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ABSTRACT

ReRAM crossbar array as a high-parallel fast and energy-efficient
structure attracts much attention, especially on the acceleration
of Deep Neural Network (DNN) inference on one specific task. How-
ever, due to the high energy consumption of weight re-programming
and the ReRAM cells’ low endurance problem, adapting the crossbar
array for multiple tasks has not been well explored. In this paper,
we propose XMA, a novel crossbar-aware shift-based mask learning
method for multiple task adaption in the ReRAM crossbar DNN ac-
celerator for the first time. XMA leverages the popular mask-based
learning algorithm’s benefit to mitigate catastrophic forgetting
and learn a task-specific, crossbar column-wise, and shift-based
multi-level mask, rather than the most commonly used element-
wise binary mask, for each new task based on a frozen backbone
model. With our crossbar-aware design innovation, the required
masking operation to adapt for a new task could be implemented
in an existing crossbar-based convolution engine with minimal
hardware/memory overhead and, more importantly, no need for
power-hungry cell re-programming, unlike prior works. The exten-
sive experimental results show that, compared with state-of-the-
art multiple task adaption Piggyback method [1], XMA achieves
3.19% higher accuracy on average, while saving 96.6% memory
overhead. Moreover, by eliminating cell re-programming, XMA
achieves ~4.3x higher energy efficiency than Piggyback.
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1 INTRODUCTION

Although deep neural networks (DNNs) show superior performance
in many applications, the high degree of specialization to a single
task limits its potential development. Inspired by this, researchers
started developing algorithms that could sequentially adapt the
DNN model to multiple tasks while still performing well on past
tasks. This process of gradually adapting the DNN model to learn
from various tasks is known as multi-task adaption [1, 2]. Fine-
tuning [3] is an intuitive way to adopt the knowledge from the
current model (i.e., backbone model) to a new task. Although it
shows good accuracy on new learnt task, updating the weights of
the backbone model could result in the forgetting of old knowledge
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upon earlier tasks, thus greatly degrading the performance. Such
phenomenon is known as catastrophic forgetting, which widely
exists in multi-task adaption.

On the hardware side, DNNs involve a vast number of multiply
and accumulate (MAC) operations and data movement. In tradi-
tional von Neumann architecture (e.g., CPU, GPU), such a large
amount of data movement may consume ~100x higher energy
than a floating-point operation which is also known as “memory
wall” [4]. Recently, in-memory computing (IMC) has attracted grow-
ing attention due to its capability to compute MAC directly within
the memory array. Such ability significantly relieves the “memory
wall” issue [5, 6]. Among different volatile/non-volatile IMC de-
signs, ReRAM crossbar-based design is a promising candidate for
the next generation DNN accelerator for deploying inference due
to its simple structure, high on/off ratio, high density, multi-bit per
cell storage, and fabrication compatibility with CMOS [4, 7].

Although many ReRAM crossbar-based designs [4, 5] have been
proposed to support DNN inference as area and energy efficient
computing engines, they are mostly designed for deploying on a
single specialized task, which cannot be adapted to different
tasks (i.e., multi-task adaption). Such limitation greatly impedes
its practical usability in the real-world. Intuitively, to adapt a spe-
cialized DNN model deployed in the ReRAM crossbar for a new task,
a common practice is to fine-tune the weight parameters (i.e., cell
conductance) based on the new knowledge. However, this scheme
will require updating the conductance of almost all cells to reflect
the new set of fine-tuned weight parameters. This is inefficient and
impractical in real-world multi-task learning due to limitations in
both the ReRAM device (e.g., high re-programming energy, lim-
ited endurance, etc.) and algorithm (e.g., catastrophic forgetting for
large scale multi-task learning). Accordingly, differentiating from
the traditional one-time mapping for inference on a single spe-
cialized task, ReRAM crossbar-based multi-task adaption requires
software and hardware co-design to solve these issues.

