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Abstract—Leveraging the ReRAM crossbar-based In-Memory-
Computing (IMC) to accelerate single task DNN inference has
been widely studied. However, using the ReRAM crossbar for
continual learning has not been explored yet. In this work,
we propose XST, a novel crossbar column-wise sparse training
framework for continual learning. XST significantly reduces the
training cost and saves inference energy. More importantly, it
is friendly to existing crossbar-based convolution engine with
almost no hardware overhead. Compared with the state-of-the-art
CPG method, the experiments show that XST’s accuracy achieves
4.95% higher accuracy. Furthermore, XST demonstrates ~5.59x
training speedup and 1.5x inference energy-saving.

Index Terms—Continual Learning, In-Memory-Computing,
Sparse Learning

I. INTRODUCTION

In continual learning, given a pre-trained DNN model, con-
ventional model fine-tuning for new tasks could easily forget
old knowledge, thus degrading the learning performance on
earlier tasks. Such a phenomenon is known as catastrophic
forgetting. Recently, structure-based learning methods [1], [2]
show the capability of alleviating the forgetting problem, which
learn task-specific weights while freezing the weights of previ-
ous tasks as preserved model. In addition, inspired by the mask-
based learning methods [3], they also apply a learnable binary
mask to the preserved model, so as to further improve accuracy
by selecting important weights. However, these methods require
a complex two-stage grow-then-prune training procedure. For
example, to adapt a preserved model to a new task, CPG [1], as
a representative work, first learns all the free weights in the first
stage and then element-wisely prunes it in the second stage to
obtain the sparse weight and release space for next tasks, which
suffers from huge training cost.

On the hardware side, the growing DNN model demands
explosive multiply-and-accumulate (MAC) operations and data
movement. In Von Neumann’s architecture, such massive data
movement may consume ~2 orders higher energy than data
processing. This phenomenon is known as the “Memory Wall”.
Recently, In-Memory-Computing (IMC) attracts much attention
as a promising solution to the “Memory Wall” issue, due to
directly processing the data within memory and eliminating
data movement. Many different IMC designs have been pro-
posed based on either volatile or non-volatile memories [4]-
[7]. Among those designs, the ReRAM crossbar-based design
is given transcendent expectations due to its simple structure,
high on/off ratio, multi-bit per cell, non-volatility, and great
compatibility with existing CMOS fabrication. Although many
ReRAM crossbar-based designs have been proposed as area
& energy-efficient computing core to support DNN inference,
there is little exploration for continual learning, a practical
and essential application in the real world. To apply the state-
of-the-art CPG [1] mask-based continual learning to ReRAM
crossbar hardware, it will require applying a binary element-
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wise mask for the fixed preserved model. However, imple-
menting such element-wise masking scheme in ReRAM will
inevitably bring significant hardware overhead in either much
more complex peripheral circuits or consuming high power
to reprogram ReRAM cell of the preserved model. Moreover,
since the element-wise mask has the same dimension of weight
parameters, it requires a large memory overhead for the learned
new mask for each task.

These limitations motivate us to explore a new ReRAM
crossbar friendly mask-based continual learning method that
could leverage the mask based learning algorithm’s benefit to
avoid catastrophic forgetting in multi-task learning, as well as
friendly with existing crossbar based DNN accelerator hard-
ware with minimal peripheral circuits modification and mask
memory overhead. Moreover, it should avoid power-hungry re-
programming the ReRAM cells(i.e., preserved model).

In this work, we propose, XST, a new crossbar friendly
sparse training framework for continual learning, which learns
crossbar column-wise mask and sparse weight, taking advan-
tages on both hardware inference implementation and software
training. The key techniques are summarized as following:

1) Hardware-friendly crossbar column-wise mask and
sparse weight pattern. To reduce the peripheral circuit
overhead and avoid power hungry re-programming of
ReRAM cells, motivated by our prior work [8], we also
adapt a crossbar column-wise binary mask based con-
tinual learning method, where each learned mask value
controls the on/off of entire crossbar column, instead of
each element. Such column-wise design greatly shrinks
the mask size, leading to memory overhead reduction.

