activation-a;, but also the mask-W and weights-W dur-
ing training. In terms of computation, comparing Eq.2
with Eq.1, such method also needs additional multiplica-
tion computation in both forward and backward pass. These
observations explain why Piggyback has the largest train-
ing time in edge GPU as shown in Fig.l. Other mask-
based methods [14, 26] even need more computation cost
than Piggyback, since they involve additional reparameter-
ization techniques. In addition, similar to fine-tuning and
adaptor-based methods, training bias does not involve acti-
vation storage.

Table 1. Summary of the parameters and activation memory con-
sumption of different layers. We denote the weights wo ¢
[RCin X CouX khxEw “where ¢n. Cout, kR, kw refers the weight dimen-
sion of [-th layer, including #output channel, #input channel, ker-
nel height and width, respectively. We also denote the input ac-
tivation A e R™"XenXhXw where n, h, k refers the batch size,
activation height and width, respectively.

Layer Type Trainable Param. (p) Activation (a)
Conv Cin X Cout X kKh X kw  n X ¢jp X h xw
FC Cin X Cout + Cout n X cnp X hxXw
BN 2 X Cout n X cp X hxXw
ReLLU 0 n X cn X hXw
Sigmoid 0 n X Cin X hX w

Training memory usage analysis. Here, we first define
training memory usage that will be used in the rest of this
paper. As displayed in Table 1, memory usage is propor-
tional to the number of parameters during training, which
can be treated as two main groups: i) # of trainable param-
eters - p (i.e. weights, bias) and gradient of each parameter;

ii) activation memory consisting of the feature maps stored
to update the parameters of previous layers using the chain
rule. Note, trainable parameter memory has the same size
as gradient memory. We only list # of trainable parameters
- pin Table 1.

For most convolution layers, kernel height/width is much
smaller than activation channel width/height (i.e., kh <
h; kw < w). Thus, for a moderate batch size (e.g.,
n = 64/128/256), activation memory size is much larger
than that of trainable parameters (i.e., a > p). More in-
terestingly, even though BN and sigmoid function have a
negligible amount of trainable parameters (p), both func-
tions produce an activation output (a) of the same size as a
CONV/FC layer.

From the above analysis, it can be easily seen that DNN
training memory usage is dominated by the activation
feature map storage rather than the model parame-
ter itself. It is important to optimize the activation fea-
ture map memory usage if targeting memory-efficient learn-
ing. As for existing multi-domain learning methods, both
mask-based and fine-tuning methods require heavy mem-
ory consumption during the backward propagation, requir-
ing all weights, gradients, activation storage. Moreover, ex-
tra mask memory is required for mask-based method. It is
also interesting to observe that, if it is possible to only up-
date bias in multi-domain learning, the dominating memory
usage component - activation is not required anymore. It
is because bias has an additive-only relationship with input
activation, enabling backward propagation independently.
Based on above analysis, we summarize the underlying rea-
son as the observation-2 below, which motivates and justi-
fies our proposed D A method in the next section.

Observation 2. The complete activation map needs to
be stored for backward propagation during training if it has
the multiplicative relationship with learned parameter (i.e.,
weight, mask), while the additive relationship (e.g., bias) is
activation free.

4. Proposed Method

Motivated by the above memory usage analysis, we pro-
pose a new training method, named Dynamic Additive At-
tention Adaption (DA? ) as illustrated in Fig.2. DA3 in-
troduces a novel additive attention adaptor module in each
block for a given DNN model, that follows the additive rela-
tionship with the weight of the main branch (i.e., pre-trained
model) as mentioned in observation 2. To learn each new
domain, DA? only updates the additive attention adaptor
and the bias of the pre-trained model, while freezing the
corresponding weight to preserve the knowledge of the pre-
vious domains. As the detailed structure of the additive at-
tention adaptor illustrated in Fig.2, it aims to refine the ac-
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Figure 2. Overview of the proposed D A> | consisting of spatial attention (top branch) and basic adaptor (bottom branch).

tivation of the pre-trained model, which is computed as:

A; = (A+H(A)) 3)
Where H denotes the output activation of the additive at-
tention adaptor module. To design an efficient yet powerful
module, we first compute the spatial attention H; and the
basic adaptor H, at two parallel branches, then combining
them as:

