
MnM: A Fast and Efficient Min/Max Searching in MRAM

Amitesh Sridharan∗

amitesh.sridharan@asu.edu
School of Electrical, Computer and

Energy Engineering,
Arizona State University
Tempe, Arizona, USA

Fan Zhang∗

fzhang95@asu.edu
School of Electrical, Computer and

Energy Engineering,
Arizona State University
Tempe, Arizona, USA

Deliang Fan
dfan@asu.edu

School of Electrical, Computer and
Energy Engineering,

Arizona State University
Tempe, Arizona, USA

ABSTRACT

In-Memory Computing (IMC) technology has been considered to be

a promising approach to solve well-known memory-wall challenge

for data intensive applications. In this paper, we are the first to pro-

poseMnM, a novel IMC system with innovative architecture/circuit

designs for fast and efficient Min/Max searching computation in

emerging Spin-Orbit Torque Magnetic Random Access Memory

(SOT-MRAM). Our proposed SOT-MRAM based in-memory logic

circuits are specially optimized to perform parallel, one-cycle XNOR

logic that are heavily used in the Min/Max searching-in-memory

algorithm. Our novel in-memory XNOR circuit also has an over-

head of just two transistors per row when compared to most prior

methodologies which typically usemultiple sense amplifiers or com-

plex CMOS logic gates. We also design all other required peripheral

circuits for implementing complete Min/Max searching-in-MRAM

computation. Our cross-layer comprehensive experiments on Dijk-

stra’s algorithm and other sorting algorithms in real word datasets

show that our MnM could achieve significant performance improve-

ment over CPUs, GPUs, and other competing IMC platforms based

on RRAM/MRAM/DRAM.

CCS CONCEPTS

•Hardware→Non-volatile memory; Emerging architectures.

KEYWORDS

Min/Max, In-Memory-Computing, SOT-MRAM.

ACM Reference Format:

Amitesh Sridharan, Fan Zhang, and Deliang Fan. 2022. MnM: A Fast and

Efficient Min/Max Searching in MRAM. In Proceedings of the Great Lakes

Symposium on VLSI 2022 (GLSVLSI ’22), June 6–8, 2022, Irvine, CA, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3526241.3530349

1 INTRODUCTION

Many data-centric problems, such as sorting, ranking, graph pro-

cessing, data mining, bioinformatics, route planning. etc., have the

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530349

fundamental operation of minimum ormaximum (Min/Max) search-

ing among bulk data [12, 16, 22]. Min/Max searching is also the

critical and most time-consuming computation in a lot of popular

algorithms, such as Dijkstra’s algorithm to find the shortest path

in a graph, Prim’s and Kruskal’s algorithm to find the minimum

spanning tree, and some dynamic programming algorithms. Real-

time social media and online applications also require fast Min/Max

searching operations to rank up-to-the-minute information. Im-

plementation of Min/Max searching in traditional Von-neuman

architectures can be very inefficient, especially when dealing with

big data processing. A well-known challenge called the ‘memory-

wall’ poses long off-chip memory access latency due to limited

bandwidth. Moreover, the energy consumed by such off-chip data

movement is orders of magnitude higher than computation itself

[7]. For traditional Min/Max searching operation, it is typically per-

formed by comparing individual elements in the large data array

so as to obtain the largest and smallest values, which inevitably

requires frequent movement of data between different levels of

memory hierarchy. This comparison of colossal data also results

in continuous data movement between CPU and memory, which

highlights Min/Max searching computation to be a victim of the

memory-wall bottleneck.

In-Memory-Computing (IMC) was introduced as a promising

candidate to solve the memory-wall issue. The IMC architectures

focus on designing computing logic within the memory to mini-

mize data movement and utilizing the minimized data movement

during computation to significantly reduce overall system power

consumption and improve performance. In particular, many non-

volatile memory (NVM) technologies, like Resistive RAM (RRAM)

or MRAM, are very promising candidates to pave a novel path

to realize area and energy-efficient system supporting in-memory

processing due to features like non-volatility, zero standby leak-

age, compatibility with CMOS fabrication process and excellent

integration density [6, 18, 25]. Many IMC approaches based on

different memory technologies, including SOT-MRAM, have been

proposed to accelerate data-centric applications like machine learn-

ing [5, 13, 14], bio-informatics [25], graph processing[6], etc.

