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ABSTRACT

ReRAM crossbar array as a high-parallel fast and energy-efficient

structure attracts much attention, especially on the acceleration

of Deep Neural Network (DNN) inference on one specific task. How-

ever, due to the high energy consumption ofweight re-programming

and the ReRAM cells’ low endurance problem, adapting the crossbar

array for multiple tasks has not been well explored. In this paper,

we propose XMA, a novel crossbar-aware shift-based mask learning

method for multiple task adaption in the ReRAM crossbar DNN ac-

celerator for the first time. XMA leverages the popular mask-based

learning algorithm’s benefit to mitigate catastrophic forgetting

and learn a task-specific, crossbar column-wise, and shift-based

multi-level mask, rather than the most commonly used element-

wise binary mask, for each new task based on a frozen backbone

model. With our crossbar-aware design innovation, the required

masking operation to adapt for a new task could be implemented

in an existing crossbar-based convolution engine with minimal

hardware/memory overhead and, more importantly, no need for

power-hungry cell re-programming, unlike prior works. The exten-

sive experimental results show that, compared with state-of-the-

art multiple task adaption Piggyback method [1], XMA achieves

3.19% higher accuracy on average, while saving 96.6% memory

overhead. Moreover, by eliminating cell re-programming, XMA

achieves ∼4.3× higher energy efficiency than Piggyback.
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1 INTRODUCTION

Although deep neural networks (DNNs) show superior performance

in many applications, the high degree of specialization to a single

task limits its potential development. Inspired by this, researchers

started developing algorithms that could sequentially adapt the

DNN model to multiple tasks while still performing well on past

tasks. This process of gradually adapting the DNN model to learn

from various tasks is known as multi-task adaption [1, 2]. Fine-

tuning [3] is an intuitive way to adopt the knowledge from the

current model (i.e., backbone model) to a new task. Although it

shows good accuracy on new learnt task, updating the weights of

the backbone model could result in the forgetting of old knowledge
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upon earlier tasks, thus greatly degrading the performance. Such

phenomenon is known as catastrophic forgetting, which widely

exists in multi-task adaption.

On the hardware side, DNNs involve a vast number of multiply

and accumulate (MAC) operations and data movement. In tradi-

tional von Neumann architecture (e.g., CPU, GPU), such a large

amount of data movement may consume ∼100× higher energy

than a floating-point operation which is also known as “memory

wall” [4]. Recently, in-memory computing (IMC) has attracted grow-

ing attention due to its capability to compute MAC directly within

the memory array. Such ability significantly relieves the “memory

wall” issue [5, 6]. Among different volatile/non-volatile IMC de-

signs, ReRAM crossbar-based design is a promising candidate for

the next generation DNN accelerator for deploying inference due

to its simple structure, high on/off ratio, high density, multi-bit per

cell storage, and fabrication compatibility with CMOS [4, 7].

Although many ReRAM crossbar-based designs [4, 5] have been

proposed to support DNN inference as area and energy efficient

computing engines, they are mostly designed for deploying on a

single specialized task, which cannot be adapted to different

tasks (i.e.,multi-task adaption). Such limitation greatly impedes

its practical usability in the real-world. Intuitively, to adapt a spe-

cialized DNNmodel deployed in the ReRAM crossbar for a new task,

a common practice is to fine-tune the weight parameters (i.e., cell

conductance) based on the new knowledge. However, this scheme

will require updating the conductance of almost all cells to reflect

the new set of fine-tuned weight parameters. This is inefficient and

impractical in real-world multi-task learning due to limitations in

both the ReRAM device (e.g., high re-programming energy, lim-

ited endurance, etc.) and algorithm (e.g., catastrophic forgetting for

large scale multi-task learning). Accordingly, differentiating from

the traditional one-time mapping for inference on a single spe-

cialized task, ReRAM crossbar-based multi-task adaption requires

software and hardware co-design to solve these issues.

