
XST: A Crossbar Column-wise Sparse Training for Efficient Continual Learning
Fan Zhang Li Yang Jian Meng Jae-sun Seo Yu (Kevin) Cao Deliang Fan

fzhang95@asu.edu lyang166@asu.edu jmeng15@asu.edu jseo28@asu.edu ycao17@asu.edu dfan12@asu.edu

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe Arizona 85281

Abstract—Leveraging the ReRAM crossbar-based In-Memory-
Computing (IMC) to accelerate single task DNN inference has
been widely studied. However, using the ReRAM crossbar for
continual learning has not been explored yet. In this work,
we propose XST, a novel crossbar column-wise sparse training
framework for continual learning. XST significantly reduces the
training cost and saves inference energy. More importantly, it
is friendly to existing crossbar-based convolution engine with
almost no hardware overhead. Compared with the state-of-the-art
CPG method, the experiments show that XST’s accuracy achieves
4.95% higher accuracy. Furthermore, XST demonstrates ∼5.59×
training speedup and 1.5× inference energy-saving.

Index Terms—Continual Learning, In-Memory-Computing,
Sparse Learning

I. INTRODUCTION

In continual learning, given a pre-trained DNN model, con-

ventional model fine-tuning for new tasks could easily forget

old knowledge, thus degrading the learning performance on

earlier tasks. Such a phenomenon is known as catastrophic
forgetting. Recently, structure-based learning methods [1], [2]

show the capability of alleviating the forgetting problem, which

learn task-specific weights while freezing the weights of previ-

ous tasks as preserved model. In addition, inspired by the mask-

based learning methods [3], they also apply a learnable binary
mask to the preserved model, so as to further improve accuracy

by selecting important weights. However, these methods require

a complex two-stage grow-then-prune training procedure. For

example, to adapt a preserved model to a new task, CPG [1], as

a representative work, first learns all the free weights in the first

stage and then element-wisely prunes it in the second stage to

obtain the sparse weight and release space for next tasks, which

suffers from huge training cost.

On the hardware side, the growing DNN model demands

explosive multiply-and-accumulate (MAC) operations and data

movement. In Von Neumann’s architecture, such massive data

movement may consume ∼2 orders higher energy than data

processing. This phenomenon is known as the “Memory Wall”.

Recently, In-Memory-Computing (IMC) attracts much attention

as a promising solution to the “Memory Wall” issue, due to

directly processing the data within memory and eliminating

data movement. Many different IMC designs have been pro-

posed based on either volatile or non-volatile memories [4]–

[7]. Among those designs, the ReRAM crossbar-based design

is given transcendent expectations due to its simple structure,

high on/off ratio, multi-bit per cell, non-volatility, and great

compatibility with existing CMOS fabrication. Although many

ReRAM crossbar-based designs have been proposed as area

& energy-efficient computing core to support DNN inference,

there is little exploration for continual learning, a practical

and essential application in the real world. To apply the state-

of-the-art CPG [1] mask-based continual learning to ReRAM

crossbar hardware, it will require applying a binary element-

wise mask for the fixed preserved model. However, imple-

menting such element-wise masking scheme in ReRAM will

inevitably bring significant hardware overhead in either much

more complex peripheral circuits or consuming high power

to reprogram ReRAM cell of the preserved model. Moreover,

since the element-wise mask has the same dimension of weight

parameters, it requires a large memory overhead for the learned

new mask for each task.

These limitations motivate us to explore a new ReRAM

crossbar friendly mask-based continual learning method that

could leverage the mask based learning algorithm’s benefit to

avoid catastrophic forgetting in multi-task learning, as well as

friendly with existing crossbar based DNN accelerator hard-

ware with minimal peripheral circuits modification and mask

memory overhead. Moreover, it should avoid power-hungry re-

programming the ReRAM cells(i.e., preserved model).

In this work, we propose, XST, a new crossbar friendly

sparse training framework for continual learning, which learns

crossbar column-wise mask and sparse weight, taking advan-

tages on both hardware inference implementation and software

training. The key techniques are summarized as following:

1) Hardware-friendly crossbar column-wise mask and
sparse weight pattern. To reduce the peripheral circuit

overhead and avoid power hungry re-programming of

ReRAM cells, motivated by our prior work [8], we also

adapt a crossbar column-wise binary mask based con-

tinual learning method, where each learned mask value

controls the on/off of entire crossbar column, instead of

each element. Such column-wise design greatly shrinks

the mask size, leading to memory overhead reduction.

