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SUMMARY

The metabolic activities of microbial communities play a defining role in the evolution and persistence of life on
Earth, driving redox reactions that give rise to global biogeochemical cycles. Community metabolism emerges
from a hierarchy of processes, including gene expression, ecological interactions, and environmental factors.
In wild communities, gene content is correlated with environmental context, but predicting metabolite dy-
namics from genomes remains elusive. Here, we show, for the process of denitrification, that metabolite dy-
namics of a community are predictable from the genes each member of the community possesses. A simple
linear regression reveals a sparse and generalizable mapping from gene content to metabolite dynamics for
genomically diverse bacteria. A consumer-resource model correctly predicts community metabolite dynamics
from single-strain phenotypes. Our results demonstrate that the conserved impacts of metabolic genes can
predict community metabolite dynamics, enabling the prediction of metabolite dynamics from metagenomes,

designing denitrifying communities, and discovering how genome evolution impacts metabolism.

INTRODUCTION

The metabolism of microbial communities plays an essential role
in sustaining life on Earth, impacting global nutrient cycles (Fal-
kowski et al., 2008; Canfield et al., 2010; Stein and Klotz,
2016), wastewater treatment (Lu et al., 2014), and human health
(Subramanian et al., 2014). A challenge in microbial ecology is
understanding how community metabolism is determined by
the taxa present, their metabolic traits, and the genes they
possess (Widder et al., 2016; Louca et al., 2018). Addressing
this challenge requires mapping the genotypes of each commu-
nity member to its metabolic traits and then deciphering how
complex interactions between each member impact the flux of
metabolites through the community. Complicating the prediction
of metabolite fluxes from community composition, interactions
can depend on extracellular metabolites (Liljla and Johnson,
2016), abiotic factors (Ward et al., 2006), cooperation (Cordero
et al.,, 2012), and higher-order effects (Sanchez-Gorostiaga
et al., 2019; Mickalide and Kuehn, 2019). Despite these chal-
lenges, connecting genomic structure to the collective meta-
bolism of a community is important for functionally interpreting
community gene content (Anantharaman et al., 2016), designing
synthetic communities (Shou et al., 2007), and understanding
how gene gain and loss (Molina and Nimwegen, 2009; Sela
et al., 2019) impact community metabolism.
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Recent work suggests that the genes present in a community
may be more informative about metabolic activity than the identity
of strains or species making up the community. Sequencing
studies of environmental and host-associated communities
show that, while the individual strains or species present are often
highly variable (Louca et al., 2018), the genes or pathways present
are often observed to be stable across communities in similar
environments (Louca et al., 2018; Human Microbiome Project
Consortium, 2012). For example, aquatic communities native to
bromeliads contain prokaryotes from several functional groups
(e.g., methanogens, fermenters, and photoautotrophs). The strain
or species representing each functional group varies widely from
one plant to the next, but the relative abundance of each functional
group is remarkably stable across plants (Louca et al., 2016a).
Similarly, studies in oceans and soils that measure both gene con-
tent and nutrient levels have found that the relative abundances of
specific metabolic genes are better predictors of nutrient levels
than the abundances of specific taxa (Jones and Hallin, 2010; Fi-
erer et al., 2012; Louca et al., 2016b). These results suggest that
the availability of nutrients, such as organic carbon, oxygen, ni-
trate, carbon dioxide, and light, constrain the composition of the
community in terms of the abundances of specific metabolic capa-
bilities more so than they constrain the taxa possessing those ca-
pabilities. One implication of this finding is that communities with
similar genomic composition, in terms of the metabolic pathways
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Step 1: Measure phenotypes of isolates.
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Figure 1. Workflow for predicting community
metabolite dynamics from genomic structure
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possess high levels of genomic diversity
(Sakoparnig et al., 2021). Additionally, we
lack an understanding of how this genomic
diversity drives variation in metabolic traits
and how phenotypes of individual taxa
combine to give rise to metabolite fluxes
through a community.
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they possess, might exhibit similar rates and productivity of the
associated metabolic process, but any such correspondence is
yet to be demonstrated.

Corroborating the idea that nutrient availability strongly deter-
mines community composition, experiments in fixed nutrient con-
ditions have shown that the metabolic traits of bacterial strains in
assembled communities can be highly reproducible. To show
this, several groups have sampled complex communities from
natural environments and grown them under defined nutrient con-
ditions in the laboratory (Datta et al., 2016; Goldford et al., 2018).
Using this approach, Datta et al. showed that marine microbial
communities degrading polysaccharide particles exhibit a suc-
cession of bacterial taxa (Datta et al., 2016). Succession on these
particles arises from initial colonizers that cleave polysaccha-
rides, followed by strains that compete for the resulting oligosac-
charides or consume byproducts of sugar metabolism. Similarly,
bacterial communities sampled from leaf surfaces and enriched
in glucose minimal medium reproducibly yield communities

Here, we address the challenge of map-
ping gene content to metabolite dynamics
by quantifying the flux of metabolites in an
ensemble of genomically diverse commu-
nities composed of non-model organisms
(see Figure 1 for a summary of the
approach). We used bacterial denitrifica-
tion, an essential metabolic process in the
global nitrogen cycle that is performed by
diverse and culturable bacterial taxa
(Lycus et al., 2017), as a model metabolic process. We isolated
an ensemble of denitrifiers and measured the dynamics of metab-
olite consumption and production for each isolate under controlled
conditions. We then parameterized metabolite dynamics using a
consumer-resource model. The genomic diversity of the ensemble
of isolates enabled a simple linear regression approach to map-
ping gene content to consumer-resource model parameters,
which resulted in a sparse and generalizable mapping of gene
presence and absence to metabolic phenotypes. Finally, the con-
sumer-resource model captured interactions between strains
mediated by resource competition, yielding predictions for com-
munity-level metabolite dynamics that we verified experimentally.
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RESULTS
Denitrification as a model metabolic process

We used denitrification as a model metabolic process because it
is performed by diverse bacterial taxa, it is well characterized at
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Figure 2. Denitrification as a model meta-

bolic process
(A) Denitrification is a form of anaerobic respiration
whereby oxidized nitrogen compounds are used
N2 as electron acceptors. The process results in a
NZO\—} cascade of reactions from nitrate (NO3) to di-ni-
N @ trogen (N.). Some bacteria perform all four steps
peffplaSm in the cascade (purple, “Nar/Nir”), whereas others
perform only a subset of reactions. Two examples
Cytop,asm of the latter are shown here: “Nar” strains (blue)

perform only nitrate reduction, and “Nir” strains
(red) perform nitrite (NO, ) reduction and poten-
tially also subsequent steps (dashed lines).

(B) A schematic representation of the molecular

steps in the denitrification process. Denitrification serves as the terminal step in the electron transport chain (not shown) and, thereby, contributes to ATP
generation. Reduction of nitrate to nitrite takes place either in the cytoplasm (via the enzyme Nar) or in the periplasm (Nap). Nitrate reduction in the cytoplasm via
Nar requires nitrate and nitrite to be transported across the inner membrane (NarK1, Nark2, and NarK1K2). The subsequent three steps all occur in the periplasm
and are encoded by the reductases Nir, Nor, and Nos as shown. There are two functionally equivalent types of Nir and Nor reductases: Nirk/NirS and gNor/cNor,

respectively.

the molecular level, and the relevant metabolites are readily
quantifiable (Zumft, 1997). Because denitrifiers are easily iso-
lated and cultured (Lycus et al., 2017), we can capture substan-
tial genomic diversity in an ensemble of natural isolates.

Denitrification is a form of anaerobic respiration whereby mi-
crobes use oxidized nitrogen compounds as electron acceptors,
driving a cascade of four successive reduction reactions, NO; —
NO, — NO — N,O — Ny (Zumft, 1997) (Figure 2A). As a biogeo-
chemical process, denitrification is essential to nitrogen cycling
at a global scale through activity in soils, freshwater systems,
and marine environments (Seitzinger et al., 2006). In addition,
denitrification impacts human health through activity in waste-
water treatment plants (Lu et al., 2014) and in the human gut (Irra-
zabal et al., 2014). The process is performed by taxonomically
diverse bacteria (Graf et al., 2014) that are typically facultative an-
aerobes. The denitrification pathway is known to be modular,
with some strains performing all four steps in the cascade and
others performing one or a nearly arbitrary subset of reduction re-
actions (Lycus et al., 2017) (Figure 2A). Denitrification in nature is,
therefore, a collective process, wherein a given strain can pro-
duce electron acceptors that can be utilized by other strains (Lilja
and Johnson, 2016).

Denitrification is well understood at the molecular level. The
process couples the reduction of oxidized nitrogen compounds
to the electron transport chain and, therefore, ATP production.
The enzymes (reductases) that perform each step in the cascade
are shown in Figure 2B. Reduction of nitrate to nitrite can occur
either in the cytoplasm, by the Nar reductase, or the periplasm,
using Nap. Inner membrane NarK transporters (NarK1, NarK2,
and NarK1K2) facilitate the exchange of nitrate and nitrite be-
tween the cytoplasm and the periplasm. The remaining three re-
actions all occur exclusively in the periplasmic space (Figure 2B).
The regulatory elements that control the expression of denitrifi-
cation genes are also well characterized and include two-
component systems that sense the oxidized nitrogen com-
pounds and regulators that detect the loss of oxygen from the
environment (Zumft, 1997; Rodionov et al., 2005). Because
most of these reactions occur in the periplasm, substrates can
readily leak into the surrounding environment, enabling cross-
feeding between denitrifiers (Lilja and Johnson, 2016).
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We focused experimentally on the first two steps of denitrifica-
tion: the conversion of nitrate (NO; ) to nitrite (NO; ) and subse-
quently nitric oxide (NO) (Figure 2A). Nitrate and nitrite are
soluble, enabling high-throughput measurements of metabolite
dynamics (Miranda et al., 2001). To obtain a genomically diverse
ensemble of non-model organisms, we isolated 78 bacterial
strains spanning a-, -, and y-proteobacteria from local soils us-
ing established techniques (Tables S1-S3; STAR Methods).
Each strain was obtained in axenic culture and was character-
ized as performing one or both of the first two steps of denitrifi-
cation. Therefore, strains were classified into one of three
possible phenotypes (Figures 2A and 3A): (1) Nar/Nir strains
that perform both nitrate and nitrite reduction (NO; — NO, —
NO), (2) Nar strains that perform only nitrate reduction (NO; —
NO;), and (3) Nir strains that perform only nitrite reduction
(NO, — NO). In addition to these 78 isolates, our strain library
also included the model denitrifier Paracoccus denitrificans
(ATCC 19367).