Recently, mask-based learning [1, 2] method has been proposed

to perform multi-task adaption. Piggyback [1], as a representative

work, learns a task-specific binary mask ∈ {0, 1} w.r.t all weights
in an element-wise manner for each new task while freezing the

backbone model. This method is a possible candidate for ReRAM

crossbar-based accelerator design as it has no re-programming

issue for the weights parameters. However, there are still two draw-

backs from software and hardware perspectives, which impedes

its practical usability: 1) the adaption capacity of Piggyback is lim-

ited, as it only removes the irrelevant weights by applying a binary

mask for each new task, without involving new task-specific knowl-

edge. This is why Piggyback cannot reach similar accuracy as the

fine-tuning method; 2) the element-wise pattern of the learnable

mask is not hardware-friendly, mainly due to the following two



reasons: first, applying element-wise mask on crossbar against the

crossbar’s intrinsic property that crossbar works in the row/column-

wise parallel fashion. Although it is easy to control/read the entire

row/column, manipulating each cell individually is impractical;

second, the element-wise pattern requires a considerable mem-

ory overhead for the new learnt mask. For example, Piggyback’s

element-wise mask will cause memory overhead of 1/8 of the total

model size in an 8-bit DNN model for each new task.

To tackle these crucial and practical issues, we are the first to

propose a novel crossbar-friendly multi-task adaption framework,

called XMA, which learns a crossbar column-wise and shift-based

mask while freezing the backbone model, taking great advantages

on both software algorithm for offline training and hardware deploy-

ment for online inference. Such novel mask design is distinguished

from prior works in the following two aspects:

IMC-friendly ‘Shift-based Mask’. To improve the adaption ca-

pacity with negligible hardware overhead, rather than element-wise

binary or soft mask, we propose to learn a crossbar column-wise

shift-based mask, where all the mask values are zeros or power-of-

two ∈ [0, 1] (i.e., 0,1/2,1/4,1/8,1). By doing so, the compute/memory-

hungry multiplication operation between mask and column-wise

MAC output can be simplified as a shift operation. Moreover, such

shift operation can be implemented by reusing the existing shift

adder inmost ReRAMbased IMC platformswithout increasing hard-

ware overhead. The experiment shows that the proposed shift-based

mask learning method reaches 2.26% higher accuracy on average

than the fine-tuning method and 3.19% higher accuracy than the

element-wise binary mask Piggyback [1]. In addition, selecting the

number of shift levels ‘𝑁 ’ in shift-based mask is flexible that could

be adjusted to achieve different trade-offs between accuracy and

mask overhead. For example, if 𝑁 = 3, it supports maximally 3

different shift levels and 2 non-shift levels, i.e., 0, 1/8, 1/4, 1/2 and

1, with the best accuracy. Note, mask value ‘1’ means no shift, and

mask value ‘0’ means turning off current column. If 𝑁 = 0, the

shift-based mask is equivalent to the binary mask with the smallest

mask memory overhead.

IMC-friendly crossbar ‘column-wise mask’ pattern. To re-

duce the peripheral circuit overhead for implementing the masking

function in hardware and avoid power-hungry re-programming

of ReRAM cells for multi-task adaption, we design the shift-based

mask in crossbar column-wise pattern, where each learned mask

value controls the operations (i.e., on/off, shift) of entire crossbar

column for the new task inference, instead of each element in Pig-

gyback, which saves 96.6% memory overhead in our experiments.

In summary, considering software-hardware co-design, XMA is

simple but efficient and powerful. It improves the adaption capacity

of the existing binary mask-based algorithm in multi-task learning.

Also, it could be easily implemented in existing crossbar-based

DNN accelerator hardware with minimum peripheral circuits, mask

memory overhead, and, more importantly, there is no need to re-

program ReRAM cell conductance for learning a new task.

2 RELATEDWORK
2.1 ReRAM based NN accelerator

As a new technology that has attracted much attention, many

ReRAM-based accelerator designs have been proposed, especially

Figure 1: ReRAM 1T1R crossbar array.

for DNN inference [4, 5]. Fig. 1 shows the basic structure of the 1T1R

crossbar array, which can efficiently perform the vector-matrix

multiplication (VMM) operation. The 1T1R cell is a passive three-

terminal device where the ReRAM cell applies the metal-insulator-

metal sandwich-like structure. The middle insulator layer is usually

made by HfO2 [8], TiO𝑥 [9], etc. Those provide the ReRAM the

resistive switching characteristics when applying different voltages.

