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SUMMARY
Themetabolic activities ofmicrobial communities play a defining role in the evolution andpersistence of life on
Earth, driving redox reactions that give rise to global biogeochemical cycles.Communitymetabolismemerges
from a hierarchy of processes, including gene expression, ecological interactions, and environmental factors.
In wild communities, gene content is correlated with environmental context, but predicting metabolite dy-
namics from genomes remains elusive. Here, we show, for the process of denitrification, that metabolite dy-
namics of a community are predictable from the genes each member of the community possesses. A simple
linear regression reveals a sparse and generalizable mapping from gene content to metabolite dynamics for
genomicallydiversebacteria.Aconsumer-resourcemodel correctlypredictscommunitymetabolitedynamics
from single-strain phenotypes. Our results demonstrate that the conserved impacts of metabolic genes can
predict communitymetabolite dynamics, enabling the prediction ofmetabolite dynamics frommetagenomes,
designing denitrifying communities, and discovering how genome evolution impacts metabolism.
INTRODUCTION

Themetabolism of microbial communities plays an essential role

in sustaining life on Earth, impacting global nutrient cycles (Fal-

kowski et al., 2008; Canfield et al., 2010; Stein and Klotz,

2016), wastewater treatment (Lu et al., 2014), and human health

(Subramanian et al., 2014). A challenge in microbial ecology is

understanding how community metabolism is determined by

the taxa present, their metabolic traits, and the genes they

possess (Widder et al., 2016; Louca et al., 2018). Addressing

this challenge requires mapping the genotypes of each commu-

nity member to its metabolic traits and then deciphering how

complex interactions between each member impact the flux of

metabolites through the community. Complicating the prediction

of metabolite fluxes from community composition, interactions

can depend on extracellular metabolites (Lilja and Johnson,

2016), abiotic factors (Ward et al., 2006), cooperation (Cordero

et al., 2012), and higher-order effects (Sanchez-Gorostiaga

et al., 2019; Mickalide and Kuehn, 2019). Despite these chal-

lenges, connecting genomic structure to the collective meta-

bolism of a community is important for functionally interpreting

community gene content (Anantharaman et al., 2016), designing

synthetic communities (Shou et al., 2007), and understanding

how gene gain and loss (Molina and Nimwegen, 2009; Sela

et al., 2019) impact community metabolism.
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Recent work suggests that the genes present in a community

may bemore informative aboutmetabolic activity than the identity

of strains or species making up the community. Sequencing

studies of environmental and host-associated communities

show that, while the individual strains or species present are often

highly variable (Louca et al., 2018), the genes or pathways present

are often observed to be stable across communities in similar

environments (Louca et al., 2018; Human Microbiome Project

Consortium, 2012). For example, aquatic communities native to

bromeliads contain prokaryotes from several functional groups

(e.g., methanogens, fermenters, and photoautotrophs). The strain

or species representing each functional group varies widely from

oneplant to the next, but the relativeabundanceof each functional

group is remarkably stable across plants (Louca et al., 2016a).

Similarly, studies in oceans and soils thatmeasure both gene con-

tent and nutrient levels have found that the relative abundances of

specific metabolic genes are better predictors of nutrient levels

than the abundances of specific taxa (Jones and Hallin, 2010; Fi-

erer et al., 2012; Louca et al., 2016b). These results suggest that

the availability of nutrients, such as organic carbon, oxygen, ni-

trate, carbon dioxide, and light, constrain the composition of the

community in termsof theabundancesofspecificmetaboliccapa-

bilities more so than they constrain the taxa possessing those ca-

pabilities. One implication of this finding is that communities with

similar genomic composition, in terms of the metabolic pathways
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Figure 1. Workflow for predicting community

metabolite dynamics from genomic structure
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they possess, might exhibit similar rates and productivity of the

associated metabolic process, but any such correspondence is

yet to be demonstrated.

Corroborating the idea that nutrient availability strongly deter-

mines community composition, experiments in fixednutrient con-

ditions have shown that the metabolic traits of bacterial strains in

assembled communities can be highly reproducible. To show

this, several groups have sampled complex communities from

natural environmentsandgrown themunder definednutrient con-

ditions in the laboratory (Datta et al., 2016; Goldford et al., 2018).

Using this approach, Datta et al. showed that marine microbial

communities degrading polysaccharide particles exhibit a suc-

cession of bacterial taxa (Datta et al., 2016). Succession on these

particles arises from initial colonizers that cleave polysaccha-

rides, followed by strains that compete for the resulting oligosac-

charides or consume byproducts of sugar metabolism. Similarly,

bacterial communities sampled from leaf surfaces and enriched

in glucose minimal medium reproducibly yield communities
comprising both consumers of glucose

and consumers of glucose metabolic by-

products (Goldford et al., 2018).

Although the traits of organisms in an

assembled community appear to be

strongly influenced by the available nutri-

ents, quantitatively relating genomic struc-

ture to the rates and productivity of meta-

bolic processes at the community level

remains a challenge. Phenotyping mutants

of model organisms has done much to un-

cover themolecular basis of specificmeta-

bolic processes such as denitrification

(Zumft, 1997). However, it is unclear how

to use a detailed molecular characteriza-

tion of metabolism in a few model organ-

isms to understand the metabolic traits of

organisms in natural communities that

possess high levels of genomic diversity

(Sakoparnig et al., 2021). Additionally, we

lack an understanding of how this genomic

diversity drives variation in metabolic traits

and how phenotypes of individual taxa

combine to give rise to metabolite fluxes

through a community.

Here, we address the challenge of map-

ping gene content to metabolite dynamics

by quantifying the flux of metabolites in an

ensemble of genomically diverse commu-

nities composed of non-model organisms

(see Figure 1 for a summary of the

approach). We used bacterial denitrifica-

tion, an essential metabolic process in the

global nitrogen cycle that is performed by

diverse and culturable bacterial taxa
(Lycus et al., 2017), as a model metabolic process. We isolated

an ensemble of denitrifiers andmeasured the dynamics ofmetab-

olite consumptionandproduction for each isolateundercontrolled

conditions. We then parameterized metabolite dynamics using a

consumer-resourcemodel. Thegenomicdiversityof theensemble

of isolates enabled a simple linear regression approach to map-

ping gene content to consumer-resource model parameters,

which resulted in a sparse and generalizable mapping of gene

presence and absence tometabolic phenotypes. Finally, the con-

sumer-resource model captured interactions between strains

mediated by resource competition, yielding predictions for com-

munity-level metabolite dynamics that we verified experimentally.

RESULTS

Denitrification as a model metabolic process
We used denitrification as a model metabolic process because it

is performed by diverse bacterial taxa, it is well characterized at
Cell 185, 530–546, February 3, 2022 531



Figure 2. Denitrification as a model meta-

bolic process

(A) Denitrification is a formof anaerobic respiration

whereby oxidized nitrogen compounds are used

as electron acceptors. The process results in a

cascade of reactions from nitrate ðNO�
3 Þ to di-ni-

trogen ðN2Þ. Some bacteria perform all four steps

in the cascade (purple, ‘‘Nar/Nir’’), whereas others

perform only a subset of reactions. Two examples

of the latter are shown here: ‘‘Nar’’ strains (blue)

perform only nitrate reduction, and ‘‘Nir’’ strains

(red) perform nitrite ðNO�
2 Þ reduction and poten-

tially also subsequent steps (dashed lines).

(B) A schematic representation of the molecular

steps in the denitrification process. Denitrification serves as the terminal step in the electron transport chain (not shown) and, thereby, contributes to ATP

generation. Reduction of nitrate to nitrite takes place either in the cytoplasm (via the enzyme Nar) or in the periplasm (Nap). Nitrate reduction in the cytoplasm via

Nar requires nitrate and nitrite to be transported across the inner membrane (NarK1, NarK2, and NarK1K2). The subsequent three steps all occur in the periplasm

and are encoded by the reductases Nir, Nor, and Nos as shown. There are two functionally equivalent types of Nir and Nor reductases: NirK/NirS and qNor/cNor,

respectively.
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the molecular level, and the relevant metabolites are readily

quantifiable (Zumft, 1997). Because denitrifiers are easily iso-

lated and cultured (Lycus et al., 2017), we can capture substan-

tial genomic diversity in an ensemble of natural isolates.

Denitrification is a form of anaerobic respiration whereby mi-

crobes use oxidized nitrogen compounds as electron acceptors,

driving a cascadeof four successive reduction reactions, NO�
3 /

NO�
2 /NO/N2O/N2 (Zumft, 1997) (Figure 2A). As a biogeo-

chemical process, denitrification is essential to nitrogen cycling

at a global scale through activity in soils, freshwater systems,

and marine environments (Seitzinger et al., 2006). In addition,

denitrification impacts human health through activity in waste-

water treatment plants (Lu et al., 2014) and in the human gut (Irra-

zábal et al., 2014). The process is performed by taxonomically

diverse bacteria (Graf et al., 2014) that are typically facultative an-

aerobes. The denitrification pathway is known to be modular,

with some strains performing all four steps in the cascade and

others performing one or a nearly arbitrary subset of reduction re-

actions (Lycus et al., 2017) (Figure 2A). Denitrification in nature is,

therefore, a collective process, wherein a given strain can pro-

duce electron acceptors that can be utilized by other strains (Lilja

and Johnson, 2016).

Denitrification is well understood at the molecular level. The

process couples the reduction of oxidized nitrogen compounds

to the electron transport chain and, therefore, ATP production.

The enzymes (reductases) that perform each step in the cascade

are shown in Figure 2B. Reduction of nitrate to nitrite can occur

either in the cytoplasm, by the Nar reductase, or the periplasm,

using Nap. Inner membrane NarK transporters (NarK1, NarK2,

and NarK1K2) facilitate the exchange of nitrate and nitrite be-

tween the cytoplasm and the periplasm. The remaining three re-

actions all occur exclusively in the periplasmic space (Figure 2B).

The regulatory elements that control the expression of denitrifi-

cation genes are also well characterized and include two-

component systems that sense the oxidized nitrogen com-

pounds and regulators that detect the loss of oxygen from the

environment (Zumft, 1997; Rodionov et al., 2005). Because

most of these reactions occur in the periplasm, substrates can

readily leak into the surrounding environment, enabling cross-

feeding between denitrifiers (Lilja and Johnson, 2016).
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We focused experimentally on the first two steps of denitrifica-

tion: the conversion of nitrate ðNO�
3 Þ to nitrite ðNO�

2 Þ and subse-

quently nitric oxide (NO) (Figure 2A). Nitrate and nitrite are

soluble, enabling high-throughput measurements of metabolite

dynamics (Miranda et al., 2001). To obtain a genomically diverse

ensemble of non-model organisms, we isolated 78 bacterial

strains spanning a-, b-, and g-proteobacteria from local soils us-

ing established techniques (Tables S1–S3; STAR Methods).

Each strain was obtained in axenic culture and was character-

ized as performing one or both of the first two steps of denitrifi-

cation. Therefore, strains were classified into one of three

possible phenotypes (Figures 2A and 3A): (1) Nar/Nir strains

that perform both nitrate and nitrite reduction (NO�
3 / NO�

2 /

NO), (2) Nar strains that perform only nitrate reduction (NO�
3 /

NO�
2 ), and (3) Nir strains that perform only nitrite reduction

(NO�
2 / NO). In addition to these 78 isolates, our strain library

also included the model denitrifier Paracoccus denitrificans

(ATCC 19367).

Parameterizing metabolite dynamics
We first set out to quantify the metabolic phenotypes of each

isolate in our diverse strain library (Step 1, Figure 1). We focused

our efforts on quantifying the dynamics of the relevant metabo-

lites, nitrate and nitrite. To accomplish this, strains were inocu-

lated at low starting densities into 96-well plates containing a

chemically defined, electron-acceptor-limited medium contain-

ing succinate as the sole non-fermentable carbon source (succi-

nate-defined medium, SDM; Table S4; STAR Methods), with

either nitrate or nitrite provided as the sole electron acceptor.

Cultures were then incubated under anaerobic conditions

(STARMethods). Small samples (10 mL) were taken at logarithmi-

cally spaced time intervals over a period of 64 h and assayed for

nitrate and nitrite concentrations (STAR Methods). At the end of

the time course, optical density was assayed. The measurement

resulted in a time series of nitrate and nitrite production/con-

sumption dynamics in batch culture (points, Figure 3A). Contam-

ination between wells using this culturing and sampling

approach was assessed to be low (STAR Methods).

To parameterize the metabolite dynamics of each strain within

a common framework, we utilized a consumer-resource model,



Figure 3. Quantifying nitrate and nitrite dynamics in an ensemble of denitrifiers to map genomic structure to community metabolism

(A) Example batch culture metabolite dynamics for Nar/Nir (purple), Nar (blue), and Nir (red) isolates. Nitrate (NO�
3 , blue points) and nitrite (NO�

2 , red points)

dynamics are measured at logarithmically spaced intervals (circles) via sampling and colorimetric assay (STAR Methods), with ± 5% error bars shown. Biomass

densities are only measured at the final time point. Curves show fits to a consumer-resource model shown in (B).

(B) A consumer-resource model of nitrate and nitrite reduction by each strain describes the evolution of biomass density (x, OD), nitrate concentration (A, mM),

and nitrite concentration (I, mM) with time. Themodel is parameterized by reduction rates rA and rI (mM/OD/h), and yields gA and gI (OD/mM), for growth on nitrate

and nitrite, respectively. The affinity parameters KA and KI (mM) were not well constrained by the data and were fixed for all strains in the library (STARMethods).

(C) Phylogenetic tree and normalized consumer-resource parameters for 79 denitrifying strains (78 isolates and the model denitrifier Paracoccus denitrificans).

The strain library comprised 51 Nar/Nir, 24 Nar, and 4 Nir strains. Consumer-resource parameters were measured in a succinate-defined medium (SDM).

Phylogenetic tree constructed using the 16S rRNA gene, and scale bar represents the estimated number of substitutions per site. Darker colors indicate larger

values of the normalized parameters. Nitrate and nitrite reduction parameters were not measured for Nir and Nar strains, respectively. Consumer-resource

parameters measured across diverse isolates constituted a dataset for relating genomic diversity to metabolite dynamics. See also Figure S1 and Tables S1–S5.
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which explicitly relates the growth of each strain to the dynamics

of metabolite production and consumption (Figure 3B; Equation

3; STAR Methods). The model contains up to six parameters:

rates (r�, mM/OD/h), biomass yields (g�, OD/mM), and affinities

(K�, mM), for the substrates nitrate (A) and nitrite (I). For each

strain in monoculture, we parameterized the consumer-resource

model using measured denitrification dynamics across a range

of initial biomass densities and nitrate/nitrite concentrations (Fig-

ures 3A and S1A–S1E; STARMethods). These data allowed us to

quantify rates ðr�Þ and biomass yields ðg�Þ but not the affinity pa-
rameters ðK�Þ, which require measuring growth rates at very low

substrate concentrations. Because the results of parameter fits

were not sensitive to the values of K� across a broad range (Fig-

ures S1F–S1I; STARMethods), we fixed the affinity parameter to

a small constant value. Therefore, we captured the phenotype of

each strain in the library using at most four parameters: rA, rI, gA,

and gI (the models for Nar and Nir strains correspond to setting

rI;gI = 0 or rA;gA = 0, respectively). Yields ðg�Þ were inferred us-

ing optical density measurements at t = 64 h, and rates ðr�Þwere

inferred by fitting the observed nitrate and nitrite dynamics to the
Cell 185, 530–546, February 3, 2022 533
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consumer-resource model (Figure 3B). For themajority of strains

in our library (62 out of 79), a single set of parameters quantita-

tively described metabolite dynamics across a range of initial

biomass densities and nitrate/nitrite concentrations. The con-

sumer-resource model captured metabolite dynamics over a

restricted set of initial conditions for the remaining 17 strains (Fig-

ures S1J–S1L; Table S5; STARMethods). Using a representative

subset of four strains, we confirmed that biomass density dy-

namics were well predicted by the consumer-resource parame-

ters, despite the fact that biomass density was not directly

measured over time (Figure S1M; STAR Methods).

Fitting our consumer-resource model to data for each strain

yieldedaquantitative descriptionof themetabolic traits (i.e., deni-

trification rates and yields) of each strain in the library (Figure 3C).

We observed large variability between taxa, with coefficients of

variation for rate constants (rA, rI) around 70% and yields (gA, gI)

around 100%. We also observed some patterns of phylogenetic

conservation, for example, a-proteobacteria produced generally

higher yields than b- org-proteobacteria did, and a clade ofPseu-

domonas sp. isolates showed consistently higher rates of nitrite

reduction thanmost other strains (PDM17-23, Figure 3C). Despite

thesepatterns, theprevalenceof eachof the threequalitativephe-

notypes is not strongly dependent on phylogeny, with each pre-

sent across the tree (Figure 3C). The latter observation is consis-

tent with pervasive horizontal gene transfer of denitrifying

enzymes (Heylen et al., 2006; Jones et al., 2008). Finally, neither

did we observe a correlation between rates and yields, nor was

there an obvious bound on these parameters, suggesting that

they are not subjected to a trade-off.

Predicting metabolite dynamics from genomes
Understanding how genomic variation impacts metabolite dy-

namics at the community level requires first learning how

genomic variation impacts the metabolic traits of individual

strains. Therefore, we sought to determine how genomic varia-

tion across the strains in our library is related to variation in deni-

trification rates and yields (Figure 3C). One common approach to

the problem of relating genomes to metabolite dynamics is

constraint-based modeling. Constraint-based models infer the

set of all metabolic reactions performed by an organism from

an annotated genome, and then predict growth rates andmetab-

olite fluxes, assuming the metabolic network is in steady state

and is subject to biologically motivated constraints (Orth et al.,

2010). Constraint-based methods have found some success in

predicting collective metabolism from genomes (Klitgord and

Segrè, 2010; Mori et al., 2016; Harcombe et al., 2014), but these

methods require significant manual refinement (Norsigian et al.,

2020), complicating the prospect of making predictions from

the genomes of non-model organisms. As a result, successfully

constructing constraint-based models of denitrification for all

strains in our library is a daunting task.

