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ABSTRACT

In-Memory Computing (IMC) technology has been considered to be
a promising approach to solve well-known memory-wall challenge
for data intensive applications. In this paper, we are the first to pro-
pose MnM, a novel IMC system with innovative architecture/circuit
designs for fast and efficient Min/Max searching computation in
emerging Spin-Orbit Torque Magnetic Random Access Memory
(SOT-MRAM). Our proposed SOT-MRAM based in-memory logic
circuits are specially optimized to perform parallel, one-cycle XNOR
logic that are heavily used in the Min/Max searching-in-memory
algorithm. Our novel in-memory XNOR circuit also has an over-
head of just two transistors per row when compared to most prior
methodologies which typically use multiple sense amplifiers or com-
plex CMOS logic gates. We also design all other required peripheral
circuits for implementing complete Min/Max searching-in-MRAM
computation. Our cross-layer comprehensive experiments on Dijk-
stra’s algorithm and other sorting algorithms in real word datasets
show that our MnM could achieve significant performance improve-
ment over CPUs, GPUs, and other competing IMC platforms based
on RRAM/MRAM/DRAM.
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1 INTRODUCTION

Many data-centric problems, such as sorting, ranking, graph pro-
cessing, data mining, bioinformatics, route planning. etc., have the

“Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI 22, June 6-8, 2022, Irvine, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9322-5/22/06...$15.00
https://doi.org/10.1145/3526241.3530349

Arizona State University
Tempe, Arizona, USA

39

Arizona State University
Tempe, Arizona, USA

fundamental operation of minimum or maximum (Min/Max) search-
ing among bulk data [12, 16, 22]. Min/Max searching is also the
critical and most time-consuming computation in a lot of popular
algorithms, such as Dijkstra’s algorithm to find the shortest path
in a graph, Prim’s and Kruskal’s algorithm to find the minimum
spanning tree, and some dynamic programming algorithms. Real-
time social media and online applications also require fast Min/Max
searching operations to rank up-to-the-minute information. Im-
plementation of Min/Max searching in traditional Von-neuman
architectures can be very inefficient, especially when dealing with
big data processing. A well-known challenge called the ‘memory-
wall” poses long off-chip memory access latency due to limited
bandwidth. Moreover, the energy consumed by such off-chip data
movement is orders of magnitude higher than computation itself
[7]. For traditional Min/Max searching operation, it is typically per-
formed by comparing individual elements in the large data array
so as to obtain the largest and smallest values, which inevitably
requires frequent movement of data between different levels of
memory hierarchy. This comparison of colossal data also results
in continuous data movement between CPU and memory, which
highlights Min/Max searching computation to be a victim of the
memory-wall bottleneck.

In-Memory-Computing (IMC) was introduced as a promising
candidate to solve the memory-wall issue. The IMC architectures
focus on designing computing logic within the memory to mini-
mize data movement and utilizing the minimized data movement
during computation to significantly reduce overall system power
consumption and improve performance. In particular, many non-
volatile memory (NVM) technologies, like Resistive RAM (RRAM)
or MRAM, are very promising candidates to pave a novel path
to realize area and energy-efficient system supporting in-memory
processing due to features like non-volatility, zero standby leak-
age, compatibility with CMOS fabrication process and excellent
integration density [6, 18, 25]. Many IMC approaches based on
different memory technologies, including SOT-MRAM, have been
proposed to accelerate data-centric applications like machine learn-
ing [5, 13, 14], bio-informatics [25], graph processing[6], etc.

As one representative data-intensive application, it is natural
to develop Min/Max searching implementation leveraging IMC
architecture to minimize off-chip data access, thus significantly im-
proving searching speed and reducing overall power consumption.
As far as we know, the prior work, Max-PIM [24], first proposed
‘Min/Max searching-in-memory’ algorithm, where the core oper-
ation of this novel IMC-oriented min/max searching algorithm is
the in-memory XNOR logic based bit-wise comparison for all the
data stored in the same memory array. However, the in-memory
logic design of Max-PIM comes with a large overhead of 3 sense
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Figure 1: (a) Illustration of the parallel bit-wise XNOR operations to find maximum value. (b) Illustration of finding the

minimum value for a signed fixed point number array.