When using a 1T1R array for the VMM operation, the weight

matrix is stored at the cross-point ReRAM cells as the conductance

𝐺 while the input vector is fed through the horizontal SL as analog

voltage 𝑉𝑖𝑛 [7, 10]. According to Kirchhoff’s Current Law (KCL),

𝐼𝐵𝐿 = 𝐺 · 𝑉𝑖𝑛 , the bit-line current is the VMM result. A 𝑚 × 𝑛
sized crossbar array can perform the VMM operation in one step,

reducing the time complexity from O(mn) to O(1). Due to the 2D

convolution can be transferred to VMM either by Toeplitz matrix or

unrolling the convolution kernel. Recently a lot of ReRAM crossbar

array-based neural network accelerator designs have been proposed

to leverage the IMC’s energy efficiency and high throughput [4, 5].

Existing ReRAM crossbar designs focus on improving energy

efficiency for the off-line trained fixed model. If the dataset or task

changes, re-programming the entire crossbar array is necessary.

Although Fouda et al. [11] proposed a mask-based method for cross-

bar array, the mask is used only during off-line training. Moreover,

this method is employed to alleviate the sneak path problem, not

for multi-task adaption. Different from the above works, we explore

the design space of the ReRAM crossbar for multi-task adaption

and propose the crossbar-aware mask learning method to reuse the

crossbar for new tasks efficiently.

2.2 Multi-Task Adaption

Multi-task adaption [12, 13] aims to build amodel, which can adapt a

task into multiple visual tasks/domains without forgetting previous

knowledge, and meanwhile using as few parameters as possible.

[13] proposes to recombine the weights of the backbone model via

controller modules in channel-wise. [14] proposes domain-specific

attention modules for the backbone model. One of the most relevant

works is Piggyback [1], which solves the issue by learning task-

specific binary masks for each task while freezing the backbone

model except final classifier (known as multi-head). They achieve

this by generating the real-value masks which own the same size

with weights, passing through a binarization function to obtain

binarymasks, which are then applied to existingweights.We denote

the real-value mask and binary mask as𝑚𝑟 and𝑚𝑏 respectively.

Then, the binarization function is given by:

Forward : 𝒎b =

{
1 if 𝒎r ≥ 𝜏

0 otherwise
(1)



Figure 2: Overview of the crossbar-aware multi-task adap-

tion framework, including offline shift-based masking

learning (a) , the ReRAM crossbar deployment for online in-

ference (b), and the weight mapping (c).

Backward : ∇𝒎b = ∇𝒎r (2)

Where 𝜏 is a constant threshold value. However, the gradient of

binarization is non-differential during back-propagation. They use

the straight-through estimator (STE) [15] to solve this problem,

which estimates the gradient of real-value mask by the gradient of

binary mask. Furthermore, [2, 16] combine the binary mask with

additional floating-point scaling values to improve the adaption

capacity, but suffer from even more computation and memory cost

during the training procedure.

2.3 Neural Network Quantization

Neural network quantization has been widely studied to compress

the data precision (e.g., weight, activation) while maintaining ac-

curacy [17–19]. The stringent resource constraint of the hardware

accelerator necessitates efficient quantization algorithms. Early re-

search works [17] demonstrate the feasibility of discretizing the full

precision weights between the fixed boundaries [−1, 1]. However,
the deterministic quantization range failed to adaptively fit the

layer-wise distributions, leading to the sub-optimal model perfor-

mance. To minimize quantization error during training, various

studies introduce layer-wise learnable clipping parameters. Under

this context, PACT dynamically clips the activation based on the

trainable quantization boundary. However, PACT [18] only utilizes

the gradient inside the truncation range, leading to insufficient

learning. To avoid this issue, we adopt the quantization algorithm

from PROFIT [19] to train the DNN model.