H(A) = G(H,(A)) @ Ha(A) )

Where ® denotes the element-wise multiplication and G(-)
is a Gumbel-Softmax [10] function to obtain the spatial-
wise soft attention of the basic adaptor activation H,. Ben-
efiting from the spatial attention design, the soft attention
output can indicate the importance of the main branch ac-
tivation. Inspired by this, instead of fully utilizing the pre-
trained model as prior works [2,17,18], we further select the
important activation for current domain by turning the soft
attention G(H;(A)) into binary hard gating G, € {0, 1}.
Then, the Eq.3 can be further modified as:

Gy = Bin(G(H,(A)))

A; = (A+H(A)) © GJ“**" )
Importantly, as the gating G, has the multiplicative rela-
tionship with the activation of the pre-trained model A, we
detach the gating Gj, from backward computation graph. By
doing so, the changing of the G, relies on the updating of
the soft attention G(H,(A)) that has additive relationship
with the pre-trained model. Thus, the detached G‘bm‘wh is

only used for forward pass that has no gradient to do back-
ward propagation during training, having no additional ac-
tivation memory storage from the main branch pre-trained
model.

Basic adapter branch. As shown in Eq.1, the activa-
tion size grows quadratically with the resolution (i.e., height
and width). Thus, to reduce the activation size, in the ba-
sic adapter branch, a 2x2 average pooling is used to down-
sample the input feature map, followed by a 1x1 convolu-
tion layer.

Spatial attention branch. To sample the activa-
tion in spatial-wise (i.e.,n X 1 x h/2 X w/2) after down-
sampling, we adopt a 1x1 convolution layer with the output
channel as 1. Then, following the Gumbel-softmax func-
tion G(-), we obtain the soft attention. Such soft attention
plays two roles: 1) it will be multiplied with the basic adap-
tor output to strengthen the domain-refined activation; 2) it
turns to binary hard gating G, € {0, 1} by applying a bina-
rization trick and then multiplying with the output of main
branch activation. By doing so, it could dynamically se-
lect the input-relevant spatial position for current domain.
To avoid the activation storage of the main branch during
training, the binary gating is detached from the computa-
tion graph that has no gradient to do backward propagation.
The detailed Gumbel-softmax and binarization trick are rel-
egated to the appendix-A.

Following the spatial attention branch and basic adaptor
branch, the up-sampled and domain-refined activation will
be added to the main branch (pre-trained backbone model)
output activation. Note that, different from the conventional



attention scheme, where the output directly multiplies the
main branch output activation, we design our additive at-
tention adaptor in a way to add it to the main branch. The
main benefit of doing so is the proposed additive attention
adaptor module can be processed during backward indepen-
dently, without creating a new backward pass as in the tra-
ditional multiplication based mechanism. Therefore, the in-
creased memory usage for the proposed additive attention
adaptor is very limited, which will be discussed in the later
experimental section.

Dynamic Additive attention adaptor integration.
Fig.2 illustrates an example to integrate the proposed ad-
ditive attention adaptor in bottleneck block on ResNets [&].
For the basic block which has two connected convolution
layers, we plug in the additive attention adaptor after the
last convolution layer. For the bottleneck block, the last
convolution layer will enlarge the output channels (i.e. 4x),
which increases the output activation linearly. To avoid in-
volving large activation increases, we add the additive at-
tention adaptor after the second convolution layer.

5. Experiments
5.1. Experimental Setup

Datasets and Evaluation Metrics. To evaluate the effi-
cacy of the proposed DA? method, we use standard and
popular multi-domain learning dataset similar as many prior
works [7, 13]. This setting includes five datasets (e.g.,
WikiArt [20], Sketch [5], Standford Cars [12], CUBS [23]
and Flowers [16]). For each of the dataset, we report the
test accuracy (%) on the publicly available test set.