amplifiers (SAs) per bit-line and a NAND logic gate to perform the
single cycle XNOR logic. It also requires multiple row activation
scheme which further increases power during compute, and has the
inherent read disturb problem. Since Max-PIM is implemented in
DRAM, the in-memory logic suffers from the intrinsic destructive
read issue after logic evaluation. Thus, before searching operation,
the target operand has to be copied to another memory array to
avoid operand data destruction after computation, which inevitably
occurs extra power, latency, and area consumption. In this work,
Our proposed MnM works on alleviating all the aforementioned
problems, which are summarized as follows:

(1) We are the first to propose, MnM, a fast and efficient Min/Max
searching-in-memory architecture based on non-volatile
Spin-Orbit Torque Magnetic Random Access Memory (SOT-
MRAM), which supports in-memory searching for minimum
and maximum out of bulk data stored within memory as un-
signed or signed integers, fixed-point and floating numbers.

(2) The complete peripheral circuits of MnM are designed and
verified to support all operations needed in Min/Max searching-
in-memory algorithm. It is worth to note that our novel
one-cycle in-memory XNOR logic design only comes with 2
transistors per bit-line overhead, which is the smallest as far
as we know. The non-volatile SOT-MRAM based MnM could
directly search min/max within the actual stored operand
data array, without extra pre-processing of transposed data
copy needed in DRAM based counterpart[24].

(3) We evaluate MnM on case studies of accelerating Dijkstra’s
algorithm [15] and other sorting algorithms using real world
datasets [1]. Extensive cross-layer experiments are conducted
to compare our MnM with other state-of-the-art IMC plat-
forms (e.g.,IMCE [3], Max-PIM [24], Pinatubo[18], and more),
CPU and GPU, where our MnM shows substantial improve-
ment in energy, speed, etc.

2 MIN/MAX SEARCHING-IN-MEMORY
ALGORITHM
The Min/Max searching-in-memory algorithm proposed in [24]

mainly performs parallel bit-wise XNOR based comparison for the
data stored in one memory array. The algorithm finds the first/last
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Algorithm 1: Parallel Bit-wise Min/Max-in-Memory

Input :Array X has M elements, where each element contains N bits.

Result: Returning the Min/Max value in given array.

Storing the input array into 2D bit-array(NxM size) where each element in X occupies one
column;

-

N

Matching_Vector = ones(1,M);

if find min then

Comparison_Sign_Bit=1; » For signed number, the sign bit and the rest
have different XNOR operands

Comparison_Bit = 0;

-

else
Comparison_Sign_Bit=0;

Comparison_Bit = 1;

% N9 u

end

10 if unsigned number then

11 Comparison_Sign_Bit = Comparison_bit; ; > For unsigned bit, we do not
need to distinguish sign bit and others.

12 end

13 while current_bit_position < N do

> Go through every bit from MSB to LSB.;

14 if current_bit_position == 0 then

15 ‘ Matching_Result = XNOR(current_bit,Comparison_Sign_Bit);

16 else

17 ‘ Matching_Result = XNOR(current_bit,Comparison_Bit);
18 end

19 if Matching_Result == All_Zeros then

20 ‘ Continue;

21 else

22 ‘ Matching Vector = Matching_Result;

23 end

24 end

ranked number in a given list of numbers. Its working mechanism
mainly relies on the fact that different bit positions represent differ-
ent significance, leveraging which it could gradually eliminate the
smaller/larger number from MSB to LSB. To adapt for in-memory
computing, it also fully leverages the parallel sensing of multiple
bit lines to perform ‘N’ parallel XNOR based bit-wise comparison
in one single cycle, where N stands for the number of operands
stored in memory. Algorithm-1 shows the pseudo code for Min/Max
searching-in-Memory algorithm [24]. It has a constant searching
time of O(n), where n is the number of bits required to represent
the operands. The critical part of the algorithm is that the bit-length
of the operands are fixed for the aforementioned constant time com-
parisons. This avoids the inclusion of an early stop detection unit
and greatly saves on hardware cost. The algorithm is compatible

with unsigned, signed, fixed point numbers and with IEEE754 [23]
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floating point numbers. The Fig. 1 (a) explains the Max searching-
in-Memory algorithm with unsigned integers and Fig. 1 (b) explains
the Min searching-in-Memory algorithm with signed fixed point
numbers. The operands in this example are 4-bits in length, hence
four iterations are required to complete the searching. The algo-
rithm has three basic steps:

Step 1: Matching Vector(MV) Initialization.

