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While implicit Runge–Kutta methods possess high order accuracy and important stability properties, implementation difficulties
and the high expense of solving the coupled algebraic system at each time step are frequently cited as impediments. We present
Irksome, a high-level library for manipulating UFL (Unified Form Language) expressions of semidiscrete variational forms to obtain
UFL expressions for the coupled Runge–Kutta stage equations at each time step. Irksome works with the Firedrake package to enable
the efficient solution of the resulting coupled algebraic systems. Numerical examples confirm the efficacy of the software and our
solver techniques for various problems.
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1 INTRODUCTION

Many successful high-level finite element packages provide a domain-specific language that allows users to succinctly
specify a partial differential equation (PDE) in mathematical syntax and obtain an efficient implementation. UFL, the
Unified Form Language [Alnæs et al. 2014], provides such a Python-based domain-specific language. It was originally
introduced as part of FEniCS [Logg et al. 2012] but has since been adopted by both Firedrake [Rathgeber et al. 2016]
and DUNE-FEM [Dedner et al. 2010].

In addition to enabling the generation of low-level finite element code, such an abstract interface also provides oppor-
tunities for “outer-loop” development of algorithms built on top of PDE solves. For example, dolfin-adjoint [Farrell
et al. 2013] allows users to specify forward models and cost functionals in UFL and then automatically derives adjoint
and tangent-linear models, key ingredients in data assimilation, optimization, and sensitivity analysis. The more recent
hIPPYlib [Villa et al. 2018] provides many of these features but also includes a framework for Bayesian optimization
and certain efficient Hessian approximations. RBniCS [Ballarin et al. 2015; Hesthaven et al. 2016] provides several
approaches to reduced order modeling, built on top of FEniCS’ interface.

Despite its richness of support for diverse spatial discretizations of various kinds and orders, UFL lacks a comparable
abstraction for time-stepping. Although early versions of DOLFIN interfaced to multi-adaptive temporal Galerkin
methods [Logg 2003], users wishing to solve time-dependent problems typically write their own time-stepping loops
with relatively elementary methods. A FEniCS-based library for time abstractions was developed in [Maddison and
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Farrell 2014], although this code mainly aims to optimize the implementation of transient models by caching and
reusing assembled matrices and solver data across timesteps.

In this paper, we present Irksome, a solution to the problem of obtaining effective time-discretizations. Rather than
consider all possible kinds of time-stepping algorithms, we restrict ourselves to Runge–Kutta (RK) methods in this
project. Runge–Kutta methods themselves are a vast family covering explicit and implicit methods of various orders of
accuracy. When applications call for some kind of stability or conservation property, there is typically some suitable RK
method available. Moreover, Butcher tableaux provide a unified description of RK methods and hence a unified entry
point for automating their deployment in conjunction with UFL-based PDE descriptions. IMEX-type and partitioned
Runge–Kutta methods that allow different methods for different terms in the equation can be of use for Hamiltonian
systems, but such methods require additional UFL manipulation and we regard them as a future project. We also
expect multi-step, generalized linear methods or other broad families of methods could admit similar deployment. An
alternative approach would be to wrap PETSc’s TS package [Abhyankar et al. 2018]1, providing access to these other
kinds of methods currently available in PETSc. However, TS currently only provides a small, enumerated set of RK
methods, and these do not include multi-stage implicit RK methods. A major motivation of our work is to study efficient
algebraic solvers for the large, coupled algebraic systems such methods yield.

Our work follows the design principle of separating mechanism from policy [Lampson and Sturgis 1976]. That is,
Irksome makes it straightforward to apply a particular RK method to a PDE, but does not comment on which method
the user ought to select. In some ways, this mirrors the agnosticism of UFL and other domain-specific languages for
spatial discretizations: UFL provides relatively broad access to classical, mixed, and discontinuous Galerkin methods
without editorializing on their relative merits for a particular problem. Just as one may use UFL to implement both good
and bad spatial discretizations, one may use Irksome to apply arbitrary Runge–Kutta schemes in time, and thereby
compare their merits. It is up to the analyst to select an appropriate one and configure the linear solver accordingly. We
provide some examples that may guide usage.

The discussion of optimal ‘policy’ regarding Runge–Kutta time-stepping of finite element discretizations of PDE is
ongoing, and we hope to provide a useful tool in this respect. Despite their favorable accuracy and stability properties,
higher-order fully implicit RK methods have not yet been extensively used in practical applications. Two reasons for
this are typically given. First, as the algebraic system couples all RK stages, in a traditional finite element code the
cost of implementation is quite high; the space and time discretization must be combined in the assembly process.
Second, they have been considered impractically expensive, due to the size of the nonlinear systems to be solved.
Irksome addresses both of these points: by automating the application of fully implicit RK methods, the first concern
dissolves, and by building on the sophisticated solver infrastructure of Firedrake and PETSc [Kirby and Mitchell 2018],
fast preconditioners can be developed and applied to address the second.

One response to the difficulties of implicit RK methods has been the development of ‘diagonally implicit’ Runge–Kutta
methods (DIRKs). These can provide many favorable properties, but with a sequence of smaller algebraic systems for
each stage. However, they are necessarily limited to low stage order, and in some cases effective preconditioners for
fully implicit methods can be competitive in efficiency with DIRKs. Mardal, Nilssen, and Staff [Mardal et al. 2007]
gave a rigorous analysis of certain block-diagonal preconditioners for fully implicit discretizations of parabolic PDE.
Essentially, the cost of applying the preconditioner for an 𝑠 stage method is the solution of 𝑠 independent systems
similar to that for a backward Euler step. When the outer iteration count is small, so is the relative cost of a fully

1This has been recently done in https://github.com/IvanYashchuk/firedrake-ts.
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implicit method compared to a DIRK. Huang et al [Huang et al. 2019] combine a diagonal preconditioner for backward
Euler with the Jordan form of the Butcher matrix to precondition the higher-order system. Pazner and Persson [Pazner
and Persson 2017] apply an earlier recommendation of Butcher for methods with invertible 𝐴 matrix [Butcher 1976]
to the compressible Navier–Stokes equations. In this technique, they change variables to render the stiffness part of
Jacobian block diagonal and hence cheaper to apply and precondition. They find that with appropriate preconditioning,
Radau IIA methods (which are L-stable and have relatively high stage order) can be made more efficient than DIRKs of
comparable order.

In Section 2, we give a brief overview of Runge–Kutta methods. In particular, we are interested in methods given
by a classical Butcher tableau, any of which can be encoded by a few arrays. In addition to a few general families of
collocation methods chosen to highlight different stability features, we have also included a range of classical methods.
In Section 3 we describe Irksome, giving an overview of the library itself and some of the internal implementation.
Several examples demonstrating various features are given in Section 4, and concluding thoughts are given in Section 5.

2 RUNGE–KUTTA METHODS

2.1 Overview

We first consider ordinary differential equations of the form

𝑦′(𝑡) + 𝐹 (𝑡,𝑦) = 0, (2.1)

where 𝐹 : (0,𝑇 ] × R𝑛 → R𝑛 , and the solution 𝑦 : (0,𝑇 ] → R𝑛 . The solution must also satisfy an initial condition

𝑦 (0) = 𝑦0 . (2.2)

We will assume that standard conditions for the existence, uniqueness, and continuous dependence of solutions (e.g. via
the Picard-Lindelöf theorem) hold for the discrete ODE.

Given the solution 𝑦 (𝑡𝑛) ≡ 𝑦𝑛 and some 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 , Runge–Kutta methods approximate 𝑦 (𝑡𝑛+1) by

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡
𝑠∑︂
𝑖=1

𝑏𝑖𝑘𝑖 , (2.3)

where for all 1 ≤ 𝑖 ≤ 𝑛 the stages 𝑘𝑖 ∈ R𝑛 satisfy

𝑘𝑖 + 𝐹
(︄
𝑡 + 𝑐𝑖Δ𝑡,𝑦 + Δ𝑡

𝑠∑︂
𝑖=1

𝐴𝑖 𝑗𝑘 𝑗

)︄
= 0. (2.4)

The numbers 𝐴𝑖 𝑗 , 𝑏𝑖 , and 𝑐𝑖 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 are in principle arbitrary but are chosen so that the resulting method has a
given order of accuracy as well other desired properties (e.g. various notions of stability or symplecticity). They are
typically organized in a Butcher tableau

c 𝐴

b
, (2.5)

where the vectors b, c ∈ R𝑠 contain the entries 𝑏𝑖 and 𝑐𝑖 , respectively, and 𝐴 ∈ R𝑠×𝑠 contains the entries 𝐴𝑖 𝑗 . If 𝐴 is
strictly lower triangular, then the method is explicit – each stage value can be computed in sequence without recourse
to an algebraic system (modulo mass matrices in the variational context). Otherwise, the method is implicit. In the
case of a fully implicit method (𝐴 being essentially dense), one must solve an (𝑛𝑠) × (𝑛𝑠) system of algebraic equations
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to determine all the stage values simultaneously. When 𝐴 is lower triangular but not strictly so (a diagonally implicit
method or DIRK), one may solve 𝑠 consecutive 𝑛 × 𝑛 algebraic systems for the stages.

More generally, discretizations of certain PDE (e.g. mixed formulations of the time-dependent Navier–Stokes) give
rise to systems of (explicit) differential-algebraic equations

𝑥 ′(𝑡) + 𝐹 (𝑡, 𝑥,𝑦) = 0,

𝐺 (𝑥,𝑦) = 0,
(2.6)

or even more generally a fully implicit formulation

𝐹 (𝑡, 𝑥, 𝑥 ′) = 0. (2.7)

In this paper, we investigate the application of RK methods to finite element spatial discretizations of (generally
nonlinear) time-dependent PDE. For a finite-dimensional function space𝑉ℎ , we consider variational evolution equations
of the form of finding 𝑢 : (0,𝑇 ] → 𝑉ℎ such that

(𝑢𝑡 , 𝑣) + F (𝑡,𝑢; 𝑣) = 0, (2.8)

for all 0 < 𝑡 ≤ 𝑇 and 𝑣 ∈ 𝑉ℎ .
Here, we assume that 𝑣 enters into F linearly but make no particular assumptions about its dependence on 𝑡 and

𝑢, other than that the discrete system is solvable. We do not assume that we have a particular spatial discretization –
discontinuous Galerkin or other nonconforming methods fit into our framework as well as standard conforming ones.

It is useful to consider an even more general problem of finding 𝑢 : (0,𝑇 ] → 𝑉ℎ such that

G(𝑡,𝑢,𝑢𝑡 ; 𝑣) = 0, (2.9)

for all 0 < 𝑡 ≤ 𝑇 and 𝑣 ∈ 𝑉ℎ . This general formulation allows some interesting cases (e.g. Sobolev equations) not covered
in (2.8), and working with this abstract form makes our UFL manipulation more straightforward.