As one representative data-intensive application, it is natural

to develop Min/Max searching implementation leveraging IMC

architecture to minimize off-chip data access, thus significantly im-

proving searching speed and reducing overall power consumption.

As far as we know, the prior work, Max-PIM [24], first proposed

‘Min/Max searching-in-memory’ algorithm, where the core oper-

ation of this novel IMC-oriented min/max searching algorithm is

the in-memory XNOR logic based bit-wise comparison for all the

data stored in the same memory array. However, the in-memory

logic design of Max-PIM comes with a large overhead of 3 sense

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

39



Figure 1: (a) Illustration of the parallel bit-wise XNOR operations to find maximum value. (b) Illustration of finding the

minimum value for a signed fixed point number array.

amplifiers (SAs) per bit-line and a NAND logic gate to perform the

single cycle XNOR logic. It also requires multiple row activation

scheme which further increases power during compute, and has the

inherent read disturb problem. Since Max-PIM is implemented in

DRAM, the in-memory logic suffers from the intrinsic destructive

read issue after logic evaluation. Thus, before searching operation,

the target operand has to be copied to another memory array to

avoid operand data destruction after computation, which inevitably

occurs extra power, latency, and area consumption. In this work,

Our proposed MnM works on alleviating all the aforementioned

problems, which are summarized as follows:

(1) We are the first to propose,MnM, a fast and efficientMin/Max

searching-in-memory architecture based on non-volatile

Spin-Orbit Torque Magnetic Random Access Memory (SOT-

MRAM), which supports in-memory searching for minimum

and maximum out of bulk data stored within memory as un-

signed or signed integers, fixed-point and floating numbers.

(2) The complete peripheral circuits of MnM are designed and

verified to support all operations needed inMin/Max searching-

in-memory algorithm. It is worth to note that our novel

one-cycle in-memory XNOR logic design only comes with 2

transistors per bit-line overhead, which is the smallest as far

as we know. The non-volatile SOT-MRAM basedMnM could

directly search min/max within the actual stored operand

data array, without extra pre-processing of transposed data

copy needed in DRAM based counterpart[24].

(3) We evaluate MnM on case studies of accelerating Dijkstra’s

algorithm [15] and other sorting algorithms using real world

datasets [1]. Extensive cross-layer experiments are conducted

to compare our MnM with other state-of-the-art IMC plat-

forms (e.g., IMCE [3],Max-PIM [24], Pinatubo[18], andmore),

CPU and GPU, where our MnM shows substantial improve-

ment in energy, speed, etc.

2 MIN/MAX SEARCHING-IN-MEMORY
ALGORITHM

The Min/Max searching-in-memory algorithm proposed in [24]

mainly performs parallel bit-wise XNOR based comparison for the

data stored in one memory array. The algorithm finds the first/last

Algorithm 1: Parallel Bit-wise Min/Max-in-Memory

Input :Array X has M elements, where each element contains N bits.
Result: Returning the Min/Max value in given array.

1 Storing the input array into 2D bit-array(NxM size) where each element in X occupies one

column;

2 Matching_Vector = ones(1,M);

3 if find min then
4 Comparison_Sign_Bit=1 ; ⊲ For signed number, the sign bit and the rest

have different XNOR operands

5 Comparison_Bit = 0;

6 else
7 Comparison_Sign_Bit=0;

8 Comparison_Bit = 1;

9 end

10 if unsigned number then
11 Comparison_Sign_Bit = Comparison_bit; ; ⊲ For unsigned bit, we do not

need to distinguish sign bit and others.