Additionally, we also evaluate our proposed method on
the Visual Decathlon Challenge [18]. The challenge is de-
signed to evaluate the performance of learning algorithms
on images from ten visual domains. The score (5) is
evaluated as: S = Zgil ai{0, Eimaz — E;}%; where E;
is the best error on domain D;, FE;,,.. 1S the error of a
reasonable baseline method, and the co-efficient «; is the
1000( Emae) =2,

Finally, to evaluate the training efficiency of DA? , we
run our algorithm in the NVIDIA Jetson Nano GPU, which
has 4GB DRAM with 20W power supply. We evaluate the
training time on this edge GPU (i.e., constrained memory)
to demonstrate the memory-efficient training through D A3

Training Configuration. To demonstrate the efficiency
of on-device training, we use Nvidia Jetson Nano GPU with
4-GB memory as our training platform. We evaluate the
model performance using PyTorch as the simulation plat-
form ?.Note that, the reported activation memory usage is

Zhttps://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-7-
0-now-available/72048

calculated by our definition in Table.1, since PyTorch does
not support explicit fine-grained memory management. In
the training, for ResNet-50, we use Adam as the optimizer
with cosine learning rate decay, an initial rate of le-3, and
the number of iteration was set to 30. For ResNet-26 train-
ing on the challenge dataset, we use an SGD optimizer with
an initial learning rate of 0.1. We schedule the learning rate
decay at 40,80 and 100 epoch with a rate of 0.1. Again,
as shown in Fig.1, we use right configuration of DA? for
ResNet-50 and left configuration to train ResNet-26 model.

Baseline Methods. In this work, we primarily compare
our method with three different baseline methods:

* Fine-tuning-based method: There are mainly two
general fine-tuning strategies. The first baseline fine-
tunes all the parameters of the pre-trained model on
each new dataset [27]. Alternatively, the second one
only fine-tunes the batchnorm and last classifier lay-
ers [15].

¢ Adaptor-based method: This baseline learns a resid-
ual adaptor for each convolution layer, while freez-
ing the pre-trained weights except batchnorm layer.
We compare with three different residual adaptor de-
signs: series adaptor [17], parallel adaptor [18] and
TinyTL [2]. Note that, TinyTL is reproduced by ap-
plying the lite residual adaptor without network archi-
tecture search.

* Mask-based method: We choose piggyback [13], a
popular binary mask learning scheme that keeps the
under-lying pre-trained weights fixed. It only trains
the binary mask to learn a large number of filters on
top of a fixed set of pre-trained weights.

5.2. Results and Analysis

We first compare our algorithm’s efficacy with baseline
methods by evaluating the performance on the test dataset
listed in Table 2. Next, we evaluate the efficiency in reduc-
ing the training cost after deploying the models in NVIDIA
Jetson Nano GPU in Table 3. The detailed experiments con-
figuration is relegated in appendix-A.

Accuracy Comparison. In this evaluation section, each
baseline method and DA? train a ResNet-50 model with
pre-trained weights on ImageNet dataset. As shown in Ta-
ble 2, our proposed method D A? achieves the best test ac-
curacy in CUBS, Stanford Cars and Flowers dataset. As
for WikiArt, standard fine-tuning outperforms all the other
techniques. Since WikiArt has a smallest number of sam-
ples between training and testing dataset in comparison to
the other datasets, it helps to mitigate the over-fitting is-
sue of fine-tuning the entire model. Finally, most notably,
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Table 2. Summary of the results (i.e., accuracy % ) of the proposed method and comparison with the baseline techniques on five datasets (

e.g., CUBS, Stanford Cars, Flowers, WikiArt and Sketches).

Model CUBS Stanford Cars Flowers WikiArt Sketches Average
Standard Fine-tuning [7]  81.86 89.74 93.67 75.60 79.58 84.09
BN Fine-tuning [15] 80.12 87.54 91.32 70.31 78.45 81.54
Parallel Res. adapt [18]  82.54 91.21 96.03 73.68 82.22 85.14
Series Res. adapt [17] 81.45 89.65 95.77 72.12 80.48 83.89
Piggyback [13] 81.59 89.62 94.77 71.33 79.91 83.45
TinyTL* [2] 82.34 90.23 94.63 71.39 80.44 83.80
Ours (DA?) 83.33 91.50 96.65 72.79 82.20 85.29

Table 3. Summary of the results (i.e., activation memory(MB), training time (s)% and inference computation (GFlops)) of the proposed
method and comparison with the baseline techniques on four datasets ( e.g., CUBS, Stanford Cars, Flowers and Sketches) on NVIDIA
Jetson Nano GPU. Note that, the reported training time is the time of training one epoch with batchsize 4 on average.