We took an alternative approach to the problem of mapping

genomes to metabolite dynamics. We asked whether the varia-

tion in metabolic phenotypes across strains in our library can be

quantitatively predicted simply from knowledge of the genes

possessed by each strain. Our conjecture was motivated by

two observations. First the metabolic traits of bacteria correlate

strongly with environmental variables in marine microbial com-
534 Cell 185, 530–546, February 3, 2022
munities (Louca et al., 2016a). For example, the relative abun-

dance of taxa capable of nitrate reduction are strongly correlated

with local temperature, phosphate, and nitrate levels, suggesting

that the presence of genes responsible for those traits might also

be predictable from nutrient levels and temperature. Second, the

statistics of gene presence and absence across large numbers

of sequenced genomes provides insights into the functional

roles that genes play in pathways, such as the coupling between

dihydrofolate reductase and thymidylate synthase activity in the

folate metabolism pathway (Schober et al., 2019). Together,

these observations suggest that the genes a strain possesses

could allow for predictions of metabolic traits. Therefore, rather

than building constraint-based metabolic models for all of our

strains, each of which would require significant manual refine-

ment, we took a simple regression approach.

We used linear regression to predict the consumer-resource

model parameters (Figure 3C) of each strain from gene presence

and absence (Step 2, Figure 1). To accomplish this, we performed

whole genomesequencingon all 79 strains in the library. Then,we

assembled and annotated each genome (STAR Methods) and

determined the complement of 17 denitrification-related genes

possessed by each strain (Table S6), exploiting the fact that the

molecular and genetic basis of denitrification is well understood

(Zumft, 1997). We identified not only the reductases that perform

the reduction of the oxidized nitrogen compounds but also the

sensors/regulators (Rodionov et al., 2005) and transporters

(Moir and Wood, 2001) known to be involved in denitrification

(STAR Methods). We intentionally excluded genes encoding

structural subunits and chaperones required for the functioning

of any reductase (Table S7) because such genes have the same

presence/absence pattern as the corresponding reductases

and, therefore, would have identical predictive power. The pres-

ence and absence the denitrification-related genes in each

genome are presented in Figure 4A. Patterns of gene presence

and absence agree well with known features of the denitrification

pathway, including the mutual exclusion (Pearson correlation

�1.0 among nitrite reducers) of the two reductases performing ni-

trite reduction, NirS and NirK (Jones et al., 2008; Jones and Hal-

lin, 2010).

Next, we showed that the presence and absence of denitrifica-

tion genes in each strain were sufficient to quantitatively predict

metabolite dynamics in monoculture. Specifically, we con-

structed a linear regression where the measured phenotypic

parameters of our consumer-resource model were predicted

on the basis of gene presence and absence (Figure 4B). Consis-

tent with the observation that bacterial genomes are streamlined

(Lynch, 2006), almost all strains possessing nitrate and/or nitrite

reductase performed the associated reactions in culture (the

only exception being the Nar strainAcidovorax sp. ACV01, which

possesses both nitrate and nitrite reductase, Figure 4A). There-

fore, we carried out independent regressions for each con-

sumer-resource model parameter using only strains that

performed the associated reaction (i.e., Nar and Nar/Nir strains

for the rA and gA regressions, and Nir and Nar/Nir strains for

the rI and gI regressions). The regression coefficients for each

gene quantify the impact of the presence of the gene on a given

phenotypic parameter. We used L1-regularized regression (least

absolute shrinkage and selection operator, LASSO) to avoid



Figure 4. A statistical mapping from gene presence and absence to metabolite dynamics of individual strains

(A) The presence and absence of genes in the denitrification pathway for the 79 denitrifying strains in our library. The color of each circle corresponds to the gene

function as indicated in the legend further on.

(B) Observed consumer-resource phenotypic parameters for each strain in SDM (e.g., nitrate reduction rate rA, Figure 3C) were linearly regressed against gene

presence and absence via L1-regularized regression, resulting in regression coefficients bj for each gene j, an intercept b0, and a noise term εi for each

observation i. Coefficient bj captures the impact of possessing gene j on the corresponding phenotypic parameter. Independent regressions were performed for

each phenotypic parameter.

(C–F) Predicted values of rA, gA, rI, and gI, respectively, plotted against measured values. The dashed line indicates perfect agreement between observations and

predictions. The in-sample coefficients of determination for these data ðR2
fitÞ and the out-of-sample coefficients of determination estimated via iterated 4-fold

cross-validation
�
R
2

CV

�
are shown. N indicates the number strains in each regression. Strains that do not perform a particular reaction were omitted from the

corresponding regression (e.g., Nir strains were excluded from the regression for rA).

(G–J) Estimates of b for each gene and b0 for rA, gA, rI, and gI, respectively. Asterisks indicate significance level for each b (*: p%0:05, **: p%10�2, ***: p% 10�3,

and ****: p%10�4; STAR Methods). See also Figure S2 and Tables S6 and S7.
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overfitting, performing independent regressions for each of the

phenotypic parameters in our consumer-resource model (Fig-

ures 4C–4J; STAR Methods). By design, LASSO searches for a

level of sparsity that optimizes predictive power, often selecting

a few variables to make predictions while forcing other coeffi-
cients (bj) to zero. The result can then be a sparse model that

makes predictions using a handful of variables. It is important

to note that LASSO does not first presume that a few variables

are sufficient to make a prediction (in contrast to forward step-

wise and best subset regression approaches). In the situation
Cell 185, 530–546, February 3, 2022 535
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where strong predictive power does not exist, e.g., a phenotypic

parameter cannot be predicted well from gene presence and

absence, LASSO would effectively fail to identify a predictive

model by returning bj = 0 for all genes (Fraebel et al., 2020).

Performing LASSO regressions on our dataset revealed that

the presence and absence of a small set of genes is highly pre-

dictive of the consumer-resource parameters for all strains in our

library (Figures 4C–4J). The in-sample coefficients of determina-

tion ðR2
fitÞ of our regressions were between 0.55 and 0.74 de-

pending on the phenotypic parameter. Crucially, our regression

approach generalized out-of-sample, as determined by iterated

4-fold cross-validation (13104 iterations; STAR Methods), albeit

with a slightly lower predictive power (R
2

CV between 0.36 and

0.56). Therefore, across a diverse set of natural isolates, knowl-

edge of the full complement of genes a denitrifying strain pos-

sesses is sufficient to accurately predict the rates and biomass

yields of that strain on nitrate and/or nitrite.

Validating regression approach to predicting traits from

gene presence and absence

Our regression approach leveraged biological knowledge of the

denitrification pathway to predict metabolite dynamics, in effect

presuming that denitrification gene content is the only significant

genomic feature for prediction. To investigate whether this

assumption is correct, we asked whether other genomic proper-

ties could better predict metabolite dynamics and also examined

the role that phylogenetic correlations played in our predictions.

First, we tested the predictive capability of sets of randomly

selected genes. To do this, we chose sets of 17 random genes

that were not strongly correlated with any denitrification genes

but retained the samemarginal frequency distribution in the pop-

ulation as the denitrification genes. We found that regressions

using these randomly selected genes had, on average, much

less predictive power than regressions using the denitrification

genes (Figures S2A–S2C; STAR Methods). We also tested

augmented sets of up to 2,048 predictors that were generated

by adding varying numbers of randomly selected genes to the

17 denitrification genes. We found that the prediction quality

changed remarkably little as more genes were added and that

even sets of 2,048 predictors (representing approximately

30%–50% of genes in each genome) contained about as much

predictive power as the regressions using the 17 denitrification

genes alone (Figure S2D; STAR Methods). This result indicates

that the 17 denitrification genes harbor themajority of gene pres-

ence and absence predictive power.

Second, we tested whether 16S rRNA copy number, genome

size, or GC-content improves the predictive ability of denitrifica-

tion gene presence/absence regressions. We tested these

genomic features because: (1) 16S rRNA copy number has

been observed to correlate positively with maximal growth rate

in nutrient-rich conditions (Roller et al., 2016; Li et al., 2019), (2)

smaller genomes are associated with faster growth (Lynch,

2006; Li et al., 2019), and (3) GC-content has been investigated

as a correlate for numerous bacterial phenotypes, such as

optimal growth temperature (Galtier and Lobry, 1997), and can

serve as a baseline for spurious phylogenetic correlations

because it is a slowly evolving genomic property that exhibits a

high degree of phylogenetic correlation (Haywood-Farmer and

Otto, 2003). We found that including these additional predictors
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in our regressions alongside the 17 denitrification genes did not

meaningfully improve predictive ability or alter the inferred coef-

ficients (STAR Methods). Thus, denitrification gene presence

and absence outperformed these coarse genomic features.

Third, we examined the role of correlations in consumer-

resource parameters between closely related strains in the suc-

cess of our regressions.We quantified the extent of phylogenetic

correlation in our 79-strain library by computing the autocorrela-

tion (Moran’s I) for each consumer-resource parameter as a

function of phylogenetic distance (STARMethods).We observed

that the rate parameter rA was correlated to a small degree

ðmaxðIÞ= 0:16 Þ over short a phylogenetic distance (16S distance

0.01), whereas the parameters gA, rI, and gI showed a modest

degree of correlation (maxðIÞ = 0:33, 0.27, and 0.48, respec-

tively) over relatively longer distances (16S distance 0.16, 0.06,

and 0.12, respectively). Pruning clades of closely related strains

(e.g., ENS01–08, PDM20–23, Figure 3C) from the dataset

decreased the correlation of gA, rI, and gI (maxðIÞ = 0:30, 0.21,

and 0.39, respectively; 16S distance 0.05, 0.06, and 0.09,

respectively) but had little impact on the correlation of rA. Thus,

some of the phylogenetic correlation is attributable to the over-

representation of close relatives. Finally, we showed that the

presence of these close relatives in our dataset did not skew

the results of our regressions. We performed regressions on

the pruned dataset (comprising 64 strains) and found that the

predictive power and regression coefficients were similar to

those for the full dataset (STAR Methods). From this, we

concluded that the over-representation of close relatives did

not have a large impact on the results of our regressions on

the consumer-resource parameters.

Generalizing the regression approach to an alternative

medium condition

Having mapped gene content to metabolite dynamics in a me-

dium with succinate supplied as the carbon source, we next

askedwhether our regression approachwould generalize to other

media conditions. Of the 79 strains in our library, 64 grew on a

defined medium with acetate supplied as the sole (non-ferment-

able) carbon source (acetate-defined medium, ADM; Table S1;

STAR Methods). We assayed nitrate and nitrite dynamics for the

64 strains in thismediumand inferred consumer-resourceparam-

eters. We observed that the consumer-resource parameters in

the SDM and ADM conditions were strongly correlated (Pearson

correlations 0.52–0.93, Figure 5A). Furthermore, LASSO regres-

sions to predict consumer-resourcemodel parametersmeasured

in ADM fromgenepresence andabsence achievedpredictive po-

wer similar to what we observed in SDM (STAR Methods). The

regression coefficients were correlated between nutrient condi-

tions (Figure 5B), suggesting that the impacts of genes on pheno-

types were conserved between conditions. We note, however,

that rates and yields in ADM were systematically lower relative

to SDM (Figure 5A), consistent with what has been observed pre-

viously for relative growth rates on these carbon sources (For-

chhammer and Lindahl, 1971; Hempfling and Mainzer, 1975).

Consequently, the magnitudes of regression coefficients were

generally smaller in ADM than in SDM (Figure 5B). This indicates

that, while conserved genotype to phenotype relationships may

generally underlie predictive power across different environments

andmediaconditions,predictions for aparticular environmentwill



Figure 5. Metabolite dynamics of individual strains are predictable from gene presence and absence in an alternate carbon source

All strains in the 79-strain library were screened for growth on an acetate-defined medium (ADM), and consumer-resource parameters were measured for the 64

strains that grew in this medium.

(A) Observed consumer-resource parameters on succinate-defined medium (SDM) are plotted against observed parameters on ADM. The dashed line indicates

perfect agreement between the values observed on SDM and ADM. The Pearson correlations between the observed values are shown, and p< 10�4 for all

correlations (permutation test).

(B) The consumer-resource parameters on ADM were regressed against gene presence and absence via L1-regularized linear regression. The resulting

regression coefficients, bADM, are plotted against the coefficients for regressions on parameters measured in SDM, bSDM (shown also in Figures 4G–4J). The

dashed line indicates perfect agreement between each pair of regression coefficients. Pearson correlations are shown, and p = 0:008, 0.01, < 10�4, and < 10�4

for rA, gA, rI, and gI, respectively (permutation test). The color of each point corresponds to the gene function, as indicated in the legend further on. See also

Table S1.
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be more accurate when trained using data measured in that

environment.

Mechanistic interpretation of regression coefficients

Why did gene presence and absence alone hold such strong

predictive power for metabolite dynamics, and why did the re-

gressions select specific genes in the denitrification pathway

as informative predictors? We propose that by characterizing

metabolic phenotypes in terms of rates and yields, we captured

the salient features of the metabolic process for each strain and

that this enabled the regressions to succeed by exploiting the

conserved correlations between the presence of specific genes

and metabolic phenotypes. In some cases, these correlations

appear to be related to the functional roles of specific genes in

the pathway.We found that, for some genes, the sign andmagni-

tude of the regression coefficients agree qualitatively with known

properties of the associated enzymes. For example, previous

comparisons between membrane-bound and periplasmic ni-

trate reductases (encoded by narG and napA, respectively; Fig-

ure 2B) in multiple bacterial strains showed that the membrane-

bound enzyme exhibits higher nitrate reduction activity in vitro

than the periplasmic enzyme (Stewart et al., 2002; Van Alst

et al., 2009; Ikeda et al., 2009; Bell et al., 1990; Warnecke-Eberz

and Friedrich, 1993). This accords with the large positive coeffi-

cient for narG in the nitrate reduction rate regression (Figure 4G).

Similarly, in the nitrite reduction rate regression, we observed a
large positive coefficient for the gene encoding the copper-

based nitrite reductase (nirK) (Figure 4I), which in previous

studies, showed markedly higher activity in vitro (Abraham

et al., 1993; Masuko et al., 1984; Iwasaki and Matsubara,

1972; Liu et al., 1986; Kakutani et al., 1981; Kukimoto et al.,

1994; Michalski and Nicholas, 1985; Sawada et al., 1978; Denar-

iaz et al., 1991) and in vivo (Glockner et al., 1993) compared with

the alternate nitrite reductase enzyme encoded by nirS (Zumft,

1997; Timkovich et al., 1982; Gordon et al., 2003; Besson

et al., 1995; Sawhney and Nicholas, 1978). Further, our regres-

sion coefficients showed larger contributions of narG versus

napA to yield on nitrate (Figure 4H) and, similarly, cnor versus

qnor to yield on nitrite (Figure 4J). Both of these observations

are consistent with the fact that the genes encoded by narG

and cnor contribute more to the proton motive force (and, there-

fore, to ATP generation) than their alternatives (napA and qnor,

respectively) do (Ferguson and Richardson, 2004). Finally, the

transporter encoded by the gene narK1K2 (Figure 2B) is a fusion

of the nitrate/H + symporter NarK1 and the nitrate/nitrite anti-

porter NarK2, the latter of which is crucial for exchanging nitrate

and nitrite between the cytoplasm and periplasm during denitri-

fication when the membrane-bound nitrate reductase is utilized.

In Paracoccus denitrificans, this fusion has been shown to have

substantially higher affinity for nitrate than NarK2 alone, resulting

in higher growth rates under denitrifying conditions (Goddard
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et al., 2008). This agrees with what we found in the nitrate and ni-

trite reduction rate regressions, in which we observed large pos-

itive contributions of narK1K2 (Figures 4G and 4I).

Taken together, these observations suggest that the regres-

sions exploited conserved correlations between gene presence

and metabolic traits that reflect knownmechanistic properties of

the denitrification pathway. It is important to note, however, that

for many nonzero coefficients in our regressions, notably those

corresponding to regulators, there is no clear mechanistic inter-

pretation. Further, given that our regressions were trained on

genomes of wild isolates and not on phenotypes of deletion mu-

tants, we do not expect that the regression can be reliably used

to predict mutant phenotypes. Instead, we expect that the re-

gressions exploited the tendency for strains possessing specific

genes to have specific traits on average (e.g., strains with NarG

tend to have high rA;gA). These correlations between the pres-

ence of specific genes and metabolic traits qualitatively agree

with the mechanistic details of some genes in the pathway, but

we do not expect the regression coefficients to make causal pre-

dictions about the loss of a single gene.

Implications of a statistical approach to mapping

genomic structure to metabolic traits

Our statistical approach took two important steps toward map-

ping genomic structure to metabolic dynamics at the single-

strain level. First, by making quantitative measurements in the

laboratory, we removed the confounding environmental factors

present in sequencing and metabolomic studies of natural com-

munities to reveal that gene content has a conserved impact on

dynamic metabolic phenotypes. Second, our results suggest

that a statistical approach could be used to discover the key

genomic features of pathways that determine other metabolic

phenotypes, complementing direct genetic investigation of

model organisms (Nichols et al., 2011). Finally, our predictions

of metabolic phenotypes from genomes apply across a range

of conditions and generalized well out-of-sample, suggesting

that this approach can predict metabolite dynamics in settings

for strains where only genome sequence data are available.

These insights were made possible by parameterizing metabolic

phenotypes across a genomically diverse strain library of non-

model organisms, thereby exploiting genomic variation to learn

the mapping from genotype to metabolic phenotypes.

Predicting metabolite dynamics in communities
Predicting community metabolite dynamics from genomic struc-

ture requires mapping single-strain phenotypes to collective

behavior. Previous studies have found some success in predict-

ing metabolite dynamics in consortia from knowledge of the

monoculture metabolite consumption dynamics (Erbilgin et al.,

2017; Medlock et al., 2018). These approaches used simple

assumptions, such as a fixed rate of metabolite production or

consumption for each strain (Medlock et al., 2018), rather than

a dynamic model of metabolites. To predict community metabo-

lite dynamics, we used the consumer-resource modeling

formalism that describes metabolite dynamics for each strain to

make quantitative predictions for metabolite dynamics in com-

munities of multiple strains (Step 3, Figure 1). Since the con-

sumer-resource parameters were sparsely encoded by the

genomes of each strain (Figure 4), predicting community metab-
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olite dynamics from the consumer-resource model would pro-

vide a mapping from gene content to community metabolism.