2) Sparse continual learning method. We leverage sparse
training method for continual learning, which adapts a
novel drop-and-grow mechanism to learn a small portion
of new weights for each task. We apply a learnable
crossbar column-wise mask to the preserved model, so
as to further improve the accuracy by selecting important
weights(i.e., crossbar columns) for current task. Different
from the conventional hard thresholding method [3] to
learn the binary mask in CPG [1], we leverage the
Gumbel-Sigmoid trick to better estimate the gradient of
the mask during back-propagation.

II. BACKGROUND
A. In-Memory Computing and NN Accelerator

Fig. 1 shows the basic structure of the ReRAM 1TI1R
array. Resistive memristor and access transistor sandwiched
by horizontal SL and Vertical BL. It can not only work as a
normal RAM to store/read data, more importantly, intrinsically
support the vector-matrix-multiplication(VMM) operation. For
the VMM operation, the matrix is stored at the crossbar
intersections as conductance G where the input vector feed into
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Fig. 1: ITIR ReRAM crossbar array.

the crossbar through horizontal SL as input voltage. For the
i, 7tn 1TIR ReRAM cell, the current through that device will
be I; ; = V; x G, ;. It is doing the multiplication in the analog
domain between voltage and conductance. Since the vertical
BL connects all 1T1R cells on the same column, the current
throughout the BL is the summation of all the branches’ current.
Therefore, by sensing the accumulated current on BL, the MAC
operation is achieved, i.e., I; = VxG. j, as shown in Fig. 1(b).
Based on the ReRAM 1TIR structure, many NN accelerators
have been proposed, e.g., ISAAC [4], PRIME [5], DPE [7],
pipelayer [6], etc.

B. Single-task Sparse Training

Sparse training aims to train sparse neural networks with a
fixed parameter count and a fixed computational cost through-
out the whole training procedure. Rigl [9] develops the drop-
and-grow mechanism that uses the magnitude-based method to
prune and dense gradients to regrow connection in the same
training iteration. Specifically, given a random initialized net-
work with pre-defined sparsity, it first drops/prunes « fraction
of weights, which have the smallest magnitude. Then it regrows
the same number of new weights with the largest gradient
magnitude, to keep the fixed parameter and computation count
during the training. In addition, Rigl shows that gradually
decaying the ratio of drop and grow « by following a cosine
annealing could achieve better accuracy. In this work, for the
first time, we adapt such mechanism as a backbone technique
to develop continual learning algorithm.

III. METHODOLOGY

The overview of the proposed XST is illustrated in Fig. 2,
which includes the overflow of both off-line training and
mapping to ReRAM crossbar based IMC for inference. Fol-
lowing the general continual learning setting [1], new tasks
({71, Tz, ..., Tn}) arrive sequentially and past tasks cannot be
used for training future tasks. Based on this, XST adapts the
sparse training method (Fig. 2(d)) to learn a small fraction of
task-specific weights for each task. Meanwhile, to adapt the
preserved model for previous tasks to current task, XST also
leverages the selective masking method to learn a binary mask
on the preserved model, so as to select the important weights
for current task, as shown in Fig. 2(a). Then after the off-
line training of each task, we update the crossbar array to
support the new learnt weights, without re-programming the
preserved model, for online inference, as shown in Fig. 2(b).
More importantly, XST designs the learnable parameters (i.e.,
column-wise mask and column-wise sparsity of weight) both
in crossbar column-wise (Fig. 2(c)), where each value controls

the operation of the entire crossbar column, enabling hardware
friendly crossbar mapping.