Dataset Flowers CUBS Cars Sketches

Methods Model param (MB)  Active. mem (MB) Inference GFlops < Training Time (s) - >
Standard Fine-tuning 91.27 343.76 4.15 686 1977 2676 5843
BN Fine-tuning 91.27 174.17 4.15 173 507 683 1300
Parallel Res. adapt 177.8 308.8 4.68 558 1741 2310 4669
Series Res. adapt 178 309.55 4.68 570 1832 2490 4783
Piggyback 94.12 343.76 3.44 1061 3015 4327 9783
TinyTL 117.3 50.9 4.42 493 1570 2103 4372
Ours (DA3?) 98.64 10.49 3.17 308 834 1073 2274

D A3 achieves comparable accuracy in comparison to the
best baseline technique Parallel Res. Adapter [18], achiev-
ing fractionally improved test accuracy in CUBS, Stanford
Cars, and Flowers dataset, but much smaller training time
shown in later Table 3. In summary, the proposed DA?
method achieves improved or comparable test accuracy in
comparison to all the baseline techniques on five evaluation
datasets.

Training and Inference Cost Comparison In Table 3,
we summarize our key contribution in reducing the train-
ing and inference cost of multi-domain learning. Note,
those are evaluated in a real memory-limited NVIDIA Jet-
son Nano GPU. As shown in the Table 3, the proposed D A3
method increases the model size by only a small fraction
in comparison to Standard/BN Fine-tuning [15] and Piggy-
back [13] method. But D A? reduces the activation memory
size by 5-37 X in comparison to the baseline techniques.
As stated before, Parallel Res. Adapter [18] has shown su-
perior performance (i.e., higher test accuracy) across four
dataset. But we demonstrate that DA® reduces the acti-
vation memory size by 34 x when compared with Paral-
lel Res. Adapter’s activation memory size while maintain-
ing a similar test accuracy. Furthermore, compared with
TinyTL [2], DA? still can 5 x memory reduction with bet-
ter accuracy.

Apart from the reduction in memory cost, our proposed

D A3 speeds-up the actual training time for on-device learn-
ing as well. As shown in Table 3, the training time reduces
nearly by 2 x in comparison to all the baseline techniques
except for BN Fine-tuning [15]. The faster training of BN
Fine-tuning can be attributed to the presence of significantly
less learnable parameters (less than 1MB), resulting in the
worst accuracy performance in Table 2. Nevertheless, our
method still outperforms BN based Fine-tuning in terms of
both reduced activation memory size (i.e., 19 x) and im-
proved test accuracy across four datasets (e.g., CUBS, Stan-
ford Cars, Flowers and Sketches). To summarize, in Fig. 3,
we show that D A3 reduces training cost (i.e., time) in com-
parison to all the baseline methods (except BN fine-tuning);
while maintaining on-par or improved test accuracy com-
pared with the best (i.e., highest test accuracy %) baseline
method (i.e., Parallel Residual [18]).

Moreover, we also summarize the averaged inference
computation cost on the five dataset in Fig. 2. Bene-
fit from the spatial adaptor design, DA? further achieves
1.30x, 1.47x and 1.08 x inference computation cost reduc-
tion compared with fine-tuning-based, adaptor-based and
mask-based method respectively.

5.2.1 Visual Decathlon Challenge

In Table 4, we show the effectiveness of our learning
scheme on all the ten datasets of Visual Decathlon Chal-
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Table 4. Summary of the results (i.e., test accuracy %) on the Visual Decathlon Challenge dataset. Here # par denotes the number of model
parameters with respect to a ResNet-26 baseline model in [17].