Step 2: Parallel bit-wise comparison with comparison bit (CB)
of all remaining operands selected by current MV.

Step 3: MV update.

This is followed by recursive call of the 2nd and 3rd steps based on
the updated MV until bit-length is reached. To explain it further us-
ing unsigned integer as an example, for Max searching-in-memory,
the algorithm first initializes the matching vector (MV) with all ‘1’s,
whose length equals to the number of operands to be compared, lim-
ited by the number of rows per memory array. For the first iteration,
the parallel XNOR logic is conducted between the most significant
bit (MSB) of the operands and an all-one Comparison vector(CV). If
all the XNOR outputs from the first iteration are zeros, then the MV
isn’t changed and XNOR operations are performed between the
next significant bits and the all-one CV again. If some of the XNOR
based comparison outputs are ‘1s’ in the first iteration, it means that
the MSBs of those operands are ‘1°. Correspondingly, those iden-
tified numbers are comparatively larger numbers, while the other
numbers could be excluded/eliminated for next bit comparison.
Hence the MV which is updated every iteration based on the XNOR
outputs, keeps track of this elimination and works as a control
signal for the numbers that should be compared for the recursive
call of the bit-wise comparison in the next iteration. The updated
MVT[i] with '1’ indicates the i’/ location will be compared in next
iteration, and vice versa. It is repeated until LSB of the operands
is reached. For min searching-in-memory operations, the overall
procedure is similar to the max operation but with a small modi-
fication. Instead of performing XNOR operations with an all-one
comparison vector as a start, an all-zero comparison vector is used.
As for Max(or min) in signed integers, the algorithm first checks
the sign bit (MSB), if a negative value(or positive value) is found, it
will exclude all of those for the subsequent iteration. The approach
is similar for fixed point numbers as well. For the IEEE754 floating
point numbers, it is represented in three components: signed bit,
exponent bits and significand bits. The bits in the exponent position
carry a greater significance than the bits in the significand position
which emphasize the precision. Hence this is similar to unsigned
integers where the bit position dictates the bit significance. So this
algorithm can be applied without any modification to comply with
the IEEE754 floating point numbers.

3 PROPOSED MNM PLATFORM

3.1 Spin Orbit Torque MRAMs

Fig. 2a depicts the SOT-MRAM bit cell. It consists of two access
transistors and the SOT-MT] (Magnetic Tunnel Junction) [10, 25].
The SOT-MT]J is comprised of the Spin Hall heavy metal (SHM) and
MT]J. The MT]J typically consists of two ferromagnetic layers with
a tunnel barrier in between them. The Tunnel Magneto Resistance
effect results in device to be in two different states, a low resistance
state when the magnetization of ferromagnetic layers are parallel to
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Figure 2: (a) SOT-MRAM Bit-Cell (b) Operation table for the
SOT-MRAM (c) Parallel State and Anti-Parallel State

each other, and a high resistance state when they are anti-parallel
to each other as shown in Fig 2c. The binary ‘0/1” is encoded as
these low/high resistance states. The two access transistors are
used per cell to provide write/read current to the SHM/MT]J for
data write/read, respectively. Each bit-cell has the Write Word
Line(WWL), Write Bit Line(WBL), Source Line(SL), Read Word
Line(RWL) and Read Bit line(RBL). The biasing conditions of the
SOT-MRAM are provided in the operation table in Fig. 2b.

3.2 Data Organization and Structuring of
Memory Array

Our proposed MnM is designed to be an independent high-performance,

parallel, and energy-efficient accelerator based on main memory
architecture. The hierarchy structure is given in Fig.3. It contains
multiple banks, sharing I/O, buffer and control units. Each bank
is divided to multiple MATs connected to a Global Row Decoder
(GRD) and a shared Global Row Buffer (GRB). Each MAT consists
of 2D arrays of computational SOT-MRAM arrays. As discussed
in prior work [24], the Min/Max searching-in-memory algorithm
requires a transposed memory array design since it requires paral-
lel logic between the same significant bit for different data across
different memory rows. Following the same design requirement,
our MnM also implements a transposed memory array design to
attach each sense amplifier (SA) in row-wise fashion. For simplicity,
we still call it bit-line even if it is in row wise direction as shown
in Fig. 2 (a) and Fig. 3(c). Thus, the write/read word lines are in
column-wise direction. Note that, one operand data is still stored in
one row. As shown in Fig.3(a), a column decoder is used to select the
Nt bit of the operands and the row decoder is capable of selecting
all the rows at once for parallel in-memory logic.