Parameterizing metabolite dynamics
We first set out to quantify the metabolic phenotypes of each
isolate in our diverse strain library (Step 1, Figure 1). We focused
our efforts on quantifying the dynamics of the relevant metabo-
lites, nitrate and nitrite. To accomplish this, strains were inocu-
lated at low starting densities into 96-well plates containing a
chemically defined, electron-acceptor-limited medium contain-
ing succinate as the sole non-fermentable carbon source (succi-
nate-defined medium, SDM; Table S4; STAR Methods), with
either nitrate or nitrite provided as the sole electron acceptor.
Cultures were then incubated under anaerobic conditions
(STAR Methods). Small samples (10 uL) were taken at logarithmi-
cally spaced time intervals over a period of 64 h and assayed for
nitrate and nitrite concentrations (STAR Methods). At the end of
the time course, optical density was assayed. The measurement
resulted in a time series of nitrate and nitrite production/con-
sumption dynamics in batch culture (points, Figure 3A). Contam-
ination between wells using this culturing and sampling
approach was assessed to be low (STAR Methods).

To parameterize the metabolite dynamics of each strain within
a common framework, we utilized a consumer-resource model,
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(A) Example batch culture metabolite dynamics for Nar/Nir (purple), Nar (blue), and Nir (red) isolates. Nitrate (NO;, blue points) and nitrite (NO,, red points)
dynamics are measured at logarithmically spaced intervals (circles) via sampling and colorimetric assay (STAR Methods), with + 5% error bars shown. Biomass
densities are only measured at the final time point. Curves show fits to a consumer-resource model shown in (B).

(B) A consumer-resource model of nitrate and nitrite reduction by each strain describes the evolution of biomass density (x, OD), nitrate concentration (A, mM),
and nitrite concentration (/, mM) with time. The model is parameterized by reduction rates r4 and r; (mM/OD/h), and yields v, and v, (OD/mM), for growth on nitrate
and nitrite, respectively. The affinity parameters K4 and K; (mM) were not well constrained by the data and were fixed for all strains in the library (STAR Methods).
(C) Phylogenetic tree and normalized consumer-resource parameters for 79 denitrifying strains (78 isolates and the model denitrifier Paracoccus denitrificans).
The strain library comprised 51 Nar/Nir, 24 Nar, and 4 Nir strains. Consumer-resource parameters were measured in a succinate-defined medium (SDM).
Phylogenetic tree constructed using the 16S rRNA gene, and scale bar represents the estimated number of substitutions per site. Darker colors indicate larger
values of the normalized parameters. Nitrate and nitrite reduction parameters were not measured for Nir and Nar strains, respectively. Consumer-resource
parameters measured across diverse isolates constituted a dataset for relating genomic diversity to metabolite dynamics. See also Figure S1 and Tables S1-S5.

which explicitly relates the growth of each strain to the dynamics
of metabolite production and consumption (Figure 3B; Equation
3; STAR Methods). The model contains up to six parameters:
rates (r., mM/OD/h), biomass yields (y,, OD/mM), and affinities
(K., mM), for the substrates nitrate (A) and nitrite (/). For each
strain in monoculture, we parameterized the consumer-resource
model using measured denitrification dynamics across a range
of initial biomass densities and nitrate/nitrite concentrations (Fig-
ures 3Aand ST1A-S1E; STAR Methods). These data allowed us to
quantify rates (r,) and biomass yields (v, ) but not the affinity pa-

rameters (K, ), which require measuring growth rates at very low
substrate concentrations. Because the results of parameter fits
were not sensitive to the values of K. across a broad range (Fig-
ures STF-S1l; STAR Methods), we fixed the affinity parameter to
a small constant value. Therefore, we captured the phenotype of
each strain in the library using at most four parameters: ra, 11, v4,
and v, (the models for Nar and Nir strains correspond to setting
ri,yy=0o0rra,v4 = 0, respectively). Yields (v,) were inferred us-
ing optical density measurements att= 64 h, and rates (r.) were
inferred by fitting the observed nitrate and nitrite dynamics to the
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consumer-resource model (Figure 3B). For the majority of strains
in our library (62 out of 79), a single set of parameters quantita-
tively described metabolite dynamics across a range of initial
biomass densities and nitrate/nitrite concentrations. The con-
sumer-resource model captured metabolite dynamics over a
restricted set of initial conditions for the remaining 17 strains (Fig-
ures S1J-S1L; Table S5; STAR Methods). Using a representative
subset of four strains, we confirmed that biomass density dy-
namics were well predicted by the consumer-resource parame-
ters, despite the fact that biomass density was not directly
measured over time (Figure STM; STAR Methods).

Fitting our consumer-resource model to data for each strain
yielded a quantitative description of the metabolic traits (i.e., deni-
trification rates and yields) of each strain in the library (Figure 3C).
We observed large variability between taxa, with coefficients of
variation for rate constants (ra, r;) around 70% and yields (y4, 7))
around 100%. We also observed some patterns of phylogenetic
conservation, for example, «-proteobacteria produced generally
higher yields than - or y-proteobacteria did, and a clade of Pseu-
domonas sp. isolates showed consistently higher rates of nitrite
reduction than most other strains (PDM17-23, Figure 3C). Despite
these patterns, the prevalence of each of the three qualitative phe-
notypes is not strongly dependent on phylogeny, with each pre-
sent across the tree (Figure 3C). The latter observation is consis-
tent with pervasive horizontal gene transfer of denitrifying
enzymes (Heylen et al., 2006; Jones et al., 2008). Finally, neither
did we observe a correlation between rates and yields, nor was
there an obvious bound on these parameters, suggesting that
they are not subjected to a trade-off.

Predicting metabolite dynamics from genomes
Understanding how genomic variation impacts metabolite dy-
namics at the community level requires first learning how
genomic variation impacts the metabolic traits of individual
strains. Therefore, we sought to determine how genomic varia-
tion across the strains in our library is related to variation in deni-
trification rates and yields (Figure 3C). One common approach to
the problem of relating genomes to metabolite dynamics is
constraint-based modeling. Constraint-based models infer the
set of all metabolic reactions performed by an organism from
an annotated genome, and then predict growth rates and metab-
olite fluxes, assuming the metabolic network is in steady state
and is subject to biologically motivated constraints (Orth et al.,
2010). Constraint-based methods have found some success in
predicting collective metabolism from genomes (Klitgord and
Segre, 2010; Mori et al., 2016; Harcombe et al., 2014), but these
methods require significant manual refinement (Norsigian et al.,
2020), complicating the prospect of making predictions from
the genomes of non-model organisms. As a result, successfully
constructing constraint-based models of denitrification for all
strains in our library is a daunting task.

We took an alternative approach to the problem of mapping
genomes to metabolite dynamics. We asked whether the varia-
tion in metabolic phenotypes across strains in our library can be
quantitatively predicted simply from knowledge of the genes
possessed by each strain. Our conjecture was motivated by
two observations. First the metabolic traits of bacteria correlate
strongly with environmental variables in marine microbial com-
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munities (Louca et al., 2016a). For example, the relative abun-
dance of taxa capable of nitrate reduction are strongly correlated
with local temperature, phosphate, and nitrate levels, suggesting
that the presence of genes responsible for those traits might also
be predictable from nutrient levels and temperature. Second, the
statistics of gene presence and absence across large numbers
of sequenced genomes provides insights into the functional
roles that genes play in pathways, such as the coupling between
dihydrofolate reductase and thymidylate synthase activity in the
folate metabolism pathway (Schober et al., 2019). Together,
these observations suggest that the genes a strain possesses
could allow for predictions of metabolic traits. Therefore, rather
than building constraint-based metabolic models for all of our
strains, each of which would require significant manual refine-
ment, we took a simple regression approach.

We used linear regression to predict the consumer-resource
model parameters (Figure 3C) of each strain from gene presence
and absence (Step 2, Figure 1). To accomplish this, we performed
whole genome sequencing on all 79 strains in the library. Then, we
assembled and annotated each genome (STAR Methods) and
determined the complement of 17 denitrification-related genes
possessed by each strain (Table S6), exploiting the fact that the
molecular and genetic basis of denitrification is well understood
(Zumft, 1997). We identified not only the reductases that perform
the reduction of the oxidized nitrogen compounds but also the
sensors/regulators (Rodionov et al., 2005) and transporters
(Moir and Wood, 2001) known to be involved in denitrification
(STAR Methods). We intentionally excluded genes encoding
structural subunits and chaperones required for the functioning
of any reductase (Table S7) because such genes have the same
presence/absence pattern as the corresponding reductases
and, therefore, would have identical predictive power. The pres-
ence and absence the denitrification-related genes in each
genome are presented in Figure 4A. Patterns of gene presence
and absence agree well with known features of the denitrification
pathway, including the mutual exclusion (Pearson correlation
—1.0among nitrite reducers) of the two reductases performing ni-
trite reduction, NirS and NirK (Jones et al., 2008; Jones and Hal-
lin, 2010).

Next, we showed that the presence and absence of denitrifica-
tion genes in each strain were sufficient to quantitatively predict
metabolite dynamics in monoculture. Specifically, we con-
structed a linear regression where the measured phenotypic
parameters of our consumer-resource model were predicted
on the basis of gene presence and absence (Figure 4B). Consis-
tent with the observation that bacterial genomes are streamlined
(Lynch, 2006), almost all strains possessing nitrate and/or nitrite
reductase performed the associated reactions in culture (the
only exception being the Nar strain Acidovorax sp. ACVO1, which
possesses both nitrate and nitrite reductase, Figure 4A). There-
fore, we carried out independent regressions for each con-
sumer-resource model parameter using only strains that
performed the associated reaction (i.e., Nar and Nar/Nir strains
for the ry and vy, regressions, and Nir and Nar/Nir strains for
the r; and v, regressions). The regression coefficients for each
gene quantify the impact of the presence of the gene on a given
phenotypic parameter. We used L1-regularized regression (least
absolute shrinkage and selection operator, LASSO) to avoid
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Figure 4. A statistical mapping from gene presence and absence to metabolite dynamics of individual strains

(A) The presence and absence of genes in the denitrification pathway for the 79 denitrifying strains in our library. The color of each circle corresponds to the gene
function as indicated in the legend further on.
(B) Observed consumer-resource phenotypic parameters for each strain in SDM (e.g., nitrate reduction rate r, Figure 3C) were linearly regressed against gene
presence and absence via Ls-regularized regression, resulting in regression coefficients §; for each gene j, an intercept 8y, and a noise term ¢ for each
observation i. Coefficient §; captures the impact of possessing gene j on the corresponding phenotypic parameter. Independent regressions were performed for

each phenotypic parameter.