The Runge–Kutta methods we consider have a range of different kinds of stability properties appropriate for various
PDE examples we consider later. We refer the reader to [Hairer et al. 2006; Wanner and Hairer 1996] for an in-depth
discussion of these various properties. The RK methods we consider are 𝐴-stable, meaning that if applied to the test
equation 𝑦′ = _𝑦 with Re(_) < 0, the computed solution tends to zero at infinity for all positive time-steps. While the
famous Dahlquist Barrier Theorem [Dahlquist 1963] says that 𝐴-stable multi-step methods can be at most second order
accurate, 𝐴-stable RK methods of all orders are known. 𝐴-stability potentially allows large time steps to be chosen,
provided sufficient accuracy is obtained with them. For very stiff equations, a stronger notion of stability than𝐴-stability
is desirable. So-called 𝐿-stability requires that the stability function vanish at infinity. Additionally, some ODE systems
possess a monotonicity property that if 𝑦′ = 𝑓 (𝑡,𝑦) and 𝑧′ = 𝑓 (𝑡, 𝑧) are solutions with different initial conditions, then
∥𝑦 (𝑡2) − 𝑧 (𝑡2)∥ ≤ ∥𝑦 (𝑡1) − 𝑧 (𝑡1)∥ for 𝑡1 ≤ 𝑡2. 𝐵-stable numerical methods [Wanner and Hairer 1996] preserve a discrete
analog of this property.

Finally, some ODE possess one or more conserved quantities, and certain RK methods excel in preserving this
in the discretization. For problems with a Hamiltonian structure, symplectic methods conserve the Hamiltonian up
to a perturbation over exponentially long time scales (the result is stronger for linear problems). Some methods are
additionally known to conserve linear or quadratic invariants, which makes them highly attractive for problems with
these features. We demonstrate such properties for the linear wave equation and the nonlinear Benjamin–Bona–Mahony
and Gross–Pitaevskii equations.
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2.2 PDE examples

To fix ideas, we now consider a range of PDE to serve as motivating examples. These examples are chosen to explore
two different dimensions of our work. First, they cover ODE, DAE, and implicit/Sobolev PDE. Second, these examples
call for different kinds of stability properties, highlighting the need for different methods.

2.2.1 The heat equation. A model problem for time stepping finite element discretizations is the heat equation

(𝑢𝑡 , 𝑣) + (∇𝑢,∇𝑣) = ( 𝑓 , 𝑣) , (2.10)

posed on some domain Ω ⊂ R𝑑 with 𝑑 ∈ {1, 2, 3}, together with Dirichlet boundary conditions 𝑢 |𝜕Ω = 𝑔(𝑡, ·) and data
𝑓 : (0,𝑇 ] × Ω → R. We let 𝑉ℎ consist of standard continuous piecewise polynomials defined over a triangulation of Ω.

Backward Euler is a very common method, highly stable but only first-order accurate, for the heat equation. Given
𝑢𝑛 , the approximation to the solution 𝑢 at time 𝑡𝑛 , we define 𝑢𝑛+1 as the solution to the variational problem(︃

𝑢𝑛+1 − 𝑢𝑛
Δ𝑡

, 𝑣

)︃
+

(︂
∇𝑢𝑛+1,∇𝑣

)︂
−

(︂
𝑓

(︂
𝑡𝑛+1, ·

)︂
, 𝑣

)︂
= 0, (2.11)

for all 𝑣 ∈ 𝑉ℎ . Since 𝑢𝑛+1 is the unknown value and 𝑢𝑛 is data for this problem, we can rearrange this to obtain(︂
𝑢𝑛+1, 𝑣

)︂
+ Δ𝑡

(︂
∇𝑢𝑛+1,∇𝑣

)︂
=

(︁
𝑢𝑛, 𝑣

)︁
+ Δ𝑡

(︂
𝑓

(︂
𝑡𝑛+1, ·

)︂
, 𝑣

)︂
. (2.12)

Although backward Euler is just a Runge–Kutta method with Butcher tableau

1 1
1
, (2.13)

one typically poses the problem for 𝑢𝑛+1, as we have done in (2.11) or (2.12), instead of the lone stage 𝑘1. If we apply a
generic 𝑠-stage RK method to (2.10), we pose a variational problem for the 𝑠 stages. We seek {𝑘𝑖 }𝑠𝑖=1 ⊂ 𝑉ℎ such that

(𝑘𝑖 , 𝑣𝑖 ) +
⎛⎜⎝∇ ⎛⎜⎝𝑢𝑛 + Δ𝑡

𝑠∑︂
𝑗=1

𝑎𝑖 𝑗𝑘 𝑗
⎞⎟⎠ ,∇𝑣𝑖⎞⎟⎠ − ( 𝑓 (𝑡 + 𝑐𝑖Δ𝑡, ·) , 𝑣𝑖 ) = 0, (2.14)

for each 𝑣𝑖 ∈ 𝑉ℎ , and then find 𝑢𝑛+1 by

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡
𝑠∑︂
𝑖=1

𝑏𝑖𝑘𝑖 . (2.15)

In the case of backward Euler, the variational equation for the stage 𝑘1 is similar to (2.11). If we substitute in (2.13),
we find

(𝑘1, 𝑣1) +
(︁
∇

(︁
𝑢𝑛 + Δ𝑡𝑘1

)︁
,∇𝑣1

)︁
− ( 𝑓 (𝑡 + Δ𝑡, ·) , 𝑣1) = 0. (2.16)

Now, we can rearrange this to give an equation for 𝑘1:

(𝑘1, 𝑣1) + Δ𝑡 (∇𝑘1,∇𝑣1) = ( 𝑓 (𝑡 + Δ𝑡, ·), 𝑣1) −
(︁
∇𝑢𝑛,∇𝑣1

)︁
. (2.17)

Although the right-hand side is different, the quantity 𝑘1 here can be put into 1−1 correspondence with𝑢𝑛+1 from (2.11)
by 𝑘1 ↔ 𝑢𝑛+1−𝑢𝑛

Δ𝑡 . Importantly, we note the equality of the bilinear form defining 𝑢𝑛+1 in (2.12) to that defining 𝑘1
in (2.17).

While the Runge–Kutta formulation (2.14) is quite a bit different than (2.11), we can programmatically obtain it
from (2.10) by, for each stage, substituting 𝑘𝑖 in for 𝜕𝑢𝑖

𝜕𝑡 , 𝑢𝑛 + Δ𝑡
∑︁𝑠

𝑗=1 𝑎𝑖 𝑗𝑘 𝑗 for 𝑢, 𝑣𝑖 for 𝑣 , and 𝑡 + 𝑐𝑖Δ𝑡 for t. This simple
insight forms the basis of the implementation, which we discuss in section 3.
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Strongly-enforced boundary conditions for the semidiscrete problem must be converted to boundary conditions for
each Runge–Kutta stage. The stage 𝑘𝑖 approximates the time derivative 𝑢𝑡 at time 𝑡𝑛 + 𝑐𝑖Δ𝑡 , so if we pose a boundary
condition of the form

𝑢 |Γ = 𝑔(𝑡, ·),

for some boundary segment Γ ⊂ 𝜕Ω, we impose the corresponding stage boundary condition

(𝑘𝑖 ) |Γ =
𝜕𝑔
𝜕𝑡 (𝑡

𝑛 + 𝑐𝑖Δ𝑡, ·). (2.18)

We note that weakly-enforced boundary conditions (such as Neumann and Robin for standard Galerkin methods)
require no special treatment, just the evaluation of any time-dependent data at the correct stage times.

The discrete heat equation is a prototypical stiff system. Explicit time-stepping methods require a time step with
Δ𝑡 = O(ℎ2), where ℎ is the mesh size. 𝐴-stability allows us to put Δ𝑡 = O(ℎ), with a constant possibly larger than 1.
Also, because the stiffness increases under mesh refinement, 𝐿-stability can be attractive. Hence, we would expect
Gauss–Legendre methods to be passable but perhaps to obtain better results from RadauIIA and LobattoIIIC families for
a given order. While the heat equation does possess a contractive property, 𝐵-stability does not seem as important in
practice for these problems.

Generalizing the class of problems we consider, the mixed form of the heat equation gives rise to a system of
differential algebraic equations (DAE). Introducing the new variable 𝜎 = −∇𝑢 in the heat equation, we obtain the system
of PDE

𝑢𝑡 + ∇ · 𝜎 − 𝑓 = 0,

𝜎 + ∇𝑢 = 0.
(2.19)

To discretize this, we take𝑊 1
ℎ
⊂ 𝐿2 as the space of discontinuous piecewise polynomials of degree 𝑘 over a triangulation

ofΩ and𝑊 2
ℎ
⊂ 𝐻 (div) a suitable mixed approximating space and define𝑉ℎ =𝑊 1

ℎ
×𝑊 2

ℎ
. We then seek (𝑢, 𝜎) : (0,𝑇 ] → 𝑉ℎ

such that

(𝑢𝑡 , 𝑣) + (∇ · 𝜎, 𝑣) − ( 𝑓 , 𝑣) = 0,

(𝜎,𝑤) − (𝑢,∇ ·𝑤) = 0,
(2.20)

for all (𝑣,𝑤) ∈ 𝑉ℎ . Since only 𝑢𝑡 appears in the equation and not 𝜎𝑡 , we have a differential-algebraic system rather
than just a system of ODE. Still, we can apply a generic RK method to (2.20) to obtain a coupled system of variational
problems for all 𝑠 stages. For each 1 ≤ 𝑖 ≤ 𝑠 , we seek (𝑘𝑢

𝑖
, 𝑘𝜎

𝑖
) ∈ 𝑉ℎ such that

(︁
𝑘𝑢𝑖 , 𝑣𝑖

)︁
+ ⎛⎜⎝∇ · ⎛⎜⎝𝜎𝑛 + Δ𝑡

𝑠∑︂
𝑗=1

𝑎𝑖 𝑗𝑘
𝜎
𝑗

⎞⎟⎠ , 𝑣𝑖⎞⎟⎠ − ( 𝑓 (𝑡𝑛 + 𝑐𝑖Δ𝑡, ·), 𝑣𝑖 ) = 0,

⎛⎜⎝⎛⎜⎝𝜎𝑛 + Δ𝑡
𝑠∑︂
𝑗=1

𝑎𝑖 𝑗𝑘
𝜎
𝑗

⎞⎟⎠ ,𝑤𝑖
⎞⎟⎠ − ⎛⎜⎝⎛⎜⎝𝑢𝑛 + Δ𝑡

𝑠∑︂
𝑗=1

𝑎𝑖 𝑗𝑘
𝑢
𝑗

⎞⎟⎠ ,∇ ·𝑤𝑖
⎞⎟⎠ = 0,

(2.21)

for all (𝑣𝑖 ,𝑤𝑖 ) ∈ 𝑉ℎ .
In some sense, DAE are “infinitely stiff”, and so we expect 𝐴- and 𝐿-stability to be quite important for these problems.