12 end

13 while current_bit_position < N do
⊲ Go through every bit from MSB to LSB.;

14 if current_bit_position == 0 then
15 Matching_Result = XNOR(current_bit,Comparison_Sign_Bit);

16 else
17 Matching_Result = XNOR(current_bit,Comparison_Bit);

18 end

19 if Matching_Result == All_Zeros then
20 Continue;

21 else
22 Matching_Vector = Matching_Result;

23 end

24 end

ranked number in a given list of numbers. Its working mechanism

mainly relies on the fact that different bit positions represent differ-

ent significance, leveraging which it could gradually eliminate the

smaller/larger number from MSB to LSB. To adapt for in-memory

computing, it also fully leverages the parallel sensing of multiple

bit lines to perform ‘𝑁 ’ parallel XNOR based bit-wise comparison

in one single cycle, where 𝑁 stands for the number of operands

stored in memory. Algorithm-1 shows the pseudo code for Min/Max

searching-in-Memory algorithm [24]. It has a constant searching

time of 𝑂 (𝑛), where 𝑛 is the number of bits required to represent

the operands. The critical part of the algorithm is that the bit-length

of the operands are fixed for the aforementioned constant time com-

parisons. This avoids the inclusion of an early stop detection unit

and greatly saves on hardware cost. The algorithm is compatible

with unsigned, signed, fixed point numbers and with IEEE754 [23]

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

40



floating point numbers. The Fig. 1 (a) explains the Max searching-

in-Memory algorithm with unsigned integers and Fig. 1 (b) explains

the Min searching-in-Memory algorithm with signed fixed point

numbers. The operands in this example are 4-bits in length, hence

four iterations are required to complete the searching. The algo-

rithm has three basic steps:

Step 1: Matching Vector(MV) Initialization.

Step 2: Parallel bit-wise comparison with comparison bit (CB)

of all remaining operands selected by current MV.

Step 3: MV update.

This is followed by recursive call of the 2nd and 3rd steps based on

the updated MV until bit-length is reached. To explain it further us-

ing unsigned integer as an example, for Max searching-in-memory,

the algorithm first initializes the matching vector (MV) with all ‘1’s,

whose length equals to the number of operands to be compared, lim-

ited by the number of rows per memory array. For the first iteration,

the parallel XNOR logic is conducted between the most significant

bit (MSB) of the operands and an all-one Comparison vector(CV). If

all the XNOR outputs from the first iteration are zeros, then the MV

isn’t changed and XNOR operations are performed between the

next significant bits and the all-one CV again. If some of the XNOR

based comparison outputs are ‘1s’ in the first iteration, it means that

the MSBs of those operands are ‘1’. Correspondingly, those iden-

tified numbers are comparatively larger numbers, while the other

numbers could be excluded/eliminated for next bit comparison.

Hence the MV which is updated every iteration based on the XNOR

outputs, keeps track of this elimination and works as a control

signal for the numbers that should be compared for the recursive

call of the bit-wise comparison in the next iteration. The updated

MV[i] with ’1’ indicates the 𝑖𝑡ℎ location will be compared in next

iteration, and vice versa. It is repeated until LSB of the operands

is reached. For min searching-in-memory operations, the overall

procedure is similar to the max operation but with a small modi-

fication. Instead of performing XNOR operations with an all-one

comparison vector as a start, an all-zero comparison vector is used.

As for Max(or min) in signed integers, the algorithm first checks

the sign bit (MSB), if a negative value(or positive value) is found, it

will exclude all of those for the subsequent iteration. The approach

is similar for fixed point numbers as well. For the IEEE754 floating

point numbers, it is represented in three components: signed bit,

exponent bits and significand bits. The bits in the exponent position

carry a greater significance than the bits in the significand position

which emphasize the precision. Hence this is similar to unsigned

integers where the bit position dictates the bit significance. So this

algorithm can be applied without any modification to comply with

the IEEE754 floating point numbers.

3 PROPOSEDMNM PLATFORM

3.1 Spin Orbit Torque MRAMs

Fig. 2a depicts the SOT-MRAM bit cell. It consists of two access

transistors and the SOT-MTJ (Magnetic Tunnel Junction) [10, 25].