3 METHODOLOGY

3.1 Overview

The overall framework of the proposed XMA is presented in Fig. 2,

including the overflow of both offline training (Fig. 2(a)) and ReRAM

crossbar array deployment for online inference (Fig. 2(b)). During

the offline training, to adapt the preserved model for previous tasks

to current task, XMA learns a task-specific and crossbar column-

wise shift mask that is applied on the fixed weights to perform task

adaption. Then for the online inference after the offline training of

each task, only the mask buffer needs to be updated with the new

values, with no need to re-program the preserved backbone model,

Figure 3: Overflow of the shift-based mask learning scheme

as shown in Fig. 2(b). Furthermore, XMA designs the learnable shift-

based mask in crossbar column-wise, where each value controls

the operation of the entire crossbar column, enabling hardware

friendly crossbar mapping. The detailed shift-based mask offline

learning and online inference procedure will be presented in the

following subsections.

3.2 Offline Shift-based Mask Learning

3.2.1 The overflow of the shift-based mask learning. As in Piggy-

back method [1], the adopted binary mask is generated by bina-

rizing trainable real-valued masks𝑚𝑟 , as presented in Eq. (1). We

conjecture that the magnitude of these masks have the in-nature

property to represent the importance levels w.r.t the corresponding

weights of the backbone model. Inspired by that, we aim to utilize

the real-valued mask to improve the adaption capacity. However,

multiplying a real value (i.e., 32 bits floating number) for every

partial sum is a massive overhead in both latency and energy. To

address this issue, as illustrated in Fig. 3, we propose a learnable

shift-based mask𝑚𝑠 that keeps the ‘1’ in the binary mask, but in-

troduces an additional shift factors 𝑎𝑠 as a replacement of the zero

elements in the binary mask counterpart, so as to improve the adap-

tion capacity with negligible additional overhead. The shift-based

mask can be expressed as:

𝑚𝑠 = [𝑚𝑏
𝑚𝑏=1

, 𝑎𝑠
𝑚𝑏=0

] (3)

Where𝑚𝑏
𝑚𝑏=1

means the shift-based mask only uses the ‘1’ in the

binary mask and 𝑎𝑠
𝑚𝑏=0

denotes that the ‘0’ in the binary mask

is replaced by the proposed shift factor. It can be understood as

we fix the important kernels (‘1’ in binary mask) and scale the

unimportant kernels (‘0’ in binary mask) to be different shift levels

for the new task.

Learn the shift factor 𝑎𝑠 . In order to learn the shift factor, we

apply a shift equivalent quantization method. In practice, we first

normalize the real-valued mask under the range [0, 1], serving as
a scaling factor to represent the weight importance for multi-task

adaption. Then, the normalized real-valued mask is quantized to

the nearest power-of-two values (i.e., 1/2, 1/4, 1/8) or zero. Based on

this, the shift-based mask𝑚𝑠 could maximally include 3 different

shift levels (i.e., 1/8, 1/4, 1/2) and 2 non-shift level (i.e., 0, 1). By

doing so, the computing/memory-hungry multiplication operation



between real-valued mask and fixed weight can be replaced by

the shift operation, resulting in computing and energy reduction.

Moreover, such shift operation can be implemented by reusing the

existing shift adder in most ReRAM based IMC platforms without

increasing hardware overhead. In addition, selecting the number of

shift levels ‘𝑁 ’ in shift-based mask is flexible that could be adjusted

to achieve different trade-offs between accuracy andmask overhead.

For example, if 𝑁 = 3, it supports maximally 3 different shift levels

and 2 non-shift levels, i.e., 0, 1/8, 1/4, 1/2 and 1, achieving the best

accuracy. Note, mask value ‘1’ means no shift, and mask value ‘0’

means turning off current column. If 𝑁 = 0, the shift-based mask

is equivalent to the binary mask with the smallest mask memory

overhead.

Learn the binary mask𝑚𝑏 . To learn the binary mask, we lever-

age the Gumbel-Sigmoid trick, inspired by Gumbel-Softmax [20]

that performs a differential sampling to approximate a categorical

random variable. Since Sigmoid function 𝜎 (�) can be viewed as a

special two-class case of softmax, it can be defined as:

𝑝 (𝒎𝑟 ) =
1

1 + exp(−(log𝜋0 + 𝑔0 − 𝑔1)/𝑇 )
, (4)

where 𝜋0 represents 𝜎 (𝒎𝑟 ). 𝑔0 and 𝑔1 are samples from Gumbel

distribution. The temperature 𝑇 is a hyper-parameter to adjust the

range of input values. Benefiting from the differential property

of Eq. (4), the real-value mask 𝒎𝑟 can be embedded with existing

gradient based back-propagation training. To represent 𝑝 (𝒎𝑟 ) as

binary format𝒎𝑏 , we use a hard threshold (i.e., 0.5) during forward-

propagation of training. Because most values in the distribution

of 𝑝 (𝒎𝑟 ) will move towards either 0 or 1 during training, gener-

ating the binary mask by 𝑝 (𝒎𝑟 ) (instead of the real-value mask

𝒎𝑟 directly) could have more accurate decision, resulting in better

accuracy.