3.3 Circuit and Architecture

Based on min/max searching-in-memory algorithm discussed in
Section II, to implement the required computation, we designed the
MnM architecture and complete peripheral circuits as shown in Fig.
3, with main functionalities:

(1) Parallel bit-wise one-cycle in-memory XNOR.
(2) Matching vector update.

(3) All zero detection unit.

(4) Min/Max address decode.

After the matching vector (MV) and comparison vector (CV) ini-
tialization, the searching starts from the first column (RWL(0)). It
selects the MSBs of all the operands stored in the memory. Then,
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Figure 3: (a), (f), (g) The high level architecture of the proposed MRAM IMC design (b) Array Organization. (c) Enlarged Bit-Cell
orientation, (d) Min/Max circuity, (e) All zero detection unit. (h) 2T-XNOR Truth Table. (i) in-memory 2T-XNOR logic circuit.

our proposed parallel in-memory XNOR logic circuit (called 2T-
XNOR shown in Fig. 3 (d)) could directly implement the comparison
between all the MSBs and the all-zero/one CV based on min/max
selection. The first input to the 2T-XNOR is the SA_out which is
the read-out from the memory array, the second input is the corre-
sponding comparison bit, (CB, either 0 or 1 controlled by Min/Max
selector) a subset of CV. The Min/Max selector ties the inputs to VSS
or VDD based on the type of operation(Min/Max) and number for-
mat (unsigned, signed, fixed point and floating point). The detailed
circuit, truth table, and how the proposed in-memory XNOR works
are described in the Fig. 3 (d), (h) and (i) respectively. One of the
inputs (represented as Comparison Bit(CB)) is given to the source
terminal of PMOS T1 and its complement is given to the source
terminal of the NMOS T2. The other input (SA_Out, which is the
to-be-compared bit value sensed through attached SA) is given to
the gate terminal of the PMOS and NMOS. When the inputs are
both digital 0’s(VSS), the transistor T1 is in the ON condition and
T2 is in the OFF condition. XNOR_out node is a copy of the source
terminal of the ON transistor, hence CB’ is passed to the XNOR_out
node which results in the output being a digital 1. Now, when the
input is ‘11°, T1 is OFF and T2 is ON, input CB is mapped to the
XNOR_out node which results in the output being a digital 1(VDD).
Similarly, when the inputs - SA_out and CB are complementary,
the output is 0. This exactly implements the XNOR logic opera-
tion, which only requires 2 transistors overhead after a normal
memory SA. Comparing with prior in-memory XNOR logic designs
[18, 24, 25], where they either use multiple cycles or need 1/2 extra
SA(s) combined with complex CMOS logic designs, our proposed
in-memory XNOR logic only incurs 2 extra transistors to implement
in-memory XNOR logic within only one sensing cycle. Moreover,
unlike many other in-memory logic designs suffering from reduced
sensing margin since they either leverage the charge sharing in
DRAM or sensing multiple cell combined resistance value in NVM,
our in-memory XNOR logic does not have reduced sensing margin
and lower power since it only needs to sense one cell and imple-
ment the logic in digital domain. As explained in Section II, after
the parallel bit-wise in-memory XNOR based comparison, certain
operands will be eliminated for next round of comparison through
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updating the corresponding MV value, except for all-zero XNOR
outputs. Thus, for every round, an ’all-zero detection circuit’ is
needed . As shown in Fig. 3(e), it is implemented based on pseudo
OR gate, that could detect the all-zero case, which controls the latch
enable that stores the MV. Thus, only during the all zero case, the
latch is disabled to prevent the MV update. When all the iterations
of the XNOR based comparisons are done, the final MV stored in
the latches denote the index(indices) of the Min/Max value(s). We
leverage a priority encoder to return the identified min/max data
address, which is able to handle the case when there are more than
one minimum/maximum values stored in the same array. When all
the array-level min/max values are achieved, they will be sent to
higher level for further comparison based on similar mechanism.