Therefore, we extended to our modeling formalism to N-strain

communities by adding the rate contributions of each strain to

the dynamics of nitrate and nitrite (Figure 6B; Equation 10;

STAR Methods). This ‘‘additive’’ model assumes that strains

interact only via cross-feeding and resource competition for

electron acceptors. This model also assumes that the rates

and yields on nitrate and nitrite for strains in pair culture are the

same as in monoculture. As a result, the model provides predic-

tions forN-strain community metabolite dynamics given the con-

sumer-resource model parameters for individual strains without

any free parameters.

To evaluate the ability of our consumer-resource model to

make predictions of metabolite dynamics in communities, we

used measured consumer-resource parameter values (Fig-

ure 3C) and not the values predicted by gene presence and

absence (Figures 4C–4F). This allowed us to disambiguate the

errors associated with the failure of the model to predict metab-

olite dynamics from the errors associated with predicting pheno-

typic parameters from genomes. However, as we subsequently

discuss, using consumer-resource model parameters predicted

from genomes has, at most, a modest impact on errors in our

predictions of community metabolite dynamics.

Predicting metabolite dynamics in two-strain

communities

We tested the ability of this approach to predict metabolite dy-

namics in all pair combinations of 12 strains from our library (4

Nar/Nir, 4 Nar, and 4 Nir). We assembled communities in 96-

well plates containing SDM, supplying either nitrate or nitrite

initially in two separate experimental conditions and then

sampled over a 64-h period to measure concentrations of nitrate

and nitrite (STARMethods). Remarkably, we found that the addi-

tive model accurately predicted the metabolic dynamics for

most 2-strain communities (Figures 6, S3A, and S3B) using

only the measured consumer-resource parameters for individual

strains. Specifically, the third column of Figure 6A shows the

zero-free-parameter predictions (curves) of denitrification dy-

namics in 2-strain communities, which agreed well with mea-

surements (points). The 2-strain community predictions include

non-trivial dynamics, such as a transient increase in nitrite for a

Nar/Nir + Nar community. In addition, we observed that the ad-

ditivemodel accurately predicted total endpoint optical densities

and community compositions (Figure S4; STAR Methods) in

most cases, indicating that the model generally captures strain

abundance dynamics in communities.

We quantified the quality of the additive model predictions for

metabolite dynamics by computing a normalized root-mean-

square error (NRMSE; see caption of Figure 6; Equation 12;

STAR Methods). We found that most 2-strain communities

have NRMSE between 0 and 2, indicating that our model suc-

cessfully predicted metabolite dynamics given only the

measured consumer-resource parameters for each strain. Pre-

dictions of metabolite dynamics in pair cultures were also accu-

rate when using consumer-resource parameters predicted from

genomes via regression (Figures S5A and S5B; STAR Methods).

Further, the success or failure of the model predictions de-

pended on the phenotypes of the strains present. The model



Figure 6. Metabolite dynamics in two-strain communities are predictable from monocultures

(A) Examples of pair culture dynamics for all combinations of the three denitrification phenotypes (Nar/Nir, purple; Nar, blue; Nir; red). The first two columns show

metabolite dynamics for each of two strains cultured individually. The third column shows themetabolite dynamics for pair cultures of the two strains (points) with

zero-free-parameter predictions using the consumer-resource model (curves, see model in B). All cultures were performed in SDM, and predictions were based

onmeasured monoculture consumer-resource parameters in SDM, not those inferred from genomes. Errors in pair culture predictions are shown in each panel in

the third column as quantified by the normalized root-mean-square error (NRMSE). For pair cultures, we defined NRMSEij = RMSEij=ððRMSE2
i +RMSE2

j Þ=2Þ
1=2

,

where RMSEij is the root-mean-square error between model predictions and observed metabolite concentrations of strains i and j in pair culture, and RMSEi and

RMSEj are the RMSEs of strains i and j in monoculture. NRMSE in the range 0–2 indicates errors in 2-strain communities that are within 2-fold of fits associated

with their constituent monocultures.

(B) AnN-strain consumer-resourcemodel (based on themodel in Figure 3B) was used to predict pair culture metabolite dynamics ðN = 2Þ. A and I are nitrate and

nitrite concentrations, respectively. xi denotes the biomass density of strain i with parameters riA, g
i
A, r

i
I , and gi

I, which were determined from monoculture ex-

periments (Figure 3C). The K� values were fixed at 0.01 mM for all strains.

(C) A matrix of NRMSE values quantifying the quality of model predictions for all pairs of 12 strains: 4 Nar/Nir, 4 Nar, and 4 Nir. NRMSE values are shown for

communities cultured in SDM with nitrate initially supplied, with the exception of Nir + Nir pairs for which nitrite was initially supplied. Only Nar + Nir communities

are poorly predicted by the consumer-resource model (permutation test, p<1310�5, Figures S3C and S3D). See also Figures S3–S6.
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successfully predicted 2-strain metabolite dynamics for most

combinations of phenotypes (e.g., Nar/Nir + Nar or Nar + Nar)

but failed only in the case where Nar strains were cultured with

Nir strains (Figures 6A, 6C, S3C, and S3D). The failure of our

model predictions in Nar + Nir communities followed the com-

mon pattern that the rate of nitrate reduction was slower than ex-

pected (bottom row, Figures 6A and S6). We speculate that this

failure of the model to predict metabolite dynamics in Nar + Nir

communities was caused by excretion of nitric oxide by the Nir

strain. Nitric oxide can be cytotoxic (Braun and Zumft, 1991),
which may explain slower rates of nitrate reduction for Nar

strains. For further exploration of this phenomenon, see the dis-

cussion section.

Predicting metabolite dynamics in larger communities

Next, we asked whether dynamical metabolic phenotypes

measured from monocultures could be used to predict metabo-

lite dynamics in 3–5-strain communities. We applied the additive

model to predicting the nitrate and nitrite dynamics in 81 combi-

nations of 3 strains, 21 combinations of 4 strains, and 6 combina-

tions of 5 strains from the 12-strain subset (STAR Methods). As
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Figure 7. Metabolite dynamics are predict-

able in 3–5-strain communities

The additive consumer-resource model provides

predictions for metabolite dynamics in commu-

nities of more than two strains, and these pre-

dictions were verified experimentally.

(A) Metabolite dynamics for an example 3-strain

(Nar/Nir + Nar/Nir + Nar) community cultured in

SDM. The first three panels show metabolite dy-

namics for each strain cultured individually, and

the fourth panel shows the metabolite dynamics of

the 3-strain community. Curves show the predic-

tion of the consumer-resource model (Figure 6B)

using measured values of consumer-resource

model parameters in SDM (not values inferred from

genomes).

(B) NRMSE (Equation 12; STAR Methods) values

quantifying quality of consumer-resource model

predictions for 3–5-strain communities cultured in

SDM with nitrate. Yellow symbols denote com-

munities that contain a Nar + Nir pair. Nar + Nir pair

culture dynamics were poorly predicted by the

model (Figure 6C) and resulted in a high NRMSE

for communities containing Nar + Nir pairs

(compare yellow and gray symbols). Left and right

scatterplots compare predictions from a con-

sumer-resource model using only monoculture

data to a coarse-graining approach that describes

Nar + Nir pairs as modules within the community

(described in C and D). The coarse-graining

approach improves the 3–5-strain community

predictions; mean NRMSE (black lines) decreases

when Nar + Nir pair information is used for pre-

diction (t-test, **** denotes p<10�4).

(C) Metabolite dynamics for an example Nar + Nir

pair cultured in SDM, where curves in the left panel

show the prediction of the consumer-resource

model using only parameters fit to monocultures, and curves in the right panel show the results of refitting the reduction rates (rA and rI) to Nar + Nir pair culture

data but leaving yields (gA and gI) fixed to monoculture values.

(D) Metabolite dynamics for a 3-strain community cultured in SDM containing a Nar/Nir strain and the Nar + Nir pair shown in (C). Curves in the left panel show the

prediction of the consumer-resource model using parameters inferred from monoculture experiments for each strain, and curves in the right panel show the

prediction when the Nar + Nir pair is treated as a module, with rate parameters refit from pair culture data (right panel in C). NRMSE decreased due to the coarse-

graining of the Nar + Nir pair. Panels highlighted in beige denote zero-free-parameter predictions. See also Figures S3 and S5–S7.

ll
Article
with pair cultures, 3–5-strain communities were cultured in SDM

with either nitrate or nitrite supplied initially in two separate exper-

imental conditions. In communities that did not contain aNar+Nir

pair (e.g., Figure 7A), we found that prediction accuracy was high

(gray symbols, Figures 7B and S3E). This again indicated that in

most combinations of phenotypes, community dynamics were

predictable from the consumer-resource parameters of each

strain in the community. However, in communities that contained

a Nar + Nir pair, predictions were relatively poor (yellow symbols,

Figures 7B and S3E), suggesting that interactions between Nar

and Nir phenotypes that were not captured in the additive model

were again driving low prediction accuracy. Finally, we note that

the additional error in community metabolite dynamics predic-

tions associated with predicting phenotypes from genomes

was typically modest (median increase in NRMSE z 0:5–1.4)

for 3–5-strain communities (Figure S5C; STAR Methods).

Correcting for interactions between Nar and Nir strains

To address the impact of interactions between Nar and Nir

strains not accounted for by our additive model in 3–5-strain
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communities, we took a coarse-graining approach. We asked

whether the metabolic contributions of Nar + Nir pairs could be

treated as modules within larger communities. To do this, we

re-fitted nitrate and nitrite reduction rates (rA, rI) to pair culture

data (cultured in SDMwith nitrate) for each Nar + Nir pair, leaving

yields fixed (Figures 7C and S7A; STAR Methods). This resulted

in effective nitrate and nitrite reduction rates (~rA, ~rI) for each Nar +

Nir pair. In every case, we observed that the re-fitted nitrate

reduction rates ~rA were lower than the monoculture nitrate

reduction rates (Figure S7B), demonstrating quantitatively that

Nar strains were consistently slowed by the presence of Nir

strains. This observation is consistent with the hypothesis of

excretion of cytotoxic nitric oxide by the Nir strain.

We then used the re-fitted rates for Nar +Nir pairs tomake pre-

dictions for communities (cultured in SDM with nitrate) that

included such pairs (e.g., Figure 7D). For communities that

included multiple Nar + Nir pairs, we developed a simple aver-

aging rule for determining the effective rates from the rates for

each Nar + Nir pair present (STAR Methods). For example, in a
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Nar + Nar + Nir community, there are two sets of Nar + Nir pair

interactions, with a different effective nitrite reduction rate ~rI
measured for the Nir strain in its interactions with the two Nar

strains. In this example, we would take the mean of these two

effective reduction rates as the value used for prediction. We

found that the metabolite dynamics in 3–5-strain communities

containing Nar + Nir pairs were quantitatively well predicted by

this coarse-graining approach (yellow symbols, Figure 7B). We

concluded that treating Nar + Nir pairs as effective modules

within larger communities recovered the predictive power of

the additive consumer-resource model.

DISCUSSION

Quantifying the metabolic phenotypes of a diverse library of nat-

ural isolates using a consumer-resource model allowed us to

take a statistical approach to connecting genotypes to dynam-

ical metabolic phenotypes. The outcome was a sparse mapping

from gene content to single-strain metabolite dynamics that ex-

ploited conserved correlations between metabolic traits and

gene presence, some of which reflect the known mechanistic

properties of enzymes in the denitrification pathway. The

resource-based modeling formalism then permitted quantitative

predictions of community-level metabolite dynamics. As a result,

the approach yielded a mapping from genomic structure to

metabolite dynamics at the community level for denitrifying bac-

terial communities.

A key contribution of this study is the demonstration of a quan-

titative mapping between gene content and metabolic traits for a

model metabolic process. One might expect that gene presence

and absence is too coarse a genomic feature to predict dynamic

metabolic traits and that other genomic features, such as pro-

moter sequences, synteny, or allelic variation,would benecessary

to make predictions. We instead found that that the association

between gene presence/absence and metabolic traits is strong.

This result suggests that selection for specific metabolic traits in

bacteria may primarily favor genomes with specific complements

of genes (Cordero et al., 2012; Sakoparnig et al., 2021) and that

moregranulardetails of thegenome, suchaspromoter sequences

or allelic variation, are less important.

At the community level, we found that interactions beyond

those described by the additive consumer-resource model are

not idiosyncratic but instead exhibit a general pattern (i.e., they

occur only when Nar and Nir strains are both present). This sug-

gests that interactions beyond resource competition may exhibit

patterns that can be discovered in the laboratory. The fact that

community-levelmetabolite dynamics departed from the additive

model in Nar + Nir communities suggests that such interactions

may be more likely to occur when specific metabolic processes,

such as facilitation via the exchange of a metabolite, are at work.

Improving predictions of community metabolism from
genomes
There are some important caveats that apply to our prediction of

single-strain metabolic traits from genomes and community-

level metabolism frommonocultures. For one, by parameterizing

metabolite dynamics using a consumer-resource model, we

assumed that the model could approximate the metabolic phe-
notypes of wild isolates. For most of our library (62/79 strains),

this approximation worked well, but in some cases (17/79

strains), the model failed for at least some initial conditions (Fig-

ures S1J–S1L; Table S5; STAR Methods). These failures may

have occurred because the model does not capture phenomena

such as the inhibition of reduction rates by reaction products.

Going forward, the assumptions of the model could be relaxed

by applyingmethods to learn the appropriate phenotypic param-

eters directly from the data (Berman et al., 2014; Daniels and

Nemenman, 2015).

Although we set out to obtain a diverse strain library for the

purpose of mapping genomic variation to dynamic metabolic

phenotypes, it is important to note that our library is composed

solely of Proteobacteria and does not contain representatives

from other phyla. This limitation means that it is unclear whether

our regression approach can predict phenotypes of distantly

related strains (e.g., gram-positive bacteria). In addition to the

79 strains described in this study, we attempted to assay the

denitrification dynamics for three gram-positive Nar strains

from the phylum Actinobacteria. We found their reduction rates

to be slower than any strain in our library (� 0.1 mM/OD/h), re-

sulting in almost negligible nitrate reduction over 64 h. This

observation suggests that denitrification phenotypes in clades

distant from Proteobacteria may be distinct, with rates that are

potentially much slower thanwhat we observed for Proteobacte-

ria. Supporting this idea, denitrification in gram-positive bacteria

is poorly understood (Verbaendert et al., 2011), and previous

studies that collected phenotypic data similar to ours character-

ized only Proteobacteria (Lycus et al., 2017; Liu et al., 2013).

Therefore, extending our results to more diverse strains would

require phenotyping a phylogenetically expanded library.

Considering the broader applicability of our statistical

approach, there are some limitations to the types of metabolic

processes and interactions that can be readily studied. Denitrifi-

cation is a well-studied metabolic process, with the relevant en-

zymes known and easily annotated. Extending our method to

less well-studied metabolic traits would require new approaches

to learn the appropriate genomic features from data, since it may

be challenging in those contexts to choose genes based on

mechanistic knowledge. High-throughput mutant screens on

wild isolates, for instance, via barcoded transposon mutant li-

braries (Price et al., 2018), could be used to discover unanno-

tated or poorly annotated genes that are important for metabolic

traits and potentially useful as predictors for metabolic pheno-

types (Vaccaro et al., 2016).

Bridging the gap between the synthetic communities studied

here and communities in the wild will require engaging with the

chemical and spatial complexity of natural denitrifying commu-

nities. First, it is unclear whether the additive and non-additive in-

teractions described here are relevant to wild communities. One

way to determine the relevance of these interactions would be to

measure co-occurrence between genotypes in natural contexts.

Second, it remains to be seen how our approach generalizes to

the complex nutrient environments, such as mixtures of organic

carbon sources (Tiedje et al., 1982), that are characteristic of nat-

ural communities. One approach to this problem would be to

quantify nitrate and nitrite dynamics directly in soils and ask

whether gene content can predict metabolite dynamics in this
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context. Finally, denitrification in nature occurs in the presence of

other metabolic processes, where it often depends on nitrate

from nitrifiers and competes with dissimilatory nitrate reduction

to ammonia for electron acceptors (Tiedje et al., 1982). Extend-

ing the approach taken here to a broader ecological context

that includes other metabolic fluxes is an important avenue to

pursue.

Applying predictions of community metabolism from
genomes
At the single-strain level, the apparent mechanistic relevance

of the regression coefficients in this study suggests that a statis-

tical approach, coupledwith large-scale culturing and phenotyp-

ing on libraries of isolates (Connon and Giovannoni, 2002; Kehe

et al., 2019), can be exploited to discover the salient features of

genomes that determine community metabolism. Higher-

throughput measurements will enable a more detailed investiga-

tion of genomic features, allowing us to extend our statistical

approach to variation in gene sequences and synteny.

Further, statistical predictions similar to those employed here

could be used to help specify constraint-based metabolic

models. Constraint-based metabolic models are refined using

experimental measurements of metabolic traits (Norsigian

et al., 2020), but measuring these traits is challenging, espe-

cially for unculturable taxa or strains that are difficult to isolate

from complex communities. Since our approach enables the

prediction of metabolic phenotypes from genomes, these pre-

dictions could be used to refine constraint-based models of

metabolic networks using genomic data alone and, thus, cir-

cumventing the need to experimentally measure metabolic

phenotypes.

At the community level, our approach could eventually enable

the prediction of metabolite dynamics in communities where

gene presence and absence for individual genomes is known

(Sieber et al., 2018). Soils and host-associated communities typi-

cally contain hundreds of bacterial taxa; therefore, it may be

necessary to test the predictive power of the consumer-resource

formalism in communities ofmany taxa. However, data from soils

suggest that denitrificationmayoccur locally, on 10–20mmgrains

(Lensi et al., 1995). At this small scale, it is possible that commu-

nities are composed of just a few strains. If this is indeed the case,

our results for communities of 2–5 strains (Figures 6 and 7) might

apply to denitrifying communities in soil.

Departures from model predictions in Nar + Nir
communities
It is striking that communities containing both Nar andNir pheno-

types departed from the expectation of an additive consumer-

resource model (Figures 6C and 7B). We proposed that the inhi-

bition of nitrate reduction in Nar + Nir communities may be

caused by nitric oxide produced by the Nir strains. Consistent

with this hypothesis, the most strongly inhibited Nar strains

(PDM12 and PNT03, Figure S7) lack nitric oxide reductase (Fig-

ure 4A); therefore, they likely cannot alleviate this toxicity. In

addition, the strongly inhibited Nar strains possess the periplas-

mic nitrate reductase (Figure 2B), which is exposed to the toxic

effects of extracellular nitric oxide, whereas the weakly inhibited

Nar strain ACV02 possesses the membrane-bound nitrate
542 Cell 185, 530–546, February 3, 2022
reductase, which is shielded from nitric oxide in the cytoplasm.