Recently, mask-based learning [1, 2] method has been proposed
to perform multi-task adaption. Piggyback [1], as a representative
work, learns a task-specific binary mask € {0, 1} w.r.t all weights
in an element-wise manner for each new task while freezing the
backbone model. This method is a possible candidate for ReRAM
crossbar-based accelerator design as it has no re-programming
issue for the weights parameters. However, there are still two draw-
backs from software and hardware perspectives, which impedes
its practical usability: 1) the adaption capacity of Piggyback is lim-
ited, as it only removes the irrelevant weights by applying a binary
mask for each new task, without involving new task-specific knowl-
edge. This is why Piggyback cannot reach similar accuracy as the
fine-tuning method; 2) the element-wise pattern of the learnable
mask is not hardware-friendly, mainly due to the following two



reasons: first, applying element-wise mask on crossbar against the
crossbar’s intrinsic property that crossbar works in the row/column-
wise parallel fashion. Although it is easy to control/read the entire
row/column, manipulating each cell individually is impractical;
second, the element-wise pattern requires a considerable mem-
ory overhead for the new learnt mask. For example, Piggyback’s
element-wise mask will cause memory overhead of 1/8 of the total
model size in an 8-bit DNN model for each new task.

To tackle these crucial and practical issues, we are the first to
propose a novel crossbar-friendly multi-task adaption framework,
called XMA, which learns a crossbar column-wise and shift-based
mask while freezing the backbone model, taking great advantages
on both software algorithm for offline training and hardware deploy-
ment for online inference. Such novel mask design is distinguished
from prior works in the following two aspects:

IMC-friendly ‘Shift-based Mask’. To improve the adaption ca-
pacity with negligible hardware overhead, rather than element-wise
binary or soft mask, we propose to learn a crossbar column-wise
shift-based mask, where all the mask values are zeros or power-of-
two € [0,1] (i.e., 0,1/2,1/4,1/8,1). By doing so, the compute/memory-
hungry multiplication operation between mask and column-wise
MAC output can be simplified as a shift operation. Moreover, such
shift operation can be implemented by reusing the existing shift
adder in most ReRAM based IMC platforms without increasing hard-
ware overhead. The experiment shows that the proposed shift-based
mask learning method reaches 2.26% higher accuracy on average
than the fine-tuning method and 3.19% higher accuracy than the
element-wise binary mask Piggyback [1]. In addition, selecting the
number of shift levels ‘N’ in shift-based mask is flexible that could
be adjusted to achieve different trade-offs between accuracy and
mask overhead. For example, if N = 3, it supports maximally 3
different shift levels and 2 non-shift levels, i.e., 0, 1/8, 1/4, 1/2 and
1, with the best accuracy. Note, mask value ‘1’ means no shift, and
mask value ‘0’ means turning off current column. If N = 0, the
shift-based mask is equivalent to the binary mask with the smallest
mask memory overhead.

IMC-friendly crossbar ‘column-wise mask’ pattern. To re-
duce the peripheral circuit overhead for implementing the masking
function in hardware and avoid power-hungry re-programming
of ReRAM cells for multi-task adaption, we design the shift-based
mask in crossbar column-wise pattern, where each learned mask
value controls the operations (i.e., on/off, shift) of entire crossbar
column for the new task inference, instead of each element in Pig-
gyback, which saves 96.6% memory overhead in our experiments.

In summary, considering software-hardware co-design, XMA is
simple but efficient and powerful. It improves the adaption capacity
of the existing binary mask-based algorithm in multi-task learning.
Also, it could be easily implemented in existing crossbar-based
DNN accelerator hardware with minimum peripheral circuits, mask
memory overhead, and, more importantly, there is no need to re-
program ReRAM cell conductance for learning a new task.