4 EVALUATION AND RESULTS
4.1 Experiment Setup

The experimental setup used in this work is similar to [11, 24].
The SOT-MRAM model and device parameters are obtained from
[11]. To analyze the performance of our IMC platform, we use
the 1024x256 memory array size and peripheral circuits are imple-
mented in the 45nm NCSU Process Development Kit. Cadence Spec-
tre is used to carry out the simulations to obtain the circuit-level
performance metrics. The architectural-level metrics are obtained
from a simulator based on the NVSim [9] and NVSim-CAM[2].
Further detailed experiments are conducted to compare the perfor-
mance metrics among popular IMC platforms .

4.2 Circuit Simulations

Fig. 4 depicts the transient simulations comprising of all the cases
for in-memory XNOR logic to validate our proposed design. It is
assumed in the first couple of cycles that all the data are written to
the 1024x256 sized MRAM array and is ready for the computation
stage. The experiment setup in Fig. 4 shows the reads from two
bit-cells denoted by subscripts 0 and 1. The bit-celly has the value
0 stored in it and the bit-cell; has the value 1 stored in it. This
is depicted in Fig. 4 SA_outg/;. For the Min operation, one of the
XNOR operand is 0. Therefore the CB is tied to VSS. Similarly
for the Max operation the CB is tied to VDD. The sensing voltage
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Vsense is generated through a voltage divider circuit that divides the
voltage between the Ry = 5kQ and the resistance of the MRAM bit-

cell. The formula for which is as follows : Vgenge= % X Viead-
Where Ry is the Rapti-parallel/Rparallel of the Magnetic Tunnel
Junction(MT]J) and V¢,q is the read voltage applied to the RBL.

4.3 Experiment Results

Since this is the first work to demonstrate min/max searching-in-
MRAM, several non-volatile memory based IMC designs which
have in-memory XNOR operations at its core are used for compari-
son. We draw our comparisons to Pinatubo[18], PIM-Quantifier[25],
IMCE[3], some CAM based designs [20],[21],[17], and the DRAM
based design Max-PIM[24].

In our experiments, we set each bank to have 16 MATs and
each MAT consists of 2 sub-arrays with size of 1024x256. Thus,
one bank stores ~1MB data. Considering 1GB memory capacity,
there are 1024 banks for the whole memory. As the competitors, we
built those platforms with the same organization as MnM, but with
their own in-Memory computing logic circuits. For performance
evaluation, we use the similar cross-layer evaluation framework
in[4], starting from circuit-level evaluation with NCSU 45nm tech-
nology. We use the same process node to re-implement all coun-
terpart designs. The memory peripherals are simulated using the
same technology library in Synopsys Design Compiler. We then
feed the circuit simulation results into architecture-level tools. We
extensively modify NVSim[9] and NVSim-CAM[2]to extract the
performance results. An in-house mapping algorithm is then devel-
oped on top of architecture level to parse the input vector coming
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from various data-sets and evaluate the performance. To evaluate
the performance of our MnM platform for Min/Max searching in
the real world dataset, we adopt a popular data-set T1014D100K[1]
containing 1010228 numbers, where each number is represented
as 256-bit unsigned integer numbers stored in memory. We report
the execution time and energy consumption measurement in Ta-
ble.2 for different computing platforms including PIM-Quantifier,
IMCE, Pinatubo, CPU, GPU, etc. For all IMC platforms, including
our MnM, PIM-Quantifier, IMCE, and Pinatubo, such a large array
cannot fit into a single computational array, requiring necessary
data partitioning. The total 1010228 numbers are partitioned into
987 computational sub-arrays, where each sub-array will compute
in parallel to return a local minimal number. Then, such local min-
imal numbers will be written into another computational array
to get the global minimal number. For CPU&GPU evaluation, the
reported time is total execution time, including data loading from
main memory and processing. For energy estimation, similar as
prior work[19, 24], we scale down 50% of CPU&GPU average power
to exclude the power cost by cooling, voltage regulators, etc. As
shown in Table 1 and 2, among other IMC platforms, MnM achieves
minimal latency and energy consumption. It also has the least
overhead in implementing the in-memory XNOR logic. Although
by leveraging the DRAM, the Max-PIM has shorter latency and
read/write energy per row. In terms of the XNOR latency/energy,
our MnM outperformed the DRAM-based Max-PIM. That is be-
cause of the inherent destructive read property of DRAM, Max-PIM
needs to write a copy of the data into another memory array be-
fore performing the XNOR operation. This transfer writing not
only increases the latency and energy but also wastes the precious
area. Overall, our MnM platform could achieve over 1000x speed
improvement, and at least one order smaller energy consumption
than GPUs/CPUs.