The SOT-MTJ is comprised of the Spin Hall heavy metal (SHM) and

MTJ. The MTJ typically consists of two ferromagnetic layers with

a tunnel barrier in between them. The Tunnel Magneto Resistance

effect results in device to be in two different states, a low resistance

state when the magnetization of ferromagnetic layers are parallel to

Figure 2: (a) SOT-MRAM Bit-Cell (b) Operation table for the

SOT-MRAM (c) Parallel State and Anti-Parallel State

each other, and a high resistance state when they are anti-parallel

to each other as shown in Fig 2c. The binary ‘0/1’ is encoded as

these low/high resistance states. The two access transistors are

used per cell to provide write/read current to the SHM/MTJ for

data write/read, respectively. Each bit-cell has the Write Word

Line(WWL), Write Bit Line(WBL), Source Line(SL), Read Word

Line(RWL) and Read Bit line(RBL). The biasing conditions of the

SOT-MRAM are provided in the operation table in Fig. 2b.

3.2 Data Organization and Structuring of
Memory Array

Our proposedMnM is designed to be an independent high-performance,

parallel, and energy-efficient accelerator based on main memory

architecture. The hierarchy structure is given in Fig.3. It contains

multiple banks, sharing I/O, buffer and control units. Each bank

is divided to multiple MATs connected to a Global Row Decoder

(GRD) and a shared Global Row Buffer (GRB). Each MAT consists

of 2D arrays of computational SOT-MRAM arrays. As discussed

in prior work [24], the Min/Max searching-in-memory algorithm

requires a transposed memory array design since it requires paral-

lel logic between the same significant bit for different data across

different memory rows. Following the same design requirement,

our MnM also implements a transposed memory array design to

attach each sense amplifier (SA) in row-wise fashion. For simplicity,

we still call it bit-line even if it is in row wise direction as shown

in Fig. 2 (a) and Fig. 3(c). Thus, the write/read word lines are in

column-wise direction. Note that, one operand data is still stored in

one row. As shown in Fig.3(a), a column decoder is used to select the

Nth bit of the operands and the row decoder is capable of selecting

all the rows at once for parallel in-memory logic.

3.3 Circuit and Architecture

Based on min/max searching-in-memory algorithm discussed in

Section II, to implement the required computation, we designed the

MnM architecture and complete peripheral circuits as shown in Fig.

3, with main functionalities:

(1) Parallel bit-wise one-cycle in-memory XNOR.

(2) Matching vector update.

(3) All zero detection unit.

(4) Min/Max address decode.

After the matching vector (MV) and comparison vector (CV) ini-

tialization, the searching starts from the first column (RWL〈0〉). It

selects the MSBs of all the operands stored in the memory. Then,

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

41



Figure 3: (a), (f), (g) The high level architecture of the proposed MRAM IMC design (b) Array Organization. (c) Enlarged Bit-Cell

orientation, (d) Min/Max circuity, (e) All zero detection unit. (h) 2T-XNOR Truth Table. (i) in-memory 2T-XNOR logic circuit.

our proposed parallel in-memory XNOR logic circuit (called 2T-

XNOR shown in Fig. 3 (d)) could directly implement the comparison

between all the MSBs and the all-zero/one CV based on min/max

selection. The first input to the 2T-XNOR is the SA_out which is

the read-out from the memory array, the second input is the corre-

sponding comparison bit, (CB, either 0 or 1 controlled by Min/Max

selector) a subset of CV. TheMin/Max selector ties the inputs to VSS

or VDD based on the type of operation(Min/Max) and number for-

mat (unsigned, signed, fixed point and floating point). The detailed

circuit, truth table, and how the proposed in-memory XNOR works

are described in the Fig. 3 (d), (h) and (i) respectively. One of the

inputs (represented as Comparison Bit(CB)) is given to the source

terminal of PMOS T1 and its complement is given to the source

terminal of the NMOS T2. The other input (SA_Out, which is the

to-be-compared bit value sensed through attached SA) is given to

the gate terminal of the PMOS and NMOS. When the inputs are

both digital 0’s(VSS), the transistor T1 is in the ON condition and

T2 is in the OFF condition. XNOR_out node is a copy of the source

terminal of the ON transistor, hence CB’ is passed to the XNOR_out

node which results in the output being a digital 1. Now, when the

input is ‘11’, T1 is OFF and T2 is ON, input CB is mapped to the

XNOR_out node which results in the output being a digital 1(VDD).