(C-F) Predicted values of ra, v,4, 11, and v,, respectively, plotted against measured values. The dashed line indicates perfect agreement between observations and
predictions. The in-sample coefficients of determination for these data (an) and the out-of-sample coefficients of determination estimated via iterated 4-fold
cross-validation (ﬁév) are shown. N indicates the number strains in each regression. Strains that do not perform a particular reaction were omitted from the
corresponding regression (e.g., Nir strains were excluded from the regression for ra).

(G-J) Estimates of § for each gene and g for ra, v,, 11, and v,, respectively. Asterisks indicate significance level for each g (*: p<0.05, *: p<10-2, **: p< 1073,
and ***: p<10~4; STAR Methods). See also Figure S2 and Tables S6 and S7.

overfitting, performing independent regressions for each of the
phenotypic parameters in our consumer-resource model (Fig-
ures 4C-4J; STAR Methods). By design, LASSO searches for a
level of sparsity that optimizes predictive power, often selecting
a few variables to make predictions while forcing other coeffi-

cients (8) to zero. The result can then be a sparse model that
makes predictions using a handful of variables. It is important
to note that LASSO does not first presume that a few variables
are sufficient to make a prediction (in contrast to forward step-
wise and best subset regression approaches). In the situation
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where strong predictive power does not exist, e.g., a phenotypic
parameter cannot be predicted well from gene presence and
absence, LASSO would effectively fail to identify a predictive
model by returning ;=0 for all genes (Fraebel et al., 2020).

Performing LASSO regressions on our dataset revealed that
the presence and absence of a small set of genes is highly pre-
dictive of the consumer-resource parameters for all strains in our
library (Figures 4C—-4J). The in-sample coefficients of determina-
tion (R2,) of our regressions were between 0.55 and 0.74 de-
pending on the phenotypic parameter. Crucially, our regression
approach generalized out-of-sample, as determined by iterated
4-fold cross-validation (1x10* iterations; STAR Methods), albeit
with a slightly lower predictive power (ﬁév between 0.36 and
0.56). Therefore, across a diverse set of natural isolates, knowl-
edge of the full complement of genes a denitrifying strain pos-
sesses is sufficient to accurately predict the rates and biomass
yields of that strain on nitrate and/or nitrite.

Validating regression approach to predicting traits from
gene presence and absence

Our regression approach leveraged biological knowledge of the
denitrification pathway to predict metabolite dynamics, in effect
presuming that denitrification gene content is the only significant
genomic feature for prediction. To investigate whether this
assumption is correct, we asked whether other genomic proper-
ties could better predict metabolite dynamics and also examined
the role that phylogenetic correlations played in our predictions.

First, we tested the predictive capability of sets of randomly
selected genes. To do this, we chose sets of 17 random genes
that were not strongly correlated with any denitrification genes
but retained the same marginal frequency distribution in the pop-
ulation as the denitrification genes. We found that regressions
using these randomly selected genes had, on average, much
less predictive power than regressions using the denitrification
genes (Figures S2A-S2C; STAR Methods). We also tested
augmented sets of up to 2,048 predictors that were generated
by adding varying numbers of randomly selected genes to the
17 denitrification genes. We found that the prediction quality
changed remarkably little as more genes were added and that
even sets of 2,048 predictors (representing approximately
30%-50% of genes in each genome) contained about as much
predictive power as the regressions using the 17 denitrification
genes alone (Figure S2D; STAR Methods). This result indicates
that the 17 denitrification genes harbor the majority of gene pres-
ence and absence predictive power.

Second, we tested whether 16S rRNA copy number, genome
size, or GC-content improves the predictive ability of denitrifica-
tion gene presence/absence regressions. We tested these
genomic features because: (1) 16S rRNA copy number has
been observed to correlate positively with maximal growth rate
in nutrient-rich conditions (Roller et al., 2016; Li et al., 2019), (2)
smaller genomes are associated with faster growth (Lynch,
2006; Li et al., 2019), and (3) GC-content has been investigated
as a correlate for numerous bacterial phenotypes, such as
optimal growth temperature (Galtier and Lobry, 1997), and can
serve as a baseline for spurious phylogenetic correlations
because it is a slowly evolving genomic property that exhibits a
high degree of phylogenetic correlation (Haywood-Farmer and
Otto, 2003). We found that including these additional predictors
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in our regressions alongside the 17 denitrification genes did not
meaningfully improve predictive ability or alter the inferred coef-
ficients (STAR Methods). Thus, denitrification gene presence
and absence outperformed these coarse genomic features.
Third, we examined the role of correlations in consumer-
resource parameters between closely related strains in the suc-
cess of our regressions. We quantified the extent of phylogenetic
correlation in our 79-strain library by computing the autocorrela-
tion (Moran’s /) for each consumer-resource parameter as a
function of phylogenetic distance (STAR Methods). We observed
that the rate parameter ry was correlated to a small degree
(max(/) =0.16 ) over short a phylogenetic distance (16S distance
0.01), whereas the parameters v,, r;, and vy, showed a modest
degree of correlation (max(/) = 0.33, 0.27, and 0.48, respec-
tively) over relatively longer distances (16S distance 0.16, 0.06,
and 0.12, respectively). Pruning clades of closely related strains
(e.g., ENS01-08, PDM20-23, Figure 3C) from the dataset
decreased the correlation of v,, r;, and v, (max(/) = 0.30, 0.21,
and 0.39, respectively; 16S distance 0.05, 0.06, and 0.09,
respectively) but had little impact on the correlation of r4. Thus,
some of the phylogenetic correlation is attributable to the over-
representation of close relatives. Finally, we showed that the
presence of these close relatives in our dataset did not skew
the results of our regressions. We performed regressions on
the pruned dataset (comprising 64 strains) and found that the
predictive power and regression coefficients were similar to
those for the full dataset (STAR Methods). From this, we
concluded that the over-representation of close relatives did
not have a large impact on the results of our regressions on
the consumer-resource parameters.
Generalizing the regression approach to an alternative
medium condition
Having mapped gene content to metabolite dynamics in a me-
dium with succinate supplied as the carbon source, we next
asked whether our regression approach would generalize to other
media conditions. Of the 79 strains in our library, 64 grew on a
defined medium with acetate supplied as the sole (non-ferment-
able) carbon source (acetate-defined medium, ADM; Table S1;
STAR Methods). We assayed nitrate and nitrite dynamics for the
64 strains in this medium and inferred consumer-resource param-
eters. We observed that the consumer-resource parameters in
the SDM and ADM conditions were strongly correlated (Pearson
correlations 0.52-0.93, Figure 5A). Furthermore, LASSO regres-
sions to predict consumer-resource model parameters measured
in ADM from gene presence and absence achieved predictive po-
wer similar to what we observed in SDM (STAR Methods). The
regression coefficients were correlated between nutrient condi-
tions (Figure 5B), suggesting that the impacts of genes on pheno-
types were conserved between conditions. We note, however,
that rates and yields in ADM were systematically lower relative
to SDM (Figure 5A), consistent with what has been observed pre-
viously for relative growth rates on these carbon sources (For-
chhammer and Lindahl, 1971; Hempfling and Mainzer, 1975).
Consequently, the magnitudes of regression coefficients were
generally smaller in ADM than in SDM (Figure 5B). This indicates
that, while conserved genotype to phenotype relationships may
generally underlie predictive power across different environments
and media conditions, predictions for a particular environment will
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Figure 5. Metabolite dynamics of individual strains are predictable from gene presence and absence in an alternate carbon source
All strains in the 79-strain library were screened for growth on an acetate-defined medium (ADM), and consumer-resource parameters were measured for the 64

strains that grew in this medium.

(A) Observed consumer-resource parameters on succinate-defined medium (SDM) are plotted against observed parameters on ADM. The dashed line indicates
perfect agreement between the values observed on SDM and ADM. The Pearson correlations between the observed values are shown, and p< 10~* for all

correlations (permutation test).

(B) The consumer-resource parameters on ADM were regressed against gene presence and absence via Li-regularized linear regression. The resulting
regression coefficients, 84py, are plotted against the coefficients for regressions on parameters measured in SDM, Bspy (shown also in Figures 4G-4J). The
dashed line indicates perfect agreement between each pair of regression coefficients. Pearson correlations are shown, and p = 0.008, 0.01, < 10~4,and < 10~*
for ra, va, 1, and v,, respectively (permutation test). The color of each point corresponds to the gene function, as indicated in the legend further on. See also

Table S1.

be more accurate when trained using data measured in that
environment.

Mechanistic interpretation of regression coefficients
Why did gene presence and absence alone hold such strong
predictive power for metabolite dynamics, and why did the re-
gressions select specific genes in the denitrification pathway
as informative predictors? We propose that by characterizing
metabolic phenotypes in terms of rates and yields, we captured
the salient features of the metabolic process for each strain and
that this enabled the regressions to succeed by exploiting the
conserved correlations between the presence of specific genes
and metabolic phenotypes. In some cases, these correlations
appear to be related to the functional roles of specific genes in
the pathway. We found that, for some genes, the sign and magni-
tude of the regression coefficients agree qualitatively with known
properties of the associated enzymes. For example, previous
comparisons between membrane-bound and periplasmic ni-
trate reductases (encoded by narG and napA, respectively; Fig-
ure 2B) in multiple bacterial strains showed that the membrane-
bound enzyme exhibits higher nitrate reduction activity in vitro
than the periplasmic enzyme (Stewart et al., 2002; Van Alst
et al., 2009; Ikeda et al., 2009; Bell et al., 1990; Warnecke-Eberz
and Friedrich, 1993). This accords with the large positive coeffi-
cient for narG in the nitrate reduction rate regression (Figure 4G).
Similarly, in the nitrite reduction rate regression, we observed a

large positive coefficient for the gene encoding the copper-
based nitrite reductase (nirK) (Figure 4l), which in previous
studies, showed markedly higher activity in vitro (Abraham
et al.,, 1993; Masuko et al., 1984; lwasaki and Matsubara,
1972; Liu et al., 1986; Kakutani et al., 1981; Kukimoto et al.,
1994; Michalski and Nicholas, 1985; Sawada et al., 1978; Denar-
iaz et al., 1991) and in vivo (Glockner et al., 1993) compared with
the alternate nitrite reductase enzyme encoded by nirS (Zumft,
1997; Timkovich et al., 1982; Gordon et al., 2003; Besson
et al., 1995; Sawhney and Nicholas, 1978). Further, our regres-
sion coefficients showed larger contributions of narG versus
napA to yield on nitrate (Figure 4H) and, similarly, cnor versus
gnor to yield on nitrite (Figure 4J). Both of these observations
are consistent with the fact that the genes encoded by narG
and cnor contribute more to the proton motive force (and, there-
fore, to ATP generation) than their alternatives (napA and qnor,
respectively) do (Ferguson and Richardson, 2004). Finally, the
transporter encoded by the gene narK1K2 (Figure 2B) is a fusion
of the nitrate/H* symporter NarK1 and the nitrate/nitrite anti-
porter NarK2, the latter of which is crucial for exchanging nitrate
and nitrite between the cytoplasm and periplasm during denitri-
fication when the membrane-bound nitrate reductase is utilized.
In Paracoccus denitrificans, this fusion has been shown to have
substantially higher affinity for nitrate than NarK2 alone, resulting
in higher growth rates under denitrifying conditions (Goddard
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et al., 2008). This agrees with what we found in the nitrate and ni-
trite reduction rate regressions, in which we observed large pos-
itive contributions of narK1K2 (Figures 4G and 4l).