3.2.2 Column-wise mask. In the 1T1R crossbar, the entire row and

column shares the same input, and the transistors’ gates are con-

nected together either horizontally or vertically. It is challenging

to apply an element-wise mask by controlling every weight stored

at the crossbar intersections. However, such row/column-wise par-

allelism provides the opportunity of the row/col wise controlling

for the existing crossbar design. In the conventional convolution

kernel mapping method, the kernel is divided by output feature

map dimension. For example, a 𝐶𝑜𝑢𝑡 ×𝐶𝑖𝑛 × 𝑘ℎ × ℎ𝑤 kernel will

be reshaped to a (𝐶𝑖𝑛 × 𝑘ℎ × 𝑘𝑤,𝐶𝑜𝑢𝑡 ) sized 2D matrix. With the

development of deep learning in recent years, DNNs grow into

more complex and more extensive structures, the size of one filter

𝐶𝑖𝑛×𝑘ℎ×𝑘𝑤 usually is too large to fit into a single crossbar column.

A general solution is to further partition and then deploy one filter

into multiple columns.

To leverage the row/column-wise parallelism, we define the

mask size as 𝐺 × 𝑘ℎ × 𝑘𝑤 to make it consistent with the size of a

crossbar column, namely column-wise mask, where the group 𝐺 ∈

{1,𝐶in}. So that, a single mask value can control the entire column

of a crossbar array, which improves the computation efficiency

significantly compared to the element-wise mask. In our design,

the size of the crossbar column is set as 72×1. Equivalently, we

define the group size of the kernel-wise mask as 8 × 3 × 3 with the

group 𝐺 = 8 in the algorithm.

Figure 4: Hardware structure

3.3 Online Crossbar Array Inference

3.3.1 Hardware Architecture. Fig. 4 shows the ReRAM crossbar-

based NN accelerator design to support inference with the proposed

column-wise mask. It consists of an I/O interface for data exchange,

multiple processing element (PE) for computing, and the interface

controller to decode the instruction. Each PE has multiple ReRAM

crossbar sub-arrays for the convolution operation; global ReLU

and adder tree are used to post-process the partial sum from the

sub-arrays. Inside the ReRAM sub-array, convolution kernels are

mapped on ReRAM cells. According to the ReRAM device property,

it may need multiple ReRAM cells to represent one convolution

kernel. For example, the convolution kernel is quantized to 4-bit

where each ReRAM cell can only represent a 2-bit number by four

different resistance levels. Then, each convolution kernel requires

two adjacent columns to map its higher bits and lower bits. Since

the weight has been divided into two columns, each column only

carries a partial accumulation which ADC reads as 2-bit activation.

The shift-adder (SA) manipulates the partial activation to obtain the

4-bit activation result. Themask buffer stores the column-wisemask

and controls how to shift the activation. The processed activation

is then sent to the global adder tree and ReLU, which subsequently

is conveyed to the next layer as the input.

3.3.2 Weight Mapping. Recently many weight mapping methods

have been proposed for better data reuse and ReRAM array utiliza-

tion [21–24]. We adopt the mapping method from [21] which is

widely used and works properly with our proposed method. We as-

sume the 4D kernel is organized as𝐶𝑜𝑢𝑡 ×𝐶𝑖𝑛×𝑘ℎ×ℎ𝑤 dimensions.