We therefore expect RadauIIA or LobattoIIIC methods to outperform Gauss–Legendre.

Manuscript submitted to ACM



Irksome: Automating Runge–Kutta time-stepping for finite element methods 7

2.2.2 The wave equation. We can write the wave equation 𝑢𝑡𝑡 − Δ𝑢 = 0 as a first-order variational system

(𝑢𝑡 , 𝑣) + (∇ · 𝜎, 𝑣) = 0,

(𝜎𝑡 ,𝑤) − (𝑢,∇ ·𝑤) = 0.
(2.22)

Following [Geveci 1988; Kirby and Kieu 2015], we take the flux variable 𝜎 ∈ 𝐻 (div) and 𝑢 ∈ 𝐿2. As above, we take𝑊 1
ℎ

as the space of discontinuous piecewise polynomials of degree 𝑘 over a triangulation of Ω and𝑊 2
ℎ
⊂ 𝐻 (div) a suitable

mixed approximating space and define 𝑉ℎ =𝑊 1
ℎ
×𝑊 2

ℎ
.

The resulting ODE tend to be far less stiff than those for heat equation. Energy conservation rather than stiffness
tends to be the central issue for time stepping. Standard integrators like forward or backward Euler dramatically fail
to conserve energy, and one typically requires some kind of symplectic integrator. Kirby and Kieu [2015] analyzed a
first-order symplectic Euler time-stepping scheme for this problem, and Kernell and Kirby [2020] studied preconditioners
for a Crank–Nicolson time discretization of a slightly more general equation.

Applying a generic Runge–Kutta method to (2.22) gives

(︁
𝑘𝑢𝑖 , 𝑣𝑖

)︁
+ ⎛⎜⎝∇ · ⎛⎜⎝𝜎𝑛 + Δ𝑡

𝑠∑︂
𝑗=1

𝑎𝑖 𝑗𝑘
𝜎
𝑗

⎞⎟⎠ , 𝑣𝑖⎞⎟⎠ − ( 𝑓 (𝑡𝑛 + 𝑐𝑖Δ𝑡, ·), 𝑣𝑖 ) = 0,

(︁
𝑘𝜎𝑖 ,𝑤𝑖

)︁
− ⎛⎜⎝⎛⎜⎝𝑢𝑛 + Δ𝑡

𝑠∑︂
𝑗=1

𝑎𝑖 𝑗𝑘
𝑢
𝑗

⎞⎟⎠ ,∇ ·𝑤𝑖
⎞⎟⎠ = 0.

(2.23)

Some Runge–Kutta families, such as Gauss–Legendre methods, provide high-order, 𝐴-stable, and symplectic methods
that preserve system energy for linear problems (and nearly so for nonlinear ones) [Hairer et al. 2006]. The damping
feature that makes RadauIIA and LobattoIIIC quite suitable for the heat equation turns out to be a major weakness for
the wave equation. Despite the different RK method to be preferred, we note that the discrete system (2.23) has quite a
similar structure to (2.21).

2.2.3 Nonlinear examples. As an example of a PDE system giving rise to a nonlinear DAE system, we consider the
incompressible Navier–Stokes equations

𝑢𝑡 − aΔ𝑢 + 𝑢 · ∇𝑢 + ∇𝑝 = 0,

∇ · 𝑢 = 0,
(2.24)

where 𝑢 is the vector-valued fluid velocity and 𝑝 the pressure, and the parameter a is the kinematic viscosity. Among
the many issues these equations present, one must choose suitably compatible discrete spaces for velocity and pressure
to ensure stability.

We also consider the Benjamin–Bona–Mahony [Benjamin et al. 1972] (BBM) equation

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 − 𝑢𝑡𝑥𝑥 = 0, (2.25)

typically posed on Ω = R or a periodic domain. It has multivariate extensions and is also similar to more complex
models arising in magma dynamics [Simpson and Spiegelman 2011]. For our purposes, it is a nonlinear Sobolev-type
equation, with spatial derivatives acting on time derivatives in the 𝑢𝑡𝑥𝑥 term.
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The BBM equation has a Hamiltonian structure and three polynomial invariants:

𝐼1 =
∫
𝑢 𝑑𝑥, (2.26)

𝐼2 =
∫
𝑢2 + (𝑢𝑥 ) 2 𝑑𝑥, (2.27)

𝐼3 =
∫
(𝑢𝑥 ) 2 + 1

3𝑢
3 𝑑𝑥 . (2.28)

Each of these quantities remains constant over time. Note that 𝐼1 is a linear invariant, 𝐼2 quadratic, and 𝐼3 cubic. The
BBM equation also supports solitary (but non-soliton) wave solutions.

As a final nonlinear example, we consider the Gross–Pitaevskii [Gross 1961; Pitaevskii 1961] (GP) equation in a
parabolic trap

𝑖𝜓𝑡 = −1
2
∇2𝜓 + |𝜓 |2𝜓 + 1

2
|x|2𝜓, (2.29)

where𝜓 : (0,𝑇 ] × Ω → C is a complex-valued wavefunction. This equation describes the dynamics of Bose–Einstein
condensates, a phase of matter where a gas of bosons condenses into the same quantum state. The equation is of
substantial interest in physics, and supports nonlinear waves such as solitons and vortices [Kevrekidis et al. 2015]. The
invariants of this equation that we consider are the number of atoms and the energy:

𝐽1 =
∫
Ω |𝜓 |2 𝑑𝑥, (2.30)

𝐽2 =
1
4
∫
|∇𝜓 |2 + |x|2 |𝜓 |2 + |𝜓 |4 𝑑𝑥 . (2.31)

The number of atoms 𝐽1 is a quadratic functional, while the energy 𝐽2 is quartic. A second-order single-step single-stage
scheme that conserves both invariants to machine precision has been proposed by [Delfour et al. 1981].

2.3 Algebraic systems

A long-standing critique of higher-order implicit RK methods, and argument for DIRKs, is the size and complexity of
the algebraic systems required to be solved at each time step. We now discuss some of these issues and attempt to
address them in the context of the heat equation with a 3-stage method. We define𝑀 and 𝐾 to be the standard finite
element mass and stiffness matrices, with

𝑀𝑖 𝑗 =

∫
Ω
𝜓𝑖𝜓 𝑗 𝑑𝑥, 𝐾𝑖 𝑗 =

∫
Ω
∇𝜓𝑖 · ∇𝜓 𝑗 𝑑𝑥 (2.32)

where {𝜓𝑖 }dim𝑉ℎ
𝑖=1 is a finite element basis. The variational problem (2.14) gives rise to a block algebraic system of the

form ⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣
𝑀 0 0
0 𝑀 0
0 0 𝑀

⎤⎥⎥⎥⎥⎥⎦ + Δ𝑡

⎡⎢⎢⎢⎢⎢⎣
𝑎11𝐾 𝑎12𝐾 𝑎13𝐾

𝑎21𝐾 𝑎22𝐾 𝑎23𝐾

𝑎31𝐾 𝑎32𝐾 𝑎33𝐾

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎣
k1
k2
k3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f1
f2
f3

⎤⎥⎥⎥⎥⎥⎦ , (2.33)

or equivalently (and true for general 𝑠-stage methods for linear problems)

(𝐼 ⊗ 𝑀 + Δ𝑡𝐴 ⊗ 𝐾) k = f . (2.34)

The Jacobian for nonlinear problems will similarly couple together all of the RK stages, although without the Kronecker
product structure in the stiffness matrix (unless a modified Newton scheme is used, e.g. [Bickart 1977; Butcher 1976]).
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Following [Mardal et al. 2007], the block diagonal of this system makes an excellent preconditioner, at least in the
case of parabolic problems such as the heat equation:

𝑃 =

⎡⎢⎢⎢⎢⎢⎣
𝑀 + 𝑎11Δ𝑡𝐾 0 0

0 𝑀 + 𝑎22Δ𝑡𝐾 0
0 0 𝑀 + 𝑎33Δ𝑡𝐾

⎤⎥⎥⎥⎥⎥⎦ . (2.35)

The diagonal blocks are the same as matrices obtained by discretizing backward Euler with an altered time step. More
generally, one may also consider a block triangular preconditioner [Staff et al. 2006] such as:

𝑃 =

⎡⎢⎢⎢⎢⎢⎣
𝑀 + 𝑎11Δ𝑡𝐾 0 0

𝑎21𝐾 𝑀 + 𝑎22Δ𝑡𝐾 0
𝑎31𝐾 𝑎32𝐾 𝑀 + 𝑎33Δ𝑡𝐾

⎤⎥⎥⎥⎥⎥⎦ . (2.36)

Applying this preconditioner still only requires linear solves with the diagonal blocks, and typically leads to somewhat
faster convergence than (2.35). Some form of multigrid iteration (either algebraic or geometric) will provide an excellent
preconditioner for these blocks. Instead of taking the Kronecker product of a triangular part of 𝐴 with 𝐾 , it is also
possible to use a triangular factor from the LDU decomposition of 𝐴, and this seems to give additional reductions in
iteration count with comparable cost-per-iteration [Rana et al. 2020].

We note that if a DIRK method is used so that 𝐴 is lower-triangular, (2.33) becomes

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣
𝑀 0 0
0 𝑀 0
0 0 𝑀

⎤⎥⎥⎥⎥⎥⎦ + Δ𝑡

⎡⎢⎢⎢⎢⎢⎣
𝑎11𝐾 0 0
𝑎21𝐾 𝑎22𝐾 0
𝑎31𝐾 𝑎32𝐾 𝑎33𝐾

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎣
k1
k2
k3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f1
f2
f3

⎤⎥⎥⎥⎥⎥⎦ . (2.37)

In this case, the triangular structure means one can proceed by forward substitution, solving in turn for each of the
stages. Moreover, an explicit method (typically not recommended for the heat equation) would have 𝐴 strictly lower
triangular and the linear system

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣
𝑀 0 0
0 𝑀 0
0 0 𝑀

⎤⎥⎥⎥⎥⎥⎦ + Δ𝑡

⎡⎢⎢⎢⎢⎢⎣
0 0 0

𝑎21𝐾 0 0
𝑎31𝐾 𝑎32𝐾 0

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎣
k1
k2
k3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f1
f2
f3

⎤⎥⎥⎥⎥⎥⎦ , (2.38)

so that we only must solve the mass matrix once per stage (and do mat-vec and axpy-type operations) to obtain all of
the stages. One can also apply the block lower-triangular preconditioner (via PETSc’s FIELDSPLIT [Brown et al. 2012])
for DIRK and explicit methods, which exactly solves the linear systems in a single outer iteration, provided that the
diagonal blocks are solved accurately. Hence, the range of RK methods enabled in Irksome composes with the existing
Firedrake code stack to enable efficient implementations.