2) Sparse continual learning method. We leverage sparse

training method for continual learning, which adapts a

novel drop-and-grow mechanism to learn a small portion

of new weights for each task. We apply a learnable

crossbar column-wise mask to the preserved model, so

as to further improve the accuracy by selecting important

weights(i.e., crossbar columns) for current task. Different

from the conventional hard thresholding method [3] to

learn the binary mask in CPG [1], we leverage the

Gumbel-Sigmoid trick to better estimate the gradient of

the mask during back-propagation.

II. BACKGROUND

A. In-Memory Computing and NN Accelerator

Fig. 1 shows the basic structure of the ReRAM 1T1R

array. Resistive memristor and access transistor sandwiched

by horizontal SL and Vertical BL. It can not only work as a

normal RAM to store/read data, more importantly, intrinsically

support the vector-matrix-multiplication(VMM) operation. For

the VMM operation, the matrix is stored at the crossbar

intersections as conductance G where the input vector feed into

48978-3-9819263-6-1/DATE22/ c©2022 EDAA

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:40:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: 1T1R ReRAM crossbar array.

the crossbar through horizontal SL as input voltage. For the

i, jth 1T1R ReRAM cell, the current through that device will

be Ii,j = Vi ×Gi,j . It is doing the multiplication in the analog

domain between voltage and conductance. Since the vertical

BL connects all 1T1R cells on the same column, the current

throughout the BL is the summation of all the branches’ current.

Therefore, by sensing the accumulated current on BL, the MAC

operation is achieved, i.e., Ij = V×G:,j , as shown in Fig. 1(b).

Based on the ReRAM 1T1R structure, many NN accelerators

have been proposed, e.g., ISAAC [4], PRIME [5], DPE [7],

pipelayer [6], etc.

B. Single-task Sparse Training

Sparse training aims to train sparse neural networks with a

fixed parameter count and a fixed computational cost through-

out the whole training procedure. Rigl [9] develops the drop-

and-grow mechanism that uses the magnitude-based method to

prune and dense gradients to regrow connection in the same

training iteration. Specifically, given a random initialized net-

work with pre-defined sparsity, it first drops/prunes α fraction

of weights, which have the smallest magnitude. Then it regrows

the same number of new weights with the largest gradient

magnitude, to keep the fixed parameter and computation count

during the training. In addition, Rigl shows that gradually

decaying the ratio of drop and grow α by following a cosine

annealing could achieve better accuracy. In this work, for the

first time, we adapt such mechanism as a backbone technique

to develop continual learning algorithm.

III. METHODOLOGY

The overview of the proposed XST is illustrated in Fig. 2,

which includes the overflow of both off-line training and

mapping to ReRAM crossbar based IMC for inference. Fol-

lowing the general continual learning setting [1], new tasks

({T1, T2, ..., TN}) arrive sequentially and past tasks cannot be

used for training future tasks. Based on this, XST adapts the

sparse training method (Fig. 2(d)) to learn a small fraction of

task-specific weights for each task. Meanwhile, to adapt the

preserved model for previous tasks to current task, XST also

leverages the selective masking method to learn a binary mask

on the preserved model, so as to select the important weights

for current task, as shown in Fig. 2(a). Then after the off-

line training of each task, we update the crossbar array to

support the new learnt weights, without re-programming the

preserved model, for online inference, as shown in Fig. 2(b).

More importantly, XST designs the learnable parameters (i.e.,

column-wise mask and column-wise sparsity of weight) both

in crossbar column-wise (Fig. 2(c)), where each value controls

the operation of the entire crossbar column, enabling hardware

friendly crossbar mapping.

A. Column-wise parameter pattern

According to the 1T1R crossbar’s structure, the transistor’s

gates are connected by SL either horizontally or vertically.

Then, individually controlling each transistor to apply a bi-

nary element-wise mask will inevitably cause large overhead.

However, benefiting from the row/col wise parallelism, con-

trolling the SL to turn on/off the entire row/column is friendly

for the existing crossbar design with minor overhead. In the

conventional convolution kernel mapping method, the kernel

has been divided by output feature map dimension. For ex-

ample, a Cout × Cin × kh × hw kernel will be reshaped to a

(Cin×kh×kw,Cout) sized 2D matrix, where Cin, Cout, kh, kw
refer the weight dimension of a convolutional layer, including

#output, #input channel, kernel height and width, respectively.

With the development of deep learning in recent years, DNNs

grow into more complex and larger structures, the size of one

filter Cin × kh× kw usually is too large to be mapped into a

single crossbar column. A general solution is to further partition

and then map one filter into multiple columns.