4.4 Applications in Graph Processing

In this section, we evaluate our MnM platform’s performance with
real-world application using Dijkstra’s algorithm in graph process-
ing. Dijkstra’s algorithm [15] is a popular and widely used algorithm
in graph processing to find the shortest path in a large graph. In
Dijkstra’s algorithm, Min/Max searching dominates overall com-
putation. A breakdown of the overall computation in Dijkstra’s
algorithm is shown in Fig. 5. To evaluate it, three different dataset
are used here: geom, foldoc and EAT_SR [8]. Table 3 reports the
Min/Max searching speed improvement over CPU for different in-
memory computing platforms. It can be seen that all in-memory
computing platforms outperform software implementation in CPU
by three orders mainly due to saving large amount of off-chip data
movement and ultra-parallel processing capability. Aligning with
prior experiments in Min/Max searching only case, our MnM for
Dijkstra algorithm achieves the best performance compared with
other in-memory computing platforms due to its optimized efficient
XNOR and peripheral circuits. In general, in-memory computing
platform could all achieve two to three orders speed up over CPU
and our MnM still outperforms all other in-memory computing
platforms significantly.



Session 1B: Emerging Computing and Post-CMOS Technologies

GLSVLSI *22, June 6-8, 2022, Irvine, CA, USA

Table 1: Energy and Latency of different platforms

Volatile Memory Non-volatile Memory Design
Max-PIM MnM . . RRAM MRAM PCM
(DRAM)[24] (This work) PIM-Quantifier[25] IMCE[3] Pinatubo[18] CAM[20] | cam[z1] | cam[17]
Technology(nm) 65nm 45nm 45nm 45nm 45nm 45nm 45nm 45nm
Latency(ns) 649ps(read) 2.56ns(read) 3.69ns(read) 3.691ns 6.994ns 7.79ns 150.61ns 30.69ns
649ps(write) 1.77ns(write) 1.66ns(write) 1.840ns 5.968ns 17.76ns 32.59ns 100ns
Energy(Read/row pJ) 33.2pJ 37.55p] 90.94pJ 135.940p] 137.436p] 54.43p] 697.28p] 116.7pJ
Energy(Write/row pJ) 1.5p] 60.77p] 61.34p] 92.092p] 1.088n] 1.200n] 147.96p] 7.34n]
XNOR Latency(ns) 3.3ns 2.56ns 3.69ns 3.691ns 6.994ns 7.79ns 150.61ns 30.69ns
XNOR Energy(per row pJ) 71.6p] 37.55p] 90.94p] 135.94p] 137.436p] 54.43p] 697.28p] 116.7pJ
XNOR area(No. of transistors) 49T/Col 17T/Row 40T/Col 18T+3R/Col | 19T+3C+3R/Col | 4T2R/Bit | 4T2MTJ/Bit | 2T2R/Bit

Table 2: Min/Max searching performance comparison

Non-volatile Memory Volatile Memory

MnM | PIM-quantifier | IMCE | Pinatubo | Max-PIM | CPU | GPU (6]
Time: 1.31uS | 1.89uS 1.89uS | 3.58uS 1.69uS 8.6mS | 684uS
Energy | 9.8uJ 23.8uJ 35.6u] | 36uJ 18.77u] 86mJ | 18m]J

Table 3: Min/Max searching speedup over CPU in Dijkstra’s
Algorithm

geom(7343 nodes) | foldoc(13356) | EAT_SR(23219)
Ours 905X 1652X 4579X [10]
PIM-quantifier | 627X 1145X 3173X
IMCE 627X 1145X 3173X
Pinatubo 330X 604X 1674X

[11

Find Shortest Path
Othe

9% (12
Memory Write (13

15%

(14

Figure 5: Dijkstra’s Algorithm Analysis (15
[16

5 CONCLUSION
In this work, we propose a novel SOT-MRAM based in-memory

computing platform which supports the Min/Max searching-in-

memory algorithm and performs it in a highly efficient manner. (18
Compared to other NVM/DRAM based Processing-in-memory de-
signs, our design outperforms all others by a significant margin for
similar tasks. [20]

[17]

[19
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