Rather than splitting the stages as with the block diagonal or triangular preconditioners, it is also possible to apply a
monolithic multigrid scheme using some kind of blockwise smoothing. The theory of such methods is quite undeveloped,
but our techniques seem robust in practice. We include some empirical results in this direction for both the heat equation
in Section 4.2 and the Gross–Pitaevskii equation in Section 4.4.3.

We remark that the Firedrake solver infrastructure makes it possible to apply the (rather large) operator in a matrix-
free fashion, saving large amounts of memory by computing the action of the Jacobian on a vector rather than first
assembling a sparse matrix and performing a matrix-vector product. Firedrake is not yet able to detect or exploit
any Kronecker product structure, if available. Preconditioners that work only with matrix actions (such as geometric
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multigrid with rediscretization) require no further modification, while one may use a firedrake.AssembledPC preconditioner
to force assembly of particular diagonal blocks if the actual sparse matrix values are needed (such as for algebraic
multigrid). Such techniques approaches are further discussed in [Kirby and Mitchell 2018].

3 IRKSOME

Irksome is a Python library for manipulating UFL for semidiscrete variational forms and strongly-enforced boundary
conditions into UFL for fully discrete Runge–Kutta methods. It is available on GitHub under the Firedrake project
umbrella at https://github.com/firedrakeproject/Irksome, and can be installed as part of Firedrake by adding the
--install irksome option to the Firedrake installation script.

As exploiting the PDE structure of the algebraic system is key for obtaining efficient solvers, it is crucial that
we maintain this symbolic information in our implementation. Consequently, Irksome’s approach based on UFL
manipulation seems to afford richer opportunities than a black-box RK library could. As concrete examples, maintaining
the symbolic structure enables the straightforward implementation of monolithic multigrid and advanced field-split
(Schur complement) preconditioners to the implicit RK system, and makes possible efficient vectorized matrix-free
implementations [Sun et al. 2020].

Irksome’s main actions are performed by a function getForm that takes UFL for the time-dependent variational
form, a Butcher tableau, the current time and time step (both stored as UFL Constant objects), and a UFL Coefficient.
Irksome also provides a collection of Runge–Kutta methods in a separate module (see Subsection 3.2). The function
getForm returns UFL for the coupled, multi-stage method and boundary conditions. We also provide a convenience
class, TimeStepper that handles interactions with getForm, boundary conditions, and variational solvers and advances
the solution forward in time. This class and the module containing Butcher tableaux are the main user entry points for
Irksome.

3.1 UFL manipulation

To illustrate what Irksome automates, we consider the semidiscrete homogeneous heat equation, which can be written
in UFL (with our support of a Dt operator) as� ⊵

F = inner(Dt(u), v) * dx + inner(grad(u), grad(v)) * dx� �
Typically, we would express backward Euler for the heat equation in UFL as� ⊵

F = inner((unew - u)/dt, v) * dx + inner(grad(unew), grad(v)) * dx� �
However, Runge–Kutta methods require specifying the variational form the update stages satisfy rather than the value
at the next time step. To fix ideas, consider the two-stage LobattoIIIC method given by the Butcher tableau

0 1/2 −1/2
1 1/2 1/2

1/2 1/2
. (3.1)

Following (2.14), we could write the variational form for the two stages as in Listing 1, and solve the variational problem
F==0 for the unknown k, and use it to update the solution.

Using a different Butcher tableau leads to a similar variational problem, simply replacing the entries of 𝐴. More
generally, we also must utilize 𝑐 to evaluate explicitly time-dependent expressions (say, in material properties or
Manuscript submitted to ACM
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# u is a given Function in V containing solution at time n
# dt is a Constant holding the current time step value
Vbig = V * V
k = Function(Vbig)
k0, k1 = split(k)
v0, v1 = TestFunctions(Vbig)
u0 = u + Constant (0.5) * dt * k0 + Constant (-0.5) * dt * k1
u1 = u + Constant (0.5) * dt * k0 + Constant (0.5) * dt * k1

F = (inner(k0, v0) * dx + inner(k1, v1) * dx +
inner(grad(u0), grad(v0)) * dx + inner(grad(u1), grad(v1)) * dx)� �

Listing 1. Sample UFL for a two-stage Runge–Kutta discretization of the heat equation.

forcing terms). Because the transformation from the semidiscrete form of 𝐹 to its Runge–Kutta variational form is quite
mechanical, it can be mechanized.

In the case of a single, scalar-valued equation, these transformations can be encoded in a straightforward way. One
can build a space Vbig that is an 𝑠-way Cartesian product of the underlying function space and create a Function called k

for the stages and a TestFunction over the stages as well. For each stage, one performs a small set of substitutions. First,
the test function in the semidiscrete form is replaced by the relevant component of the test function over the product
space. The time derivative Dt(u) is replaced by the relevant piece of k as well. The replacement for u is somewhat more
complicated – at stage i one replaces u with u plus dt times a row of the Butcher matrix A contracted with the stage
variables. For mixed systems and vector-valued fields, the symbolic substitutions become somewhat more involved, as
one must map from the unknown fields and their time derivatives into offsets into k appropriately.

Also, even if the formulae for substitution are fairly clear, the mechanics of performing the substitutions require some
care. Suppose we have a vector-valued unknown u and that u[i] appears in the semidiscrete bilinear form. The existing
ufl.replace is based on a post-order multifunction — it takes an expression and a dictionary of replacements to perform
and then replaces a node in the expression graph if it matches something in the dictionary. Hence, when u[i] appears in
an expression, the u will be found first and then replaced with its evaluation at a stage, indexed with component i. This
will point to the wrong piece of the stage variable k. Similar difficulties can occur with time derivatives. To address this,
we wrote a modified replacement function based on pre-order traversal. If an expression matches something in the set of
replacements to be performed, the replacement gets made, and otherwise recursion occurs on the expression’s children.
Hence, the match for u[i] is found and the correct substitution is performed. While this form of traversal/substitution is
less efficient than post-order, the overhead of UFL manipulation is negligible in almost all contexts.

Similarly, substitution is performed on boundary condition values. Some care must be taken in both the variational
form and boundary conditions to handle mixed problems where the underlying function space is itself the Cartesian
product of multiple spaces. Also, in our current implementation, we assume that time derivatives are applied only to
unknown fields and not to algebraic combinations of expressions and fields (e.g. one must write 2*t*u + t**2 * Dt(u) rather
than Dt(t**2 u) and 2*Dt(u)*u rather than Dt(u**2)). This does not seem to be a major limitation, but could be relaxed by first
applying a transformation expanding such derivatives before applying substitutions.

3.2 Currently available RK methods

The universe of known Runge–Kutta methods is vast. While any RK method can be implemented by passing the
appropriate Butcher tableau, Irksome provides implementations of many familiar classical methods, with a particular
focus on fully implicit collocation-type methods. These typically have an adjustable parameter for the order, much like
the function space constructors in FEniCS and Firedrake.
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Among collocation-type Runge–Kutta methods, we have implemented Gauss–Legendre (which includes implicit
midpoint), LobattoIIIA (which includes Crank-Nicolson), and RadauIIA (which includes backward Euler) methods.
We use FIAT [Kirby 2004] to obtain the interpolating nodes for 𝑐 , and then explicit formulae (evaluated by numerical
integration) give the entries of 𝐴 and 𝑏 in the Butcher tableau. Since FIAT can compute the quadrature points to
arbitrary degree, we similarly have arbitrary-order implementation of these methods. These methods are all 𝐴-stable.
The Gauss–Legendre methods are 𝐵-stable and symplectic, but not 𝐿-stable, while the RadauIIA methods are 𝐿-stable.
We have also implemented general-order LobattoIIIC methods, which have the same 𝑏 and 𝑐 arrays as LobattoIIIA but a
different 𝐴 matrix. They are not quite standard collocation methods, but are 𝐿-stable and 𝐵-stable as well as 𝐴-stable
and frequently recommended for stiff problems.

In addition to these methods, we provide Butcher tableaux for a range of other classical methods (forward Euler,
an SSP method [Gottlieb et al. 2001], explicit midpoint/trapezoid rules, the classical fourth-order method, and some
L-stable DIRKs [Alexander 1977]).

4 EXAMPLES AND NUMERICAL RESULTS

4.1 The heat equation

In this section, we confirm the accuracy of our generated methods for the heat equation via the method of manufactured
solutions. We let Ω = (0, 1)× (0, 1) be the unit square and select the forcing function 𝑓 and Dirichlet boundary conditions
such that the true solution is 𝑢 (𝑥,𝑦, 𝑡) = 𝑒−𝑡 sin(𝜋𝑥) cos(𝜋𝑦).

For the primal form of this equation, we divide Ω into an 𝑁 × 𝑁 mesh of squares for 𝑁 = 8, 16, 32, 64, 128 and take
𝑉ℎ to be the space of cubic serendipity finite elements. For smooth enough solutions, these lead to fourth order 𝐿2

error and third order 𝐻1 error, so we focus on time-stepping methods of order at least three – Gauss–Legendre(2) and
LobattoIIIC(3) (both of order 4) and two- and three-stage RadauIIA methods of order 3 and 5, respectively.

The numerical results illustrate the effect of order reduction [Wanner and Hairer 1996]. For stiff problems, collocation-
type methods do not yield the full nominal order of accuracy (e.g. order 2𝑠 for an 𝑠-stage Gauss–Legendre method) but
reduce to the maximum truncation error per-stage (e.g. 𝑠 for an 𝑠-stage Gauss–Legendre method). For time steps large
enough for temporal error to be significant relative to spatial error, we see a reduction in the observed accuracy. For
example, Figure 1a shows fourth order accuracy in 𝐿2 using the two-stage Gauss–Legendre method when the time step
is very small, but this degenerates to stiff order of two. A similar reduction of the 𝐻1 convergence rate below third
order is observed for larger time steps. The 𝐿2 error using LobattoIIIC(3) also reduces for larger time steps, but the 𝐻1

error stays at order three (which is both the stage order and the spatial order in this norm). The RadauIIA(2) method
with stiff order two has order reduction in 𝐿2 norm, but none is observed in 𝐻1 (presumably the time truncation error
is small enough not to affect the overall convergence order). The RadauIIA(3) method has stage order three and so does
not affect the 𝐻1 error, and its time truncation error is small enough that, for the time steps we consider, we observe
full accuracy in 𝐿2 as well.

We also consider the mixed form of the heat equation, now dividing the 𝑁 × 𝑁 mesh into right triangles and using
third-order Raviart-Thomas elements for 𝑉ℎ with discontinuous polynomials of degree three for𝑊ℎ . Hence, both
variables 𝑢ℎ and 𝜎ℎ should be third-order accurate in space in the 𝐿2 norm, as should ∇ · 𝜎ℎ . In Figure 2a, we see order
reduction for a two-stage Gauss–Legendre method, although no order reduction for the three-stage RadauIIA method
is observed in Figure 2b. From this, we see that the extra formal order of accuracy for Gauss–Lobatto methods does
not materialize unless one also takes a very small time step. We also obtained satisfactory results with somewhat
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(a) Gauss–Legendre(2)
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Fig. 1. Relative 𝐿2 and 𝐻 1 errors at 𝑡 = 2 on an 𝑁 × 𝑁 mesh using various time stepping schemes and CFL numbers.

lower accuracy with the two-stage RadauIIA method (but at a lower cost) and the three-stage LobattoIIIC method (at
a comparable cost). Note that the 𝐻 (div) error for 𝜎 and 𝐿2 error for 𝑢 are similar but not identical for the RadauIIA
method. This approximation of the flux variable with comparable accuracy to the potential is seen as a major advantage
of mixed methods.