In this work, the proposed method mainly includes two types

of learnable parameters: the new learned weights for current

task, and the binary mask for the preserved weights of previous

tasks motivated by our prior work [8]. Based on the analysis

above, we define both the binary mask and the sparsity pattern

of new weights in column-wise. For the column-wise mask, we

represent mask as G× kh× kw to make it consistent with the

size of a crossbar column, where the group G ∈ {1, Cin}. By

doing so, a single mask value can control the entire column

of a crossbar array, which improves the computation efficiency

significantly compared to element-wise mask. Similarly, for the

new learned weight, we define the weight sparsity size as G×
kh× kw. By doing so, only part of weights, where are not all

zeros values, need to perform the energy-hungry programming

to the corresponding columns without affecting other columns.

B. Column-wise Sparse Continual learning

As shown in Fig. 2(a), the proposed sparse continual learning

algorithm adapts the sparse training method (Fig. 2(d)) to

learn a small fraction of task-specific weights for each task.

Meanwhile, to adapt the preserved model for previous tasks to

current task, XST also leverages the selective masking method

to learn a binary mask on the preserved model. In the following,

we present our method in the sequential-task manner:

Learning Task 1: Similar to sparse train a network model

for a single dataset from scratch, given the first task, we first

randomly initialize a certain sparsity s1 of the weights, but

in column-wise. Then, the drop-and-grow mechanism [9] is

adapted as mentioned in Section II-B to learn a small fraction

of the weights 1 − s. After training, the current model will

serve as the preserved model for next task. Note that, as the

difficulty of the training from scratch, we leverage a smaller

sparsity ratio to train the task 1 (i.e., 0.7 in our experiments).

Learning Tasks 2, ..., T: Given a network with a pre-

define model size, to guarantee new weights can be learnt for

Design, Automation and Test in Europe Conference (DATE 2022) 49

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:40:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of the proposed XST. (a) The training workflow. (b) The inference workflow. (c) The column-wise ReRAM

crossbar weight mapping. (d) Sparse training technique.

each task, we uniformly assign the same sparsity ratio si =
(1 − si)/(T − 1). Assume that in task ti, the model that can

handle task 1 to ti−1 has been built as a preserved model. We

adapt two techniques to learn the model for task ti:

1) Sparse learning on new weights. To learn the weights

for current task ti, we adapt the drop-and-grow strategy,

meanwhile freezing the weights of previous tasks.

2) Selective masking on preserved weights. We apply a

learnable column-wise mask to the preserved model, so

as to select the important weights for current task. Note

that, these two techniques are independent and hence can

be jointly optimized in the same training process.

C. Column-wise Selective Masking

To learn the binary mask, we leverage the Gumbel-Sigmoid

trick, inspired by Gumbel-Softmax [10] that performs a differ-

ential sampling to approximate a categorical random variable.

Since sigmoid can be viewed as a special two-class case of

softmax, we define p(·) using the Gumbel-Sigmoid trick as:

p(mr) =
exp((logπ0 + g0)/T)

exp((logπ0 + g0)/T) + exp((g1)/T)
, (1)

where π0 represents σ(mr). g0 and g1 are samples from

Gumbel distribution. The temperature T is a hyper-parameter

to adjust the range of input values, where choosing a larger

value could avoid gradient vanishing during back-propagation.

Note that the output of p(mr) becomes closer to a Bernoulli

sample as T is closer to 0. We can further simplify Eq. (1) as:

p(mr) =
1

1 + exp(−(logπ0 + g0 − g1)/T)
(2)

Benefiting from the differential property of Eq. (2), the real-

value mr can be embedded with gradient back-propagation

training. To represent p(mr) as binary format mb, we use a

hard threshold (i.e., 0.5) during forward-propagation of training.

Because most values in the distribution of p(mr) will move

towards either 0 or 1 during training, generating the binary

mask by p(mr) (instead of the real-value mask mr directly)

could have more accurate decision, resulting in better accuracy.

IV. EVALUATION

Similar to the prior works, we adopt the CIFAT-100 dataset

and divide the dataset into 20 superclasses(equal to 20 tasks),

each superclass contains 5 sub-classes. Each sub-classes has

2500 training images, and 500 tesing images. We employed

VGG16 with batch normalization layers and expanded the

model to 1.5×. All the 20 tasks have been trained and tested

sequentially. Each task has been trained 100 epochs.