A. Column-wise parameter pattern

According to the 1TIR crossbar’s structure, the transistor’s
gates are connected by SL either horizontally or vertically.
Then, individually controlling each transistor to apply a bi-
nary element-wise mask will inevitably cause large overhead.
However, benefiting from the row/col wise parallelism, con-
trolling the SL to turn on/off the entire row/column is friendly
for the existing crossbar design with minor overhead. In the
conventional convolution kernel mapping method, the kernel
has been divided by output feature map dimension. For ex-
ample, a Cyyr X Ciy X kh X hw kernel will be reshaped to a
(Cin xkhxkw, Cyyy) sized 2D matrix, where Ciy, Cou, kh, kw
refer the weight dimension of a convolutional layer, including
#output, #input channel, kernel height and width, respectively.
With the development of deep learning in recent years, DNNs
grow into more complex and larger structures, the size of one
filter C,, X kh x kw usually is too large to be mapped into a
single crossbar column. A general solution is to further partition
and then map one filter into multiple columns.

In this work, the proposed method mainly includes two types
of learnable parameters: the new learned weights for current
task, and the binary mask for the preserved weights of previous
tasks motivated by our prior work [8]. Based on the analysis
above, we define both the binary mask and the sparsity pattern
of new weights in column-wise. For the column-wise mask, we
represent mask as G X kh x kw to make it consistent with the
size of a crossbar column, where the group G € {1,C},}. By
doing so, a single mask value can control the entire column
of a crossbar array, which improves the computation efficiency
significantly compared to element-wise mask. Similarly, for the
new learned weight, we define the weight sparsity size as G x
kh x kw. By doing so, only part of weights, where are not all
zeros values, need to perform the energy-hungry programming
to the corresponding columns without affecting other columns.

B. Column-wise Sparse Continual learning

As shown in Fig. 2(a), the proposed sparse continual learning
algorithm adapts the sparse training method (Fig. 2(d)) to
learn a small fraction of task-specific weights for each task.
Meanwhile, to adapt the preserved model for previous tasks to
current task, XST also leverages the selective masking method
to learn a binary mask on the preserved model. In the following,
we present our method in the sequential-task manner:

Learning Task 1: Similar to sparse train a network model
for a single dataset from scratch, given the first task, we first
randomly initialize a certain sparsity s; of the weights, but
in column-wise. Then, the drop-and-grow mechanism [9] is
adapted as mentioned in Section II-B to learn a small fraction
of the weights 1 — s. After training, the current model will
serve as the preserved model for next task. Note that, as the
difficulty of the training from scratch, we leverage a smaller
sparsity ratio to train the task 1 (i.e., 0.7 in our experiments).

Learning Tasks 2, .., T: Given a network with a pre-
define model size, to guarantee new weights can be learnt for
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Fig. 2: Overview of the proposed XST. (a) The training workflow. (b) The inference workflow. (¢) The column-wise ReRAM

crossbar weight mapping. (d) Sparse training technique.

each task, we uniformly assign the same sparsity ratio s; =
(I —s;)/(T —1). Assume that in task ¢;, the model that can
handle task 1 to ¢;_; has been built as a preserved model. We
adapt two techniques to learn the model for task ¢;:

1) Sparse learning on new weights. To learn the weights
for current task ¢;, we adapt the drop-and-grow strategy,
meanwhile freezing the weights of previous tasks.

2) Selective masking on preserved weights. We apply a
learnable column-wise mask to the preserved model, so
as to select the important weights for current task. Note
that, these two techniques are independent and hence can
be jointly optimized in the same training process.

C. Column-wise Selective Masking

To learn the binary mask, we leverage the Gumbel-Sigmoid
trick, inspired by Gumbel-Softmax [10] that performs a differ-
ential sampling to approximate a categorical random variable.
Since sigmoid can be viewed as a special two-class case of
softmax, we define p(-) using the Gumbel-Sigmoid trick as:

exp((logmo + go)/T)
exp((logmo + g0)/T) + exp((91)/T)’

where 7y represents o(m”). go and g; are samples from
Gumbel distribution. The temperature 7" is a hyper-parameter
to adjust the range of input values, where choosing a larger
value could avoid gradient vanishing during back-propagation.
Note that the output of p(m”) becomes closer to a Bernoulli
sample as 7" is closer to 0. We can further simplify Eq. (1) as:

1
p(m”) =
) =17 exp(—(logmo + go — 91)/T)
Benefiting from the differential property of Eq. (2), the real-

value m” can be embedded with gradient back-propagation
training. To represent p(m”) as binary format m?

p(m”) = ey

(@)

, We use a
hard threshold (i.e., 0.5) during forward-propagation of training.
Because most values in the distribution of p(m”) will move
towards either 0 or 1 during training, generating the binary
mask by p(m”) (instead of the real-value mask m" directly)
could have more accurate decision, resulting in better accuracy.
IV. EVALUATION

Similar to the prior works, we adopt the CIFAT-100 dataset
and divide the dataset into 20 superclasses(equal to 20 tasks),
each superclass contains 5 sub-classes. Each sub-classes has
2500 training images, and 500 tesing images. We employed

VGG16 with batch normalization layers and expanded the
model to 1.5x. All the 20 tasks have been trained and tested
sequentially. Each task has been trained 100 epochs.

A. Algorithm Evaluation

Table 1 shows the classification accuracy of CPG,
XST (Element-wise), and XST (Column-wise) where the quan-
tization method is adopted from [11]. We choose the group size
G = 8 in the experiment. Although CPG and XST both are
using the mask to select important exist weights and growing
new weights. Benefit from the Gumbel-sigmoid trick and
efficient sparse learning, XST shows higher accuracy than the
CPG under the same setup. CPG first tries to explore the whole
available weight, then prunes the weight while maintaining
similar accuracy. XST not only has the weight drop but also
has the weight grow mechanism to more accurately find the
most critical weights. Therefore, XST has higher flexibility to
tune the weights and better estimate gradient to generate binary
masks, resulting in performance improvement. Even column-
wise XST only has 0.51%(floating number) accuracy drop
than CPG. Our proposed XST also shows strong robustness
to quantization. With 4-bit quantization, CPG drops more than
6% accuracy while XST only has 1.56% and 0.72% accuracy
degradation for element-wise and column-wise, respectively.
Comparing with the floating number CPG, even the 4-bit
quantized column-wise XST shows competitive performance.

Fig. 3 shows the training time comparison for each task.
Although XST has more complex grow and drop steps, thanks
to the efficient sparse learning that significantly reduces the
training effort. Unlike CPG, XST does not require the most
time-consuming part, gradually pruning. Therefore, on average,
to achieve the accuracy in Table I, CPG takes ~5.59x more
time than XST. Due to the column mask sharing, XST’s mask
size is only % of CPG, which leads to an easier and more
efficient hardware design.

B. Hardware Evaluation

We implement our XST and other competitor methods on
the same hardware platform. We use the circuit level simula-
tor NeuroSim [12] for hardware performance evaluation with
different schemes. The 4-bit quantized VGG-16-1.5x is imple-
mented based on 2-bit per cell HfO; 1T1IR ReRAM devices,
characterized from [13] and projected to 32nm CMOS node.
Table II summarizes the detailed ReRAM array characteristics
and total area consumption. Each ReRAM column is connected
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TABLE I: Continual Learning Accurac

Method Task T1 T2 T3 T4 TS T6 T7 T8 T9 TI10 | T11 T12 | T13 | Ti4 | TI5 Ti6 | T17 | TI8 T19 | T20 | AVG
4-bit Ours(Element-wise) 67.6 | 77.6 | 768 | 80.4 | 85.6 | 86.6 | 828 | 85 86 90 89.2 | 844 | 89.8 | 834 | 546 | 764 | 73 73.6 | 87.8 | 944 | 81.25
Q an;‘ lal'on Ours(Column-wise) 66.6 | 786 | 782 | 79.8 | 86.2 | 832 | 80.8 | 852 | 852 | 89.6 | 88 79.6 | 844 | 814 | 52 724 | 674 | 732 | 88 93.6 | 79.67
uantizatl CPG(Element-wise) 594 1744 [ 138 | 75 81.8 [ 80.2 | 80.4 | 82 77 824 [ 782 [ 798 | 80.8 [ 71.6 | 444 | 64 63.4 | 68 852 [ 92,6 | 7472

. ur(Element-wise) 5. 78. 78.4 1. . B 5. . . . X 57. 7t 73. 74. 1 X .