Although Nir strains possess nitric oxide reductase and, there-

fore, could alleviate toxicity by reducing nitric oxide to nitrous ox-

ide, Nir strains often transiently accumulate nitric oxide tran-

siently (Lycus et al., 2017). Consistent with this idea, when we

measured relative abundances of Nar and Nir strains in co-cul-

ture, we observed smaller fractions of Nar strains relative to

our model predictions in most cases (Figure S4B).

To describe metabolite dynamics in communities where both

Nar and Nir strains were present, we chose not to expand our

modeling formalism to include our hypothesized mechanism of

Nar strain inhibition. Instead, we used measurements from

Nar + Nir pair cultures to describe community-level metabolite

dynamics (Figure 7). The advantage of this approach was to

maintain a small number of model parameters, but it came at

the expense of mechanistic interpretation. Another possible

disadvantage of our approach was the challenge of modeling

communities with multiple Nar and Nir pairs. However, we found

that a simple averaging method (STAR Methods) succeeded in

describing community metabolite dynamics, even when multiple

Nar + Nir pairs were present in communities of 3–5 strains

(Figure 7B).

We note that Nar + Nir pair cultures are metabolically distinct

from Nar/Nir monocultures, in that the former splits the denitri-

fication pathway across two genomes resulting in obligate

cross-feeding. It is notable that our model fails only in the

case where cross-feeding is required, suggesting that our

formalism is most relevant for competitive interactions and

that accurately predicting obligate cross-feeding from monocul-

ture information alone may require additional parameters. The

ecological context of denitrification pathway splitting at nitrite

reduction is believed to be associated with environmental pH,

with low pH favoring a split pathway. This hypothesis comes

from a previous study (Lilja and Johnson, 2016) showing that

the transient accumulation of nitrite during denitrification can

be reduced by segregating the processes of nitrate and nitrite

reduction across genomes. Reducing transient nitrite accumu-

lation is advantageous in low pH environments, where nitrite

forms toxic intermediates (Lilja and Johnson, 2016). Because

we observe Nar + Nir communities escaping the transient accu-

mulation of nitrite (Figures 6A and S6), our results are consistent

with splitting of the denitrification pathway at nitrite reduction as

an adaptation to acidic environments.

CONCLUSION

We find it striking that a statistical approach can uncover a

simple relationship between gene content and metabolite dy-

namics in communities of diverse wild isolates. It is our hope

that future work can leverage this approach to understand and

predict the metabolic activity of microbial communities in natural

settings.

Limitations of the study
We assumed that metabolic phenotypes can be captured by a

consumer-resource model, an assumption that breaks down

for a fraction of our isolates and limits the direct applicability of

our approach to strains and processes that can be modeled
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using a simple phenomenology. For example, our modeling

formalism works well when the electron acceptor is limiting but

may fail when the donor (organic carbon) is limiting.

Our regression approach exploits correlations between geno-

type and phenotype to make predictions. To some extent, these

correlations reflect conserved phenotypic impact of certain

genes, but phylogenetic correlation also plays a role. Therefore,

we do not expect the regression to make causal predictions of

the impact of single-gene knockout mutations on phenotypes.

Our library of isolates comprises strains from the phylum Pro-

teobacteria. We do not expect our results to generalize to

distantly related denitrifiers in other phyla, such as gram-positive

bacteria. Expanding the library is likely necessary to predict phe-

notypes of distantly related strains.

Our approach has been demonstrated for comparatively sim-

ple nutrient conditions in well-mixed conditions. It remains to be

seen how well this statistical approach will work in natural con-

texts, where spatial structure and complex chemical environ-

ments are present.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Bacterial isolates This paper Table S2

Paracoccus denitrificans ATCC Cat#19367

Biological samples

Soils for bacterial isolation This paper Table S1

Chemicals, peptides, and recombinant proteins

N-(1-Naphthyl)ethylenediamine

dihydrochloride

Sigma-Aldrich Cat#222488-10G

Sulfanilamide Sigma-Aldrich Cat#S9251-100G

Vanadium(III) chloride Fisher Scientific Cat#AC197000050

Critical commercial assays

DNeasy UltraClean Microbial Kit Qiagen Cat#12224-250

MiSeq Reagent Kit v3 (600 cycle) Illumina Cat#MS-102-3003

Nextera DNA CD Indexes Illumina Cat#20018707

Nextera DNA Flex Library Prep Kit Illumina Cat#20018704

PhiX Control v3 Illumina Cat#FC-110-3001

Platinum Hot Start PCR Master Mix Invitrogen Cat#13000013

QIAquick PCR Purification Kit Qiagen Cat#28106

Qubit dsDNA BR Assay Invitrogen Cat#Q32853

Deposited data

Metabolite dynamics data, consumer-

resource parameters, genome annotations

This paper https://doi.org/10.17605/osf.io/t3prd

Paracoccus denitrificans complete genome Si et al., 2019 BioProject ID PRJNA513156

Raw sequencing data and draft genome

assemblies

This paper BioProject ID PRJNA660495

Oligonucleotides

16S rRNA universal primer (27F) Integrated DNA Technologies AGAGTTTGATCMTGGCTCAG

16S rRNA universal primer (806R) Integrated DNA Technologies GGACTACNVGGGTWTCTAAT

Software and algorithms

MATLAB R2017B Mathworks https://www.mathworks.com/products/

matlab.html

R 3.6.1 R Core Team https://www.r-project.org/

Original code This paper https://doi.org/10.17605/osf.io/t3prd

CASEU 0.1.2 Cermak et al., 2020 https://bitbucket.org/DattaManoshi/caseu

MEGA X 10.1.8 Kumar et al., 2018 https://www.megasoftware.net/

phylosignal 1.3 Keck et al., 2016 https://cran.r-project.org/web/packages/

phylosignal

QUAST 5.02 Gurevich et al., 2013 https://github.com/ablab/quast

RAST Brettin et al., 2015 http://rast.theseed.org

selectiveInference 1.2.5 Taylor and Tibshirani, 2015 https://cran.r-project.org/web/packages/

selectiveInference/

SILVA ACT Pruesse et al., 2012 http://www.arb-silva.de/

SPAdes 3.13.0 Bankevich et al., 2012 https://github.com/ablab/spades

Trimmomatic 0.39 Bolger et al., 2014 https://github.com/usadellab/Trimmomatic
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Anaerobic glove box Coy Laboratory Products Cat#7601-110/220

Breathe-Easier membranes Diversified Biotech Cat#BERM-2000

Deepwell plates Axygen Cat#PDW20C

Digital mass flow controllers Sierra Instruments SmartTrak 50

High-throughput DNA sequencing system Illumina MiSeq

Liquid handling robot Formulatrix Mantis

Microplate reader BMG CLARIOstar
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Seppe Kuehn (seppe.

kuehn@gmail.com).

Materials availability
Strains isolated in this study will be made available on request. No new or unique reagents were generated in this study.

Data and code availability
d Raw sequencing data and draft genome assemblies have been deposited to NCBI Sequence Read Archive and NCBI Gen-

Bank, respectively. The BioProject ID is listed in the key resources table. Metabolite dynamics data, phenotype data, and

RAST annotations of draft assemblies used to infer gene presence and absence have been deposited on Open Science Frame-

work and are publicly available as of the date of publication. The DOI is listed in the key resources table.

d All original code has been deposited at Open Science Framework and is publicly available as of the date of publication. The DOI

is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains
The bacterial strains and isolates used in this study are listed in Table S1.

Isolation of denitrifying bacteria from soils
Denitrifyingbacteriawere isolated fromsoil samples followingamodifiedversionof theprotocol developedbyLycuset al. (Lycuset al.,

2017). 5–10 g soil samples were collected from local prairie and forest environments, agricultural land, and manicured lawns (Table

S2). Samples were stored separately in 50 mL centrifuge tubes at 4�C for no longer than three months before use.

Each soil sample was prepared for isolation by combining with 25 mL PBS (pH 7.4) and 5–10 g sterile 4 mm glass beads. Addi-

tionally 0.5 mL cycloheximide solution (10 mg/mL) and 20 mL nystatin solution (25 mg/mL) were added to prevent fungal growth.

In certain rounds of isolation (Table S2), sterile NaNO2 solution (1 M) was added to enrich for nitrite-reducing bacteria. Tubes

were then vortexed (Vortex-Genie 2) at high speed for 1 min to homogenize the samples. In certain rounds of isolation (Table S2),

homogenized soils were incubated at either room temperature or 30�C for up to two weeks, and then briefly re-vortexed before

further processing.

Supernatants from homogenized soils were then diluted and plated. After vortexing, large particles in homogenized soil samples

were allowed to settle for 20–30min before transferring 1mL of supernatant to sterile 1.7mLmicrocentrifuge tubes. Soil supernatants

were then serially-diluted in PBS to obtain 10�4-fold and 10�5-fold dilutions. 100 mL of the 10�4 and 10�5 soil supernatant dilutions

were plated on 1/10X tryptic soy agar (1/10X TSA, 1.5 g/L tryptone, 0.5 g/L soytone, 0.5 g/L NaCl, 15 g/L agar), with two replicates for

each dilution. Plates were then incubated under aerobic conditions at 30�C for 48 h.

Colonies from plated soil supernatants were picked and streaked to purity. Plated soil dilutions were examined for growth after

incubation. Plates showing little or no growth were incubated for an additional 24–48 h until colonies appeared. Plates showing likely

fungal growth were discarded. For each set of plates derived from a soil sample, 5–15 well-separated colonies were picked and

streaked to purity on 1/10X TSA plates, again incubating at 30�C. Whenever possible, colonies were selected which varied in

morphology, size, and color, in order to enhance the diversity of the isolate collection.
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Bacterial isolates were assayed for nitrate and/or nitrite-reduction capability. Isolates were first cultured aerobically in sterile 96-

deepwell plates (Axygen PDW20C) containing 1 mL per well 1/10X tryptic soy broth liquid medium (1/10X TSB), inoculated directly

from streak plate colonies. Deepwell plates were sealedwith a gas-permeablemembrane (Diversified Biotech BERM-2000) and incu-

bated/shakenat 30�C/950RPM (TalboysProfessional 1000MP) for 48h. 1mLof eachdenseaerobic culturewas thenpassaged to fresh

96-deepwell plates containing 1mLperwell 1/10X TSB supplementedwith either sterile NaNO3 or NaNO2 solution (1M) to yield a final

concentration of 2 mM NO�
3 or NO�

2 , with two replicates of each condition per isolate. Plates were sealed with gas-permeable mem-

branes (Diversified Biotech BEM-1) and transferred to an N2-purged anaerobic glove box (Coy Laboratory Products 7601-110/220).

Plates were incubated/shaken at 30�C/950RPM for 48 h under anaerobic conditions. After incubation, plates were sampled to deter-

mine endpoint concentrations of nitrate and nitrite.

Nitrate and nitrite-reduction capability for each isolate was determined by comparing endpoint concentrations of NO�
3 and NO�

2 in

each culture with the corresponding concentrations in uninoculated controls. Isolates showing lower endpoint levels of nitrate and/or

nitrite than the uninoculated controls were identified as nitrate and/or nitrite reducers, respectively. Strains that performed both ni-

trate and nitrite reduction were classified as ‘‘Nar/Nir’’ strains, while strains that performed nitrate or nitrite reduction only were clas-

sified as ‘‘Nar’’ or ‘‘Nir’’ strains, respectively. These isolates were cryopreserved bymixing 500 mL of saturated culture grown in 1/10X

TSB under aerobic conditions with 500 mL filter-sterilized 50% glycerol solution in 2 mL cryotubes, and freezing/storing at -80�C.

Defined growth medium
In order to eliminate the possibility of fermentative metabolism in subsequent (post-isolation) denitrification experiments, defined

growth media based on the medium designed by Heylen et al. (2006) for the cultivation of diverse denitrifying bacteria were used

(Table S4). A succinate-defined medium (SDM) that contained 25 mM succinate (100 mM C) as the sole (non-fermentable) carbon

source was used for most denitrification experiments. The medium also contained trace metals and vitamins, 15 mM ammonium

as the assimilatory nitrogen source, and a 40 mM phosphate buffer with the final medium pH adjusted to 7.3. It was expected

that nitrate and nitrite assimilation were inhibited by high concentrations of ammonia (Zumft, 1997). Additionally an acetate defined

medium (ADM) containing 50 mM acetate (100 mM C) in place of succinate was used for some experiments, with all other medium

components unchanged. In ADM, acetate served as the sole non-fermentable carbon source.

In denitrification experiments using defined media, nitrate or nitrite was provided in at most 2 mM concentrations, and it was ex-

pected that growth was nitrate and/or nitrite limited. This expectation was corroborated bymeasurements of endpoint biomass den-

sities for strains in axenic culture, in which typically higher biomass densities were observed in conditions where 2mMnitrate or nitrite

was supplied (and completely reduced) than when 1 mM was supplied. Moreover, in a previous study, growth experiments using a

mineral medium containing 5mM acetate (10mMC), 3.7 mM ammonia, and 1.5 mM phosphate, demonstrated that nitrate and nitrite

were limiting at up to a5mMconcentration for the strainsParacoccusdenitrificansandPseudomonas stutzeri (Strohmet al., 2007). For

comparison, SDM and ADM supplied carbon, ammonia, and phosphate in significantly greater concentrations, and nitrate and nitrite

in lower concentrations, further supporting the claim that nitrate and/or nitrite were growth limiting under denitrifying conditions.

Denitrifying isolateswerescreened forgrowthonSDMunderaerobicconditionsbyfirstgrowingaxenically fromfreezer stocks in1/10X

TSB, passaging 1:300 into 300 mL SDM in 96-well plates (with two replicates per isolate), and culturing at 30�C for 48 h. Endpoint optical

density was measured to assess growth on SDM using a microplate reader (BMGCLARIOstar). Denitrifying isolates unable to grow on

SDM (approximately 36% of isolates) were excluded from further experimentation and analysis. Strains that grew on SDM were also

further screened for growth on ADM (Table S1).

Denitrifying conditions
Post-isolation denitrification experiments were performed in a vinyl glove box (Coy Laboratory Products 7601-110/220) purged of

oxygen with a 99%/1% N2/CO2 gas mixture. Provision of CO2 was necessary to support the growth of cultures from low initial

biomass densities (OD6000 � 0.01), likely due to the CO2-fixation requirements of core anaplerotic metabolism (White et al.,

2012). Gas mixing and a purge rate of 20 SLPM were controlled using digital mass flow controllers (Sierra Instruments SmartTrak

50). Oxygen and CO2 concentrations inside the glove box were continually monitored using Arduino-attached (Mathupala et al.,

2016) optical sensors (SST Sensing LOX-02, Gas Sensing Solutions EXPLORIR-M-20). Gaseous oxygen concentration was

maintained around 200 ppm, which was sufficient to prevent growth via aerobic respiration. This was verified using two denitrifying

isolates, the Nar strain Paracoccus sp. PAR01 and the Nir strain Pseudomonas sp. PDM13, which were grown under denitrifying con-

ditions for 64h with and without a suitable electron acceptor (i.e., nitrate for the Nar strain and nitrite for the Nir strain). The Nar strain

PAR01 was inoculated at biomass density OD6000 = 0:011 and grew to OD60064 = 0:072 with nitrate and remained at OD60064 =

0:013 without nitrate. Similarly, the Nir strain PDM13 was inoculated at biomass density OD6000 = 0:010 and grew to OD60064 =

0:026 with nitrite and remained at OD60064 = 0:010 without nitrite.

METHOD DETAILS

Assay of nitrate and nitrite
Concentrations of nitrate and nitrite were measured using a microplate reader (BMG CLARIOstar) following a modified version of the

protocol byMiranda et al. (2001), where the conventional Griess assay for detection of nitrite is coupledwith the chemical reduction of
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nitrate to nitrite using vanadium (III) chloride. Stock solutions of N-(1-Napthyl)ethylenediamine dihydrochloride (NEDD), sulfanilamide

(SULF, in 5% HCl), and VCl3 (in 1 M HCl) were prepared and stored as described in Miranda et al. (2001). Griess reagent was freshly

prepared on the day of each assay by mixing NEDD and SULF stock solutions with ultrapure H2O in a 5:5:9 ratio.

Nitrate and nitrite were measured using 10 mL samples of analyte in a 96-well microplate. Nitrite was first quantified by adding

190 mL of Griess reagent to each sample and recording blank-corrected maximum absorbance within the interval 450 to 650 nm,

denoted AbsGmax. Then nitrate was chemically reduced to nitrite by adding 50 mL of VCl3 solution to each sample and incubating at

30�C for 6–7 h, which was sufficient time for complete reduction of nitrate to nitrite. After incubation, the maximum blank-corrected

absorbance within the interval 450 to 650 nm, denoted AbsVmax, was recorded to quantify the sum total of nitrate and nitrite in the

sample.

Concentrations of nitrate and nitrite were determined using 8-point standard curves. Separate two-fold dilutions of NaNO2 and

NaNO3 standards spanning 31 mM–2 mM were prepared, and 10 mL samples of these standards were dispensed in triplicate into

a 96-well plate, along with 10 mL samples of ultrapure water that served as blanks. Griess reagents were used as described above

to measure nitrite in the NaNO2 standards, and these data were parameterized by fitting the equation:

AbsGmaxðIÞ = a0 + a1I+ a2I
2; (Equation 1)
where I is the concentration of NO�. A quadratic term was includ
2 ed to account for the slight nonlinearity of the absorbance at high

values of concentration. Then VCl3 solution was used as described above to measure nitrate in the NaNO3 standards, and these data

were parameterized by fitting the equation:

AbsVmaxðAÞ = b0 +b1A+b2A
2; (Equation 2)
where A is the concentration of NO�. Standard curves were run
3 in triplicate on each day that an assay was performed.