2 RELATED WORK
2.1 ReRAM based NN accelerator

As a new technology that has attracted much attention, many
ReRAM-based accelerator designs have been proposed, especially
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Figure 1: ReRAM 1T1R crossbar array.

for DNN inference [4, 5]. Fig. 1 shows the basic structure of the 1T1R
crossbar array, which can efficiently perform the vector-matrix
multiplication (VMM) operation. The 1T1R cell is a passive three-
terminal device where the ReRAM cell applies the metal-insulator-
metal sandwich-like structure. The middle insulator layer is usually
made by HfO; [8], TiOx [9], etc. Those provide the ReRAM the
resistive switching characteristics when applying different voltages.

When using a 1T1R array for the VMM operation, the weight
matrix is stored at the cross-point ReRAM cells as the conductance
G while the input vector is fed through the horizontal SL as analog
voltage Vi, [7, 10]. According to Kirchhoff’s Current Law (KCL),
Igr, = G - Vi, the bit-line current is the VMM result. A m X n
sized crossbar array can perform the VMM operation in one step,
reducing the time complexity from O(mn) to O(1). Due to the 2D
convolution can be transferred to VMM either by Toeplitz matrix or
unrolling the convolution kernel. Recently a lot of ReRAM crossbar
array-based neural network accelerator designs have been proposed
to leverage the IMC’s energy efficiency and high throughput [4, 5].

Existing ReRAM crossbar designs focus on improving energy
efficiency for the off-line trained fixed model. If the dataset or task
changes, re-programming the entire crossbar array is necessary.
Although Fouda et al. [11] proposed a mask-based method for cross-
bar array, the mask is used only during off-line training. Moreover,
this method is employed to alleviate the sneak path problem, not
for multi-task adaption. Different from the above works, we explore
the design space of the ReRAM crossbar for multi-task adaption
and propose the crossbar-aware mask learning method to reuse the
crossbar for new tasks efficiently.

2.2 Multi-Task Adaption

Multi-task adaption [12, 13] aims to build a model, which can adapt a
task into multiple visual tasks/domains without forgetting previous
knowledge, and meanwhile using as few parameters as possible.
[13] proposes to recombine the weights of the backbone model via
controller modules in channel-wise. [14] proposes domain-specific
attention modules for the backbone model. One of the most relevant
works is Piggyback [1], which solves the issue by learning task-
specific binary masks for each task while freezing the backbone
model except final classifier (known as multi-head). They achieve
this by generating the real-value masks which own the same size
with weights, passing through a binarization function to obtain
binary masks, which are then applied to existing weights. We denote
the real-value mask and binary mask as m" and m? respectively.
Then, the binarization function is given by:

b {1 ifm" > 7

Forward: m’ = .
0 otherwise

(1)
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Figure 2: Overview of the crossbar-aware multi-task adap-
tion framework, including offline shift-based masking
learning (a) , the ReRAM crossbar deployment for online in-
ference (b), and the weight mapping (c).

Backward : Vm" = Vm" (2)

Where 7 is a constant threshold value. However, the gradient of
binarization is non-differential during back-propagation. They use
the straight-through estimator (STE) [15] to solve this problem,
which estimates the gradient of real-value mask by the gradient of
binary mask. Furthermore, [2, 16] combine the binary mask with
additional floating-point scaling values to improve the adaption
capacity, but suffer from even more computation and memory cost
during the training procedure.

2.3 Neural Network Quantization

Neural network quantization has been widely studied to compress
the data precision (e.g., weight, activation) while maintaining ac-
curacy [17-19]. The stringent resource constraint of the hardware
accelerator necessitates efficient quantization algorithms. Early re-
search works [17] demonstrate the feasibility of discretizing the full
precision weights between the fixed boundaries [—1, 1]. However,
the deterministic quantization range failed to adaptively fit the
layer-wise distributions, leading to the sub-optimal model perfor-
mance. To minimize quantization error during training, various
studies introduce layer-wise learnable clipping parameters. Under
this context, PACT dynamically clips the activation based on the
trainable quantization boundary. However, PACT [18] only utilizes
the gradient inside the truncation range, leading to insufficient
learning. To avoid this issue, we adopt the quantization algorithm
from PROFIT [19] to train the DNN model.