4.2 Preconditioning of the heat equation

We now consider preconditioning the algebraic system (2.33) obtained by applying RadauIIA methods to a Galerkin
discretization of the heat equation. In this section, all timings reported are performed on a MacBook Pro running macOS
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Fig. 2. Relative 𝐿2 and 𝐻 (div) errors at 𝑡 = 2 for the mixed heat equation on an 𝑁 × 𝑁 mesh divided into right triangles using
various time stepping schemes and CFL numbers.

10.15.6 (Catalina) with 32GB RAM and a 2.6GHz 6-Core Intel Core i7 processor. All timings are performed on single
core for ease of comparison.

On one hand, we consider the preconditioners (2.35) and (2.36), using a multigrid algorithm for each diagonal block.
On the other hand, we propose a monolithic multigrid method with a smoother that addresses the coupling between
stages. These methods coincide in the case of the single-stage backward Euler method.

For the single-stage method (or each diagonal block in the split preconditioners), we consider a geometric multigrid
method. On each grid in the hierarchy, we use Chebyshev-accelerated vertex-star iteration, a block-Jacobi method
where the blocks are given by the degrees of freedom located strictly within the patch of cells surrounding each vertex
(i.e. degrees of freedom on the boundary of each patch are excluded) [Farrell et al. 2020; Pavarino 1993; Schöberl et al.
2008]. In the case of 𝑃1 or𝑄1 discretizations, this reduces to point Jacobi smoothing. As the degree increases, one solves
small systems over the patches around each vertex. For symmetric coercive problems, this is known to give condition
numbers independent of the polynomial degree used and hence will perform well on the blocks of (2.35) and (2.36).

We can also attempt the same strategy applied directly to the fully coupled (and hence nonsymmetric) system without
first introducing a block approximation. In this case, we have a more expensive smoother – with 𝑠 stages, one has 𝑠
times as many local degrees of freedom in each vertex patch as in the single-stage case. Van Lent and Vandewalle [2005]
considered a block Jacobi smoother coupling 𝑠 degrees of freedom at each spatial grid point for a centred finite difference
discretization; the vertex-star iteration provides a natural generalization of this to higher-order discretizations. Because
of the more expensive vertex-star smoother, the resulting multigrid algorithm must yield convergence in few iterations
in order to be competitive.

Firedrake has a powerful interface to the PETSc multigrid algorithms [Lange et al. 2016; Mitchell and Müller 2016],
and it also provides PETSc-accessible Schwarz methods via the PatchPC package [Farrell et al. 2020]. In Figure 2, we
show suitable options for configuring a multigrid preconditioner using an additive Schwarz smoother. The type of
Manuscript submitted to ACM
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mg_params = {"levels":

{
"ksp_type": "chebyshev",
"ksp_norm_type": "unpreconditioned",
"pc_type": "python",
"pc_python_type": "firedrake.PatchPC",
"patch":
{

"pc_patch_save_operators": True ,
"pc_patch_partition_of_unity": False ,
"pc_patch_construct_type": "star",
"pc_patch_construct_dim": 0,
"pc_patch_sub_mat_type": "seqdense",
"pc_patch_dense_inverse": True ,
"pc_patch_precompute_element_tensors": None ,
"sub_ksp_type": "preonly",
"sub_pc_type": "lu"

}
},
"coarse": {

"pc_type": "lu",
"pc_factor_mat_solver_type": "mumps"}

}� �
Listing 2. Options to configure a multigrid preconditioner to use patchwise additive Schwarz smoothing and a direct solver on the
coarse grid.

� ⊵
split_params = {"snes_type": "ksponly",

"ksp_type": "fgmres",
"ksp_monitor_true_residual": None ,
"pc_type": "fieldsplit",
"pc_fieldsplit_type": "additive"}

per_field = {"ksp_type": "preonly",
"pc_type": "mg",
"mg": mg_params}

for s in range(butcher_tableau.num_stages ):
split_params[f"fieldsplit_{s}"] = per_field� �

Listing 3. Options for solving (2.33)with a Krylovmethod preconditionedwith (2.35). The inverse of the diagonal blocks is approximated
with a single multigrid V-cycle as given in Listing 2, but other choices are possible.

� ⊵
monolithic_params = {"mat_type": "aij",

"snes_type": "ksponly",
"ksp_type": "fgmres",
"ksp_monitor_true_residual": None ,
"pc_type": "mg",
"mg": mg_params}� �

Listing 4. Options for solving (2.33) with a Krylov method preconditioned by the monolithic multigrid method described in (2). Here,
the smoother couples together the stages in each vertex patch.

multigrid cycle, not specified in the code listing, will default to a V-cycle. In Figure 3, we subsequently show how to
obtain the block diagonal preconditioner (2.35) and apply that multigrid preconditioner to each internal block. The
block triangular preconditioner (2.36) is simply obtained by changing the "pc_fieldsplit_type" parameter from "additive" to
"multiplicative". Also, Figure 4 shows how we can apply the monolithic, stage-coupled multigrid algorithm directly to the
algebraic system at each time step. In all cases the flexible GMRES method [Saad 1993] is used as outer Krylov solver.
We use the default PETSc Krylov convergence tolerances (a relative tolerance on the Euclidean norm of 10−5, and an
absolute tolerance of 10−50, whichever comes first).
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Fig. 3. Solver performance for the heat equation with𝑄2 elements on a 128 × 128 mesh using RadauIIA time stepping with various
numbers of stages. We compare the block diagonal (2.35) and block triangular (2.36) preconditioners to a monolithic multigrid
approach.

For our experiment, we integrate the heat equation from 𝑡 = 0 to 𝑡 = 1 on a 128 × 128 mesh of squares. We use 𝑄2

elements in space, RadauIIA(𝑠) methods in time with 𝑠 = 1, 2, 3, and a time step of Δ𝑡 = 0.078125. (Recall that 𝑠 refers to
the number of stages and not the formal order of the method). In Figure 3, we report the total solver time over all time
steps and the average flexible GMRES iteration count per time step using the preconditioners we have discussed.

We first consider the block diagonal preconditioner (2.35), in the left columns of Figure 3. RadauIIA(2) is approximately
four times as expensive as RadauIIA(1) (backward Euler). Moreover, RadauIIA(3) is about twice again as expensive.
Since the number of Krylov iterations increases more slowly for the block triangular preconditioner (2.36) (middle
columns in Figure 3), the increase in run-time over the single-stage method is somewhat smaller.

Results for the monolithic multigrid algorithm are shown in the right-hand columns of Figure 3. Unlike the block
preconditioners, the number of Krylov iterations required per time step remains essentially constant as a function of
the number of stages. The cost incurred by inter-stage coupling in the smoother is more than offset by the low iteration
counts – the 2-stage method gives only about twice the run-time as the single stage method and the 3-stage method
only costs about four times as much. Although no theory is yet available to explain the performance of the monolithic
preconditioner, it seems worthy of further consideration.

Having seen the potential efficiency of our monolithic scheme compared to the split scheme, we also offer a brief
study of robustness with respect to the mesh size and time step. Here, we solve the linear system associated with a
single RadauIIA time step with 1, 2, or 3 stages. We use a range of 𝑁 × 𝑁 meshes with 𝑁 = 16, 32, 64, 128. For each 𝑁 ,
we consider time steps Δ𝑡 = 𝑐/𝑁 for 𝑐 = 1, 4, 16. In each case, we found only 4 or 5 Krylov iterations preconditioned
with the monolithic multigrid were required to obtain convergence. We report the results for the 3-stage method in
Table 1; the 1- and 2- stage methods gave very similar results.

This robustness of our preconditioner with respect to the time step means we can hope to obtain a considerable
speed-up with multi-stage methods. We conclude this section with a brief example to illustrate this. We solve the heat
equation on a 32 × 32 mesh and choose the forcing and boundary data to agree with a given analytic solution. We
integrate the system from until time 𝑇 = 1 using a range of time steps and RadauIIA methods with 1, 2, and 3 stages,
using our monolithic preconditioner at each time step. If we perform the temporal integration with decreasing time
steps until the 𝐿2 spatial error at 𝑇 = 1 stops decreasing (indicating that spatial error dominates), we find the error is
about 2.8 × 10−4. Table 2 shows the run-time and final error obtained for a range of time steps using 1, 2, and 3 stage
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Δ𝑡

𝑁 1
𝑁

4
𝑁

16
𝑁

16 4 5 5
32 5 5 5
64 5 5 5
128 5 5 5

Table 1. Number of outer Krylov iterations to solve (2.33) for 𝑠 = 3 using the monolithic multigrid options in Figure 4, as a function of
mesh size and time step. We use a 𝑄2 spatial discretization on an 𝑁 × 𝑁 mesh and let Δ𝑡 = 𝐶/𝑁 for𝐶 = 1, 4, 16. The monolithic
multigrid preconditioner seems remarkably robust with respect to time step and mesh size.

RadauIIA(1) RadauIIA(2) RadauIIA(3)
Δ𝑡 time(s) error time(s) error time(s) error
1
128 7.75 1.1 × 10−3 15.86 2.8 × 10−4 29.80 2.8 × 10−4
1
32 2.72 4.1 × 10−3 5.05 2.8 × 10−4 8.56 2.8 × 10−4
1
8 1.22 1.7 × 10−2 2.01 2.9 × 10−4 3.19 2.8 × 10−4
1
2 0.8 6.7 × 10−2 1.33 2.0 × 10−3 2.02 3.3 × 10−4

Table 2. Time-to-solution for the heat equation and 𝐿2 error at the final time step using a range of different time steps for RadauIIA
methods with 1, 2, and 3 stages. The multi-stage methods yield a lower error with less run-time than the 1-stage method.

methods. The reported time includes setting up the solver and preconditioner (a 1-time cost for linear problems) as well
as solving the solution at each time step. We see that errors almost as small as they could be are obtained by the 2- and
3-stage methods with very large time steps in about 2-3 seconds of run-time, while the 1-stage method with small time
steps takes several times as long to yield a worse solution.