Taken together, these observations suggest that the regres-
sions exploited conserved correlations between gene presence
and metabolic traits that reflect known mechanistic properties of
the denitrification pathway. It is important to note, however, that
for many nonzero coefficients in our regressions, notably those
corresponding to regulators, there is no clear mechanistic inter-
pretation. Further, given that our regressions were trained on
genomes of wild isolates and not on phenotypes of deletion mu-
tants, we do not expect that the regression can be reliably used
to predict mutant phenotypes. Instead, we expect that the re-
gressions exploited the tendency for strains possessing specific
genes to have specific traits on average (e.g., strains with NarG
tend to have high ra,v,). These correlations between the pres-
ence of specific genes and metabolic traits qualitatively agree
with the mechanistic details of some genes in the pathway, but
we do not expect the regression coefficients to make causal pre-
dictions about the loss of a single gene.

Implications of a statistical approach to mapping
genomic structure to metabolic traits

Our statistical approach took two important steps toward map-
ping genomic structure to metabolic dynamics at the single-
strain level. First, by making quantitative measurements in the
laboratory, we removed the confounding environmental factors
present in sequencing and metabolomic studies of natural com-
munities to reveal that gene content has a conserved impact on
dynamic metabolic phenotypes. Second, our results suggest
that a statistical approach could be used to discover the key
genomic features of pathways that determine other metabolic
phenotypes, complementing direct genetic investigation of
model organisms (Nichols et al., 2011). Finally, our predictions
of metabolic phenotypes from genomes apply across a range
of conditions and generalized well out-of-sample, suggesting
that this approach can predict metabolite dynamics in settings
for strains where only genome sequence data are available.
These insights were made possible by parameterizing metabolic
phenotypes across a genomically diverse strain library of non-
model organisms, thereby exploiting genomic variation to learn
the mapping from genotype to metabolic phenotypes.

Predicting metabolite dynamics in communities

Predicting community metabolite dynamics from genomic struc-
ture requires mapping single-strain phenotypes to collective
behavior. Previous studies have found some success in predict-
ing metabolite dynamics in consortia from knowledge of the
monoculture metabolite consumption dynamics (Erbilgin et al.,
2017; Medlock et al., 2018). These approaches used simple
assumptions, such as a fixed rate of metabolite production or
consumption for each strain (Medlock et al., 2018), rather than
a dynamic model of metabolites. To predict community metabo-
lite dynamics, we used the consumer-resource modeling
formalism that describes metabolite dynamics for each strain to
make quantitative predictions for metabolite dynamics in com-
munities of multiple strains (Step 3, Figure 1). Since the con-
sumer-resource parameters were sparsely encoded by the
genomes of each strain (Figure 4), predicting community metab-
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olite dynamics from the consumer-resource model would pro-
vide a mapping from gene content to community metabolism.

Therefore, we extended to our modeling formalism to N-strain
communities by adding the rate contributions of each strain to
the dynamics of nitrate and nitrite (Figure 6B; Equation 10;
STAR Methods). This “additive” model assumes that strains
interact only via cross-feeding and resource competition for
electron acceptors. This model also assumes that the rates
and yields on nitrate and nitrite for strains in pair culture are the
same as in monoculture. As a result, the model provides predic-
tions for N-strain community metabolite dynamics given the con-
sumer-resource model parameters for individual strains without
any free parameters.

To evaluate the ability of our consumer-resource model to
make predictions of metabolite dynamics in communities, we
used measured consumer-resource parameter values (Fig-
ure 3C) and not the values predicted by gene presence and
absence (Figures 4C-4F). This allowed us to disambiguate the
errors associated with the failure of the model to predict metab-
olite dynamics from the errors associated with predicting pheno-
typic parameters from genomes. However, as we subsequently
discuss, using consumer-resource model parameters predicted
from genomes has, at most, a modest impact on errors in our
predictions of community metabolite dynamics.

Predicting metabolite dynamics in two-strain
communities

We tested the ability of this approach to predict metabolite dy-
namics in all pair combinations of 12 strains from our library (4
Nar/Nir, 4 Nar, and 4 Nir). We assembled communities in 96-
well plates containing SDM, supplying either nitrate or nitrite
initially in two separate experimental conditions and then
sampled over a 64-h period to measure concentrations of nitrate
and nitrite (STAR Methods). Remarkably, we found that the addi-
tive model accurately predicted the metabolic dynamics for
most 2-strain communities (Figures 6, S3A, and S3B) using
only the measured consumer-resource parameters for individual
strains. Specifically, the third column of Figure 6A shows the
zero-free-parameter predictions (curves) of denitrification dy-
namics in 2-strain communities, which agreed well with mea-
surements (points). The 2-strain community predictions include
non-trivial dynamics, such as a transient increase in nitrite for a
Nar/Nir + Nar community. In addition, we observed that the ad-
ditive model accurately predicted total endpoint optical densities
and community compositions (Figure S4; STAR Methods) in
most cases, indicating that the model generally captures strain
abundance dynamics in communities.

We quantified the quality of the additive model predictions for
metabolite dynamics by computing a normalized root-mean-
square error (NRMSE; see caption of Figure 6; Equation 12;
STAR Methods). We found that most 2-strain communities
have NRMSE between 0 and 2, indicating that our model suc-
cessfully predicted metabolite dynamics given only the
measured consumer-resource parameters for each strain. Pre-
dictions of metabolite dynamics in pair cultures were also accu-
rate when using consumer-resource parameters predicted from
genomes via regression (Figures S5A and S5B; STAR Methods).
Further, the success or failure of the model predictions de-
pended on the phenotypes of the strains present. The model
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Figure 6. Metabolite dynamics in two-strain communities are predictable from monocultures

(A) Examples of pair culture dynamics for all combinations of the three denitrification phenotypes (Nar/Nir, purple; Nar, blue; Nir; red). The first two columns show
metabolite dynamics for each of two strains cultured individually. The third column shows the metabolite dynamics for pair cultures of the two strains (points) with
zero-free-parameter predictions using the consumer-resource model (curves, see model in B). All cultures were performed in SDM, and predictions were based
on measured monoculture consumer-resource parameters in SDM, not those inferred from genomes. Errors in pair culture predictions are shown in each panel in
the third column as quantified by the normalized root-mean-square error (NRMSE). For pair cultures, we defined NRMSE;; = RMSE,-,-/((RMSE,-2 + RMSE/?)/Q)VZ,
where RMSE; is the root-mean-square error between model predictions and observed metabolite concentrations of strains i and in pair culture, and RMSE; and
RMSE; are the RMSEs of strains i and j in monoculture. NRMSE in the range 0-2 indicates errors in 2-strain communities that are within 2-fold of fits associated
with their constituent monocultures.

(B) An N-strain consumer-resource model (based on the model in Figure 3B) was used to predict pair culture metabolite dynamics (N = 2). A and/ are nitrate and
nitrite concentrations, respectively. x; denotes the biomass density of strain i with parameters rj;, yfq, r;', and yj, which were determined from monoculture ex-
periments (Figure 3C). The K, values were fixed at 0.01 mM for all strains.

(C) A matrix of NRMSE values quantifying the quality of model predictions for all pairs of 12 strains: 4 Nar/Nir, 4 Nar, and 4 Nir. NRMSE values are shown for
communities cultured in SDM with nitrate initially supplied, with the exception of Nir + Nir pairs for which nitrite was initially supplied. Only Nar + Nir communities
are poorly predicted by the consumer-resource model (permutation test, p<1x10-5, Figures S3C and S3D). See also Figures S3-S6.

successfully predicted 2-strain metabolite dynamics for most  which may explain slower rates of nitrate reduction for Nar
combinations of phenotypes (e.g., Nar/Nir + Nar or Nar + Nar)  strains. For further exploration of this phenomenon, see the dis-
but failed only in the case where Nar strains were cultured with  cussion section.

Nir strains (Figures 6A, 6C, S3C, and S3D). The failure of our Predicting metabolite dynamics in larger communities
model predictions in Nar + Nir communities followed the com-  Next, we asked whether dynamical metabolic phenotypes
mon pattern that the rate of nitrate reduction was slower thanex- measured from monocultures could be used to predict metabo-
pected (bottom row, Figures 6A and S6). We speculate that this  lite dynamics in 3-5-strain communities. We applied the additive
failure of the model to predict metabolite dynamics in Nar + Nir  model to predicting the nitrate and nitrite dynamics in 81 combi-
communities was caused by excretion of nitric oxide by the Nir  nations of 3 strains, 21 combinations of 4 strains, and 6 combina-
strain. Nitric oxide can be cytotoxic (Braun and Zumft, 1991), tions of 5 strains from the 12-strain subset (STAR Methods). As
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Figure 7. Metabolite dynamics are predict-
able in 3-5-strain communities

The additive consumer-resource model provides
predictions for metabolite dynamics in commu-
nities of more than two strains, and these pre-
dictions were verified experimentally.

(A) Metabolite dynamics for an example 3-strain
(Nar/Nir + Nar/Nir + Nar) community cultured in
SDM. The first three panels show metabolite dy-
namics for each strain cultured individually, and
the fourth panel shows the metabolite dynamics of
the 3-strain community. Curves show the predic-
tion of the consumer-resource model (Figure 6B)
using measured values of consumer-resource
model parameters in SDM (not values inferred from
genomes).