3 METHODOLOGY

3.1 Overview

The overall framework of the proposed XMA is presented in Fig. 2,
including the overflow of both offline training (Fig. 2(a)) and ReRAM
crossbar array deployment for online inference (Fig. 2(b)). During
the offline training, to adapt the preserved model for previous tasks
to current task, XMA learns a task-specific and crossbar column-
wise shift mask that is applied on the fixed weights to perform task
adaption. Then for the online inference after the offline training of
each task, only the mask buffer needs to be updated with the new
values, with no need to re-program the preserved backbone model,
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as shown in Fig. 2(b). Furthermore, XMA designs the learnable shift-
based mask in crossbar column-wise, where each value controls
the operation of the entire crossbar column, enabling hardware
friendly crossbar mapping. The detailed shift-based mask offline
learning and online inference procedure will be presented in the
following subsections.

3.2 Offline Shift-based Mask Learning

3.2.1 The overflow of the shift-based mask learning. As in Piggy-
back method [1], the adopted binary mask is generated by bina-
rizing trainable real-valued masks m", as presented in Eq. (1). We
conjecture that the magnitude of these masks have the in-nature
property to represent the importance levels w.r.t the corresponding
weights of the backbone model. Inspired by that, we aim to utilize
the real-valued mask to improve the adaption capacity. However,
multiplying a real value (i.e., 32 bits floating number) for every
partial sum is a massive overhead in both latency and energy. To
address this issue, as illustrated in Fig. 3, we propose a learnable
shift-based mask m® that keeps the ‘1’ in the binary mask, but in-
troduces an additional shift factors a® as a replacement of the zero
elements in the binary mask counterpart, so as to improve the adap-
tion capacity with negligible additional overhead. The shift-based
mask can be expressed as:

mt=[m,_.a, ] 3)
Where mfnb_l means the shift-based mask only uses the ‘1’ in the
binary mask and afn boo denotes that the ‘0’ in the binary mask
is replaced by the proposed shift factor. It can be understood as
we fix the important kernels (‘1 in binary mask) and scale the
unimportant kernels (‘0” in binary mask) to be different shift levels
for the new task.

Learn the shift factor a®. In order to learn the shift factor, we
apply a shift equivalent quantization method. In practice, we first
normalize the real-valued mask under the range [0, 1], serving as
a scaling factor to represent the weight importance for multi-task
adaption. Then, the normalized real-valued mask is quantized to
the nearest power-of-two values (i.e., 1/2, 1/4, 1/8) or zero. Based on
this, the shift-based mask m® could maximally include 3 different
shift levels (i.e., 1/8, 1/4, 1/2) and 2 non-shift level (i.e., 0, 1). By
doing so, the computing/memory-hungry multiplication operation



between real-valued mask and fixed weight can be replaced by
the shift operation, resulting in computing and energy reduction.
Moreover, such shift operation can be implemented by reusing the
existing shift adder in most ReRAM based IMC platforms without
increasing hardware overhead. In addition, selecting the number of
shift levels ‘N’ in shift-based mask is flexible that could be adjusted
to achieve different trade-offs between accuracy and mask overhead.
For example, if N = 3, it supports maximally 3 different shift levels
and 2 non-shift levels, i.e., 0, 1/8, 1/4, 1/2 and 1, achieving the best
accuracy. Note, mask value ‘1’ means no shift, and mask value ‘0’
means turning off current column. If N = 0, the shift-based mask
is equivalent to the binary mask with the smallest mask memory
overhead.

Learn the binary mask m?. To learn the binary mask, we lever-
age the Gumbel-Sigmoid trick, inspired by Gumbel-Softmax [20]
that performs a differential sampling to approximate a categorical
random variable. Since Sigmoid function o() can be viewed as a
special two-class case of softmax, it can be defined as:

1
ry —

P = S eplogmrgo g/ Y
where 7 represents o(m”). go and g; are samples from Gumbel
distribution. The temperature T is a hyper-parameter to adjust the
range of input values. Benefiting from the differential property
of Eq. (4), the real-value mask m" can be embedded with existing
gradient based back-propagation training. To represent p(m”) as
binary format mb , we use a hard threshold (i.e., 0.5) during forward-
propagation of training. Because most values in the distribution
of p(m”) will move towards either 0 or 1 during training, gener-
ating the binary mask by p(m”) (instead of the real-value mask
m" directly) could have more accurate decision, resulting in better
accuracy.