A. Algorithm Evaluation
Table I shows the classification accuracy of CPG,

XST (Element-wise), and XST (Column-wise) where the quan-

tization method is adopted from [11]. We choose the group size

G = 8 in the experiment. Although CPG and XST both are

using the mask to select important exist weights and growing

new weights. Benefit from the Gumbel-sigmoid trick and

efficient sparse learning, XST shows higher accuracy than the

CPG under the same setup. CPG first tries to explore the whole

available weight, then prunes the weight while maintaining

similar accuracy. XST not only has the weight drop but also

has the weight grow mechanism to more accurately find the

most critical weights. Therefore, XST has higher flexibility to

tune the weights and better estimate gradient to generate binary

masks, resulting in performance improvement. Even column-

wise XST only has 0.51%(floating number) accuracy drop

than CPG. Our proposed XST also shows strong robustness

to quantization. With 4-bit quantization, CPG drops more than

6% accuracy while XST only has 1.56% and 0.72% accuracy

degradation for element-wise and column-wise, respectively.

Comparing with the floating number CPG, even the 4-bit

quantized column-wise XST shows competitive performance.

Fig. 3 shows the training time comparison for each task.

Although XST has more complex grow and drop steps, thanks

to the efficient sparse learning that significantly reduces the

training effort. Unlike CPG, XST does not require the most

time-consuming part, gradually pruning. Therefore, on average,

to achieve the accuracy in Table I, CPG takes ∼5.59× more

time than XST. Due to the column mask sharing, XST’s mask

size is only 1
72 of CPG, which leads to an easier and more

efficient hardware design.

B. Hardware Evaluation
We implement our XST and other competitor methods on

the same hardware platform. We use the circuit level simula-

tor NeuroSim [12] for hardware performance evaluation with

different schemes. The 4-bit quantized VGG-16-1.5× is imple-

mented based on 2-bit per cell HfO2 1T1R ReRAM devices,

characterized from [13] and projected to 32nm CMOS node.

Table II summarizes the detailed ReRAM array characteristics

and total area consumption. Each ReRAM column is connected

50 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:40:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Continual Learning Accuracy

Method
Task

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 AVG

4-bit
Quantization

Ours(Element-wise) 67.6 77.6 76.8 80.4 85.6 86.6 82.8 85 86 90 89.2 84.4 89.8 83.4 54.6 76.4 73 73.6 87.8 94.4 81.25
Ours(Column-wise) 66.6 78.6 78.2 79.8 86.2 83.2 80.8 85.2 85.2 89.6 88 79.6 84.4 81.4 52 72.4 67.4 73.2 88 93.6 79.67
CPG(Element-wise) 59.4 74.4 73.8 75 81.8 80.2 80.4 82 77 82.4 78.2 79.8 80.8 71.6 44.4 64 63.4 68 85.2 92.6 74.72

Floating
number

Our(Element-wise) 65.6 78.8 78.4 81.6 86.4 86 84 86.8 85.4 89.4 90 86.2 89.4 83.6 57.2 76 73.4 74.4 91 94.8 81.92
Our(Column-wise) 66.2 77.6 78.4 82.4 86.8 85.6 81.4 82.8 83.8 89 89.2 82.8 86.2 81.6 55 73.2 68.8 74.2 89 93.8 80.39
CPG(Element-wise) 65.2 76.6 79.8 81.4 86.6 84.8 83.4 85 87.2 89.2 90.8 82.4 85.6 85.2 53.2 74.4 70 73.4 88.8 94.8 80.9

����

���� ���� ����

���� ���	

����

��
�
���� ����

���

���

����
����

��	� ���� ��	�

��
� ����

�
�

�� �	 �� �� �� �� �
 �� �� ��� ��� ��	 ��� ��� ��� ��� ��
 ��� ��� �	�

�

	

�

�

�

��

�
�
�
�
��
��

�
�
�

Fig. 3: Training time comparison

TABLE II: Hardware specification
RRAM Sub-Array

Components Area (μm2) Energy (pJ)
Memory Array (72× 72) 84.93

Switch Matrix (WL and SL) 457.3 1.1
SAR ADC (5-bit) 8,409.3 8.3
Shift-Add-Input 1,412.9 6.8

Shift-Add-Weight (2 col use 1) 825.8 1.0
Mask Buffer (72× 1) 190.4 0.003/bit/access

Total 11,380.2 17.2

Peripheral Circuits
1 stage AdderTree (128 units) 2,510.3 4.4
2 stage AdderTree (128 units) 7,740.1 13.7
3 stage AdderTree (128 units) 18,408.8 32.6

Global Buffer (96× 32× 32× 4) 1,039,596 0.003/bit/access
ReLU (128 units) 939.5 0.9

to a 5-bit successive approximation register (SAR) analog-to-

digital converter (ADC). To avoid frequent off-chip memory

access, we choose the global buffer as the same size of the

largest feature map during the inference process.