Similarly, when the inputs - SA_out and CB are complementary,

the output is 0. This exactly implements the XNOR logic opera-

tion, which only requires 2 transistors overhead after a normal

memory SA. Comparing with prior in-memory XNOR logic designs

[18, 24, 25], where they either use multiple cycles or need 1/2 extra

SA(s) combined with complex CMOS logic designs, our proposed

in-memory XNOR logic only incurs 2 extra transistors to implement

in-memory XNOR logic within only one sensing cycle. Moreover,

unlike many other in-memory logic designs suffering from reduced

sensing margin since they either leverage the charge sharing in

DRAM or sensing multiple cell combined resistance value in NVM,

our in-memory XNOR logic does not have reduced sensing margin

and lower power since it only needs to sense one cell and imple-

ment the logic in digital domain. As explained in Section II, after

the parallel bit-wise in-memory XNOR based comparison, certain

operands will be eliminated for next round of comparison through

updating the corresponding MV value, except for all-zero XNOR

outputs. Thus, for every round, an ’all-zero detection circuit’ is

needed . As shown in Fig. 3(e), it is implemented based on pseudo

OR gate, that could detect the all-zero case, which controls the latch

enable that stores the MV. Thus, only during the all zero case, the

latch is disabled to prevent the MV update. When all the iterations

of the XNOR based comparisons are done, the final MV stored in

the latches denote the index(indices) of the Min/Max value(s). We

leverage a priority encoder to return the identified min/max data

address, which is able to handle the case when there are more than

one minimum/maximum values stored in the same array. When all

the array-level min/max values are achieved, they will be sent to

higher level for further comparison based on similar mechanism.

4 EVALUATION AND RESULTS

4.1 Experiment Setup

The experimental setup used in this work is similar to [11, 24].

The SOT-MRAM model and device parameters are obtained from

[11]. To analyze the performance of our IMC platform, we use

the 1024x256 memory array size and peripheral circuits are imple-

mented in the 45nm NCSU Process Development Kit. Cadence Spec-

tre is used to carry out the simulations to obtain the circuit-level

performance metrics. The architectural-level metrics are obtained

from a simulator based on the NVSim [9] and NVSim-CAM[2].

Further detailed experiments are conducted to compare the perfor-

mance metrics among popular IMC platforms .

4.2 Circuit Simulations

Fig. 4 depicts the transient simulations comprising of all the cases

for in-memory XNOR logic to validate our proposed design. It is

assumed in the first couple of cycles that all the data are written to

the 1024x256 sized MRAM array and is ready for the computation

stage. The experiment setup in Fig. 4 shows the reads from two

bit-cells denoted by subscripts 0 and 1. The bit-cell0 has the value

0 stored in it and the bit-cell1 has the value 1 stored in it. This

is depicted in Fig. 4 SA_out0/1. For the Min operation, one of the

XNOR operand is 0. Therefore the CB is tied to VSS. Similarly

for the Max operation the CB is tied to VDD. The sensing voltage

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

42



Figure 4: (a)Transient Simulations for the 2T XNOR with one

input tied to ’0’ (b)Transient Simulations for the 2T XNOR

with one input tied to ’1’

Vsense is generated through a voltage divider circuit that divides the

voltage between the Rs = 5𝑘Ω and the resistance of the MRAM bit-

cell. The formula for which is as follows : Vsense�
𝑅M1

𝑅M1+𝑅s
× 𝑉 read.

Where RM1 is the RAnti-Parallel/RParallel of the Magnetic Tunnel

Junction(MTJ) and Vread is the read voltage applied to the RBL.