3.2.2 Column-wise mask. In the 1T1R crossbar, the entire row and
column shares the same input, and the transistors’ gates are con-
nected together either horizontally or vertically. It is challenging
to apply an element-wise mask by controlling every weight stored
at the crossbar intersections. However, such row/column-wise par-
allelism provides the opportunity of the row/col wise controlling
for the existing crossbar design. In the conventional convolution
kernel mapping method, the kernel is divided by output feature
map dimension. For example, a Coyr X Cip X kh X hw kernel will
be reshaped to a (Ci, X kh X kw, Coy) sized 2D matrix. With the
development of deep learning in recent years, DNNs grow into
more complex and more extensive structures, the size of one filter
Cin X khxkw usually is too large to fit into a single crossbar column.
A general solution is to further partition and then deploy one filter
into multiple columns.

To leverage the row/column-wise parallelism, we define the
mask size as G X kh X kw to make it consistent with the size of a
crossbar column, namely column-wise mask, where the group G €
{1, Cin}. So that, a single mask value can control the entire column
of a crossbar array, which improves the computation efficiency
significantly compared to the element-wise mask. In our design,
the size of the crossbar column is set as 72x1. Equivalently, we
define the group size of the kernel-wise mask as 8 X 3 x 3 with the
group G = 8 in the algorithm.
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Figure 4: Hardware structure
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3.3 Online Crossbar Array Inference

3.3.1 Hardware Architecture. Fig. 4 shows the ReRAM crossbar-
based NN accelerator design to support inference with the proposed
column-wise mask. It consists of an I/O interface for data exchange,
multiple processing element (PE) for computing, and the interface
controller to decode the instruction. Each PE has multiple ReRAM
crossbar sub-arrays for the convolution operation; global ReLU
and adder tree are used to post-process the partial sum from the
sub-arrays. Inside the ReRAM sub-array, convolution kernels are
mapped on ReRAM cells. According to the ReRAM device property,
it may need multiple ReRAM cells to represent one convolution
kernel. For example, the convolution kernel is quantized to 4-bit
where each ReRAM cell can only represent a 2-bit number by four
different resistance levels. Then, each convolution kernel requires
two adjacent columns to map its higher bits and lower bits. Since
the weight has been divided into two columns, each column only
carries a partial accumulation which ADC reads as 2-bit activation.
The shift-adder (SA) manipulates the partial activation to obtain the
4-bit activation result. The mask buffer stores the column-wise mask
and controls how to shift the activation. The processed activation
is then sent to the global adder tree and ReLU, which subsequently
is conveyed to the next layer as the input.

3.3.2  Weight Mapping. Recently many weight mapping methods
have been proposed for better data reuse and ReRAM array utiliza-
tion [21-24]. We adopt the mapping method from [21] which is
widely used and works properly with our proposed method. We as-
sume the 4D kernel is organized as Cyys X Cip X kh X hw dimensions.
When performing the convolution, kernels that belong to the same
layer but on different Cy,,; dimensions share the same input. This
is similar to the crossbar, where the ReRAM cells on the same row
but different columns share the same input voltage. Therefore, we
unroll the convolution kernel along the Cy; dimension and map
them to the ReRAM crossbar sub-array. In our design, we use the
72X72 crossbar array to make the group size the same as mentioned
earlier. Also, we chose the 2-bit ReRAM cell and 4-bit quantized
model in our design. Since we need two columns to represent one
4-bit weight, each crossbar array can map a 36xX8x3x3 convolution
kernel. Any convolution kernel larger than 36x8x3x3 will be parti-
tioned into multiple arrays. In that case, each array will generate a
partial sum instead of the activation.