The nitrate and nitrite concentrations in a new sample, for which AbsGmax and AbsVmax were recorded, were then determined by:

1. Solving Equation 1 to determine I from AbsGmaxðIÞ,
2. Solving Equation 2 to determine the quantity A+ I from AbsVmaxðA + IÞ (since this step of the assay measures the sum total of

nitrate and nitrite in a sample),

3. Subtracting the result of step 1 from the result of step 2 to obtain A.

This approach was validated using mixed standards containing both nitrate and nitrite in a 1:1 ratio, and relative error was found to

be typically less than ± 5% for concentrations R 62.5 mM.

In this study, nitrate and nitrite assays were performed directly on samples taken from denitrifying cultures (i.e., without first

removing cells via filtration or centrifugation). To verify that neither the presence of cells nor molecules secreted by strains during

denitrification interfere with the assay,measurement error was evaluated in standards combinedwith samples taken fromdenitrifying

cultures of four representative strains. The strains Achromobacter sp. ACM01, Ensifer sp. ENS09, Paracoccus denitrificans ATCC

19367 (PAR19367), and Pseudomonas sp. PDM21 were grown in a succinate defined medium under denitrifying conditions from

low initial abundance (OD6000z 0.01) for 64 h, by which time cells were in stationary phase (OD60064 = 0.052–0.148). 10 mL samples

of these cultures were then then combined with 10 mL samples of nitrate and nitrite standards and then assayed as described

above. In standards containing nitrate or nitrite separately, relative error of the assay was typically less than ± 5% for concentrations

R 125 mM,with relative error ± 10% at 62.5 mM. In standards containingmixtures of both nitrate and nitrite in a 1:1 ratio, relative error

was again found to be typically less than ± 5% for concentrationsR 125 mM,with relative error ± 10%at 62.5 mM. This indicates that

presence of cells and/or molecules secreted by strains during denitrification do not appreciably increase measurement error above

concentrations of 125 mM.

Denitrification dynamics experiments
Strains were pre-cultured under aerobic conditions (using first broth then defined medium) prior to growth under denitrifying (anaer-

obic) conditions in defined medium. Strains were first grown axenically to saturation from freezer stocks in 1/5X TSB, then passaged

1:100 into defined medium and again grown to saturation. All pre-cultures were grown in 24-well plates containing 1.7 mL medium

per well and incubated/shaken at 30�C/400RPM under aerobic conditions. Since strains in the library vary widely in the time required

to grow to saturation in 1/5X TSB and defined medium (12–96 h), inoculation and passaging of strains was timed so that defined me-

dium aerobic cultures would enter stationary phase within 12 h of the start of an experiment in denitrifying conditions.

Experiments to measure the nitrate/nitrite-reduction dynamics of strains in monoculture were performed with multiple initial media

and biomass density conditions: (a) 2mMNO�
� , OD6000 = 0.01, (b) 1mMNO�

� , OD6000 = 0.01, (c) 2mMNO�
� , OD6000 = 0.001, where

Nar/Nir strains were cultured with NO�
3 and NO�

2 separately (6 conditions total), Nar strains were cultured with NO�
3 (3 conditions to-

tal), and Nir strains were cultured with NO�
2 (3 conditions total). Medium containing (separately) 2 mM NO�

3 , 1 mM NO�
3 , 2 mM NO�

2 ,

and 1mMNO�
2 were prepared by supplementing fresh definedmediumwith sterile NaNO3 or NaNO2 (1M) solutions. Aerobic defined

medium pre-cultureswere normalized to two levels of optical density (OD600z 1.2 and 0.12) by diluting with PBS, and these normal-

ized densities were recorded. 96-deepwell plates containing 1.2 mL of NO�
3 or NO�

2 -supplemented defined medium were then
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inoculated with 10 mL of density-normalized culture, resulting in OD600z 0.01 and 0.001 cell density conditions. 2–4 replicates were

used for each combination of media and cell density conditions.

Inoculated plates were sealed with gas-permeable membranes (Diversified Biotech BERM-2000) and transferred to an anaerobic

glove box for incubation/shaking at 30�C/950RPM. Cultures were manually sampled with a multichannel pipette (10 mL per well) at 2,

4, 6, 8, 16, 32, and 64 h from the start of anaerobic culture. Samples were stored in clean 96-well plates, and immediately sealed (Bio-

Rad MSB1001) and frozen at -20�C for later assay of nitrate and nitrite. Additionally, at 64 h, 300 mL per well of culture was sampled

into clean 96-well plates and the optical density (pathlength normalized to 1 cm) immediately measured to quantify endpoint biomass

density. Strains observed to form excessive cell aggregation (to the extent that quantification of endpoint biomass by optical density

was not possible) were at this point excluded from further experimentation and analysis (Table S3).

Additional experiments to measure nitrate/nitrite-reduction dynamics on communities of 2–5 strains (including monoculture con-

trols) were performed in separate 2 mMNO�
3 and 2 mMNO�

2 conditions. Aerobic pre-cultures were normalized to OD600z 1.2 with

PBS. Using liquid handling robotics (Formulatrix Mantis), 96-deepwell plates containing 1.2 mL of 2 mMNO�
3 or NO�

2 SDMwas inoc-

ulated with 10 mL droplets of density-normalized culture in defined combinations (e.g., a pair community containing strains A and B

would be inoculated with separate 10 mL droplets of strain A and strain B). Following inoculation, all culture and sampling details were

the same as described above.

Measurements were post-processed to correct for gradual evaporation of H2O that increased apparent concentrations with time.

3–8 uninoculated controls containing nitrate or nitrite-supplementedmediumwere used on each culture plate to quantify the effect of

evaporation. Raw nitrate and nitrite measurements for cultures were scaled at each time point by the concentration of initially sup-

plied nitrate or nitrite divided by the median concentration across blank measurements at that time point.

Whole genome sequencing and annotation
Denitrifying strains were grown axenically from freezer stocks or plated colonies in 1/10X TSB incubated at 30�Cwith shaking. Satu-

rated cell cultures were harvested and DNA extracted using the DNeasy UltraClean Microbial Kit (Qiagen). DNA concentrations were

quantified using the Qubit dsDNA BR Assay Kit (Invitrogen).

Library preparation for sequencing of DNA extracts was performed using the Nextera DNA Flex Library Prep Kit (Illumina) and the

Nextera DNACD Indexes (Illumina). Barcoded libraries for each strain were pooled in groups of 21–24 strains and quantified using the

Qubit dsDNABR kit and an Agilent 2100 Bioanalyzer (Carver Biotechnology Center, University of Illinois at Urbana-Champaign). Each

pooled library was then separately sequenced using a MiSeq Reagent Kit v3 (Illumina, 2 3 300 bp paired-end), with a 12 pM library

loading concentration and a 1% spike-in of PhiX Control v3 (Illumina). Sequencing was performed on a locally maintained and oper-

ated Illumina MiSeq system.

Raw paired-end reads were trimmed of low-quality regions and Illumina adapters using Trimmomatic 0.39 (Bolger et al., 2014).

Trimmed reads were assembled into contigs de novo using SPAdes 3.13.0 (Bankevich et al., 2012) with k-mer lengths of 21, 33,

55, 77, 99, and 127 and the error-correction option ‘‘careful’’ enabled. Assembly quality was assessed using QUAST 5.02 (Gurevich

et al., 2013). The draft assembly of the laboratory strainParacoccus denitrificansATCC19367was compared to a complete assembly

of the same strain by Si et al. (Si et al., 2019), which served as a reference. The comparison indicated a 97.8% genome fraction (per-

centage of bases in the reference that align to the draft assembly), with one 30.8 kbp relocation misassembly, 7.02 mismatches

(sequencing errors or single nucleotide polymorphisms) per 100 kbp, and 0.43 indels per 100 kbp. The draft assembly produced

4635 predicted genes relative to 4644 genes predicted in the reference. The coverage depth of the P. denitrificans draft assembly

was 32X, compared to a median of 35X for the other strains in the library. Together these analyses suggest that the draft assemblies

are likely to cover the vast majority of the protein-coding sequences, with relatively few errors that would affect the inference of gene

presence or absence.

Contigs were uploaded for gene annotation on the RAST Server (http://rast.theseed.org) using the RASTtk pipeline (Brettin et al.,

2015). Denitrification gene presence and absence information was obtained from annotation files by a text search of gene function

labels (Table S6). The NarXL two-component nitrate/nitrite sensing system was considered ‘‘present’’ if a gene encoding the sensor

(narX) and/or the response regulator (narL) were identified in the annotation. Each gene identified as a NarK-type nitrate transporter

was classified post-annotation as encoding either a nitrate/H+ symporter (narK1), a nitrate/nitrite antiporter (narK2), or a fusion of

both transporters (narK1K2). This classification was performed by locally aligning each transporter sequence with the narK1K2

gene previously identified in Paracoccus denitrificans PD1222 (Goddard et al., 2017), for which the N-terminal domain has been iden-

tified to be NarK1 and the C-terminal domain NarK2. From this it was determined which RAST gene function labels correspond to

narK1, narK2, and narK1K2.

Additionally annotation files were searched for the cytochrome c nitrite reductase gene (nrfA) associated with dissimilatory nitrate

reduction to ammonia (DNRA). Strains possessing this gene were excluded from further experimentation and analysis (Table S3).

Phylogenetic classification of strains
Phylogenetic analysis of denitrifying strains was performed using full 16S rRNA sequences identified in annotated draft genome as-

semblies. 16S sequences were uploaded for classification up to the genus level using the SILVA ACT service (http://www.arb-silva.

de/) (Pruesse et al., 2012). A maximum-likelihood phylogenetic tree was computed using MEGA X 10.1.8 (Kumar et al., 2018).
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Measuring relative abundances and contamination
The N-strain consumer-resource model provides predictions of the relative abundances of each strain in a community. These pre-

dictions were tested by measuring relative abundances for a set of 2-strain communities using the package CASEU 0.1.2 in R 3.6.1

(Cermak et al., 2020). Compositional Analysis by Sanger Electropherogram Unmixing (CASEU) infers relative abundances in commu-

nities via Sanger sequencing amplicons of a marker gene that distinguishes the different strains (e.g., the 16S rRNA gene). The

approach works by deconvolving mixed Sanger electropherograms of amplicons from a community using the pure electrophero-

grams obtained by sequencing amplicons from axenic cultures. Therefore the approach requires that (a) the constituents of a com-

munity can be cultured axenically, and (b) the electropherograms of a marker gene for each strain individually be sufficiently distinct

(i.e., having pairwise electropherogram correlations less or equal to than approximately 0.8; Cermak et al., 2020).

All pair combinations andmonocultures of six taxonomically and phenotypically representative strains,Achromobacter sp. ACM01

(Nar/Nir), Ensifer sp. ENS09 (Nar/Nir), Paracoccus sp. PAR01 (Nar), Pantoea sp. PNT03 (Nar), Agrobacterium sp. AGB01 (Nir), and

Pseudomonas sp. PDM13 (Nir), were inoculated, grown, and periodically sampled in denitrifying conditions. All cultures were initiated

with 2 mMNO�
3 , with the exception of monocultures of Nir strains AGB01 and PDM13 and the pair culture of these two strains, which

were initiated with 2mMNO�
2 . Cultures were harvested at 64 h, at which time optical densities were measured. In order to calibrate a

conversion from relative biomass density (as measured by OD600) and relative abundance of 16S amplicons, equal volume (450 mL)

synthetic mixtures of all pairs of monocultures were also prepared with known relative abundances of each strain.

DNA was extracted from monocultures, pair cultures, and synthetic pair mixtures using the DNeasy UltraClean Microbial Kit. A

fragment of the 16S rRNA gene was amplified using the 27F (AGAGTTTGATCMTGGCTCAG) and 806R (GGACTACNVGGGTWTCT

AAT) universal primers. The following reagents were used for each reaction: 22 mL nuclease-free H2O, 1 mL 27F primer (10 mM), 1 mL

807R primer (10 mM), 1 mL DNA extract, 25 mL Platinum Hot Start PCR Master Mix (Invitrogen). The following thermocycler settings

were used: initial denaturation, 2min at 94�C; amplification (35 cycles), 30 sec at 94�C, 30 sec at 53�C, 60 sec at 72�C; final extension,
10 min at 72�C. PCR products were cleaned using the QIAquick PCR Purification Kit (Qiagen). Sanger sequencing of cleaned PCR

products was performed at the University of Chicago Comprehensive Cancer Center DNA Sequencing and Genotyping Facility.

Resulting AB1 files containing electropherogram signals were analyzed using CASEU to infer relative abundances in each sample.

First, it was verified that the six pure electropherograms from monocultures of the different strains were sufficiently distinct to distin-

guish signals in mixed electropherograms. Pairwise correlations between pure electropherograms were computed using CASEU,

and were generally found to be much smaller than 0.8, with the exception of the Alphaproteobacteria ENS09, PAR01, and

AGB01, pairs of which had electropherogram correlations of approximately 0.8. It was therefore concluded that these strains could

be distinguished in a community using the CASEU approach.

Next, the six pure electropherograms were used to infer relative abundances in the pair cultures. In order to assess the extent of

cross-contamination in these pair cultures, CASEU was allowed infer relative abundance using all six pure electropherograms for

each pair culture, in essence assuming that any of the six strains could be present in any given pair culture. In every community,

no evidence of cross-contamination was observed (i.e., in each pair community, only the intended pair of strains was measured

at non-zero relative abundance. Though the CASEU approach cannot reliably resolve relative abundances below 1–2% (Cermak

et al., 2020), if cross-contamination was present at these levels, it would have little to no impact on community metabolite dynamics.

Therefore it was concluded that cross-contamination was generally negligible in denitrification experiments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Consumer-resource model for metabolite dynamics
A consumer-resource model was used to parameterize the dynamics of nitrate and nitrite-reduction. For a single strain that performs

both nitrate and nitrite reduction (Nar/Nir strain), the model is as follows:

dx

dt
=

�
gArA

A

KA +A
+gIrI

I

KI + I

�
x;

dA

dt
= � rA

A

KA +A
x;

dI

dt
=

�
rA

A

KA +A
� rI

I

KI + I

�
x:

(Equation 3)

The variable x (in units of OD at 600 nm) is the biomass density of a single population, and A and I (mM) are the concentrations of

nitrate and nitrite respectively. The model is parameterized by reduction rates rA and rI (mM/OD/h), yields gA and gI (OD/mM), and

substrate affinities and KA and KI (mM), for growth on nitrate and nitrite, respectively.

The model, which resembles the Monod model for bacterial growth (Monod, 1949), assumes that growth of the population occurs

at a rate proportional to the reduction rates of nitrate and nitrite, with the two resources treated as substitutable. Nitrite is the direct

product of nitrate reduction (in a 1:1 stoichiometry). Nitric oxide, the product of nitrite reduction, is not explicitly modeled, and thus

mass leaves the system when nitrite is reduced. For a strain that performs only nitrate reduction (Nar strain), the model simplifies by
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setting rI;gI = 0. Likewise for a strain that performs only nitrite reduction (Nir strain), rA;gA = 0. Thismodel assumes that nitrate and/or

nitrite are the growth-limiting nutrients and therefore the concentration of electron donors (e.g., succinate) is not explicitly modeled.

Inferring phenotypic parameters from data
Monoculture experiments were performed for 78 soil isolates and one reference strain Paracoccus denitrificans ATCC 19367 under

denitrifying conditions in succinate defined medium (SDM) in order to estimate parameters of the consumer-resource model (Equa-

tion 3). Monoculture experiments were also performed in acetate defined medium (ADM) for the 64 strains that grew aerobically on

ADM (Table S1).

Fitting yield parameters

The yield parameters gA and/or gI were directly measured for each strain from endpoint measurements of optical density and nitrate/

nitrite concentration.

To demonstrate how this is possible, Equation 3 gives:

dx

dt
= � gA

dA

dt
� gI

�
dA

dt
+
dI

dt

�
: (Equation 4)

Therefore it follows from the fundamental theorem of calculus that:ZT
0

dx

dt
dt = xT � x0 = � gA

ZT
0

dA

dt
dt � gI

0@ZT
0

dA

dt
dt +

ZT
0

dI

dt
dt

1A
=gAðA0 � ATÞ+gIðA0 � AT + I0 � ITÞ;

(Equation 5)
where the subscripts 0 and T denote the values of the variables
 at t = 0 and T, respectively.

Equation 5 indicates that gA and gI can be inferred using measurements of biomass density and nitrate/nitrite concentrations at

some time t = T, given knowledge of the experimentally-specified initial values of these variables. Because this equation is linear

with up to two unknowns (recall that gI = 0 for Nar strains and gA = 0 for Nir strains), fitting this equation could in principle be accom-

plished using data from a single experimental condition for Nar and Nir strains or two experimental conditions for Nar/Nir strains.

Instead gA and gI were fit to data from many conditions in order to obtain more robust estimates. Specifically, monocultures were

grown in the following conditions: (a) 2 mM NO�
� , OD6000 = 0.01, (b) 1 mM NO�

� , OD6000 = 0.01, (c) 2 mM NO�
� , OD6000 = 0.001,

where Nar/Nir strains were cultured with NO�
3 and NO�

2 separately (6 conditions total), Nar strains were cultured with NO�
3 (3 condi-

tions total), and Nir strains were cultured with NO�
2 (3 conditions total). Then the equation

OD60064 �OD6000 =g0 +gAðA0 � A64Þ+gIðA0 � A64 + I0 � I64Þ; (Equation 6)
was fit via ordinary least squares regression using endpoint measu
rements from all conditions taken at t = 64 h. The intercept term g0

was included in Equation 6 to account for small systematic measurement errors, and was typically close to zero (Figure S1A). Exam-

ples of fits to Equation 6 are shown in Figures S1B–S1D.

Parameterizing Equation 3 in terms of OD assumed that biomass (g dry weight/L) is proportional to OD600, and that the constant of

proportionality is the same for all strains in the library. Previous literature reports that the ratio g dry weight/L/OD is typically 0.4 (Coul-

tate and Sundaram, 1975; Rosenberger and Elsden, 1960; Hassen et al., 1998; Péquignot et al., 1998; Nikel et al., 2021; Lee et al.,

2007). In order to test whether some strains might secrete optically active compounds that absorb strongly at 600 nm, and thereby

corrupt the biomass to OD conversion, four representative strains (Achromobacter sp. ACM01, Ensifer sp. ENS09, Paracoccus de-

nitrificans ATCC 19367, and Pseudomonas sp. PDM21) were cultured in SDM under denitrifying conditions for 64 h. Cells were then

removed from the endpoint cultures by filtration and OD600 of the filtered medium was measured. It was observed that absorbance

levels were at or below that of fresh medium. It was therefore concluded that secretion of optically active molecules likely does not

impact the inference of biomass from OD, and that using OD600 as a proxy for biomass incurs only a modest error. However, it is

important to recognize that directly measuring the biomass of each strain in the library may improve the quality of model fits to

data and alter regression results.