4.3 Experiment Results

Since this is the first work to demonstrate min/max searching-in-

MRAM, several non-volatile memory based IMC designs which

have in-memory XNOR operations at its core are used for compari-

son.We draw our comparisons to Pinatubo[18], PIM-Quantifier[25],

IMCE[3], some CAM based designs [20],[21],[17], and the DRAM

based design Max-PIM[24].

In our experiments, we set each bank to have 16 MATs and

each MAT consists of 2 sub-arrays with size of 1024×256. Thus,

one bank stores ∼1MB data. Considering 1GB memory capacity,

there are 1024 banks for the whole memory. As the competitors, we

built those platforms with the same organization as MnM, but with

their own in-Memory computing logic circuits. For performance

evaluation, we use the similar cross-layer evaluation framework

in[4], starting from circuit-level evaluation with NCSU 45nm tech-

nology. We use the same process node to re-implement all coun-

terpart designs. The memory peripherals are simulated using the

same technology library in Synopsys Design Compiler. We then

feed the circuit simulation results into architecture-level tools. We

extensively modify NVSim[9] and NVSim-CAM[2]to extract the

performance results. An in-house mapping algorithm is then devel-

oped on top of architecture level to parse the input vector coming

from various data-sets and evaluate the performance. To evaluate

the performance of our MnM platform for Min/Max searching in

the real world dataset, we adopt a popular data-set T10I4D100K[1]

containing 1010228 numbers, where each number is represented

as 256-bit unsigned integer numbers stored in memory. We report

the execution time and energy consumption measurement in Ta-

ble.2 for different computing platforms including PIM-Quantifier,

IMCE, Pinatubo, CPU, GPU, etc. For all IMC platforms, including

our MnM, PIM-Quantifier, IMCE, and Pinatubo, such a large array

cannot fit into a single computational array, requiring necessary

data partitioning. The total 1010228 numbers are partitioned into

987 computational sub-arrays, where each sub-array will compute

in parallel to return a local minimal number. Then, such local min-

imal numbers will be written into another computational array

to get the global minimal number. For CPU&GPU evaluation, the

reported time is total execution time, including data loading from

main memory and processing. For energy estimation, similar as

prior work[19, 24], we scale down 50% of CPU&GPU average power

to exclude the power cost by cooling, voltage regulators, etc. As

shown in Table 1 and 2, among other IMC platforms,MnM achieves

minimal latency and energy consumption. It also has the least

overhead in implementing the in-memory XNOR logic. Although

by leveraging the DRAM, the Max-PIM has shorter latency and

read/write energy per row. In terms of the XNOR latency/energy,

our MnM outperformed the DRAM-based Max-PIM. That is be-

cause of the inherent destructive read property of DRAM, Max-PIM

needs to write a copy of the data into another memory array be-

fore performing the XNOR operation. This transfer writing not

only increases the latency and energy but also wastes the precious

area. Overall, our MnM platform could achieve over 1000× speed

improvement, and at least one order smaller energy consumption

than GPUs/CPUs.

4.4 Applications in Graph Processing

In this section, we evaluate our MnM platform’s performance with

real-world application using Dijkstra’s algorithm in graph process-

ing. Dijkstra’s algorithm [15] is a popular andwidely used algorithm

in graph processing to find the shortest path in a large graph. In

Dijkstra’s algorithm, Min/Max searching dominates overall com-

putation. A breakdown of the overall computation in Dijkstra’s

algorithm is shown in Fig. 5. To evaluate it, three different dataset

are used here: geom, foldoc and EAT_SR [8]. Table 3 reports the

Min/Max searching speed improvement over CPU for different in-

memory computing platforms. It can be seen that all in-memory

computing platforms outperform software implementation in CPU

by three orders mainly due to saving large amount of off-chip data

movement and ultra-parallel processing capability. Aligning with

prior experiments in Min/Max searching only case, our MnM for

Dijkstra algorithm achieves the best performance compared with

other in-memory computing platforms due to its optimized efficient

XNOR and peripheral circuits. In general, in-memory computing

platform could all achieve two to three orders speed up over CPU

and our MnM still outperforms all other in-memory computing

platforms significantly.