When performing the convolution, kernels that belong to the same

layer but on different 𝐶𝑜𝑢𝑡 dimensions share the same input. This

is similar to the crossbar, where the ReRAM cells on the same row

but different columns share the same input voltage. Therefore, we

unroll the convolution kernel along the 𝐶𝑜𝑢𝑡 dimension and map

them to the ReRAM crossbar sub-array. In our design, we use the

72×72 crossbar array to make the group size the same as mentioned

earlier. Also, we chose the 2-bit ReRAM cell and 4-bit quantized

model in our design. Since we need two columns to represent one

4-bit weight, each crossbar array can map a 36×8×3×3 convolution

kernel. Any convolution kernel larger than 36×8×3×3 will be parti-

tioned into multiple arrays. In that case, each array will generate a

partial sum instead of the activation.

4 EXPERIMENT

We use the following five popular datasets in multi-task learning

domain to evaluate our XMA scheme: CUBS [25], Stanford Cars [26],



Table 1: Multi-task adaption accuracy (%)

Mask No Mask Ele-wise Col-wise

4-bit Quantization backbone model

Dataset

Finetune

Floating

Number

Finetune

Quantized

Model
Piggyback[1]

Shift

Mask

3 levels

CUBS 82.83 78.5 74.47 80.07

Stanford_cars 91.83 85.1 86.85 88.32

flowers 96.56 93.8 91.09 95.59

Wikiart 75.60 71.2 68.97 72.6

Sketches 80.78 76.3 78.88 79.62

Mask overhead 0% 0% 25% 0.87%

Table 2: The impact of different shift levels

Column-wise Mask

Dataset
Shift

Mask

Shift

Mask

Shift

Mask

Binary

Mask

Shift Levels 3 2 1 0

Mask Levels [0, 18 ,
1
4 ,

1
2 ,1] [0, 14 ,

1
2 ,1] [0, 12 ,1] [0,1]

CUBS 80.07 79.67 79.38 77.86

Stanford_cars 88.32 88.12 88.02 87.48

flowers 95.59 95.14 95.04 95.02

Wikiart 72.6 72.51 2.56 71.18

Sketches 79.62 79.92 79.92 78.8

Mask overhead 0.87% 0.69% 0.52% 0.35%

Flowers [27], Wikiart [28], and Sketch [29]. We choose the ResNet-

50 [30] as our backbone model, which is pre-trained on ImageNet

dataset [31].

4.1 Algorithm Evaluation

Table 1 shows the inference accuracy on different datasets. Here we

use the backbone ResNet-50 trained on the ImageNet dataset with

4-bit weight and 4-bit activation quantization. The quantization

method is adopted from PROFIT [19]. We choose the group size

𝐺 = 8 in the experiment.

For floating-point precision, fine-tuning has the highest flex-

ibility to change any weight to any level. Thus, fine-tuning the

backbone model with floating-point precision achieves the best ac-

curacy inmost datasets. To simulate the crossbar inference behavior,

we quantize the backbone model to 4-bit precision. Compared to

floating-point weights, the 4-bit quantized weight sacrifices the rep-

resentability, and fine-tuning the quantized backbone model shows

some accuracy degradation as expected. The Piggyback scheme

adopts the binary element-wise mask, where the binary precision

of the mask further limits the flexibility of the quantized model.

Thus Piggyback shows slightly worse accuracy than fine-tuning on

the quantized backbone model.

Benefiting from the more representation levels, fewer training

parameters, and gumbel sigmoid trick, our shift-based mask learn-

ing method shows consistently higher accuracy on all datasets than

Piggyback and fine-tuning on quantized backbone model (Table 1).

Although our proposed method has the group concept, it contam-

inates the accuracy further. Our shift-based mask provides more

representation levels than the simple on/off scheme in the binary

Table 3: Hardware specification

RRAM Sub-Array
Components Area (μm2) Energy (pJ)

Memory Array (72× 72) 84.93
Switch Matrix (WL and SL) 457.3 1.1

SAR ADC (5-bit) 8,409.3 8.3
Shift-Add-Input 1,412.9 6.8

Shift-Add-Weight (2 col use 1) 825.8 1.0
Mask Buffer (72× 1) 190.4 0.003/bit/access

Total 11,380.2 17.2

Peripheral Circuits
1 stage AdderTree (128 units) 2,510.3 4.4
2 stage AdderTree (128 units) 7,740.1 13.7
3 stage AdderTree (128 units) 18,408.8 32.6

Global Buffer (64× 112× 112× 4) 8,490,034 0.003/bit/access
ReLU (128 units) 939.5 0.9

Figure 5: Area breakdown of 4-bit ResNet-50 backbone

model hardware deployment. The peripheral circuits includ-

ing ReLU module, adder tree, and mask buffer

mask. The group concept also helps to cut down the training pa-

rameters, which boosts the training convergence speed. Moreover,

sharing the mask value among the entire column significantly saves

the memory overhead for mask storage.