Fitting rate parameters

For each strain, having determined the yield parameters, the rate parameters rA and rI were then globally (simultaneously) fit to nitrate/

nitrite dynamics data across all experimental conditions by minimizing the sum of squared residuals between the data and numerical

solutions to Equation 3 (see example in Figure S1E). Equation 3 was solved numerically using the differential equation solver ode23s

in MATLAB R2017b. The solver was initialized at t = t1 (where t1 is the time point of first nitrate/nitrite measurement, approximately 2

h), setting initial conditions Nðt1Þ = OD6000, and Aðt1Þ and Iðt1Þ to the median measured values of nitrate and nitrite concentration at

t = t1 over experimental replicates within a given condition. The constrained optimization function fmincon was used in conjunction

with the global minimum search function GlobalSearch to minimize the sum of squared residuals and obtain optimal values of rA and

rI. Values of rA and rI were constrained between 0 and 50 mM/OD/h.

Initially, this approach was used to simultaneously fit both rates (rA and rI) and substrate affinities (KA and KI), but it was observed in

nonparametric bootstrap estimates of parameter error that the affinities KA and KI were not well constrained by experimental
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measurements (Figure S1F, median fractional errors of 30.0% and 26.5% for KA and KI in SDM, respectively). This is likely because

the true values are small relative to the typical scale of substrate concentrations in the experiments: values for nitrate/nitrite affinity

constants between 0.003–0.055mM have been identified for denitrifying cultures previously (Beccari et al., 1983; Claus and Kutzner,

1985; Kornaros et al., 1996; Dinçer and Kargı, 2000), while cultures were initialized with 1–2 mM nitrate/nitrite. In the dynamical re-

gimes of Equation 3 where substrate concentrations aremuch greater than affinity constants (i.e., A[KA, I[KI), the dependence of

Equation 3 on KA and KI vanishes. This restricts identifiability of the affinity parameters to the regime where A; I are on the same scale

as KA;KI (likely in the micromolar range). This regime typically occurs only briefly during the experiments, just before the substrates

are exhausted, and sampling this regime for all strains would require a much greater sampling frequency than what was attempted in

this study. Alternatively, the affinity parameters could be measured by comparing differences in growth/reduction rates at very low

substrate concentrations, so that growth occurs in a regime where these rates depend more strongly on the affinity parameters (i.e.,

A0 � KA, I0 � KI). Doing this would require much more sensitive measurement of biomass density or nitrate/nitrite concentration

than what was attempted in this study. Regardless, it was observed in nonparametric bootstrap estimates of parameter error that

fitted values of rA and rI were insensitive to KA and KI (Figure S1G, median fractional errors of 3.8% and 4.2% for rA and rI in

SDM, respectively), as was the qualitative model behavior (Figure S1H) and the fit quality (Figure S1I). Therefore KA and KI were fixed

to 0.01 mM.

Treatment of poorly-fitting strains

By fitting metabolite dynamics across multiple initial media and biomass density conditions to the model Equation 3, it was assumed

that this simple model is a good representation of the metabolic phenotypes of denitrifying strains, with a few parameters capturing

the full extent of themetabolite dynamics. In themajority of cases it was observed that themodel fit themetabolite dynamics well (see

example in Figure S1E), indicating that the assumptions of model Equation 3 were appropriate. However in some cases (e.g., Figures

S1J and S1K) the observed metabolite dynamics departed significantly from the optimal model fits. Often it appeared that different

parameterizations were necessary for different initial conditions, e.g., nitrite reduction rates appeared to differ depending on whether

nitrite was initially supplied (for example Figure S1J). In these cases, while the model apparently failed to capture the metabolite

dynamics phenotypes across all conditions simultaneously, it appeared that it was still possible to estimate consumer-resource pa-

rameters for a subset of initial conditions.

Therefore a pipeline was developed for parameterizing the model Equation 3 on a subset of experimental conditions if poor fits

were obtained when fitting to all conditions. First yields on nitrate and nitrite were fit using all experimental conditions. Then the pipe-

line proceeded as follows for each strain:

1. Fit reduction rates to all experimental conditions. If the root-mean-square error (RMSE) evaluated between observed data and

model solutions across all experimental conditions and replicates exceeds a threshold T, then proceed to step 2. If not, accept

the parameter fit.

2. Fit reduction rates only to experimental conditions where OD6000 = 0:01. If the RMSE evaluated across these high biomass-

density conditions exceeds T, proceed to step 3. If not, accept the parameter fit.

3. (Nar/Nir strains only) Fit reduction rates only to experimental conditions where nitrate was initially supplied. If the RMSE eval-

uated across these conditions exceeds T, then proceed to step 4. If not, accept the parameter fit.

4. (Nar/Nir strains only) Fit reduction rates only to experimental conditions where OD6000 = 0:01 and nitrate was initially supplied.

If the RMSE evaluted across these conditions is less than or equal to T, accept the parameter fit.

This pipeline was used with T = 0:17 to obtain fits for monocultures of all 79 strains in SDM and 64 strains in ADM. The RMSEs for

strains at each step in the fitting pipeline are shown in Table S5. An example of a fit obtained using the first three steps of the pipeline is

shown in Figure S1J, and a fit obtained using the first two steps is shown in Figure S1K. Only the first three steps of the pipeline were

necessary to produce parameter fits with error less than T = 0:17 for the monocultures in SDM, while step 4 was necessary for only 4

out of 64 ADM monocultures (Table S5).

Finally, there were 7 Nar strains (PDM26–PDM32) for which nitrate concentrations appeared to asymptotically approach nonzero

values in SDM (see example in Figure S1L). However, since it was possible to fit consumer-resource parameters to these cases with

relatively low error (Table S5), these parameter fits were accepted for use in subsequent analyses.

Validating predictions for biomass density dynamics

Although the rate parameters rA and rI for each strain were fit by directly measuring the dynamics of nitrate and nitrite reduction, only

endpoint measurements were used to fit the yield parameters gA and gI, and biomass density dynamics were not directly measured.

Though the yield parameters are identifiable via endpoint measurements (Equation 5), the accuracy of predictions for biomass den-

sity dynamics depends on the consumer-resource model (Equation 3) being reasonably well-specified. For instance, if mortality is an

important factor that causes biomass density to change significantly on the timescale of the experiment, then the measurement of

yields would lead to poor biomass predictions because cell death is not accounted for in the model.

To validate the inference of yields and model predictions for biomass density dynamics, these dynamics were directly measured

for a set of four taxonomically-representative Nar/Nir strains: Achromobacter sp. ACM01, Ensifer sp. ENS09, Paracoccus denitri-

ficans ATCC 19367, and Pseudomonas sp. PDM21. These four strains were cultured in SDM under denitrifying conditions with

2 mM NO�
3 , OD6000 = 0:01, and 21 experimental replicates. Cultures were manually sampled (300 mL) from 3 replicates at 7
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time points (2, 4, 6, 8, 16, 32, and 64 h from the start of anaerobic culture), with different replicates sampled at each time point.

Optical density was measured immediately after sampling, and measurements were post-processed to correct for evaporation.

The measured values of biomass density are shown in Figure S1M, alongside predictions of the model Equation 3 using previous

inferences of rate and yield parameters for these strains in SDM. Predicted biomass dynamics agree well with the measured optical

densities, both in the exponential and stationary phases. The errors of predicted biomass density relative to measurements at t =

64 h are all less than 10%, indicating that the yields were well-estimated by the fitting protocol. No appreciable evidence for mortality

was observed, with little to no decline in biomass density observed after nitrate and nitrite were exhausted. This is consistent with

previous measurements of low-density starving cultures of Escherischia coli K12, where negligible cell death was observed after

approximately 50 h (Phaiboun et al., 2015). It was concluded that the fitting procedure for rates and yields faithfully captures biomass

density dynamics, despite the fact that biomass density is only measured at t = 64 h.

Estimating parameter error

A nonparametric bootstrap was used to estimate the sampling distributions of frA;gA; rI;gIg for the 79-strain library in SDM. Boot-

strap datasets were generated by resampling (with replacement) among replicates; that is, for an experimental condition (e.g.,

A0 = 2 mM, I0 = 0 mM, OD6000 = 0.01) performed with four replicates, a new dataset was created by randomly selecting a set of

four replicates with replacement, doing this for all conditions. Then frA; rI;gA;gIg were refit to these bootstrap resamples. This

was repeated 100 times for each strain to obtain sampling distributions for these parameters. Fractional errors, defined as the ratio

of the interquartile range to the value of the parameter, are less than 10% for the vast majority of inferred parameters. Since gA and gI

inferences are error-prone when measured biomass densities (and therefore yields) are low, a yield parameter was set identically to

zero if its estimate was negative or within one standard error of zero.

Regressing SDM phenotypes onto denitrification gene content
Formulating the regression problem

Linear regression was used to predict themeasured consumer-resource parameters frA;gA; rI;gIg from the presence and absence of

denitrification-related genes in the genomes of each strain. The regression problem was formulated as follows:

yi = b0 +
XP
j = 1

bjgij + εi for i = 1;.;N: (Equation 7)

The response variable yi is the observed value of a consumer-resource model parameter (e.g., rA) for strain i, with N such obser-

vations in total. The predictors gij are indicator variables that take the value 1 if strain I has gene j and take 0 otherwise, with P= 17

predictors in total. The coefficients bj and intercept b0 are fit by the regression, which determines the residual term εi. This formulation

assumes that genes contribute additively (and not quadratically, etc.) to the value of a phenotypic parameter. While in principle there

may exist a formulation of this regression with greater predictive power that takes into account the nonlinear interactions between

predictors (e.g., amodel with quadratic terms), a linear formulation was chosen to keep the number of fitting parameters small relative

to the number of observations.

The LASSO regression method (Hastie et al., 2008; Hastie et al., 2016) was used to solve Equation 7. For given gene presence/

absence vectors g
!

i and response vector y, LASSO regression solves:

min
b0 ; b
!

(
1

2N

XN
i = 1

�
yi � b0 � g!T

i b
!�2 + ljj b!jj1

)
; (Equation 8)
performing both variable selection and regularization by penalizi
ng the sum of squared residuals by the L1 norm of the coefficient

vector b
!
. The strength of the penalty is controlled by the hyperparameter l, which at moderate values sets the coefficients of

poor predictors identically to zero, thus resulting in a sparsemodel. Typically the hyperparameter value l= bl is selected byminimizing

prediction error in cross-validation, which optimizes the ability of the model to generalize out of sample, and makes the method suit-

able for datasets where overfitting via an approach such as ordinary least squares (OLS) is likely because the number of predictors

and the number of observations are on the same order of magnitude.

LASSO regressions were performed in MATLAB R2017b for each consumer-resource parameter measured in SDM separately,

obtaining different b
!

and b0 for each regression. The fits and coefficients for regressions on consumer-resource parameters

measured in SDM are shown in Figures 4C–4J. Note that for nitrate-related parameters (rA and gA), only strains capable of nitrate

reduction (Nar andNar/Nir phenotypes) were included in the predictor-response datasets. Similarly for the nitrite-related parameters,

only strains with Nar/Nir and Nir phenotypes were included in the predictor-response datasets. Prior to fitting, all predictors were

standardized to have zero mean and unit variance.

Hyperparameter selection via cross-validation

For each regression of the form given in Equation 7, iterated K-fold cross-validation was used to determine the value l= bl that min-

imizes estimated prediction error. Optimal hyperparameter values were determined for each regression individually, rather deter-

mining than one hyperparameter value to be used for all regressions. This was done because the hyperparameter controls the level

of sparsity in the resulting solution (i.e., the number of genes that are nonzero in the optimal set of regression coefficients), and a priori
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the optimal level of sparsity may differ among the different regressions on consumer-resource parameters. Choosing an optimal

value of l for each regression individually ensured that the best LASSO solution for each regression was identified.

LetL be a set of discrete values of l for which Equation 8 is solved. Each iteration of cross-validation proceeds in the following way:

1. Randomly partition the data into K subsamples of roughly equal size.

2. For each k = 1;2;.;K:
e10 C
(a) Holding out the kth fold (test set), solve Equation 8 at each l˛L using the union of the remaining remaining K � 1 folds of

data (training set).

(b) Use the resulting regression coefficients to predict the responses in the test set.

(c) Evaluate root-mean-square error of the test set prediction.
This process is iteratedM times, each time choosing a new random partition of the data into K subsamples. The average over the

KM estimates of prediction error was recorded at each value of l˛L, and the optimal value l= bl was then selected as that which

minimized this estimate of error. An iterated K-fold cross-validation approach was chosen over either basic K-fold ðM = 1Þ or

leave-one-out ðK =NÞ cross-validation because iterated cross-validation averages over the sampling variability inherent in randomly

partitioning the dataset into groups, and also because partitioning into KsN folds allows the estimation the out-of-sample perfor-

mance of the model through statistics such as the coefficient of determination between observed and predicted values on each

test set.

A value of K = 4 for iterated cross-validation (M= 104 iterations) was chosen to balance the relative sizes of training and test sets for

the purpose of evaluating out-of-sample performance; asK increases, the size of the cross-validation training set increases, while the

size of test set decreases. It was observed that bl was insensitive to the choice of K.

Estimating out-of-sample performance

The out-of-sample performance of regressions on each consumer-resource parameter was estimated during iterated K-fold cross-

validation by computing the coefficient of determination ðR2Þ between observed and predicted response values in each test set. The

median values of R2 obtained via iterated 4-fold cross-validation (M= 104 iterations) at l = bl, denoted R
2

CV , is positive for all

regressions.

The significance of R
2

CV for regressions on each consumer-resource parameter was evaluated under the null hypothesis that there

is no relationship between the predictor and the response via a permutation test. The response variable for each regression was

repeatedly permuted (13103 permutations) and regression coefficients were re-fitted, using iterated 4-fold cross-validation (M=

102 iterations) to select the hyperparameter for each permutation. Under the null distributions of R
2

CV computed using this approach

for regressions on SDM consumer-resource parameters, p<0:001 in all cases.

Post-selection inference

When the data used for model training via LASSO are also used for inference of significant regression coefficients, it is necessary to

account for the fact that LASSO performs variable selection (i.e., selects some coefficients to be nonzero over others) (Hastie et al.,

2016; Taylor and Tibshirani, 2015). Because LASSO preferentially selects variables with high predictive power in the training set, ne-

glecting this selection results in overoptimistic confidence intervals and p-values.

To illustrate how and why this was done, first consider the simpler case of inference on regression coefficients determined by OLS.

If the residuals εi are normally distributed, it can be shown that the sampling distribution of a coefficient bj is also normal, with a sam-

pling variance that can be estimated from the data. This sampling distribution can then be used to test the hypothesis that the true

value of bj is zero. In contrast, in the case where LASSO regression is used and the coefficient bj is selected to be nonzero, it can be

shown that a normal distribution is not appropriate for the sampling distribution of bj (Taylor and Tibshirani, 2015). Instead the appro-

priate distribution is a truncated normal distribution, i.e., a normal distribution only defined along a finite interval. Intuitively, the dis-

tribution is truncated because the likely range of bj must be conditioned upon the knowledge that LASSO selected it (along with a set

of other elements of b
!
) to be nonzero. The bounds of the truncated distribution are determined by both the data and by the set of

other nonzero elements of b
!

via analytical relations, and can be computed using the package selectiveInference 1.2.5 in R 3.6.1 to

estimate the sampling distributions for each nonzero element of b
!
. An intuitive description of this post-selection inference approach

applied to the simpler context of forward stepwise regression can be found in Taylor and Tibshirani (2015), and a technical description

of the approach applied to LASSO can be found in Hastie et al. (2016).

The function fixedLassoInf in the selectiveInference package was used to compute 90% confidence intervals and to obtain

p-values under the null hypothesis the true value is zero for each nonzero coefficient for regressions on SDM consumer-resource

parameters, evaluated at the hyperparameter value l= bl selected by cross-validation.

Characterizing phylogenetic correlation
Microbial phenotypic traits exhibit varying degrees of phylogenetic correlation as a result of shared evolutionary history (Martiny et al.,

2015). To characterize the extent of phylogenetic correlation in the consumer-resource parameters frA;gA; rI;gIg, the function phy-

loCorrelogram in the package phylosignal 1.3 for R 3.6.1 (Keck et al., 2016) was used. This function estimates autocorrelation in trait

values by computing Moran’s I index as a function of phylogenetic distance, measured here using the 16S rRNA phylogenetic tree.

Statistically significant correlation (95%confidence intervals estimated using 13103 bootstrap replicates) was observed over varying
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levels of phylogenetic distance for the different parameters. The rate rA was correlated to a small degree ðmaxðIÞ= 0:16 Þ over a rela-

tively short interval of phylogenetic distance (16S tree distance 0.01), while gA, rI, and gI were correlated to amodest degree (maxðIÞ =
0:33, 0.27 and 0.48, respectively) over longer intervals (0.16, 0.06 and 0.12, respectively).

Because the strain library contains a few clades of very closely related strains (e.g., ENS01–08, PDM20–23, Figure 3C), it is possible

that some of the phylogenetic correlation measured in the full 79-strain library is attributable to the over-representation of these close

relatives. In addition, the over-representation of these close relatives could in principle skew the results of the regressions. To esti-

mate the influence of over-represented close relatives in the strain library on phylogenetic correlations and regression results, clades

comprising strains with identical 16S rRNA sequences were pruned by randomly selecting one representative and removing the re-

maining strains from the dataset. This removed 15 strains from the library, resulting in a subsampled dataset of 64 strains. Phyloge-

netic correlograms were then computed for the SDM consumer-resource parameters on this pruned dataset. Pruning the dataset

reduced correlations for gA, rI, and gI, with maximum correlations decreasing for all three parameters (maxðIÞ = 0:30, 0.21 and

0.39, respectively), and significant correlation lengths decreasing for gA and gI (0.05 and 0.09, respectively). The correlogram for

the rate rA in the pruned dataset, which showed a small degree of correlation in the full dataset, changed little. It was concluded

that some of the phylogenetic correlation estimated for the full dataset was attributable to the over-representation of close relatives,

but it is still the case that there exists statistically significant phylogenetic correlations at short distances. Next LASSO regressions

were performed on the pruned dataset. Both in-sample and out-of-sample metrics of model performance (R2
fit and R

2

CV , respectively)

changed little relative to the corresponding values for regressions on the full dataset. Similarly, the regression coefficients did not

change substantially. From this it was concluded that the over-representation of close relatives did not have a large impact on

the results of regressions on the consumer-resource parameters.