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

43



Table 1: Energy and Latency of different platforms

Volatile Memory Non-volatile Memory Design

Max-PIM

(DRAM)[24]

MnM

(This work)
PIM-Quantifier[25] IMCE[3] Pinatubo[18]

RRAM

CAM[20]

MRAM

CAM[21]

PCM

CAM[17]

Technology(nm) 65nm 45nm 45nm 45nm 45nm 45nm 45nm 45nm

Latency(ns)
649ps(read)

649ps(write)

2.56ns(read)

1.77ns(write)

3.69ns(read)

1.66ns(write)

3.691ns

1.840ns

6.994ns

5.968ns

7.79ns

17.76ns

150.61ns

32.59ns

30.69ns

100ns

Energy(Read/row pJ) 33.2pJ 37.55pJ 90.94pJ 135.940pJ 137.436pJ 54.43pJ 697.28pJ 116.7pJ

Energy(Write/row pJ) 1.5pJ 60.77pJ 61.34pJ 92.092pJ 1.088nJ 1.200nJ 147.96pJ 7.34nJ

XNOR Latency(ns) 3.3ns 2.56ns 3.69ns 3.691ns 6.994ns 7.79ns 150.61ns 30.69ns

XNOR Energy(per row pJ) 71.6pJ 37.55pJ 90.94pJ 135.94pJ 137.436pJ 54.43pJ 697.28pJ 116.7pJ

XNOR area(No. of transistors) 49T/Col 17T/Row 40T/Col 18T+3R/Col 19T+3C+3R/Col 4T2R/Bit 4T2MTJ/Bit 2T2R/Bit

Table 2: Min/Max searching performance comparison

Non-volatile Memory Volatile Memory

MnM PIM-quantifier IMCE Pinatubo Max-PIM CPU GPU

Time: 1.31uS 1.89uS 1.89uS 3.58uS 1.69uS 8.6mS 684uS

Energy 9.8uJ 23.8uJ 35.6uJ 36uJ 18.77uJ 86mJ 18mJ

Table 3: Min/Max searching speedup over CPU in Dijkstra’s

Algorithm

geom(7343 nodes) foldoc(13356) EAT_SR(23219)

Ours 905X 1652X 4579X

PIM-quantifier 627X 1145X 3173X

IMCE 627X 1145X 3173X

Pinatubo 330X 604X 1674X

Figure 5: Dijkstra’s Algorithm Analysis

5 CONCLUSION
In this work, we propose a novel SOT-MRAM based in-memory

computing platform which supports the Min/Max searching-in-

memory algorithm and performs it in a highly efficient manner.

Compared to other NVM/DRAM based Processing-in-memory de-

signs, our design outperforms all others by a significant margin for

similar tasks.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation

under Grant No.2003749 and No. 2144751.

REFERENCES
[1] [n.d.]. T10I4D100K dataset. http://fimi.cs.helsinki.fi
[2] S. Li andothers. 2016. NVSim-CAM: A circuit-level simulator for emerging

nonvolatile memory based Content-Addressable Memory. In 2016 ICCAD. 1–7.
[3] S. Angizi et al. 2018. IMCE: Energy-efficient bit-wise in-memory convolution

engine for deep neural network. In 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC). 111–116.

[4] Shaahin Angizi et al. 2019. Redram: A reconfigurable processing-in-dram plat-
form for accelerating bulk bit-wise operations. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD).

[5] Shaahin Angizi, Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. 2018. CMP-PIM:
An Energy-Efficient Comparator-based Processing-In-Memory Neural Network

Accelerator. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
1–6. https://doi.org/10.1109/DAC.2018.8465860

[6] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. 2019. GraphS: A graph
processing accelerator leveraging SOT-MRAM. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 378–383.

[7] Amirali Boroumand et al. 2018. Google Workloads for Consumer Devices: Miti-
gating Data Movement Bottlenecks. SIGPLAN Not. 53, 2 (March 2018), 316–331.