4.3 The wave equation

We now turn to the wave equation (2.22). Here, our experiment fixes a 10 × 10 mesh of the unit square subdivided into
right triangles with 𝑅𝑇2 × 𝐷𝐺1 spatial discretization and considers the effect of the time-stepping method and step size
on energy conservation. The semidiscrete system is known [Kirby and Kieu 2015] to exactly preserve the energy

𝐸 (𝑡) = 1
2

(︂
∥𝑢∥2 + ∥𝜎 ∥2

)︂
, (4.1)

so that 𝐸 (𝑡) = 𝐸 (0) for all 𝑡 > 0.
In particular, we pick Δ𝑡 = 𝑐/𝑁 for 𝑐 = 1, 5, 10 so that Δ𝑡 = 0.1, 0.5, 1.0. We consider the two lowest-order methods

each of Gauss–Legendre, LobattoIIIC, and RadauIIA. Our experiment is simple: we integrate from 𝑡 = 0 to 𝑡 = 10
and compute the ratio of the final energy at 𝑡 = 10 to the initial energy. These ratios are shown in Table 3. Although
Gauss–Legendre methods fared poorly relative to L-stable methods for the heat equation, the reverse is true here. We
see the exact energy conservation obtained for the Gauss–Legendre methods, while significant damping occurs for the
LobattoIIIC and RadauIIA methods.

So far, all of our examples have used fully implicit methods, but here we point out how we can make use of PETSc
options to achieve greater efficiency for DIRKs. Although this example is in the context of the wave equation, it applies
equally to any setting in which a DIRK is appropriate.

Manuscript submitted to ACM



18 Patrick E. Farrell, Robert C. Kirby, and Jorge Marchena-Menéndez

Δ𝑡

method 0.1 0.5 1.0

Gauss–Legendre(1) 1 1 1
Gauss–Legendre(2) 1 1 1

LobattoIIIC(2) 3.79×10−1 9.75×10−18 1.17×10−20
LobattoIIIC(3) 9.99×10−1 5.19×10−2 3.65×10−9

RadauIIA(1) 1.50×10−8 3.40×10−16 6.79×10−14
RadauIIA(2) 9.00×10−1 7.10×10−4 3.77×10−7

Table 3. Energy conservation for the next-to-lowest order mixed method for the wave equation (2.22). We take a 10× 10mesh divided
into right triangles and advance in time to 𝑡 = 10 using various time-stepping strategies with various time steps. We see that the
symplectic Gauss–Legendre methods with 1 and 2 stages conserve the energy to machine precision. However, the other methods do
not conserve energy and become very dissipative as the time step is increased.

� ⊵
params = {"mat_type": "aij",

"snes_type": "ksponly",
"ksp_type": "preonly",
"pc_type": "fieldsplit",
"pc_fieldsplit_type": "multiplicative"}

params["pc_fieldsplit_0_fields"] = "0,1"
params["pc_fieldsplit_1_fields"] = "2,3"
per_field = {"ksp_type": "preonly",

"pc_type": "lu"}
for i in range(butcher_tableau.num_stages ):

params["fieldsplit_%d" % i] = per_field� �
Listing 5. Simple DIRK-appropriate parameters for the mixed wave equation allowing one to solve for each stage in succession. A
direct method is used on each stage.

We employ the Qin/Zhang 2-stage DIRK given by Butcher tableau

1/4 1/4 0
3/4 1/2 1/4

1/2 1/2
(4.2)

which is second-order, A-stable, and symplectic [Mei-Qing 1992]. Since the Butcher matrix 𝐴 is lower-triangular, the
system matrix (2.34) is block lower triangular, and so one may solve for each stage variable in succession via block
forward substitution. This can be implemented as a PETSc preconditioner so that no special care is required in Irksome
to handle DIRK methods differently. One obtains a block lower triangular preconditioner by means of a multiplicative
field split [Brown et al. 2012], and if that preconditioner is applied exactly to a block lower triangular system, the system
will be solved exactly.

Because Firedrake already has a mixed system (𝑢 and 𝜎), we take care to specify that the system be blocked as a
2 × 2 system combining the variables for each stage rather than the default of a 4 × 4 split for each separate field.
This can be controlled via PETSc options, and a solver specified for each block as in Listing 5. While our simple
example applies a direct method on each diagonal block, more advanced solvers could also be employed. Repeating the
experiments above for the wave equation with this Butcher tableau and these options gives identical energy behavior
to the Gauss–Legendre methods in Table 3, although each time step simply consists of solving the diagonal blocks and
performing forward substitution (all done inside the PETSc FIELDSPLIT preconditioner).
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Although we have not undertaken a complete investigation, we believe that judicious use of PETSc options can obtain
much of the efficiency that DIRKs offer. Using FIELDSPLIT makes the work comparable to traditional implementation
— the stages are found successively. Also, we can bypass assembly of the off-diagonal blocks by using a matrix-free
matrix format ("mat_type": "matfree") and then using a firedrake.AssembledPC to assemble the diagonal blocks, if needed. This
can also bring the memory footprint into line with a more traditional implementation.

While wave equations are also frequently integrated with explicit time-stepping methods, obtaining full efficiency
with Irksome may be difficult. The main issue is related to finite element discretizations rather than Irksome per se.
Unlike finite difference methods, explicit time integration with finite elements requires a solve with a mass matrix
at each stage. One can use PETSc options to deploy a lightweight solver (for example, a diagonal field split with
Jacobi-preconditioned conjugate gradients on the blocks). If a mass-lumping technique is available (for example, the
Gauss–Lobatto technique is available in Firedrake [Homolya et al. 2017] and some lumped simplicial elements [Geevers
et al. 2018] have been recently added), one step of Jacobi iteration (without a Krylov accelerator) will invert the mass
matrices, but this will probably be less efficient than coding to a lower-level interface.

Finally, it should also be possible to develop stage-coupled preconditioners for fully implicit methods. A single-stage
method for (2.22) leads to a linear system similar to a mixed form of the definite Helmholtz operator, so that would
provide a starting point. A monolithic multigrid approach of Vanka-type as in [Molenaar 1991] seems more readily
extensible to the multi-stage case than the weighted-norm preconditioners in [Arnold et al. 1997], but we leave such
investigation to the future.

4.4 Nonlinear examples

We conclude our examples with three nonlinear problems. The time-dependent Navier–Stokes equations highlight a
nonlinear DAE-type system. The Benjamin–Bona–Mahony dispersive wave model illustrates a nonlinear Sobolev-type
equation. Finally, we use the Gross–Pitaevskii equation to investigate the applicability of the monolithic multigrid
scheme proposed in Section 4.2 to a more complex three-dimensional problem of physical interest. Irksome’s high-level
interface works unchanged in these examples.

4.4.1 Navier–Stokes. We consider the drag and lift calculations from the two-dimensional benchmark flow around a
cylinder proposed in John [2004]; Schäfer et al. [1996]. The domain is given by Ω = [0, 2.2] × [0, 0.41]\𝐵𝑟 (0.2, 0.2), with
radius 𝑟 = 0.05, and is shown in Figure 4. The density is taken as 𝜌 = 1 and kinematic viscosity is a = 10−3. No-slip
conditions are imposed on the top and bottom of the pipe and the cylinder. The natural boundary condition associated
with the Laplacian formulation of the viscous term is imposed on the outflow boundary on the right end, and a parabolic
profile is posed on the inflow boundary on the left end:

𝑢 (𝑡,𝑦) =
(︃
4𝑈 (𝑡)𝑦 (0.41 − 𝑦)

0.412
, 0

)︃
≡ 𝛾 (𝑦, 𝑡), (4.3)

where 𝑈 (𝑡) = 1.5 sin
(︁
𝜋𝑡
8

)︁
. This configuration corresponds to a Reynolds number of 100. The problem is integrated

over one time period, from 𝑡 = 0 until 𝑡 = 8.
We model this geometry using curvilinear triangles. Using Firedrake’s integration with OpenCascade, we are able

to mesh the geometry with gmsh [Geuzaine and Remacle 2009] and refine the mesh in a geometrically conforming
way. Our sample run uses a mesh with 14,640 cells and 7,546 vertices and a Scott-Vogelius discretization [Scott and
Vogelius 1985] with 𝑃4 velocities and discontinuous 𝑃3 pressures. This amounts to about 382k global degrees of freedom.
This higher order discretization also suggests a higher order time-discretization, and we use the two-stage RadauIIA
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Fig. 4. Computational domain for flow past a cylinder, with boundary conditions indicated on each part of the boundary.

method with Δ𝑡 = 0.00125. By contrast, the benchmark values to which we compare are obtained on a finer mesh
(133,120 straight quadrilateral elements with 133,952 vertices) and lower-order discretization (biquadratic velocity
and discontinuous linear pressure) with about 667k degrees of freedom. They use Crank-Nicolson time-stepping with
Δ𝑡 = 1/1600 = 0.000625, half the size of our time step. In Figure 5, we report the computed drag and lift for our method
over time compared to the benchmark values, and excellent agreement is attained.

As a remark, Scott-Vogelius discretizations enforce the divergence-free condition pointwise in affine geometry, but
this is not the case with our curvilinear mesh. While the exact theory of this method is still not understood, we have
found it to be stable. The 𝐿2 norm of the divergence at each time step was found to range between about 10−5 and 10−3,
which is comparable to the difference with the reference drag and lift values. If an exactly divergence-free method is
required, one could reduce the geometry representation to affine, switch to an 𝐻 (div)/𝐿2 discretization [Cockburn et al.
2007], or employ the method recently proposed in Neilan and Otus [2020].
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Fig. 5. Lift and drag calculations using Firedrake and Irksome compared to benchmark results in [John 2004; Schäfer et al. 1996].
Excellent agreement is obtained with half as many degrees of freedom and a time-step twice as large, owing to the use of higher-order
methods.

4.4.2 Benjamin–Bona–Mahony. We consider the Benjamin–Bona–Mahony equation (2.25). With the Dt operator added
in Irksome, we can express the weak form of the semidiscrete equation in UFL as
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� ⊵
F = (inner(Dt(u), v) * dx + inner(u.dx(0), v) * dx

+ inner(u * u.dx(0), v) * dx + inner((Dt(u)).dx(0), v.dx(0)) * dx)� �
We consider this problem on the space interval [0, 100] divided into 𝑁 = 1000 intervals (giving mesh size ℎ = 0.1)

and pose periodic boundary conditions. We take the initial condition as

𝑢 (𝑥, 0) = 3
𝑐2

1 − 𝑐2
sech2

1
2
(𝑐𝑥 + 𝛿) ,

where 𝛿 is chosen so that the bump is centered at 𝑥 = 40 and 𝑐 = 1
2 . This is the initial condition for a right-traveling

solitary wave with velocity 1
1−𝑐2 = 4

3 . We integrate from time 0 to time 𝑇 = 18, at which the wave has traveled 24 units
to the right.