(B) NRMSE (Equation 12; STAR Methods) values
quantifying quality of consumer-resource model
predictions for 3-5-strain communities cultured in
SDM with nitrate. Yellow symbols denote com-
munities that contain a Nar + Nir pair. Nar + Nir pair
culture dynamics were poorly predicted by the
model (Figure 6C) and resulted in a high NRMSE
for communities containing Nar + Nir pairs
(compare yellow and gray symbols). Left and right
scatterplots compare predictions from a con-
sumer-resource model using only monoculture
data to a coarse-graining approach that describes
Nar + Nir pairs as modules within the community
(described in C and D). The coarse-graining
approach improves the 3-5-strain community
predictions; mean NRMSE (black lines) decreases
when Nar + Nir pair information is used for pre-
diction (t-test, **** denotes p<10~%).

(C) Metabolite dynamics for an example Nar + Nir
pair cultured in SDM, where curves in the left panel

show the prediction of the consumer-resource

model using only parameters fit to monocultures, and curves in the right panel show the results of refitting the reduction rates (r4 and r;) to Nar + Nir pair culture

data but leaving yields (v, and y,) fixed to monoculture values.

(D) Metabolite dynamics for a 3-strain community cultured in SDM containing a Nar/Nir strain and the Nar + Nir pair shown in (C). Curves in the left panel show the
prediction of the consumer-resource model using parameters inferred from monoculture experiments for each strain, and curves in the right panel show the
prediction when the Nar + Nir pair is treated as a module, with rate parameters refit from pair culture data (right panel in C). NRMSE decreased due to the coarse-
graining of the Nar + Nir pair. Panels highlighted in beige denote zero-free-parameter predictions. See also Figures S3 and S5-S7.

with pair cultures, 3-5-strain communities were cultured in SDM
with either nitrate or nitrite supplied initially in two separate exper-
imental conditions. In communities that did not contain a Nar + Nir
pair (e.g., Figure 7A), we found that prediction accuracy was high
(gray symbols, Figures 7B and S3E). This again indicated that in
most combinations of phenotypes, community dynamics were
predictable from the consumer-resource parameters of each
strain in the community. However, in communities that contained
a Nar + Nir pair, predictions were relatively poor (yellow symbols,
Figures 7B and S3E), suggesting that interactions between Nar
and Nir phenotypes that were not captured in the additive model
were again driving low prediction accuracy. Finally, we note that
the additional error in community metabolite dynamics predic-
tions associated with predicting phenotypes from genomes
was typically modest (median increase in NRMSE = 0.5-1.4)
for 3-5-strain communities (Figure S5C; STAR Methods).
Correcting for interactions between Nar and Nir strains
To address the impact of interactions between Nar and Nir
strains not accounted for by our additive model in 3-5-strain
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communities, we took a coarse-graining approach. We asked
whether the metabolic contributions of Nar + Nir pairs could be
treated as modules within larger communities. To do this, we
re-fitted nitrate and nitrite reduction rates (ra, r;) to pair culture
data (cultured in SDM with nitrate) for each Nar + Nir pair, leaving
yields fixed (Figures 7C and S7A; STAR Methods). This resulted
in effective nitrate and nitrite reduction rates (r4, r;) for each Nar +
Nir pair. In every case, we observed that the re-fitted nitrate
reduction rates r4 were lower than the monoculture nitrate
reduction rates (Figure S7B), demonstrating quantitatively that
Nar strains were consistently slowed by the presence of Nir
strains. This observation is consistent with the hypothesis of
excretion of cytotoxic nitric oxide by the Nir strain.

We then used the re-fitted rates for Nar + Nir pairs to make pre-
dictions for communities (cultured in SDM with nitrate) that
included such pairs (e.g., Figure 7D). For communities that
included multiple Nar + Nir pairs, we developed a simple aver-
aging rule for determining the effective rates from the rates for
each Nar + Nir pair present (STAR Methods). For example, in a



Cell

Nar + Nar + Nir community, there are two sets of Nar + Nir pair
interactions, with a different effective nitrite reduction rate r;
measured for the Nir strain in its interactions with the two Nar
strains. In this example, we would take the mean of these two
effective reduction rates as the value used for prediction. We
found that the metabolite dynamics in 3-5-strain communities
containing Nar + Nir pairs were quantitatively well predicted by
this coarse-graining approach (yellow symbols, Figure 7B). We
concluded that treating Nar + Nir pairs as effective modules
within larger communities recovered the predictive power of
the additive consumer-resource model.

DISCUSSION

Quantifying the metabolic phenotypes of a diverse library of nat-
ural isolates using a consumer-resource model allowed us to
take a statistical approach to connecting genotypes to dynam-
ical metabolic phenotypes. The outcome was a sparse mapping
from gene content to single-strain metabolite dynamics that ex-
ploited conserved correlations between metabolic traits and
gene presence, some of which reflect the known mechanistic
properties of enzymes in the denitrification pathway. The
resource-based modeling formalism then permitted quantitative
predictions of community-level metabolite dynamics. As a result,
the approach yielded a mapping from genomic structure to
metabolite dynamics at the community level for denitrifying bac-
terial communities.

A key contribution of this study is the demonstration of a quan-
titative mapping between gene content and metabolic traits for a
model metabolic process. One might expect that gene presence
and absence is too coarse a genomic feature to predict dynamic
metabolic traits and that other genomic features, such as pro-
moter sequences, synteny, or allelic variation, would be necessary
to make predictions. We instead found that that the association
between gene presence/absence and metabolic traits is strong.
This result suggests that selection for specific metabolic traits in
bacteria may primarily favor genomes with specific complements
of genes (Cordero et al., 2012; Sakoparnig et al., 2021) and that
more granular details of the genome, such as promoter sequences
or allelic variation, are less important.

At the community level, we found that interactions beyond
those described by the additive consumer-resource model are
not idiosyncratic but instead exhibit a general pattern (i.e., they
occur only when Nar and Nir strains are both present). This sug-
gests that interactions beyond resource competition may exhibit
patterns that can be discovered in the laboratory. The fact that
community-level metabolite dynamics departed from the additive
model in Nar + Nir communities suggests that such interactions
may be more likely to occur when specific metabolic processes,
such as facilitation via the exchange of a metabolite, are at work.

Improving predictions of community metabolism from
genomes

There are some important caveats that apply to our prediction of
single-strain metabolic traits from genomes and community-
level metabolism from monocultures. For one, by parameterizing
metabolite dynamics using a consumer-resource model, we
assumed that the model could approximate the metabolic phe-
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notypes of wild isolates. For most of our library (62/79 strains),
this approximation worked well, but in some cases (17/79
strains), the model failed for at least some initial conditions (Fig-
ures S1J-S1L; Table S5; STAR Methods). These failures may
have occurred because the model does not capture phenomena
such as the inhibition of reduction rates by reaction products.
Going forward, the assumptions of the model could be relaxed
by applying methods to learn the appropriate phenotypic param-
eters directly from the data (Berman et al., 2014; Daniels and
Nemenman, 2015).

Although we set out to obtain a diverse strain library for the
purpose of mapping genomic variation to dynamic metabolic
phenotypes, it is important to note that our library is composed
solely of Proteobacteria and does not contain representatives
from other phyla. This limitation means that it is unclear whether
our regression approach can predict phenotypes of distantly
related strains (e.g., gram-positive bacteria). In addition to the
79 strains described in this study, we attempted to assay the
denitrification dynamics for three gram-positive Nar strains
from the phylum Actinobacteria. We found their reduction rates
to be slower than any strain in our library (~ 0.1 mM/OD/h), re-
sulting in almost negligible nitrate reduction over 64 h. This
observation suggests that denitrification phenotypes in clades
distant from Proteobacteria may be distinct, with rates that are
potentially much slower than what we observed for Proteobacte-
ria. Supporting this idea, denitrification in gram-positive bacteria
is poorly understood (Verbaendert et al., 2011), and previous
studies that collected phenotypic data similar to ours character-
ized only Proteobacteria (Lycus et al., 2017; Liu et al., 2013).
Therefore, extending our results to more diverse strains would
require phenotyping a phylogenetically expanded library.

Considering the broader applicability of our statistical
approach, there are some limitations to the types of metabolic
processes and interactions that can be readily studied. Denitrifi-
cation is a well-studied metabolic process, with the relevant en-
zymes known and easily annotated. Extending our method to
less well-studied metabolic traits would require new approaches
to learn the appropriate genomic features from data, since it may
be challenging in those contexts to choose genes based on
mechanistic knowledge. High-throughput mutant screens on
wild isolates, for instance, via barcoded transposon mutant li-
braries (Price et al., 2018), could be used to discover unanno-
tated or poorly annotated genes that are important for metabolic
traits and potentially useful as predictors for metabolic pheno-
types (Vaccaro et al., 2016).

Bridging the gap between the synthetic communities studied
here and communities in the wild will require engaging with the
chemical and spatial complexity of natural denitrifying commu-
nities. First, it is unclear whether the additive and non-additive in-
teractions described here are relevant to wild communities. One
way to determine the relevance of these interactions would be to
measure co-occurrence between genotypes in natural contexts.
Second, it remains to be seen how our approach generalizes to
the complex nutrient environments, such as mixtures of organic
carbon sources (Tiedje et al., 1982), that are characteristic of nat-
ural communities. One approach to this problem would be to
quantify nitrate and nitrite dynamics directly in soils and ask
whether gene content can predict metabolite dynamics in this
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context. Finally, denitrification in nature occurs in the presence of
other metabolic processes, where it often depends on nitrate
from nitrifiers and competes with dissimilatory nitrate reduction
to ammonia for electron acceptors (Tiedje et al., 1982). Extend-
ing the approach taken here to a broader ecological context
that includes other metabolic fluxes is an important avenue to
pursue.

Applying predictions of community metabolism from
genomes

At the single-strain level, the apparent mechanistic relevance
of the regression coefficients in this study suggests that a statis-
tical approach, coupled with large-scale culturing and phenotyp-
ing on libraries of isolates (Connon and Giovannoni, 2002; Kehe
et al., 2019), can be exploited to discover the salient features of
genomes that determine community metabolism. Higher-
throughput measurements will enable a more detailed investiga-
tion of genomic features, allowing us to extend our statistical
approach to variation in gene sequences and synteny.