Evaluating randomly-selected genes as predictors
In order to assess whether denitrification genes make better predictor variables than other possible sets of genes, the SDM con-

sumer-resource parameters frA;gA; rI;gIg were regressed onto the presence and absence of randomly-selected genes from the

set of all annotated genes in strains in the library.

First the set of all uniquely-labelled protein-encoding genes present in the RAST annotations were identified for the 79-strain li-

brary. From this set of 13415 unique genes, 51 genes associated with denitrification were removed; this included not only terminal

reductases, sensors/regulators, and transporters that were used as variables in the regression (Table S6), but also related chaper-

ones, structural genes, and biosynthesis genes that frequently occur in clusters with the denitrification genes (Table S7).

New sets of predictor variables were then generated by randomly selecting genes from the set of 13364 non-denitrification genes

and constructing binary presence/absencematrices as for denitrification-related genes. In order to create a fair comparison between

these randomly-selected predictors and the denitrification gene predictors, (a) sets of only 17 genes were selected, matching the

dimensionality of the denitrification gene presence/absence matrix, and (b) rejection sampling was performed to match the gene

presence frequency (fraction of strains that possess a given gene) distribution of the denitrification genes. The latter was a necessary

consideration because the distribution of presence frequencies of non-denitrification genes is heavily skewed toward zero relative to

the frequencies of denitrification genes (Figure S2A), indicating that a large portion of genes occur only in a small number of strains.

To perform rejection sampling, densities for the gene frequency distributions were estimated, and these densities were used to

define acceptance probabilities for random samples. Let fðxÞ denote the probability density of gene frequencies for non-denitrifica-

tion genes and similarly gðxÞ for denitrification genes, where x here denotes gene presence frequency, and set the constant H so that

gðxÞ=fðxÞ=H%1 for all x˛½0;1�. Rejection sampling was then performed in the following way:

1. With uniform probability, randomly sample a candidate gene from the set of non-denitrification genes. Denote the frequency of

this gene as x0.

2. Accept the candidate gene as a predictor with probability gðx0Þ=fðx0Þ=H. Otherwise reject the candidate and return to step 1.

3. Return to step 1 until 17 genes are accepted.

This process results in a set of 17 predictors that have a gene presence frequency distribution approximately equal to gðxÞ. The
ksdensity function in MATLAB R2017b was used to estimate fðxÞ and gðxÞ using a bandwidth parameter value of 0.4 (Figure S2A).

This rejection sampling approach was used to generate 13103 different sets of 17 predictors for regressing against each of the

SDM consumer-resource parameters frA;gA; rI;gIg.
LASSO regressions were performed on each of the SDM consumer-resource parameters frA;gA; rI;gIg using the rejection-

sampled sets of gene predictors, where the optimal hyperparameter value l= bl was selected via iterated 4-fold cross-validation

(M= 103 iterations). Out-of-sample performance of each regression was also evaluated in cross-validation by computing R
2

CV , the

median coefficient of determination value computed across cross-validation test sets. The distributions of these R
2

CV values across

different sets of random genes are shown in (Figure S2B), alongside the values of R
2

CV obtained via the regressions onto denitrifica-

tion-related genes. The denitrification genes performed better than the typical set of random genes in regressions on two out of four

consumer-resource parameters (rA and gA), and as well as random genes for one parameter (gI). On the whole, this analysis sug-

gested that denitrification genes were better predictors than arbitrary genes, but it remains unclear why arbitrary genes tend have

modest predictive power ðR2

CV >0Þ, and why the denitrification genes performed worse than the typical set of random genes for
Cell 185, 530–546.e1–e16, February 3, 2022 e11



ll
Article
the rI parameter. One possible explanation is that some random genes served as good predictors only because they resemble the

denitrification genes in terms of presence and absence.

To investigate whether the predictive power of random genes arises because of correlations (in terms of presence and absence)

with the denitrification genes, new sets of random gene predictors were constructed via rejection sampling as described above, but

this time sampling only from the set of genes that have low or non-significant correlation with denitrification genes. Specifically, for

each of the non-denitrification gene presence/absence vectors, the Pearson correlation r was computed with each of the denitrifi-

cation gene presence/absence vectors. This identified the set of non-denitrification genes that have large correlations (jrjR 0:5) with

any of the denitrification genes that are significant at the 1% level, where significance was evaluated by generating a zero-correlation

null distribution via a permutation test. The latter consideration is important for evaluating correlations between very high or very low-

frequency genes, for which the probability of spurious large correlations can be high. These denitrification gene-correlates were

excluded from sampling when generating the new sets of random gene predictors. As before, 13103 different sets of 17 predictors

for regressing against each of the consumer-resource parameters were generated.

LASSO regressions on each of the SDM consumer-resource parameters frA;gA; rI;gIg were again performed using the rejection-

sampled genes that exclude denitrification gene correlates. The distributions of the resultingR
2

CV values are shown in Figure S2C. The

following changes in these distributions relative to Figure S2B were observed: (a) the median predictive power for all random gene

regressions decreased substantially (i.e., R
2

CV decreased), indicating that indeed a substantial part of the predictive power of random

genes arises due to large correlations with denitrification genes, and (b) denitrification genes now outperformed the typical set of

random genes as predictors for even the rI regression, demonstrating the superiority of denitrification genes as predictors for regres-

sions on all consumer-resource parameters.

While the superior predictive power of the 17 denitrification genes was demonstrated in direct comparisons with sets of 17

randomly-selected genes, there may exist genes outside of the denitrification pathway with complementary predictive power

when added to the denitrification genes. Therefore it was investigated whether adding additional randomly-selected genes to the

denitrification genes further improves the predictive power of regressions on the consumer-resource parameters. To address this

question, sets of predictor variables were generated by randomly sampling (without replacement) P� 17 genes from the set of

13364 non-denitrification-related genes and constructing binary presence/absence matrices using the denitrification genes as the

first 17 predictors and the randomly-selected genes as the subsequent P� 17 predictors. P was varied between 32 and 2048 to

investigate the dependence of prediction quality on the number of additional genes added. 10 sets of predictor variables were

randomly generated for each value of P. Then LASSO regressions on each of the SDM consumer-resource parameters

frA;gA; rI;gIg were performed using these predictors. The distributions of R
2

CV as a function of P are shown in Figure S2D. Adding

additional predictors beyond the 17 denitrification genes did not substantially improve the predictive power of themodels, regardless

of how many additional predictors were added. This indicates that the 17 denitrification genes harbor the majority of gene presence/

absence predictive power.

Evaluating alternative genomic predictors
It was investigated whether either 16S rRNA copy number, genome size, or GC-content could serve as better predictor variables for

the consumer-resource parameters frA;gA; rI;gIg than denitrification genes. Previous work demonstrates a positive relationship be-

tween 16S copy number and maximum potential growth rate across diverse taxa in nutrient-replete conditions (Roller et al., 2016; Li

et al., 2019), likely because increased ribosome production allows a higher rate of protein synthesis, thereby increasing growth rate

(Scott et al., 2010). A negative relationship between growth rate and genome size has also been observed (Li et al., 2019), possibly

due to a reduced nutrient burden required by smaller genomes (Hessen et al., 2010). GC-content has been investigated as a genomic

predictor for various bacterial phenotypes such as optimal growth temperature (Galtier and Lobry, 1997), and can serve as a baseline

for spurious phylogenetic correlations because it is a slowly-evolving genomic property (Haywood- Farmer and Otto, 2003).

16S copy number was estimated for all 79 strains in the library using the 16Stimator pipeline (Perisin et al., 2016). This approach

uses Illumina sequencing reads and annotated draft assemblies to compute the coverage ratio of the 16S gene relative to a curated

set of single-copy genes. The genome size was estimated for all strains in the library by summing the lengths of all assembled contigs

for each strain. Genomic GC-content was computed from draft assemblies using QUAST 5.02 (Gurevich et al., 2013). For the refer-

ence strain Paracoccus denitrificans ATCC 19367, a complete genome assembly (Si et al., 2019) showed 3 copies of the 16S gene, a

genome size of 5.24 mb, and a GC-content of 66.80%, and 3.36 16S copies; a genome size of 5.15 mb, and a GC-content of 66.81%

were estimated using the draft assembly.

First the relationships between 16S copy number, genome size, GC-content, and the SDM consumer-resource parameters

frA;gA; rI;gIg were considered. No significant (permutation test) correlations were observed between 16S copy number and the

consumer-resource parameters, significant positive correlations were observed between genome size and gA (r = 0:40, p< 13

10�4) and gI (r = 0:63, p<1310�4), and significant but weak positive correlations were observed between GC-content and gA

(r = 0:24, p = 0:02) and rI (r = 0:23, p = 0:04). These data suggest that genome size may be a good predictor for the yields gA

and gI.
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In order to compare consumer-resource parameter measurements to previous findings relating growth rate to 16S copy number

and genome size, growth rates on nitrate and nitrite were computed for each strain. Equation 3 can be recast in terms of growth rates

m� (1/h) by setting r� = m�=g�:

dx

dt
=

�
mA

A

KA +A
+mI

I

KI + I

�
x;

dA

dt
= � mA

gA

A

KA +A
x;

dI

dt
=

�
mA

gA

A

KA +A
� mI

gI

I

KI + I

�
x:

(Equation 9)

In this form the m� represent the exponential growth rates when substrates are not limiting (e.g., when A[KA or I[ KI). Therefore

m� = r�g� were computed using the SDM consumer-resource parameters.

No significant positive correlations were observed between either of the growth rates with 16S copy number. This differs fromwhat

has been previously observed under aerobic, nutrient-replete conditions (Roller et al., 2016; Li et al., 2019), where ribosomal produc-

tion is likely to be growth limiting. This may be because these previous studies were based on maximum potential growth rates

(measured across a variety of medium and culturing conditions), whereas maximum potential growth rates were not systematically

identified for strains in the library. Moreover it is likely that most of the measured growth rates in denitrifying conditions with a suc-

cinate defined medium are much smaller than maximum potential growth rates, because denitrification is generally a significantly

lower ATP-yielding process than aerobic respiration (Strohm et al., 2007), and also because succinate definedmedium likely imposes

more stringent biosynthesis demands than a complex, rich medium (Scott et al., 2010). Therefore the relative benefit of high gene

copy number of rRNA formany strains under denitrifying growth conditionsmay be small. However significant (permutation test) pos-

itive correlations were observed between genome size and mA (r = 0:21, p = 0:04), and mI (r= 0:63 0.52, p<1310�4). This finding also

differs the previous observation of a negative relationship between genome size and growth rate (Li et al., 2019).

Finally, the potential of 16S copy number, genome size, and GC-content as predictor variables was evaluated in a head-to-head

comparison with denitrification genes by using all these predictors simultaneously in LASSO regressions on the SDM consumer-

resource parameters frA;gA; rI;gIg (4-fold cross-validation, iterated 13104 times). As before, all predictors were standardized to

have zero mean and unit variance before fitting. The following was observed: (a) 16S copy number, genome size, and GC-content

were not assigned large coefficients in any regression, (b) the statistics of fitting and generalization quality (R2
fit and R

2

CV ) were essen-

tially the same as those obtained in the original regressions, and (c) the coefficients for denitrification genes were very similar to those

obtained in the original regressions. It was concluded that the denitrification genes hold greater predictive power than 16S copy num-

ber, genome size, and GC-content, since the latter predictors are not selected as important variables by LASSO regression.

Regressing ADM phenotypes onto denitrification gene content
Regressions for the consumer-resource parameters measured in ADM were performed as for those parameters measured in SDM.

Themedian values ofR2 obtained via iterated 4-fold cross-validation (M= 104 iterations) (R
2

CV ) were positive for all regressions. The p-

values of R
2

CV (permutation test) were all <0:01.

Predicting community metabolic dynamics
The consumer-resource model (Equation 3) was extended to generate predictions for community (i.e., multi-strain) metabolite dy-

namics. For an N-strain community, the extended model is as follows:

dxi
dt

=

�
gAr

i
A

A

KA +A
+gi

Ir
i
I

I

KI + I

�
xi; for i = 1;.;N

dA

dt
= �

XN
i = 1

riA
A

KA +A
xi;

dI

dt
=
XN
i = 1

�
riA

A

KA +A
� riI

I

KI + I

�
xi: (Equation 10)

For each strain i, which has biomass density xi, the parameters friA;gi
A; r

i
I ;g

i
Igwere measured in monoculture. Note that, as before,

KA =KI = 0.01mM for all strains. This ‘‘additive’’ model sums the independent rate contributions of each strain to the nitrate and nitrite

differential equations, in effect assuming that strains only interact via cross-feeding and competition for extracellular nitrate and ni-

trite. The model does not assume that strains interact through Lotka-Volterra-type (quadratic) terms in the biomass density equa-

tions, nor does it assume that the parameters friA;gi
A;r

i
I ;g

i
Ig, measured in monoculture, are modulated by the presence of any other

strain. Thus Equation 10 represents a null model for community metabolite dynamics where each strain in a community behaves as it

does in monoculture, and as a result provides a prediction requiring no additional free parameters.
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Simple communities were assembled and cultured to test the predictions of Equation 10, drawing from a representative 12-strain

subset of the 79-strain library: Nar/Nir strains Achromobacter sp. ACM01, Ensifer sp. ENS09, Paracoccus denitrificans, Pseudo-

monas sp. PDM21; Nar strains Acidovorax sp. ACV02, Paracoccus sp. PAR01, Pseudomonas sp. PDM12, Pantoea sp. PNT03;

Nir strains Agrobacterium sp. AGB01, Pseudomonas sp. PDM13, Pseudomonas sp. PDM14, and Pseudoxanthomonas sp.

PXM03. Nitrate/nitrite dynamics and endpoint optical density were measured for (a) all 66 2-strain combinations, (b) a random set

of 81 three-strain combinations, (c) 21 four-strain combinations, (d) 6 five-strain combinations, and (e) controls of each strain inmono-

culture. 6 of the four-strain combinations were chosen randomly from the set of 12 strains, while the remaining 15 four-strain com-

binations and all five-strain combinations were exhaustive combinations of the six strains ACM01, ENS09, PAR01, PNT03, AGB01,

and PDM13. All communities/controls were cultured in SDM in each of two media conditions, 2 mM nitrate and 2mM nitrite, with 2–3

experimental replicates per condition. Initial biomass densities were OD6000 = 0.01 for each strain in a given community.

First endpoint biomass densities were compared with the values predicted by the additive model, Equation 10. Since the optical

density measurement cannot discern between strains in a mixed population, a model prediction for total endpoint biomass density

was computed by summing the endpoint biomass densities of each strain. Endpoint biomass densities were well-predicted by Equa-

tion 10 (Figure S4A). This gives one indication that the additive consumer-resource model in Equation 10 accurately predicts com-

munity behavior using only information from monocultures.

The ability of the additive model to predict relative abundances for a subset of pair cultures was evaluated. All pair combinations

andmonocultures of six taxonomically and phenotypically representative strains (Nar/Nir strains Achromobacter sp. ACM01 and En-

sifer sp. ENS09; Nar strains Paracoccus sp. PAR01 and Pantoea sp. PNT03; Nir strainsAgrobacterium sp. AGB01 and Pseudomonas

sp. PDM13) were cultured and periodically sampled. All cultures were initiated with 2mMNO�
3 , with the exception of monocultures of

Nir strains AGB01 and PDM13 and the pair culture of these two strains, which were initiated with 2 mMNO�
2 . Then the relative abun-

dance of 16S rRNA amplicons in the pair cultures wasmeasured using CASEU (Cermak et al., 2020). In order to enable a comparison

with the predictions of themodel, Equation 10, whichmakes predictions in terms of biomass density (in units of OD), conversion con-

stants were measured to transform 16S amplicon relative abundances to OD600 relative abundances. Doing so is necessary

because (a) strains generally differ in 16S rRNA gene copy number per cell (ranging from 4–7 copies per cell for these strains),

and (b) strains will have generally different conversion factors from OD600 to cells/mL, arising for instance due to differences in

cell size. Therefore, the ratios of 16S amplicon abundances will be related to the ratio of biomass densities by the equation:

ai
aj

=
bicixi
bjcjxj

=Ki;j

xi
xj
; (Equation 11)
where for strain i, ai is the 16S amplicon relative abundance, xi the
 biomass density relative abundance, and bi and ci are respectively

the 16S rRNA gene copy number (16S rRNA copies/cell) and cell density to OD600 conversion factor (cells/mL/OD). This means that

the ratio of 16S amplicon abundances for strains i and jwill be related to the ratio of OD600 abundances by the conversion factor Ki;j.

Therefore Ki;j was directly measured for each pair of strains by growing monocultures of each strain in denitrifying conditions, har-

vesting cells after 64 h, measuring OD600, combining monocultures in equal-volume (450 mL) mixtures, and then processing,

sequencing, and analyzing mixtures. Relative amplicon abundances of these mixtures along with OD600 measurements of the con-

stituent monocultures were used to solve Equation 11 for the parameters Ki;j for each pair. Then these conversion factors were used

to transform the 16S amplicon relative abundances for pair cultures to OD600 relative abundances. These measurements were

compared with the OD600 relative abundance predictions of Equation 10 (Figure S4B). In general, the model predictions for strain

relative abundances closely matched the observed values, indicating that the model accurately predicts community compositions

in themajority of cases using only information frommonocultures. Therewere a small number of pair cultureswithmodest differences

between predicted and observed relative abundances, mainly involving combinations of the Nar strains PAR01 and PNT03 and the

Nir strains AGB01 and PDM13. These lower quality predictions may reflect interactions between these phenotypes not captured in

the model (Equation 10).