Different shift levels not only determine the mask storage over-

head but also affect the accuracy. Table 2 shows the accuracy and

mask overhead for different shift levels. More shift levels show

better accuracy in the cost of more mask overhead, where the mask

overhead is defined as the complete storage required by the mask

over the storage required by all the weights in the backbone model.

As the shift level goes down, one extreme example is when there

is no shift level available between the range of [0,1], which means

the mask only has binary value. In that case, our shift-based mask

method is equivalent to the column-wise binary mask. Due to the

group mask sharing, binary group mask size is only 1
72 of Piggy-

back. For the ResNet-50 backbone model, Piggyback’s element-wise

binary mask requires 23𝑀/8 = 2.88𝑀𝐵, while the binary mask only

consumes around 40KB. Although the binary mask claims the least

mask overhead, it achieves the worst accuracy than other shift-

based methods. To achieve the best accuracy, three shift levels only

require less than 100KB storage for the mask, which is only 3.4% of

that in Piggyback (i.e., 96.6% reduction). Despite this reduction, on

average, the accuracy is 3.2% higher than Piggyback.

4.2 Hardware Evaluation

We implement the proposed algorithm on hardware as shown in

Fig. 4. The hardware performance of different algorithms is evalu-

ated based on the circuit level simulator NeuroSim [32]. The 4-bit

quantized targeted DNNs are characterized by the 2-bit per cell

HfO2 1T1R ReRAM devices, characterized from [33] and projected

to 32nm CMOS node. The ReRAM array characteristics and the

total area usage are summarized in Table 3 and Fig. 5. Each ReRAM
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Figure 6: Total inference energy for different methods

column is connected to a 5-bit successive approximation register

(SAR) analog-to-digital converter (ADC). To avoid frequent off-chip

memory access, we choose the global buffer as the same size as the

largest feature map during the inference process.

Fig. 6 shows the overhead caused by the re-programming pro-

cess of different sub-tasks. The total inference energy includes the

energy consumption per dataset and the re-programming energy

per sub-task. Given the amount of low-precision weight updates,

the re-programming energy can be computed based on the write

voltage, write pulses, and conductance level changes [33, 34]. Fine-

tuning the model entirely for each individual task requires universal

re-programming or even second-time deployment. The largely bi-

ased energy consumption between inference and re-programming

cumbers pragmatic implementation of continual learning. Piggy-

back [1] partially programs the weights to zero for different tasks.

Compared to the inference energy itself, the additional program-

ming process increases the total energy by up to 8×. Furthermore,

re-programming each individual cell requires additional element-

wise sparse indexes, leading to intricate array-level manipulation.

Different from the naive fine-tuning or Piggyback [1] learning,

the proposed algorithm update the model in a structured manner.

Activating RRAM columns for different sub-tasks simplifies the

continuous model updating without any re-programming or fine-

grained indexes. Compared to the fine-tuning and Piggyback [1],

the proposed algorithm reduces the total energy consumption up to

21.81× and 8.16× respectively, as shown in Fig. 6. Such significant

energy reduction of the proposed XMA algorithm fully unleashes

the practical merit of continual learning.

5 CONCLUSION

In summary, we proposed XMA, a shift-based crossbar mask, to

efficiently deploy the multi-task adaption to crossbar-based DNN

accelerator while considering hardware costs. The main contribu-

tion of XMA is that it does not need to change the neural network

structure or re-program any ReRAM cell for new task learning.

Moreover, the XMA reuses the existing shift-adder to apply the

shift-based mask onto fixed weight and minimize the hardware

overhead. Compared with other mask-based methods, XMA signif-

icantly saves inference energy and reduces the mask size to less

than 1% while maintaining similar accuracy.
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