[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[9] Xiangyu Dong et al. 2012. Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE TCAD 31 (2012), 994–1007.

[10] Xuanyao Fong, Yusung Kim, Karthik Yogendra, Deliang Fan, Abhronil Sengupta,
Anand Raghunathan, and Kaushik Roy. 2015. Spin-transfer torque devices for
logic and memory: Prospects and perspectives. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 35, 1 (2015), 1–22.

[11] Zhezhi He, Shaahin Angizi, Farhana Parveen, and Deliang Fan. 2017. High
performance and energy-efficient in-memory computing architecture based on
SOT-MRAM. In 2017 IEEE/ACM International Symposium on Nanoscale Architec-
tures (NANOARCH). 97–102. https://doi.org/10.1109/NANOARCH.2017.8053725

[12] Mohamed A Ismail et al. 1989. Multidimensional data clustering utilizing hybrid
search strategies. Pattern recognition 22 (1989), 75–89.

[13] Zhewei Jiang, Shihui Yin, Jae-Sun Seo, and Mingoo Seok. 2020. C3SRAM: An
In-Memory-Computing SRAM Macro Based on Robust Capacitive Coupling
Computing Mechanism. IEEE Journal of Solid-State Circuits 55, 7 (2020), 1888–
1897. https://doi.org/10.1109/JSSC.2020.2992886

[14] Zhewei Jiang, Shihui Yin, Mingoo Seok, and Jae-sun Seo. 2018. XNOR-SRAM:
In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks.
In 2018 IEEE Symposium on VLSI Technology. 173–174. https://doi.org/10.1109/
VLSIT.2018.8510687

[15] Donald B. Johnson. 1973. A Note on Dijkstra’s Shortest Path Algorithm. J. ACM
20, 3 (July 1973), 385–388. https://doi.org/10.1145/321765.321768

[16] Roger V Lebo. 1982. Chromosome sorting and DNA sequence localization. Cy-
tometry: The Journal of the International Society for Analytical Cytology 3 (1982),
145–154.

[17] J. Li et al. 2014. 1 Mb 0.41 µm2 2T-2R Cell Nonvolatile TCAM With Two-Bit
Encoding and Clocked Self-Referenced Sensing. IEEE Journal of Solid-State
Circuits 49, 4 (2014), 896–907. https://doi.org/10.1109/JSSC.2013.2292055

[18] S. Li et al. 2016. Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories. In 53rd DAC. 1–6.

[19] S. Li et al. 2017. DRISA: A DRAM-based Reconfigurable In-Situ Accelerator. In
2017 MICRO. 288–301.

[20] Li-Yue Huang et al. 2014. ReRAM-based 4T2R nonvolatile TCAM with 7x
NVM-stress reduction, and 4x improvement in speed-wordlength-capacity for
normally-off instant-on filter-based search engines used in big-data process-
ing. In Symposium on VLSI Circuits Digest of Technical Papers. 1–2. https:
//doi.org/10.1109/VLSIC.2014.6858404

[21] S. Matsunaga et al. 2012. A 3.14 um2 4T-2MTJ-cell fully parallel TCAM based on
nonvolatile logic-in-memory architecture. In VLSIC.

[22] Lawrence Page et al. 1999. The PageRank citation ranking: Bringing order to the
web. Technical Report. Stanford InfoLab.

[23] Wikipedia contributors. 2020. IEEE 754 — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=IEEE_754&oldid=976446634. [On-
line; accessed 5-September-2020].

[24] Fan Zhang et al. 2021. Max-PIM: Fast and Efficient Max/Min Searching in DRAM.
In 2021 58th ACM/IEEE Design Automation Conference (DAC). 211–216. https:
//doi.org/10.1109/DAC18074.2021.9586096

[25] Fan Zhang et al. 2021. PIM-Quantifier: A Processing-in-Memory Platform for
mRNA Quantification. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). 43–48. https://doi.org/10.1109/DAC18074.2021.9586144

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

44