Further, statistical predictions similar to those employed here
could be used to help specify constraint-based metabolic
models. Constraint-based metabolic models are refined using
experimental measurements of metabolic traits (Norsigian
et al., 2020), but measuring these traits is challenging, espe-
cially for unculturable taxa or strains that are difficult to isolate
from complex communities. Since our approach enables the
prediction of metabolic phenotypes from genomes, these pre-
dictions could be used to refine constraint-based models of
metabolic networks using genomic data alone and, thus, cir-
cumventing the need to experimentally measure metabolic
phenotypes.

At the community level, our approach could eventually enable
the prediction of metabolite dynamics in communities where
gene presence and absence for individual genomes is known
(Sieber et al., 2018). Soils and host-associated communities typi-
cally contain hundreds of bacterial taxa; therefore, it may be
necessary to test the predictive power of the consumer-resource
formalism in communities of many taxa. However, data from soils
suggest that denitrification may occur locally, on 10-20 um grains
(Lensi et al., 1995). At this small scale, it is possible that commu-
nities are composed of just a few strains. If this isindeed the case,
our results for communities of 2-5 strains (Figures 6 and 7) might
apply to denitrifying communities in soil.

Departures from model predictions in Nar + Nir
communities

It is striking that communities containing both Nar and Nir pheno-
types departed from the expectation of an additive consumer-
resource model (Figures 6C and 7B). We proposed that the inhi-
bition of nitrate reduction in Nar + Nir communities may be
caused by nitric oxide produced by the Nir strains. Consistent
with this hypothesis, the most strongly inhibited Nar strains
(PDM12 and PNTO03, Figure S7) lack nitric oxide reductase (Fig-
ure 4A); therefore, they likely cannot alleviate this toxicity. In
addition, the strongly inhibited Nar strains possess the periplas-
mic nitrate reductase (Figure 2B), which is exposed to the toxic
effects of extracellular nitric oxide, whereas the weakly inhibited
Nar strain ACV02 possesses the membrane-bound nitrate
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reductase, which is shielded from nitric oxide in the cytoplasm.
Although Nir strains possess nitric oxide reductase and, there-
fore, could alleviate toxicity by reducing nitric oxide to nitrous ox-
ide, Nir strains often transiently accumulate nitric oxide tran-
siently (Lycus et al., 2017). Consistent with this idea, when we
measured relative abundances of Nar and Nir strains in co-cul-
ture, we observed smaller fractions of Nar strains relative to
our model predictions in most cases (Figure S4B).

To describe metabolite dynamics in communities where both
Nar and Nir strains were present, we chose not to expand our
modeling formalism to include our hypothesized mechanism of
Nar strain inhibition. Instead, we used measurements from
Nar + Nir pair cultures to describe community-level metabolite
dynamics (Figure 7). The advantage of this approach was to
maintain a small number of model parameters, but it came at
the expense of mechanistic interpretation. Another possible
disadvantage of our approach was the challenge of modeling
communities with multiple Nar and Nir pairs. However, we found
that a simple averaging method (STAR Methods) succeeded in
describing community metabolite dynamics, even when multiple
Nar + Nir pairs were present in communities of 3-5 strains
(Figure 7B).

We note that Nar + Nir pair cultures are metabolically distinct
from Nar/Nir monocultures, in that the former splits the denitri-
fication pathway across two genomes resulting in obligate
cross-feeding. It is notable that our model fails only in the
case where cross-feeding is required, suggesting that our
formalism is most relevant for competitive interactions and
that accurately predicting obligate cross-feeding from monocul-
ture information alone may require additional parameters. The
ecological context of denitrification pathway splitting at nitrite
reduction is believed to be associated with environmental pH,
with low pH favoring a split pathway. This hypothesis comes
from a previous study (Lilja and Johnson, 2016) showing that
the transient accumulation of nitrite during denitrification can
be reduced by segregating the processes of nitrate and nitrite
reduction across genomes. Reducing transient nitrite accumu-
lation is advantageous in low pH environments, where nitrite
forms toxic intermediates (Lilja and Johnson, 2016). Because
we observe Nar + Nir communities escaping the transient accu-
mulation of nitrite (Figures 6A and S6), our results are consistent
with splitting of the denitrification pathway at nitrite reduction as
an adaptation to acidic environments.

CONCLUSION

We find it striking that a statistical approach can uncover a
simple relationship between gene content and metabolite dy-
namics in communities of diverse wild isolates. It is our hope
that future work can leverage this approach to understand and
predict the metabolic activity of microbial communities in natural
settings.

Limitations of the study

We assumed that metabolic phenotypes can be captured by a
consumer-resource model, an assumption that breaks down
for a fraction of our isolates and limits the direct applicability of
our approach to strains and processes that can be modeled
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using a simple phenomenology. For example, our modeling
formalism works well when the electron acceptor is limiting but
may fail when the donor (organic carbon) is limiting.

Our regression approach exploits correlations between geno-
type and phenotype to make predictions. To some extent, these
correlations reflect conserved phenotypic impact of certain
genes, but phylogenetic correlation also plays a role. Therefore,
we do not expect the regression to make causal predictions of
the impact of single-gene knockout mutations on phenotypes.

Our library of isolates comprises strains from the phylum Pro-
teobacteria. We do not expect our results to generalize to
distantly related denitrifiers in other phyla, such as gram-positive
bacteria. Expanding the library is likely necessary to predict phe-
notypes of distantly related strains.

Our approach has been demonstrated for comparatively sim-
ple nutrient conditions in well-mixed conditions. It remains to be
seen how well this statistical approach will work in natural con-
texts, where spatial structure and complex chemical environ-
ments are present.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

e KEY RESOURCES TABLE
e RESOURCE AVAILABILITY

O Lead contact

O Materials availability

O Data and code availability
o EXPERIMENTAL MODEL AND SUBJECT DETAILS

O Strains

O Isolation of denitrifying bacteria from soils

O Defined growth medium

O Denitrifying conditions
o METHOD DETAILS

O Assay of nitrate and nitrite

O Denitrification dynamics experiments

O Whole genome sequencing and annotation

O Phylogenetic classification of strains

O Measuring relative abundances and contamination
® QUANTIFICATION AND STATISTICAL ANALYSIS

O Consumer-resource model for metabolite dynamics

O Inferring phenotypic parameters from data

O Regressing SDM phenotypes onto denitrification gene
content
Characterizing phylogenetic correlation
Evaluating randomly-selected genes as predictors
Evaluating alternative genomic predictors
Regressing ADM phenotypes onto denitrification gene
content
Predicting community metabolic dynamics
Correcting for Nar + Nir interactions

o O OO0

o O

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.
2021.12.036.

¢? CellPress

ACKNOWLEDGMENTS

We thank Laura Troyer for assistance with isolating bacterial strains and Eliza-
beth Ujhelyi and Annette Wells for assistance with sequencing. We acknowl-
edge Cameron Pittelkow for access to corn and soybean fields in Savoy, lllinois,
and the laboratory of Julie Zilles for providing the bacterial strain Paracoccus de-
nitrificans ATCC 19367. We also thank Rama Ranganathan, David Pincus,
James Sethna, William Metcalf, Jun Song, Sara Clifton, and members of the
Kuehn laboratory and Mani group for helpful discussions. This work was sup-
ported by the National Science Foundation Division of Emerging Frontiers EF
2025293 (S.K.) and EF 2025521 (M.M.), the National Science Foundation Phys-
ics Frontiers Center Program PHY 0822613 and PHY 1430124 (S.K.), James S.
McDonnell Foundation Postdoctoral Fellowship Award 220020499 (K.G.), and
the Simons Foundation Investigator Award 597491 (M.M.).

AUTHOR CONTRIBUTIONS

K.G.: conceptualization, experimental design, data collection, formal analysis,
coding, writing-original draft, and writing-review & editing. D.P.: data collec-
tion. M.M.: conceptualization, formal analysis, writing — review & editing, su-
pervision, and funding acquisition. S.K.: conceptualization, experimental
design, formal analysis, writing—original draft, writing-review & editing, super-
vision, and funding acquisition.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: January 22, 2021
Revised: July 16, 2021
Accepted: December 21, 2021
Published: January 26, 2022

REFERENCES

Abraham, Z.H.L., Lowe, D.J., and Smith, B.E. (1993). Purification and charac-
terization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans
subsp. xylosoxidans (N.C.I.M.B. 11015): evidence for the presence of both
type 1 and type 2 copper centres. Biochem. J. 295, 587-598.
Anantharaman, K., Brown, C.T., Hug, L.A., Sharon, |., Castelle, C.J., Probst,
A.J., Thomas, B.C., Singh, A., Wilkins, M.J., Karaoz, U., et al. (2016). Thou-
sands of microbial genomes shed light on interconnected biogeochemical
processes in an aquifer system. Nat. Commun. 7, 13219.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S.,
Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: a
new genome assembly algorithm and its applications to single-cell
sequencing. J. Comput. Biol. 19, 455-477.

Beccari, M., Passino, R., Ramadori, R., and Tandoi, V. (1983). Kinetics of
dissimilatory nitrate and nitrite reduction in suspended growth culture.
J. Water Pollut. Control Fed. 55, 58-64.

Bell, L.C., Richardson, D.J., and Ferguson, S.J. (1990). Periplasmic and mem-
brane-bound respiratory nitrate reductases in Thiosphaera pantotropha: the
periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS
Lett. 265, 85-87.

Berman, G.J., Choi, D.M., Bialek, W., and Shaevitz, J.W. (2014). Mapping the
stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 117,
20140672.

Besson, S., Carneiro, C., Moura, J.J., Moura, I., and Fauque, G. (1995). A cy-
tochrome cd1-type nitrite reductase isolated from the marine denitrifier Pseu-
domonas nautica 617: purification and characterization. Anaerobe 7, 219-226.
Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for lllumina sequence data. Bioinformatics 30, 2114-2120.

Braun, C., and Zumft, W.G. (1991). Marker exchange of the structural genes for
nitric oxide reductase blocks the denitrification pathway of Pseudomonas stut-
zeri at nitric oxide. J. Biol. Chem. 266, 22785-22788.

Cell 185, 530-546, February 3, 2022 543



https://doi.org/10.1016/j.cell.2021.12.036
https://doi.org/10.1016/j.cell.2021.12.036
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref1
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref1
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref1
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref1
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref2
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref2
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref2
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref2
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref3
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref3
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref3
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref3
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref4
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref4
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref4
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref5
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref5
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref5
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref5
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref6
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref6
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref6
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref7
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref7
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref7
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref8
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref8
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref9
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref9
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref9

¢? CellPress

Brettin, T., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Olsen, G.J., Olson,
R., Overbeek, R., Parrello, B., Pusch, G.D., et al. (2015). RASTtk: a modular
and extensible implementation of the RAST algorithm for building custom
annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365.