4 EXPERIMENT

We use the following five popular datasets in multi-task learning
domain to evaluate our XMA scheme: CUBS [25], Stanford Cars [26],



Table 1: Multi-task adaption accuracy (%)

Mask No Mask ‘ Ele-wise ‘ Col-wise
4-bit Quantization backbone model
Finetune | Finetune Shift
Dataset Floating | Quantized | Piggyback[1] Mask
Number Model 3 levels
CUBS 82.83 78.5 74.47 80.07
Stanford_cars 91.83 85.1 86.85 88.32
flowers 96.56 93.8 91.09 95.59
Wikiart 75.60 71.2 68.97 72.6
Sketches 80.78 76.3 78.88 79.62
Mask overhead ‘ 0% ‘ 0% ‘ 25% ‘ 0.87%

Table 2: The impact of different shift levels

Column-wise Mask
Dataset Shift Shift Shift | Binary
Mask Mask Mask | Mask
Shift Levels 3 2 1 0

Mask Levels | [0,5,5,2.1] [ [0.3.2.1] | [0.3.1] | [0.1]
CUBS 80.07 79.67 79.38 77.86
Stanford_cars 88.32 88.12 88.02 87.48
flowers 95.59 95.14 95.04 95.02
Wikiart 72.6 72.51 2.56 71.18

Sketches 79.62 79.92 79.92 78.8

| Mask overhead [ 0.87% | 0.69% | 0.52% | 0.35% |

Flowers [27], Wikiart [28], and Sketch [29]. We choose the ResNet-
50 [30] as our backbone model, which is pre-trained on ImageNet
dataset [31].

4.1 Algorithm Evaluation

Table 1 shows the inference accuracy on different datasets. Here we
use the backbone ResNet-50 trained on the ImageNet dataset with
4-bit weight and 4-bit activation quantization. The quantization
method is adopted from PROFIT [19]. We choose the group size
G = 8 in the experiment.

For floating-point precision, fine-tuning has the highest flex-
ibility to change any weight to any level. Thus, fine-tuning the
backbone model with floating-point precision achieves the best ac-
curacy in most datasets. To simulate the crossbar inference behavior,
we quantize the backbone model to 4-bit precision. Compared to
floating-point weights, the 4-bit quantized weight sacrifices the rep-
resentability, and fine-tuning the quantized backbone model shows
some accuracy degradation as expected. The Piggyback scheme
adopts the binary element-wise mask, where the binary precision
of the mask further limits the flexibility of the quantized model.
Thus Piggyback shows slightly worse accuracy than fine-tuning on
the quantized backbone model.

Benefiting from the more representation levels, fewer training
parameters, and gumbel sigmoid trick, our shift-based mask learn-
ing method shows consistently higher accuracy on all datasets than
Piggyback and fine-tuning on quantized backbone model (Table 1).
Although our proposed method has the group concept, it contam-
inates the accuracy further. Our shift-based mask provides more
representation levels than the simple on/off scheme in the binary

Table 3: Hardware specification

RRAM Sub-Array
Components Area (um?) Energy (pJ)
Memory Array (72 x 72) 84.93
Switch Matrix (WL and SL) 457.3 1.1
SAR ADC (5-bit) 8,003 83
Shift-Add-Input 1,412.9 6.8
Shift-Add-Weight (2 col use 1) 825.8 1.0
Mask Buffer (72 x 1) 190.4 0.003/bit /access
Total 11,380.2 17.2
Peripheral Circuits
1 stage AdderTree (128 units) 2,510.3 4.4
2 stage AdderTree (128 units) 7,740.1 13.7
3 stage AdderTree (128 units) 18,408.8 32.6
Global Buffer (64 x 112 x 112 x 4) 8,490,034 | 0.003/bit/access
ReLU (128 units) 939.5 0.9

Global Buffer

| - Aray
1 Global Buffer

1
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Figure 5: Area breakdown of 4-bit ResNet-50 backbone
model hardware deployment. The peripheral circuits includ-
ing ReLU module, adder tree, and mask buffer

mask. The group concept also helps to cut down the training pa-
rameters, which boosts the training convergence speed. Moreover,
sharing the mask value among the entire column significantly saves
the memory overhead for mask storage.