Performing the inference with the CPG learning requires

all the ReRAM columns to stay ON for all the sub-tasks.

Therefore, the inference energy consumption per task is iden-

tical after fine-tuning or CPG [1] learning. On the other hand,

the proposed algorithm updates the weight and mask in a

column-wise fashion for different sub-tasks. Compared to CPG

learning, the proposed XST learning will only use part of

the ReRAM sub-array for each task. Therefore, the inference

energy consumption will be reduced. XST can achieve ∼2.8×
inference energy reduction for the early learning tasks.

Another major hardware disadvantage induced by CPG

learning is the element-wise reprogramming and resetting.

We quantified the energy consumption based on the writing

voltage, writing pulses, and conductance level changes [13],

[14]. As shown in Figure 4, the element-wise reprogramming

and resetting of the CPG learning [1] lead to inconsistent

and massive energy consumption during the entire continual

learning phase (T2 to T20). The proposed XST resets the

weights by turning off the corresponding ReRAM columns.

As a result, the hardware resetting cost of the XST becomes

zero. During the continual learning process, XST replenishes

the weights in a group-wise manner, corresponding to the con-

sistent reprogramming cost of the ReRAM columns. Compared

to the CPG learning, the XST-trained model achieves 2.5×
reprogramming energy reduction along sub-tasks.

V. CONCLUSION

In summary, we propose XST, a hardware-friendly cross-

bar column-wise sparse learning method to efficiently deploy

�� �� �� �� �� �� �� �	 �
� �

 �
� �
� �
� �
� �
� �
� �
� �
	 ���

���
��

���
��

���
��

���
��

���
��

��
��

�
��

��
�
��
�
	

	�
��
��
	

�
��
�
�	
��
��

�����������	
�� �������
�
��� ����������������

Fig. 4: Energy consumption of the reprogramming and resetting

continual learning to ReRAM crossbar based neural network

accelerator with the consideration of hardware cost. Comparing

with CPG, our XST shows 4.95% accuracy improvement,

∼5.59X training speedup, 1.5× inference energy saving, and

1.8X× re-programming energy saving on CIFAR-100 dataset

with VGG16-BN(1.5×) model.

ACKNOWLEDGMENT
This work is supported in part by the National Science Foun-

dation under Grant No.2003749, No.1931871, No. 2144751

REFERENCES

[1] S. C. Y. Hung et al., “Compacting, picking and growing for unforgetting
continual learning,” 2019.

[2] J. Yoon et al., “Lifelong learning with dynamically expandable networks,”
arXiv preprint arXiv:1708.01547, 2017.

[3] A. Mallya et al., “Piggyback: Adapting a single network to multiple tasks
by learning to mask weights,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 67–82.

[4] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pp. 14–26.

[5] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), 2016, pp. 27–39.

[6] L. Song et al., “Pipelayer: A pipelined reram-based accelerator for deep
learning,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 541–552.

[7] M. Hu et al., “Dot-product engine for neuromorphic computing: Program-
ming 1t1m crossbar to accelerate matrix-vector multiplication,” in 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2016, pp. 1–6.

[8] F. Zhang et al., “Xbm: A crossbar column-wise binary mask learning
method for efficient multiple task adaption,” in 2022 27th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 2022.

[9] U. Evci et al., “Rigging the lottery: Making all tickets winners,” in
International Conference on Machine Learning. PMLR, 2020.

[10] E. Jang et al., “Categorical reparameterization with gumbel-softmax.”
[11] Y. Li et al., “Additive powers-of-two quantization: An efficient non-

uniform discretization for neural networks,” in International Conference
on Learning Representations, 2020.

[12] X. Peng et al., “DNN+NeuroSim: An end-to-end benchmarking frame-
work for compute-in-memory accelerators with versatile device technolo-
gies,” in IEEE International Electron Devices Meeting (IEDM), 2019.

[13] W. Wu et al., “A methodology to improve linearity of analog RRAM
for neuromorphic computing,” in IEEE Symposium on VLSI Technology,
2018, pp. 103–104.

[14] P.-Y. Chen et al., “Neurosim: A circuit-level macro model for benchmark-
ing neuro-inspired architectures in online learning,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 12, pp. 3067–3080, 2018.

Design, Automation and Test in Europe Conference (DATE 2022) 51

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:40:49 UTC from IEEE Xplore. Restrictions apply.