Canfield, D.E., Glazer, A.N., and Falkowski, P.G. (2010). The evolution and
future of earth’s nitrogen cycle. Science 330, 192-196.

Cermak, N., Datta, M.S., and Conwill, A. (2020). Rapid, inexpensive measure-
ment of synthetic bacterial community composition by Sanger sequencing of
amplicon mixtures. iScience 23, 100915.

Claus, G., and Kutzner, H. (1985). Physiology and kinetics of autotrophic deni-
trification by Thiobacillus denitrificans. Appl. Microbiol. Biotechnol. 22,
283-288.

Connon, S.A., and Giovannoni, S.J. (2002). High-throughput methods for
culturing microorganisms in very-low-nutrient media yield diverse new marine
isolates. Appl. Environ. Microbiol. 68, 3878-3885.

Cordero, O.X., Ventouras, L.A., DeLong, E.F., and Polz, M.F. (2012). Public
good dynamics drive evolution of iron acquisition strategies in natural bacter-
ioplankton populations. Proc. Natl. Acad. Sci. USA 7109, 20059-20064.

Coultate, T.P., and Sundaram, T.K. (1975). Energetics of Bacillus stearother-
mophilus growth: molar growth yield and temperature effects on growth effi-
ciency. J. Bacteriol. 121, 55-64.

Daniels, B.C., and Nemenman, |. (2015). Automated adaptive inference of
phenomenological dynamical models. Nat. Commun. 6, 81383.

Datta, M.S., Sliwerska, E., Gore, J., Polz, M.F., and Cordero, O.X. (2016). Mi-
crobial interactions lead to rapid micro-scale successions on model marine
particles. Nat. Commun. 7, 11965.

Denariaz, G., Payne, W.J., and LeGall, J. (1991). The denitrifying nitrite reduc-
tase of Bacillus halodenitrificans. Biochim. Biophys. Acta Bioenerg. 71056,
225-232.

Dinger, A.R., and Kargt, F. (2000). Kinetics of sequential nitrification and deni-
trification processes. Enzyme Microb. Technol. 27, 37-42.

Erbilgin, O., Bowen, B.P., Kosina, S.M., Jenkins, S., Lau, R.K., and Northen,
T.R. (2017). Dynamic substrate preferences predict metabolic properties of
a simple microbial consortium. BMC Bioinformatics 78, 57.

Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008). The microbial engines
that drive earth’s biogeochemical cycles. Science 320, 1034-1039.

Ferguson, S.J., and Richardson, D.J. (2004). The enzymes and bioenergetics
of bacterial nitrate, nitrite, nitric oxide and nitrous oxide respiration. In Respi-
ration in Archaea and Bacteria: Diversity of Prokaryotic Respiratory Systems,
D. Zannoni, ed. (Springer), pp. 169-206.

Fierer, N., Lauber, C.L., Ramirez, K.S., Zaneveld, J., Bradford, M.A., and
Knight, R. (2012). Comparative metagenomic, phylogenetic and physiological
analyses of soil microbial communities across nitrogen gradients. ISME J. 6,
1007-1017.

Forchhammer, J., and Lindahl, L. (1971). Growth rate of polypeptide chains as
a function of the cell growth rate in a mutant of Escherichia coli 15. J. Mol. Biol.
55, 563-568.

Fraebel, D.T., Gowda, K., Mani, M., and Kuehn, S. (2020). Evolution of gener-
alists by phenotypic plasticity. iScience 23, 101678.

Galtier, N., and Lobry, J.R. (1997). Relationships between genomic G+C con-
tent, RNA secondary structures, and optimal growth temperature in prokary-
otes. J. Mol. Evol. 44, 632-636.

Glockner, A.B., Jingst, A., and Zumft, W.G. (1993). Copper-containing nitrite
reductase from Pseudomonas aureofaciens is functional in a mutationally cy-
tochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Arch. Micro-
biol. 7160, 18-26.

Goddard, A.D., Bali, S., Mavridou, D.A., Luque-Almagro, V.M., Gates, A.J.,
Dolores Roldan, M., Newstead, S., Richardson, D.J., and Ferguson, S.J.
(2017). The Paracoccus denitrificans NarK-like nitrate and nitrite trans-
porters-probing nitrate uptake and nitrate/nitrite exchange mechanisms.
Mol. Microbiol. 7103, 117-1383.

544 Cell 185, 530-546, February 3, 2022

Cell
Article

Goddard, A.D., Moir, J.W.B., Richardson, D.J., and Ferguson, S.J. (2008).
Interdependence of two NarK domains in a fused nitrate/nitrite transporter.
Mol. Microbiol. 70, 667-681.

Goldford, J.E., Lu, N., Baji¢, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga,
A., Segré, D., Mehta, P., and Sanchez, A. (2018). Emergent simplicity in micro-
bial community assembly. Science 367, 469-474.

Gordon, E.H.J., Sjogren, T., Léfqvist, M., Richter, C.D., Allen, J.W., Higham,
C.W., Hajdu, J., Fll6p, V., and Ferguson, S.J. (2003). Structure and kinetic
properties of Paracoccus pantotrophus cytochrome cd1 nitrite reductase
with the d1 heme active site ligand tyrosine 25 replaced by serine. J. Biol.
Chem. 278, 11773-11781.

Graf, D.R.H., Jones, C.M., and Hallin, S. (2014). Intergenomic comparisons
highlight modularity of the denitrification pathway and underpin the impor-
tance of community structure for N20 emissions. PLoS ONE 9, e114118.

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality
assessment tool for genome assemblies. Bioinformatics 29, 1072-1075.

Harcombe, W.R., Riehl, W.J., Dukovski, |., Granger, B.R., Betts, A, Lang, A.H.,
Bonilla, G., Kar, A., Leiby, N., Mehta, P., et al. (2014). Metabolic resource allo-
cation in individual microbes determines ecosystem interactions and spatial
dynamics. Cell Rep. 7, 1104-1115.

Hassen, A., Saidi, N., Cherif, M., and Boudabous, A. (1998). Effects of heavy
metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour.
Technol. 65, 73-82.

Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical
Learning, 2nd Edition (Springer).

Hastie, T., Tibshirani, R.J., and Wainwright, R. (2016). Statistical learning with
sparsity. Monographs on Statistics and Applied Probability, 743 (CRC Press).

Haywood-Farmer, E., and Otto, S.P. (2003). The evolution of genomic base
composition in bacteria. Evolution 57, 1783-1792.

Hempfling, W.P., and Mainzer, S.E. (1975). Effects of varying the carbon
source limiting growth on yield and maintenance characteristics of Escherichia
coli in continuous culture. J. Bacteriol. 123, 1076-1087.

Hessen, D.O., Jeyasingh, P.D., Neiman, M., and Weider, L.J. (2010). Genome
streamlining and the elemental costs of growth. Trends Ecol. Evol. 25, 75-80.

Heylen, K., Gevers, D., Vanparys, B., Wittebolle, L., Geets, J., Boon, N., and De
Vos, P. (2006). The incidence of nirS and nirK and their genetic heterogeneity in
cultivated denitrifiers. Environ. Microbiol. 8, 2012-2021.

Heylen, K., Vanparys, B., Wittebolle, L., Verstraete, W., Boon, N., and De Vos,
P. (2006). Cultivation of denitrifying bacteria: optimization of isolation condi-
tions and diversity study. Appl. Environ. Microbiol. 72, 2637-2643.

Human Microbiome Project Consortium (2012). Structure, function and diver-
sity of the healthy human microbiome. Nature 486, 207-214.

Ikeda, E., Andou, S., lwama, U., Kato, C., Horikoshi, K., and Tamegai, H.
(2009). Physiological roles of two dissimilatory nitrate reductases in the
deep-sea denitrifier Pseudomonas sp. strain MT-1. Biosci. Biotechnol. Bio-
chem. 73, 896-900.

Irrazébal, T., Belcheva, A., Girardin, S.E., Martin, A., and Philpott, D.J. (2014).
The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell 54,
309-320.

Iwasaki, H., and Matsubara, T. (1972). A nitrite reductase from Achromobacter
cyclastes. J. Biochem. 71, 645-652.

Jones, C.M., and Hallin, S. (2010). Ecological and evolutionary factors under-
lying global and local assembly of denitrifier communities. ISME J. 4, 633-641.

Jones, C.M., Stres, B., Rosenquist, M., and Hallin, S. (2008). Phylogenetic
analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal
a complex evolutionary history for denitrification. Mol. Biol. Evol. 25,
1955-1966.

Kakutani, T., Watanabe, H., Arima, K., and Beppu, T. (1981). Purification and
properties of a copper-containing nitrite reductase from a denitrifying bacte-
rium, Alcaligenes faecalis strain S-6. J. Biochem. 89, 453-461.


http://refhub.elsevier.com/S0092-8674(21)01542-7/sref10
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref10
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref10
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref10
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref11
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref11
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref12
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref12
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref12
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref13
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref13
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref13
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref14
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref14
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref14
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref15
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref15
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref15
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref16
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref16
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref16
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref17
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref17
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref18
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref18
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref18
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref19
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref19
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref19
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref20
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref20
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref21
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref21
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref21
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref22
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref22
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref23
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref23
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref23
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref23
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref24
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref24
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref24
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref24
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref25
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref25
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref25
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref26
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref26
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref27
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref27
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref27
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref28
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref28
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref28
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref28
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref29
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref29
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref29
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref29
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref29
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref30
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref30
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref30
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref31
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref31
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref31
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref31
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref32
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref32
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref32
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref32
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref32
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref33
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref33
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref33
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref34
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref34
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref35
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref35
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref35
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref35
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref36
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref36
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref36
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref37
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref37
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref38
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref38
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref39
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref39
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref40
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref40
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref40
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref41
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref41
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref42
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref42
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref42
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref43
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref43
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref43
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref44
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref44
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref45
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref45
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref45
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref45
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref46
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref46
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref46
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref47
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref47
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref48
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref48
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref49
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref49
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref49
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref49
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref50
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref50
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref50

Cell

Article

Keck, F., Rimet, F., Bouchez, A., and Franc, A. (2016). phylosignal: an R pack-
age to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6,
2774-2780.