Floatin [¢] ! i 65.6 8.8 8 81.6 | 86.4 | 86 84 86.8 | 854 | 89.4 | 90 86.2 | 89.4 | 83.6 | 57.2 6 34 419 94.8 | 81.92
m?[;bc‘g_ Our(Column-wise) 662 | 77.6 | 784 | 824 | 86.8 | 85.6 | 81.4 | 82.8 | 83.8 | 89 89.2 | 82.8 | 86.2 | 81.6 | 55 732 | 688 | 742 | 89 93.8 | 80.39

CPG(Element-wise) 652 [ 76.6 | 798 | 81.4 | 86.6 | 848 | 834 | 85 872 892 1 908 | 824 [ 856 | 852 [ 532 [ 744 [ 70 73.4 [ 888 [ 948 | 80.9

TCPG / TXSI
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Fig. 3: Training time comparison
TABLE II: Hardware specification

RRAM Sub-Array
Components Area (pun?) Energy (pJ)
Memory Array (72 x 72) 84,93
Switch Matrix (WL and SL) 457.3 1.1
SAR ADC (5-bit) 8,409.3 8.3
Shift-Add-Input 1,412.9 6.8
Shift-Add-Weight (2 col use 1) 825.8 1.0
Mask Buffer (72 x 1) 100.4 0.003/bit/access
Total 11,380.2 17.2
Peripheral Circuits
1 stage AdderTree (128 units) 2,510.3 4.4
2 stage AdderTree (128 units) 7,710.1 13.7
3 stage AdderTree (128 units) 18,408.8 32.6
Global Buffer (96 x 32 x 32 < 4) | 1,039,596 | 0.003/bit/access
ReLU (128 units) 939.5 0.9

to a 5-bit successive approximation register (SAR) analog-to-
digital converter (ADC). To avoid frequent off-chip memory
access, we choose the global buffer as the same size of the
largest feature map during the inference process.

Performing the inference with the CPG learning requires
all the ReRAM columns to stay ON for all the sub-tasks.
Therefore, the inference energy consumption per task is iden-
tical after fine-tuning or CPG [1] learning. On the other hand,
the proposed algorithm updates the weight and mask in a
column-wise fashion for different sub-tasks. Compared to CPG
learning, the proposed XST learning will only use part of
the ReRAM sub-array for each task. Therefore, the inference
energy consumption will be reduced. XST can achieve ~2.8x
inference energy reduction for the early learning tasks.

Another major hardware disadvantage induced by CPG
learning is the element-wise reprogramming and resetting.
We quantified the energy consumption based on the writing
voltage, writing pulses, and conductance level changes [13],
[14]. As shown in Figure 4, the element-wise reprogramming
and resetting of the CPG learning [1] lead to inconsistent
and massive energy consumption during the entire continual
learning phase (T2 to T20). The proposed XST resets the
weights by turning off the corresponding ReRAM columns.
As a result, the hardware resetting cost of the XST becomes
zero. During the continual learning process, XST replenishes
the weights in a group-wise manner, corresponding to the con-
sistent reprogramming cost of the ReRAM columns. Compared
to the CPG learning, the XST-trained model achieves 2.5x
reprogramming energy reduction along sub-tasks.

V. CONCLUSION

In summary, we propose XST, a hardware-friendly cross-

bar column-wise sparse learning method to efficiently deploy
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Fig. 4: Energy consumption of the reprogramming and resetting

continual learning to ReRAM crossbar based neural network
accelerator with the consideration of hardware cost. Comparing
with CPG, our XST shows 4.95% accuracy improvement,
~5.59X training speedup, 1.5x inference energy saving, and
1.8Xx re-programming energy saving on CIFAR-100 dataset
with VGG16-BN(1.5x) model.
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