Finally the ability of additive model to predict community nitrate and nitrite dynamics from individual strain consumer-resource pa-

rameters was evaluated. To do this, a normalized root-mean-square error (NRMSE) was computed for a given N-strain community as:

NRMSE1;.;N =
RMSE1;.;N 

1
N

PN
i = 1RMSE2

i

!
1=2

; (Equation 12)
where RMSE1;.;N is the root-mean-square error between measur
ements and predictions for the community, and RMSEi is the error

for each constituent strain in monoculture, with errors averaged over experimental replicates. Themonoculture RMSEs of each strain

were used in this normalization in order to correct for variations in monoculture fit quality. NRMSE in the range 0–2 indicates errors in

2-strain communities that are within twofold of fits associated with their constituent monocultures, while values of NRMSE much

greater than this indicate low quality predictions. It should be noted that, because the denominator of Equation 12 depends on

the RMSE of the constituent monocultures in a community, a potential pathology is that NRMSEs can be modestly inflated when

the RMSEs for constituent monocultures are all small (indicating a strong correspondence between the data and the model).
e14 Cell 185, 530–546.e1–e16, February 3, 2022



ll
Article
However, this pathology is expected to be rare because it requires all monoculture RMSEs to be small.

The NRMSEs for all pairs of 12 strains cultured in separate nitrate and nitrite medium conditions are shown in Figures S3A and S3B.

For most pair communities, typically low values of NRMSE indicated that Equation 10 made high quality predictions in most cases.

The apparent exception to this was Nar + Nir communities (comprising any combination of Nar strain and Nir strain) initialized with

nitrate (Figure S6), for which NRMSE values appeared much higher than for any other group. Permutation tests were then performed

on themean NRMSE values within phenotypic groups to determine whether the Nar + Nir group had significantly higher NRMSE than

other groups (13105 permutations). Since 10 hypothesis tests were performed in this manner, a Bonferroni-corrected threshold of

p= 0:05=10= 0:005 was used for testing at the 5% significance level. These tests indicated that only the Nar + Nir group in nitrate

medium conditions had a significantly large mean NRMSE value ðp<1310�5Þ.
TheNRMSEs for 108 3–5-strain communities cultured in separate nitrate and nitritemedium conditions are shown in Figure S3E. As

with pair cultures, many 3–5-strain communities communities have low values of NRMSE indicating that Equation 10made high qual-

ity predictions of nitrate and nitrite dynamics. Also, most apparent failures of themodel predictions occurred when a community con-

tains both a Nar strain and a Nir strain.

Up to this point, to test the ability of the consumer-resource model to predict community metabolic dynamics, directly measured

values of the consumer-resource parameters were used to make community predictions. Using regressions instead to make predic-

tions of single-strain phenotypes from gene presence/absencewould be expected to add some degree of error to communitymetab-

olite dynamics predictions. To quantify this additional error, regressions on each of the SDMconsumer-resource parameters (Figures

4C–4F) were used to predict these parameters for the each of the 12 strains, and then these parameters were used to predict com-

munity dynamics in the pair cultures and 3–5-strain communities. The NRMSEs evaluating the accuracy of these predictions relative

to observed communitymetabolite dynamics are shown in Figure S5. For pair cultures (Figures S5A andS5B), NRMSEs changed little

relative to using the directly measured parameters to make predictions; the median difference between NRMSEs using regression

predicted parameters versus measured parameters for pair cultures in nitrate was -0.1, and for pair cultures in nitrite the median dif-

ference was approximately zero. NRMSEs increased modestly for 3–5-strain communities (Figure S5C); the median difference was

0.5 for communities in nitrate, and 1.4 for communities in nitrite.

Correcting for Nar + Nir interactions
The additiveN-strain consumer-resourcemodel, Equation 10, generally failed to predict the dynamics of communities initialized with

nitrate that included both a Nar and aNir strain (see plots of all Nar + Nir pairs in Figure S6). In every instance, the nitrate reduction rate

of the Nar strain appears to be diminished relative to the rate in monoculture, and in some instances the nitrite reduction rate for the

Nir strain appears to be increased relative to monoculture. Since Nar and Nir strains utilize different electron acceptors and therefore

do not plausibly compete for any resource under these experimental conditions, it was concluded that interactions aside from

resource competition must be taking place.

It was therefore investigated whether the predictions of the additive model in Equation 10 could be improved by correcting for in-

teractions between Nar and Nir strains. To do this, the nitrate and nitrite reduction parameters riA and rjI of the Nar strain i and the Nir

strain j, respectively, were refit using the measured metabolite dynamics data from the pair cultures of these strains. Changes to the

reduction rate parameters rather than the yields (gi
A and g

j
I) were investigated because the additive model accurately predicted

endpoint optical densities in all pair communities (Figure S4A), and therefore there was no evidence that interactions between Nar

and Nir strains involved a change in yields. However, given the hypothesis that Nir strains inhibit Nar strains via excretion of cytotoxic

nitric oxide (see discussion), it is plausible that interactions may involve a change in yields that are not detectable given the precision

of the optical density measurement.

Nitrate and nitrite reduction rate parameters for each Nar + Nir pair culture were refit in the following way:

1. Refit riA for the Nar strain i, holding all other parameters fixed. Record the NRMSE for the resulting prediction.

2. Refit both riA for the Nar strain i and rjI for the Nir strain j, holding all other parameters fixed. Record the NRMSE for the resulting

prediction.

3. If the NRMSE obtained in step 2 was more than 10% smaller than the NRMSE in step 1, then accept the refit parameters ob-

tained in step 2, denoting these values as ~ri;jA and ~rj;iI . Otherwise, accepted the refit parameter obtained in step 1 as ~ri;jA , and let
~rj;iI = rjI .

Refitting was performed as described above for Equation 3. In step 3, improvements in fit quality obtained by refitting only rA versus

refitting both rA and rI were compared in order to identify cases where increases in nitrite reduction rate were necessary to improve

fits of Equation 10 to the data.

The results of this refitting procedure are shown in Figure S7. These results demonstrate that, in all cases, the nitrate reduction rate

of the Nar strain was slowed ð~rA <rAÞ in Nar + Nir pair culture. Additionally, in several cases the nitrite reduction rate of the Nir strain

was increased ð~rI >rIÞ in Nar + Nir pair culture. Each Nar strain is affected in essentially the same way by every Nir strain (e.g., the

nitrate reduction rate of Nar strain PAR01 diminished by approximately 50% in every pair culture with a Nir strain). This observation

is consistent with the proposal that nitric oxide toxicity impacted nitrate reduction by the Nar-strain in amanner that is specific to each

Nar strain (see discussion).
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These refit parameter values were then used in Equation 10 to generate new predictions for 3–5-strain communities containing at

least one Nar + Nir pair. To do so, the following rules were employed for replacing rA and rI in Equation 10, which depend on the num-

ber of Nar and Nir strains in the community:

1. One Nar strain i and one Nir strain j: riA = ~ri;jA , r
j
I = ~rj;iI .

2. Two Nar strains i and j and one Nir strain k: riA = ~ri;kA , rjA = ~rj;kA , rkI = ð~rk;iI + ~rk;jI Þ=2.
3. One Nar strain i and two Nir strains j and k: riA = ð~ri;jA + ~ri;kA Þ=2, rjI = ~rj;iI , r

k
I = ~rk;iI .

4. General case with N Nar strains in the set SNar and M Nir strains in the set SNir :

riA = 1=M
P

j˛SNir
~ri;jA for all i˛SNar and rjI = 1=N

P
i˛SNar

~rj;iI for all j˛SNir .

The results of using refit Nar and Nir parameters to predict 3–5-strain cultures are shown in Figure 7B (yellow points). Correcting

predictions using refit rA and rI parameters substantially improved prediction quality, reducing median NRMSE values from 1.68 to

0.92. These results did not appreciably change if a min or max function is used instead of a mean.
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Figure S1. Fitting consumer-resource parameters, related to Figure 3

(A) Histogram showing the distribution of yield intercept ðg0Þ values for 79 strains cultured in SDM. Units are dimensionless absorbances at 600 nm, path length

normalized to 1 cm.

(B–D) Examples of yield parameter fits using data obtained in different growth conditions. Points show observed values of DOD600 = OD60064 – OD6000 from

different conditions where different amounts of nitrate and nitrite are reduced (DA=A0 � A64 and DI = A0 � A64 + I0 � I64, respectively) with 4 replicates used in

each condition. The plane/lines show the least-squares fits of the data to Equation 6 (STAR Methods). (B) shows the yield fit for the Nar/Nir strain P. denitrificans

ATCC 19367 in SDM. (C) shows the yield fit for the Nar strain Raoultella sp. RLT01 in SDM. (D) shows the yield fit for the Nir strain Pseudomonas sp. PDM13

in SDM.

(E) Example global fits of the consumer-resource model (Equation 3; STAR Methods) to nitrate and nitrite dynamics data for the Nar/Nir strain P. denitrificans

ATCC 19367 cultured in SDM. Points showmeasured concentrations of nitrate and nitrite, and curves show optimal model fits. Four replicates were used in each

experimental condition.

(F and G) Distributions of fractional errors (%) for (F) the affinity parameters KA and KI and (G) the rate parameters rA and rI, fit using SDM monocultures. Dis-

tributions were computed via nonparametric bootstrap with KA;KI constrained during fitting between 0.001 and 10. Fractional error is defined as the ratio of the

interquartile range obtained via bootstrapping to the value of the parameter obtained using a standard fit to all experimental data.

(H) Example nitrate and nitrite dynamics for the Nar strain Raoultella sp. RLT01 cultured in SDM. Solid lines show the fit to Equation 3 (STARMethods) holding KA

fixed at 0.001, while dashed lines show fits holding KA = 0:1.

(I) Comparison of model fit errors (RMSE) for N= 79 denitrifying strains cultured in SDM. Fits that hold KA =KI = 0:01 and fits that take KA and KI as free fitting

parameters are compared. A two-sample Kolomogorov-Smirnov test accepts the null hypothesis that underlying distributions for the two samples are the same

ðp = 0:97Þ. Boxplots indicating quartiles of each distribution are shown.

(J) Example Nar/Nir strain PDM25 cultured in SDM for which reduction rates were fit using all experimental conditions (dashed lines, RMSE = 0:177) and using

only conditions where nitrate was initially supplied (solid lines, RMSE = 0:138).

(K) Example Nar strain ENT03 cultured in SDM for which the reduction rate rA was fit using all experimental conditions (dashed lines, RMSE = 0:254) and using

only conditions where OD6000 = 0:01 (solid lines, RMSE = 0:095).

(L) Example Nar strain PDM27 cultured in SDM for which nitrate concentrations appear to asymptotically approach a nonzero value.

(M) The biomass densities of four Nar/Nir strains (Achromobacter sp. ACM01, Ensifer sp. ENS09, Paracoccus denitrificans ATCC 19367, and Pseudomonas sp.

PDM21) grown in SDMwere measured in denitrifying conditions over 64 h (points) to validate the predictions (curves) of the consumer-resource model (Equation

3; STARMethods). The parameters for each strain were inferred in previous SDMmonocultures (STARMethods). 2mMNO�
3 was initially supplied to each culture,

and three experimental replicates were used for each time point. Themedian relative errors in biomass density predictions at t = 64 hwere�5.2%,�7.5%, 9.4%,

and 6.4% for ACM01, ENS09, PAR19367, and PDM21, respectively.
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Figure S2. Randomly selected genes as alternative predictors for consumer-resource parameters, related to Figure 4

(A) Distributions of gene presence frequency (fraction of strains that possess a given gene) for denitrification-related genes (red) and the distribution of gene

presence frequency for all other annotated genes (black), both in the ensemble of the 75 nitrate-reducing strains. Solid lines show empirical cumulative distri-

bution functions (CDFs) of gene frequencies, and dashed lines show kernel density estimates of these distributions (bandwidth = 0.4).

(B andC) Distributions ofR
2

CV values obtained by regressing each of the SDM consumer-resource parameters onto the presence and absence of sets of randomly

selected genes (13103 sets of random genes per consumer-resource parameter). (B) shows results for genes randomly selected from the set of all annotated

genes across strains in our library, while (C) shows results for genes randomly selected from the set of all annotated genes excluding those that have large and

significant correlation (jrjR 0.5) with any denitrification genes. Dashed lines indicate R
2

CV values obtained in regressions onto the presence and absence of

denitrification-related genes (the same values are shown in both panels) with the corresponding quantile values (q).

(D) Points show distributions of R
2

CV obtained by regressing the SDM consumer-resource parameters onto sets of the 17 denitrification genes plus P� 17

additional randomly selected genes (10 predictor sets per consumer-resource parameter), and the solid lines pass through the median values of these distri-

butions as a function of P. The values of R
2

CV shown at P= 17 are the same as the values indicated by dashed lines in (B) and (C).
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Figure S3. Accuracy of consumer-resource nitrate/nitrite dynamics predictions for simple communities, related to Figures 6 and 7

(A and B) Normalized RMSE (NRMSE) values comparing measurements and predictions for nitrate and nitrite dynamics in all pair communities of 12 strains.

Values are grouped according to the constituent phenotypes in a community, with Nar/Nir strains labeled in purple, Nar strains in blue, and Nir strains in orange.

(A) shows NRMSEs for communities initialized with 2 mM nitrate (with ‘‘Nir + Nir’’ communities omitted, since Nir strains do not utilize nitrate as an electron

acceptor). (B) shows NRMSEs for communities initialized with 2 mM nitrite (with Nar + Nar communities omitted, since Nar strains do not utilize nitrite as an

electron acceptor). All cultures were performed in SDM.

(C and D) Hypothesis testing on means of NRMSEs grouped by constituent phenotypes (e.g., Nar/Nir + Nar/Nir communities, etc.). Null distributions for group

means are generated via permutation of group labels for each pair community (13105 permutations) and are compared with the observedmean NRMSEs in each

group (dashed lines). A Bonferroni-corrected threshold for 5% significance over 10 hypothesis tests is 0.005. Note that some groups contain only 6 NRMSE

values (e.g., Nar/Nir + Nar/Nir communities), while others contain 16 NRMSE values (e.g., Nar/Nir + Nar communities). Panel C shows hypothesis testing on the

NRMSE values in (A) (communities initialized with nitrate), while (D) shows inference on the values in (B) (communities initialized with nitrite).

(E) Distributions of NRMSE values comparing measurements and predictions for nitrate and nitrite dynamics in 3–5-strain communities (N = 108). Communities

were cultured in SDMand separately initialized with 2mMnitrate or 2mMnitrite. Points in yellow indicate values for communities that contain both aNar strain and

a Nir strain.
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Figure S4. Accuracy of consumer-resource endpoint biomass density and composition predictions, related to Figure 6

(A) Comparisons between observed endpoint optical densities and values predicted by the additive consumer-resource model (Equation 10; STAR Methods),

where the latter was obtained by summing the endpoint biomass densities of each strain in the community. Comparisons are shown formonoculture controls, pair

cultures, and 3–5-strain communities, in 2 mM nitrate and nitrite media conditions separately. All cultures were performed in SDM. Initial optical densities are

indicated (red cross), and coefficients of determination R2 and root-mean-square errors (RMSE) for observed versus predicted values are shown.

(legend continued on next page)
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(B) Comparisons between observed relative biomass densities and relative biomass densities predicted by the additive consumer-resource model (Equation 10;

STAR Methods). Root-mean-square error for observed versus predicted relative abundances across all pairs is 0.16. Endpoint community relative abundances

were measured for all pair cultures of the six strains Achromobacter sp. ACM01 (Nar/Nir), Ensifer sp. ENS09 (Nar/Nir), Paracoccus sp. PAR01 (Nar), Pantoea sp.

PNT03 (Nar), Agrobacterium sp. AGB01 (Nir), andPseudomonas sp. PDM13 (Nir). All cultures were performed in SDM initiated with 2mMNO�
3 , with the exception

of the pair culture of the two Nir strains AGB01 and PDM13, which was initiated with 2 mM NO�
2 . Relative abundances of 16S rRNA amplicons were measured

using CASEU (Cermak et al., 2020; STAR Methods). To make comparisons in terms of relative biomass densities, conversion factors from 16S amplicon relative

abundance to relative biomass density were computed using mixtures of monocultures (Equation 11; STAR Methods).
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Figure S5. Accuracy of consumer-resource nitrate/nitrite dynamics predictions for 2–5-strain communities using genomic predictions of

phenotypes, related to Figures 6 and 7

(A–C) NRMSE values comparing measurements and predictions for nitrate and nitrite dynamics in (A and B) pair cultures and (C) 3–5-strain communities ðN =

108Þ. Predictions were made using regressions in Figure 4 to predict single-strain consumer-resource parameters from gene presence/absence, which were, in

turn, used by the consumer-resourcemodel to predict metabolite dynamics. This is in contrast to Figures 6, 7, and S3, where predictions for metabolite dynamics

were made using directly measured values of consumer-resource parameters. Communities were cultured in SDM and were separately initialized with 2 mM

nitrate and 2 mM nitrite. Points in yellow indicate values for communities that contain both a Nar strain and a Nir strain.
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Figure S6. Nitrate/nitrite dynamics for Nar + Nir pair cultures, related to Figures 6 and 7

Monoculture controls are shown for Nar strains (left column) and Nir strains (bottom row). Points show measured concentrations of nitrate and nitrite, and curves

show predictions of Equation 10 (STAR Methods). NRMSE values for pair cultures are shown. 2–3 experimental replicates are used for each combination of

strains. All cultures were performed in SDM.
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Figure S7. Refitting model parameters for Nar + Nir pair cultures, related to Figure 7
(A) The rA parameter for the Nar strain and/or the rI parameter for the Nir strain were refit to the Nar + Nir pair culture measurements to obtain new parameter

values ~rA and ~rI, respectively. In some cases (panels with only solid lines), it was only necessary to refit the rA parameter to obtain a goodmodel fit. In other cases

(panels with both solid and dashed lines), better fits (more than 10% smaller NRMSE) could be obtained by refitting both rA and rI (solid lines). NRMSE values for

refit models are indicated. 2–3 experimental replicates are used for each combination of strains.

(B) Relative changes in rA and rI parameters. Nar strains are coded by color: ACV02 (yellow), PAR01 (green), PDM12 (blue), and PNT03 (red). Nir strains are coded

by symbol: AGB01 (circle), PDM13 (square), PDM14 (triangle), and PXM03 (diamond). NRMSE values for pair cultures are shown. All cultures were performed

in SDM.
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