Different shift levels not only determine the mask storage over-
head but also affect the accuracy. Table 2 shows the accuracy and
mask overhead for different shift levels. More shift levels show
better accuracy in the cost of more mask overhead, where the mask
overhead is defined as the complete storage required by the mask
over the storage required by all the weights in the backbone model.
As the shift level goes down, one extreme example is when there
is no shift level available between the range of [0,1], which means
the mask only has binary value. In that case, our shift-based mask
method is equivalent to the column-wise binary mask. Due to the
group mask sharing, binary group mask size is only % of Piggy-
back. For the ResNet-50 backbone model, Piggyback’s element-wise
binary mask requires 23M/8 = 2.88MB, while the binary mask only
consumes around 40KB. Although the binary mask claims the least
mask overhead, it achieves the worst accuracy than other shift-
based methods. To achieve the best accuracy, three shift levels only
require less than 100KB storage for the mask, which is only 3.4% of
that in Piggyback (i.e., 96.6% reduction). Despite this reduction, on
average, the accuracy is 3.2% higher than Piggyback.

RRAM Array

4.2 Hardware Evaluation

We implement the proposed algorithm on hardware as shown in
Fig. 4. The hardware performance of different algorithms is evalu-
ated based on the circuit level simulator NeuroSim [32]. The 4-bit
quantized targeted DNNs are characterized by the 2-bit per cell
HfO, 1T1R ReRAM devices, characterized from [33] and projected
to 32nm CMOS node. The ReRAM array characteristics and the
total area usage are summarized in Table 3 and Fig. 5. Each ReRAM
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column is connected to a 5-bit successive approximation register
(SAR) analog-to-digital converter (ADC). To avoid frequent off-chip
memory access, we choose the global buffer as the same size as the
largest feature map during the inference process.

Fig. 6 shows the overhead caused by the re-programming pro-
cess of different sub-tasks. The total inference energy includes the
energy consumption per dataset and the re-programming energy
per sub-task. Given the amount of low-precision weight updates,
the re-programming energy can be computed based on the write
voltage, write pulses, and conductance level changes [33, 34]. Fine-
tuning the model entirely for each individual task requires universal
re-programming or even second-time deployment. The largely bi-
ased energy consumption between inference and re-programming
cumbers pragmatic implementation of continual learning. Piggy-
back [1] partially programs the weights to zero for different tasks.
Compared to the inference energy itself, the additional program-
ming process increases the total energy by up to 8x. Furthermore,
re-programming each individual cell requires additional element-
wise sparse indexes, leading to intricate array-level manipulation.

Different from the naive fine-tuning or Piggyback [1] learning,
the proposed algorithm update the model in a structured manner.
Activating RRAM columns for different sub-tasks simplifies the
continuous model updating without any re-programming or fine-
grained indexes. Compared to the fine-tuning and Piggyback [1],
the proposed algorithm reduces the total energy consumption up to
21.81x and 8.16X respectively, as shown in Fig. 6. Such significant
energy reduction of the proposed XMA algorithm fully unleashes
the practical merit of continual learning.

5 CONCLUSION

In summary, we proposed XMA, a shift-based crossbar mask, to
efficiently deploy the multi-task adaption to crossbar-based DNN
accelerator while considering hardware costs. The main contribu-
tion of XMA is that it does not need to change the neural network
structure or re-program any ReRAM cell for new task learning.
Moreover, the XMA reuses the existing shift-adder to apply the
shift-based mask onto fixed weight and minimize the hardware
overhead. Compared with other mask-based methods, XMA signif-
icantly saves inference energy and reduces the mask size to less
than 1% while maintaining similar accuracy.
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