We discretize the problem with a standard Galerkin method using 𝑃1 finite elements and, given the Hamiltonian
nature of the problem, Gauss–Legendre time stepping methods. With the implicit midpoint rule, we considered both
Δ𝑡 = ℎ and Δ𝑡 = 10ℎ. We found that the former case gave us about 0.15% relative 𝐿2 error at 𝑇 = 18, but the latter
case with a large time step gave us greater than 10% relative error. Using the fourth-order, two-stage Gauss–Legendre
method with Δ𝑡 = 10ℎ actually gave us 0.14% relative error at the final time – less than the lower order method with a
much smaller time step. Figure 6 shows the solution at the initial and final times as well as the pointwise error between
the true and computed solutions at 𝑡 = 18.
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(a) Initial condition and numerical solution at 𝑡 = 18.
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Fig. 6. Simulation of the Benjamin–Bona–Mahony problem using 𝑃1 elements and GL(2) time-stepping methods.

We also demonstrate conversion of the invariants in Table 4. Both 𝐼1 and 𝐼2 were conserved to O(10−15) for both
GL methods. 𝐼3 drifted slightly with both methods, on the order of 10−3 for the one-stage method (still, less than a 1%
drift) and on the order of 10−6 for the two-stage method. While Gauss–Legendre methods are symplectic and preserve
quadratic invariants [Hairer et al. 2006; Sanz-Serna 1988], very strong conditions are required for them to preserve
cubic invariants as well [Iserles and Zanna 2000].
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Method 𝑡 |1 − 𝐼1 (𝑡)/𝐼1 (0) | |1 − 𝐼2 (𝑡)/𝐼2 (0) | |1 − 𝐼3 (𝑡)/𝐼3 (0) |
Gauss-Legendre(1) 0 0 0 0

6 0 4.4 × 10−16 1.5 × 10−3
12 2.2 × 10−16 3.3 × 10−16 3.7 × 10−3
18 2.2 × 10−16 0 5.1 × 10−3

Gauss-Legendre(2) 0 0 0 0
6 2.2 × 10−16 3.3 × 10−16 4.3 × 10−7
12 0 1.1 × 10−16 8.0 × 10−7
18 2.2 × 10−16 4.4 × 10−16 9.6 × 10−7

Table 4. Conservation of invariants for the BBM equation (2.25) using one- and two-stage Gauss–Legendre methods. Invariant 𝐼1 is
linear and 𝐼2 is quadratic, and these are exactly preserved, up to machine precision. The cubic invariant 𝐼3 is not exactly conserved,
but only very small relative deviation from the initial quantity is observed.

4.4.3 Gross–Pitaevskii. In recent work, Boullé et al. [2020] employed a bifurcation analysis technique to identify a
large number of previously unknown stationary states of the Gross–Pitaevskii equation in a parabolic trap (2.29). These
authors investigated the transient dynamics of a handful of unstable solutions by applying the energy-conserving
integrator of Delfour et al. [1981] with initial condition given by a stationary state perturbed along its most unstable
eigendirection. In this example we consider the same problem discretized with the Gauss–Legendre family of implicit
RK methods, with the aim of investigating the performance of the monolithic multigrid scheme proposed in Section 4.2
for the arising block-dense linear systems. We consider a different base state to those described in Boullé et al. [2020].

For convenience, the Gross–Pitaevskii equation was written as a coupled PDE system for the real and imaginary
components of the wavefunction 𝜓 (although direct support for complex arithmetic has recently been included in
Firedrake). Following Boullé et al. [2020], the domain [−6, 6]3 was meshed with a uniform 10 × 10 × 10 hexahedral
grid, constructed by refining a coarse 5 × 5 × 5 grid once. Both variables were approximated with continuous Lagrange
elements of degree 3. For details of the construction of the initial condition from a base solution, see Boullé et al. [2020,
Eq. (7)–(10)].

It is very desirable to conserve the invariants (2.30) in the time discretization. Since invariant 𝐽1 is quadratic,
symplectic integrators such as the Gauss–Legendre family will conserve it to machine precision (or at least algebraic
solver tolerance). Although this is not the case for 𝐽2, we expect it to be well-conserved with higher-order methods.
We vary the number of stages from 𝑠 = 1 to 𝑠 = 3 and the time step employed from Δ𝑡 = 0.05 to Δ𝑡 = 0.25. The time
integration was conducted until 𝑇 = 30 nondimensional time units.

As explained in Section 3, a key advantage of our symbolic manipulation is that it composes elegantly with the
powerful solver functionality offered by Firedrake. We demonstrate this by employing the monolithic multigrid scheme
proposed in Section 4.2 for the linear systems arising in the time integration of the Gross–Pitaevskii equation. The
relaxation is implemented using PETSc’s PCASM. Full multigrid cycles are employed, with flexible GMRES used as the
outermost Krylov solver Saad [1993]. Each outermost Krylov solve was terminated when the Euclidean norm of the
residual fell below 10−8 or decreased by five orders of magnitude, whichever came first.

Images of the solution at times 𝑡 = 0, 10, 12, 14, 16, 18 are given in Figure 7. The solution is visualized by rendering
two isosurfaces of the wavefunction magnitude |𝜓 |, one for |𝜓 | = 0.3 and one for |𝜓 | = 0.35. The state at 𝑡 = 0 exhibits
two joined perpendicular vortex rings, with five vortex lines (cf. Boullé et al. [2020, Fig. 9b]). Four of the vortex lines
are tangential to the two vortex rings, while one intersects them. The perturbation is not visible. For 𝑡 ∈ (0, 10), the
Manuscript submitted to ACM
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(a) 𝑡 = 0. (b) 𝑡 = 10. (c) 𝑡 = 12.

(d) 𝑡 = 14. (e) 𝑡 = 16. (f) 𝑡 = 18.

Fig. 7. Isosurfaces of the wavefunction magnitude |𝜓 |.

wavefunction oscillates in the planes spanned by the tangential vortex lines, with the magnitude of the oscillation
increasing. At approximately 𝑡 ≈ 10, the vortex rings disconnect. At this point the dynamics become substantially
more complex, with a large number of disconnections and reconnections, forming U-shaped vortex lines with multiple
handles, vortex rings, and other structures. The last vortex rings terminate at around 𝑡 ≈ 23, and the solution thereafter
consists of four vortex lines, oscillating strongly and connecting and disconnecting with one another.

Statistics about the conservation of 𝐽2 and the solution procedure are given in Table 5. As expected, the higher-order
methods are much better at preserving the quartic invariant 𝐽2. Moreover, the proposed multigrid scheme remains
robust as both the time step Δ𝑡 and number of stages 𝑠 is varied; the number of Krylov iterations required per Newton
step varies very little, from approximately 4.8 to 6.8 over the parameters considered. This further suggests that the
theoretical investigation of monolithic multigrid schemes for implicit Runge–Kutta methods should be pursued. Similar
results were achieved for unreported calculations with other base states, indicating that the proposed scheme is also
robust to the specific initial condition used.

5 CONCLUSIONS AND FUTUREWORK

Irksome offers the opportunity for many future research directions. IMEX-type RK methods can be helpful with
processes with multiple time scales (e.g. diffusion and advection) operating on the same variables. Some additional
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GL(1) GL(2) GL(3)

Δ𝑡 |1 − 𝐽2 (𝑇 )/𝐽2 (0) | # iters.

0.25 7.56 × 10−2 4.88
0.10 2.25 × 10−2 4.86
0.05 3.32 × 10−3 5.40

Δ𝑡 |1 − 𝐽2 (𝑇 )/𝐽2 (0) | # iters.

0.25 2.09 × 10−2 5.75
0.10 3.13 × 10−4 5.42
0.05 2.00 × 10−5 6.29

Δ𝑡 |1 − 𝐽2 (𝑇 )/𝐽2 (0) | # iters.

0.25 6.19 × 10−4 6.58
0.10 3.31 × 10−6 6.76
0.05 5.45 × 10−8 6.79

Table 5. Conservation of energy (2.30) and Krylov iteration counts for the GP equation (2.29) using one, two, and three stage
Gauss–Legendre methods. The last column in each table gives the number of Krylov iterations per Newton step, averaged over all
time steps.

extensions to UFL, such as the form labeling present in Gusto [Ham et al. 2017], would be helpful in allowing users
to segregate the terms to be treated implicitly and explicitly. More broadly, general linear methods [Butcher 2006]
generalize both RK and multi-step methods. It is conceivable that general linear methods could be implemented by
transforming UFL in the manner we have proposed here for RK methods. Lastly, it appears that monolithic multigrid
schemes offer the potential for fast preconditioners for the linear systems arising in implicit RK methods, addressing
one of the main obstacles to their wider use.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/R029423/1 and
EP/V001493/1]; and the National Science Foundation, award number 1912653.

REFERENCES
Shrirang Abhyankar, Jed Brown, Emil Constantinescu, Debojyoti Ghosh, Barry Smith, and Hong Zhang. 2018. PETSc/TS: a modern scalable ODE/DAE

solver library. arXiv:1806.01437.
Roger Alexander. 1977. Diagonally implicit Runge–Kutta methods for stiff ODEs. SIAM Journal on Numerical Analysis 14, 6 (1977), 1006–1021.
Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. 2014. Unified Form Language: a domain-specific language for

weak formulations of partial differential equations. ACM Trans. Math. Software 40, 2 (2014), 9:1–9:37. https://doi.org/10.1145/2566630 arXiv:1211.4047
Douglas N. Arnold, Richard S. Falk, and R. Winther. 1997. Preconditioning in 𝐻 (div) and Applications. Math. Comput. 66, 219 (July 1997), 957–984.

https://doi.org/10.1090/S0025-5718-97-00826-0
Francesco Ballarin, Alberto Sartori, and Gianluigi Rozza. 2015. RBniCS-reduced order modelling in FEniCS. ScienceOpen Posters (2015).
Thomas Brooke Benjamin, Jerry Lloyd Bona, and John Joseph Mahony. 1972. Model equations for long waves in nonlinear dispersive systems. Philosophical

Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 272, 1220 (1972), 47–78.
Theodore A. Bickart. 1977. An efficient solution process for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 14, 6 (1977), 1022–1027. https:

//doi.org/10.1137/0714069
Nicolas Boullé, Efstathios G. Charalampidis, Patrick E. Farrell, and Panayotis G. Kevrekidis. 2020. Deflation-based Identification of Nonlinear Excitations

of the 3D Gross–Pitaevskii equation. Physical Review A 102 (2020), 053307. Issue 5. https://doi.org/10.1103/PhysRevA.102.053307 arXiv:2004.10446.
Jed Brown, Matthew G. Knepley, David A. May, Lois Curfman McInnes, and Barry Smith. 2012. Composable linear solvers for multiphysics. In 2012 11th

International Symposium on Parallel and Distributed Computing. IEEE, 55–62.
John C. Butcher. 1976. On the implementation of implicit Runge–Kutta methods. BIT Numerical Mathematics 16, 3 (1976), 237–240.
John C. Butcher. 2006. General linear methods. Acta Numerica 15 (2006), 157–256.
Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau. 2007. A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes

equations. Journal of Scientific Computing 31, 1-2 (2007), 61–73.
Germund G. Dahlquist. 1963. A special stability problem for linear multistep methods. BIT Numerical Mathematics 3, 1 (1963), 27–43.
Andreas Dedner, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. 2010. A generic interface for parallel and adaptive discretization schemes:

abstraction principles and the DUNE-FEM module. Computing 90, 3-4 (2010), 165–196.
Michel Delfour, Michel Fortin, and Guy Payre. 1981. Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 2 (1981),

277–288. https://doi.org/10.1016/0021-9991(81)90052-8

Manuscript submitted to ACM

https://doi.org/10.1145/2566630
http://arxiv.org/abs/1211.4047
https://doi.org/10.1090/S0025-5718-97-00826-0
https://doi.org/10.1137/0714069
https://doi.org/10.1137/0714069
https://doi.org/10.1103/PhysRevA.102.053307
https://doi.org/10.1016/0021-9991(81)90052-8


Irksome: Automating Runge–Kutta time-stepping for finite element methods 25

Patrick E. Farrell, David A. Ham, Simon W. Funke, and Marie E. Rognes. 2013. Automated derivation of the adjoint of high-level transient finite element
programs. SIAM Journal on Scientific Computing 35, 4 (2013), C369–C393.