Methods Model mem (MB)  Activ. mem (MB). ImNet Airc. C100 DPed DTD GTSR Flwr OGIt SVHN UCF Score
Scratch 22.29 1315 59.87 57.1 7573 912 3777 9655 5630 8874 96.63 4327 1625
Fine-tuning 22.29 1315 60.32  61.87 8212 92.82 5553 9942 8141 89.12 9655 512 3096
Series Res. adapt 24.94 1963 60.32 61.87 8122 9388 57.13 9927 81.67 89.62 96.57 50.12 3159
Parallel Res. adapt 23.62 1405 60.32 6421 8192 9473 5883 9938 84.68 8921 96.54 5094 3412
Piggyback 22.29 1315 57.69 6529 79.87 96.99 5745 9727 79.09 87.63 97.24 4748 2838
Ours (DA?) 25.36 202 62.74 64.58 82.82 96.85 5943 99.44 88.62 89.73 9747 5129 3498
A) CUBS B) Stanford Cars ferent combinations to perform this ablation study: 1) Only

90 . . . . .

o updating bias (Only bias); 2) Only updating the basic adap-
~ —~ tor module (Only Basic adap.); 3) Jointly updating the bias
S S . . . .

Zss < * n and spatial adaptor (Bias + Basic adap); 4) Jointly updat-
15 Q . I . . . .
g * g% oA * ing the proposed additive attention adaptor with bias. First,
g o4 ® g ® only bias has the worst accuracy, demonstrating the limited
— [ ] = . . . .
8 N g learning capacity using only a few bias parameters, support-
ing our initial hypothesis of adding the attention adapter to
75 o 1550 80 100020003000 improve learning capacity. As a result, aftef adding the spa-
Training Time (s) Training Time (s) tial adaptor, we observe a clear accuracy gain. Furthermore,
C) Sketches D) Flowers jointly updating bias and spatial adaptor could improve ac-
% curacy even further. In the end, we introduce our proposed
* eys e . .
. 9% - A * DA3 utilizing the channel attention module which connects
€ € © he spatial adaptor i llel to achieve the b f
85 90 the spatial adaptor 1n parallel to achieve the best perfor-
g g o % DA® mance. As D A3 succeeds in maintaining a reasonable test
e * e : ;’;’;‘?a’d:';‘f Tuning accuracy while drastically reducing the training overhead
=80 =80 ine-Tuning . A
¢ ° A * g ®  Paallel Residual (as shown in Table 3 & Fig. 3).
= = 75 ® Series Residual
75 ®_Plogyback Table 5. The ablation study on the proposed method
3000 6000 9000 2000 4000

Training Time (s) Training Time (s)

Figure 3. Trade-off between the Test Accuracy (%) and Train-
ing Time (s) for four datasets A) CUBS, B) Stanford Cars , C)
Sketches and D) Flowers.

lenge on ResNet-26. Note that, for this experiment, we plug
an additive attention adaptor to each convolution layer. As
reported in Table 4, D A3 achieves ~ 3 % accuracy gain on
ImageNet and ~ 4 % accuracy gain on Flower dataset in
comparison to the baseline methods. Moreover, it achieves
the best .S’ score (3498) out of all the previous techniques
demonstrating the effectiveness of our method in adapting
to multi-domain tasks. Finally, it can also reduce the acti-
vation memory storage overhead during training by 7-11 X
in comparison to other methods; thus emerging as an ideal
candidate for on-device learning purposes.

5.2.2 Ablation Study of Additive Attention Adaptor

We study the effectiveness of each component in the pro-
posed additive attention adaptor on ImageNet-to-Sketch
dataset setting. As shown in Table.5, we consider four dif-

Method CUBS Cars Flowers WikiArt Sketch

Only bias 7453 83.85  87.30 68.73 71.93
Only Basic adap. ~ 82.01 89.03  95.03 71.33 80.42
Bias + Basic adap.  82.15 89.73  95.56 71.88 80.70

Proposed D A® 83.33  91.50  96.65 72.79 81.20

6. Conclusion

We propose D A? for memory-efficient on-device multi-
domain learning, which is designed to eliminate the stor-
age of intermediate activation feature maps. We design
a method equipped with a novel additive attention adap-
tor to adapt original model to a new domain accurately.
Such method not only reduces the training cost (e.g., time
and memory) significantly, but also enables fast inference.
Extensive experiments on domain adaption datasets con-
sistently show the effectiveness and memory-efficiency of
DA3 | paving a new way for memory-efficient on-device
multi-domain learning.
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