Patrick E. Farrell, Matt G. Knepley, Lawrence Mitchell, and Florian Wechsung. 2020. PCPATCH: Software for the topological construction of multigrid
relaxation methods. ACM Trans. Math. Software (2020). Accepted. arXiv:1912.08516.

Sjoerd Geevers, Wim A Mulder, and Jaap JW van der Vegt. 2018. New higher-order mass-lumped tetrahedral elements for wave propagation modelling.
SIAM journal on scientific computing 40, 5 (2018), A2830–A2857. https://doi.org/10.1137/18M1175549

Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities.
Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309–1331. https://doi.org/10.1002/nme.2579

Tunc Geveci. 1988. On the application of mixed finite element methods to the wave equation. Math. Model. Numer. Anal 22 (1988), 243–250.
Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. 2001. Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 1 (2001), 89–112.
Eugene P. Gross. 1961. Structure of a quantized vortex in boson systems. Il Nuovo Cimento 20 (1961), 454–477. Issue 3. https://doi.org/10.1007/BF02731494
Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2006. Geometric numerical integration: structure-preserving algorithms for ordinary differential

equations. Vol. 31. Springer Science & Business Media.
David Ham, Lawrence Mitchell, Miklós Homolya, Fabio Luporini, Thomas Gibson, Paul Kelly, Colin Cotter, Michael Lange, Stephan Kramer, Jemma

Shipton, Hiroe Yamazaki, Alberto Paganini, and Tuomas Kärnä. 2017. Automating the generation of finite element dynamical cores with Firedrake. In
EGU General Assembly Conference Abstracts, Vol. 19. 17987.

Jan S. Hesthaven, Gianluigi Rozza, and Benjamin Stamm. 2016. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Vol. 590.
Springer.

Miklós Homolya, Robert C. Kirby, and David A. Ham. 2017. Exposing and exploiting structure: optimal code generation for high-order finite element
methods. arXiv:1711.02473

Weizhang Huang, Lennard Kamenski, and Jens Lang. 2019. Conditioning of implicit Runge–Kutta integration for finite element approximation of linear
diffusion equations on anisotropic meshes. J. Comput. Appl. Math. (2019), 112497.

Arieh Iserles and Antonella Zanna. 2000. Preserving algebraic invariants with Runge–Kutta methods. J. Comput. Appl. Math. 125, 1-2 (2000), 69–81.
Volker John. 2004. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. International Journal for Numerical

Methods in Fluids 44, 7 (2004), 777–788.
Tate Kernell and Robert C Kirby. 2020. Preconditioning mixed finite elements for tide models. (2020). arXiv:2003.01632.
Panayotis G. Kevrekidis, Dimitri J. Frantzeskakis, and Ricardo Carretero-González. 2015. The Defocusing Nonlinear Schrödinger Equation. SIAM.

https://doi.org/10.1137/1.9781611973945
Robert C. Kirby. 2004. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions. ACM Trans. Math. Software 30, 4 (2004),

502–516. https://doi.org/10.1145/1039813.1039820
Robert C. Kirby and Thinh Tri Kieu. 2015. Symplectic-mixed finite element approximation of linear acoustic wave equations. Numer. Math. 130, 2 (2015),

257–291.
Robert C. Kirby and Lawrence Mitchell. 2018. Solver composition across the PDE/linear algebra barrier. SIAM Journal on Scientific Computing 40, 1 (2018),

C76–C98. https://doi.org/10.1137/17M1133208
Butler W. Lampson and Howard E. Sturgis. 1976. Reflections on an operating system design. Commun. ACM 19, 5 (1976), 251–265.
Michael Lange, Lawrence Mitchell, Matthew G Knepley, and Gerard J Gorman. 2016. Efficient mesh management in firedrake using PETSC DMPLEX.

SIAM Journal on Scientific Computing 38, 5 (2016), S143–S155.
Anders Logg. 2003. Multi-adaptive Galerkin methods for ODEs I. SIAM Journal on Scientific Computing 24, 6 (2003), 1879–1902.
Anders Logg, Kent-Andre Mardal, and Garth N. Wells (Eds.). 2012. Automated solution of differential equations by the finite element method: the FEniCS

book. Vol. 84. Springer. https://doi.org/10.1007/978-3-642-23099-8
James R. Maddison and Patrick E. Farrell. 2014. Rapid development and adjoining of transient finite element models. Computer Methods in Applied

Mechanics and Engineering 276 (2014), 95–121.
Kent-Andre Mardal, Trygve K. Nilssen, and Gunnar Andreas Staff. 2007. Order-optimal preconditioners for implicit Runge–Kutta schemes applied to

parabolic PDEs. SIAM Journal on Scientific Computing 29, 1 (2007), 361–375.
Zhang Mei-Qing. 1992. Diagonally Implicit Symplectic Runge-Kutta schemes for Hamiltonian systems.. In Scientific Computation-Proceedings Of

International Conference, Vol. 1. World Scientific, 259.
Lawrence Mitchell and Eike Hermann Müller. 2016. High level implementation of geometric multigrid solvers for finite element problems: Applications

in atmospheric modelling. J. Comput. Phys. 327 (2016), 1–18.
Johannes Molenaar. 1991. A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation. In Multigrid Methods III. Springer,

313–323.
Michael Neilan and M. Baris Otus. 2020. Divergence–free Scott–Vogelius elements on curved domains. arXiv:2008.06429
Luca F. Pavarino. 1993. Additive Schwarz methods for the 𝑝-version finite element method. Numer. Math. 66, 1 (1993), 493–515. https://doi.org/10.1007/

BF01385709
Will Pazner and Per-Olof Persson. 2017. Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys.

335 (2017), 700–717.
Lev P. Pitaevskii. 1961. Vortex lines in an imperfect Bose gas. Soviet Physics JETP 13, 2 (1961), 451–454.

Manuscript submitted to ACM

https://doi.org/10.1137/18M1175549
https://doi.org/10.1002/nme.2579
https://doi.org/10.1007/BF02731494
http://arxiv.org/abs/1711.02473
https://doi.org/10.1137/1.9781611973945
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1137/17M1133208
https://doi.org/10.1007/978-3-642-23099-8
http://arxiv.org/abs/2008.06429
https://doi.org/10.1007/BF01385709
https://doi.org/10.1007/BF01385709


26 Patrick E. Farrell, Robert C. Kirby, and Jorge Marchena-Menéndez

Md Masud Rana, Victoria E. Howle, Katharine Long, Ashley Meek, and William Milestone. 2020. A New Block Preconditioner for Implicit Runge-Kutta
Methods for Parabolic PDE. arXiv preprint arXiv:2010.11377 (2020).

Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T. McRae, Gheorghe-Teodor Bercea, Graham R. Markall,
and Paul H. J. Kelly. 2016. Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Software 43, 3 (2016),
24:1–24:27. https://doi.org/10.1145/2998441 arXiv:1501.01809

Yousef Saad. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 14, 2 (1993), 461–469. https:
//doi.org/10.1137/0914028

Jesus M. Sanz-Serna. 1988. Runge–Kutta schemes for Hamiltonian systems. BIT Numerical Ma-thematics 28, 4 (1988), 877–883.
Michael Schäfer, Stefan Turek, Franz Durst, Egon Krause, and Rolf Rannacher. 1996. Benchmark computations of laminar flow around a cylinder. In Flow

simulation with high-performance computers II. Springer, 547–566.
Joachim Schöberl, Jens M. Melenk, Clemens Pechstein, and Sabine Zaglmayr. 2008. Additive Schwarz preconditioning for 𝑝-version triangular and

tetrahedral finite elements. IMA J. Numer. Anal. 28 (2008), 1–24. https://doi.org/10.1093/imanum/drl046
L. Ridgway Scott and Michael Vogelius. 1985. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials.

ESAIM: Mathematical Modelling and Numerical Analysis 19, 1 (1985), 111–143.
Gideon Simpson and Marc Spiegelman. 2011. Solitary wave benchmarks in magma dynamics. Journal of Scientific Computing 49, 3 (2011), 268–290.
Gunnar A. Staff, Kent-Andre Mardal, and Trygve K. Nilssen. 2006. Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs. Modeling,

Identification, and Control 27, 1 (2006), 109–123.
Tianjiao Sun, Lawrence Mitchell, Kaushik Kulkarni, Andreas Klöckner, David A Ham, and Paul HJ Kelly. 2020. A study of vectorization for matrix-free

finite element methods. The International Journal of High Performance Computing Applications 34, 6 (2020), 629–644.
J. Van Lent and S. Vandewalle. 2005. Multigrid Methods for Implicit Runge–Kutta and Boundary Value Method Discretizations of Parabolic PDEs. SIAM

Journal on Scientific Computing 27, 1 (2005), 67–92. https://doi.org/10.1137/030601144
Umberto Villa, Noemi Petra, and Omar Ghattas. 2018. hIPPYlib: An extensible software framework for large-scale inverse problems. Journal of Open

Source Software 3, 30 (2018), 940.
Gerhard Wanner and Ernst Hairer. 1996. Solving ordinary differential equations II. Springer Berlin Heidelberg.

Manuscript submitted to ACM

https://doi.org/10.1145/2998441
http://arxiv.org/abs/1501.01809
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0914028
https://doi.org/10.1093/imanum/drl046
https://doi.org/10.1137/030601144

	Abstract
	1 Introduction
	2 RungeÂ–Kutta methods
	2.1 Overview
	2.2 PDE examples
	2.3 Algebraic systems

	3 Irksome
	3.1 UFL manipulation
	3.2 Currently available RK methods

	4 Examples and numerical results
	4.1 The heat equation
	4.2 Preconditioning of the heat equation
	4.3 The wave equation
	4.4 Nonlinear examples

	5 Conclusions and future work
	Acknowledgments
	References