Kehe, J., Kulesa, A., Ortiz, A., Ackerman, C.M., Thakku, S.G., Sellers, D.,
Kuehn, S., Gore, J., Friedman, J., and Blainey, P.C. (2019). Massively parallel
screening of synthetic microbial communities. Proc. Natl. Acad. Sci. USA 116,
12804-12809.

Klitgord, N., and Segre, D. (2010). Environments that induce synthetic micro-
bial ecosystems. PLoS Comput. Biol. 6, €1001002.

Kornaros, M., Zafiri, C., and Lyberatos, G. (1996). Kinetics of denitrification by
Pseudomonas denitrificans under growth conditions limited by carbon and/or
nitrate or nitrite. Water Environ. Res. 68, 934-945.

Kukimoto, M., Nishiyama, M., Murphy, M.E., Turley, S., Adman, E.T., Horinou-
chi, S., and Beppu, T. (1994). X-ray structure and site-directed mutagenesis of
a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atoms in
nitrite reduction. Biochemistry 33, 5246-5252.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: mo-
lecular evolutionary genetics analysis across computing platforms. F.U. Battis-
tuzzi, ed. 35, 1547-1549.

Lee, K.H., Park, J.H., Kim, T.Y., Kim, H.U., and Lee, S.Y. (2007). Systems meta-
bolic engineering of Escherichia coli for L-threonine production. Mol. Syst.
Biol. 3 (149), 149.

Lensi, R., Clays-Josserand, A., and Jocteur Monrozier, L. (1995). Denitrifiers
and denitrifying activity in size fractions of a mollisol under permanent pasture
and continuous cultivation. Soil Biol. Biochem. 27, 61-69.

Li, J., Mau, R.L., Dijkstra, P., Koch, B.J., Schwartz, E., Liu, X.A., Morrissey,
E.M., Blazewicz, S.J., Pett-Ridge, J., Stone, B.W., et al. (2019). Predictive
genomic traits for bacterial growth in culture versus actual growth in soil.
ISME J. 13, 2162-2172.

Lilja, E.E., and Johnson, D.R. (2016). Segregating metabolic processes into
different microbial cells accelerates the consumption of inhibitory substrates.
ISME J. 70, 1568-1578.

Liu, B., Mao, Y., Bergaust, L., Bakken, L.R., and Frostegard, A. (2013). Strains
in the genus Thauera exhibit remarkably different denitrification regulatory
phenotypes. Environ. Microbiol. 75, 2816-2828.

Liu, M.Y., Liu, M.C., Payne, W.J., and Legall, J. (1986). Properties and electron
transfer specificity of copper proteins from the denitrifier “Achromobacter cy-
cloclastes”. J. Bacteriol. 166, 604-608.

Louca, S., Jacques, S.M.S., Pires, A.P.F., Leal, J.S., Srivastava, D.S., Parfrey,
L.W., Farjalla, V.F., and Doebeli, M. (2016a). High taxonomic variability despite
stable functional structure across microbial communities. Nat. Ecol. Evol.
1,15.

Louca, S., Parfrey, L.W., and Doebeli, M. (2016b). Decoupling function and
taxonomy in the global ocean microbiome. Science 353, 1272-1277.

Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O’'Connor, M.1.,
Ackermann, M., Hahn, A.S., Srivastava, D.S., Crowe, S.A,, et al. (2018). Func-
tion and functional redundancy in microbial systems. Nat. Ecol. Evol. 2,
936-943.

Lu, H., Chandran, K., and Stensel, D. (2014). Microbial ecology of denitrifica-
tion in biological wastewater treatment. Water Res. 64, 237-254.
Lycus, P., Lovise Bethun, K., Bergaust, L., Peele Shapleigh, J., Reier Bakken,

L., and Frostegard, A. (2017). Phenotypic and genotypic richness of denitrifiers
revealed by a novel isolation strategy. ISME J. 17, 2219-2232.

Lynch, M. (2006). Streamlining and simplification of microbial genome archi-
tecture. Annu. Rev. Microbiol. 60, 327-349.

Martiny, J.B.H., Jones, S.E., Lennon, J.T., and Martiny, A.C. (2015). Micro-
biomes in light of traits: a phylogenetic perspective. Science 350, aac9323.
Masuko, M., lwasaki, H., Sakurai, T., Suzuki, S., and Nakahara, A. (1984).
Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB
11015. A novel copper protein. J. Biochem. 96, 447-454.

¢? CellPress

Mathupala, S.P., Kiousis, S., and Szerlip, N.J. (2016). A lab assembled micro-
controller-based sensor module for continuous oxygen measurement in
portable hypoxia chambers. S.K. Batra, ed. 77, e0148923.

Medlock, G.L., Carey, M.A., McDuffie, D.G., Mundy, M.B., Giallourou, N.,
Swann, J.R., Kolling, G.L., and Papin, J.A. (2018). Inferring metabolic mecha-
nisms of interaction within a defined gut microbiota. Cell Syst. 7, 245-257.e7.

Michalski, W.P., and Nicholas, D. (1985). Molecular characterization of a cop-
per-containing nitrite reductase from Rhodopseudomonas sphaeroides forma
sp. denitrificans. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 828,
130-137.

Mickalide, H., and Kuehn, S. (2019). Higher-order interaction between species
inhibits bacterial invasion of a phototroph-predator microbial community. Cell
Syst. 9, 521-533.e10.

Miranda, K.M., Espey, M.G., and Wink, D.A. (2001). A rapid, simple spectro-
photometric method for simultaneous detection of nitrate and nitrite. Nitric Ox-
ide 5, 62-71.

Moir, J.W.B., and Wood, N.J. (2001). Nitrate and nitrite transport in bacteria.
Cell. Mol. Life Sci. 58, 215-224.

Molina, N., and Nimwegen, E. van. (2009). Scaling laws in functional genome
content across prokaryotic clades and lifestyles. Trends Genet. 25, 243-247.

Monod, J. (1949). The growth of bacterial cultures. Annu. Rev. Microbiol. 3,
371-394.

Mori, M., Hwa, T., Martin, O.C., De Martino, A., and Marinari, E. (2016). Con-
strained allocation flux balance analysis. PLoS Comput. Biol. 72, e1004913.

Nichols, R.J., Sen, S., Choo, Y.J., Beltrao, P., Zietek, M., Chaba, R., Lee, S.,
Kazmierczak, K.M., Lee, K.J., Wong, A., et al. (2011). Phenotypic landscape
of a bacterial cell. Cell 144, 143-156.

Nikel, P.I., Fuhrer, T., Chavarria, M., Sanchez-Pascuala, A., Sauer, U., and de
Lorenzo, V. (2021). Reconfiguration of metabolic fluxes in Pseudomonas pu-
tida as a response to sub-lethal oxidative stress. ISME J. 15, 1751-1766.

Norsigian, C.J., Fang, X., Seif, Y., Monk, J.M., and Palsson, B.O. (2020). A
workflow for generating multi-strain genome-scale metabolic models of pro-
karyotes. Nat. Protoc. 15, 1-14.

Orth, J.D., Thiele, I., and Palsson, B.@. (2010). What is flux balance analysis?
Nat. Biotechnol. 28, 245-248.

Péquignot, C., Larroche, C., and Gros, J.B. (1998). A spectrophotometric
method for determination of bacterial biomass in the presence of a polymer.
Biotechnol. Tech. 72, 899-903.

Perisin, M., Vetter, M., Gilbert, J.A., and Bergelson, J. (2016). 16Stimator: sta-
tistical estimation of ribosomal gene copy numbers from draft genome assem-
blies. ISME J. 10, 1020-1024.

Phaiboun, A., Zhang, Y., Park, B., and Kim, M. (2015). Survival kinetics of starv-
ing bacteria is biphasic and density-dependent. PLoS Comput. Biol. 77,
€1004198.

Price, M.N., Wetmore, K.M., Waters, R.J., Callaghan, M., Ray, J., Liu, H.,
Kuehl, J.V., Melnyk, R.A., Lamson, J.S., Suh, Y., et al. (2018). Mutant pheno-
types for thousands of bacterial genes of unknown function. Nature 557,
503-509.

Pruesse, E., Peplies, J., and Gléckner, F.O. (2012). SINA: accurate high-
throughput multiple sequence alignment of ribosomal RNA genes. Bioinfor-
matics 28, 1823-1829.

Rodionov, D.A., Dubchak, I.L., Arkin, A.P., Alm, E.J., and Gelfand, M.S. (2005).
Dissimilatory metabolism of nitrogen oxides in bacteria: comparative recon-
struction of transcriptional networks. PLoS Comput. Biol. 7, €55, 17.

Roller, B.R.K., Stoddard, S.F., and Schmidt, T.M. (2016). Exploiting rRNA
operon copy number to investigate bacterial reproductive strategies. Nat. Mi-
crobiol. 7, 16160.

Rosenberger, R.F., and Elsden, S.R. (1960). The yields of Streptococcus fae-
calis grown in continuous culture. J. Gen. Microbiol. 22, 726-739.
Sakoparnig, T., Field, C., and Nimwegen, E. van. (2021). Whole genome phy-
logenies reflect the distributions of recombination rates for many bacterial spe-
cies. elLife 710, e65366.

Cell 185, 530-546, February 3, 2022 545



http://refhub.elsevier.com/S0092-8674(21)01542-7/sref51
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref51
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref51
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref52
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref52
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref52
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref52
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref53
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref53
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref54
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref54
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref54
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref55
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref55
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref55
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref55
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref56
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref56
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref56
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref57
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref57
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref57
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref58
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref58
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref58
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref59
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref59
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref59
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref59
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref60
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref60
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref60
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref61
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref61
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref61
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref62
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref62
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref62
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref62
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref62
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref63
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref63
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref63
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref63
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref64
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref64
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref65
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref65
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref65
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref65
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref66
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref66
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref67
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref67
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref67
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref68
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref68
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref69
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref69
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref70
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref70
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref70
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref71
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref71
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref71
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref72
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref72
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref72
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref73
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref73
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref73
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref73
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref74
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref74
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref74
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref75
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref75
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref75
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref76
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref76
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref77
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref77
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref78
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref78
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref79
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref79
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref80
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref80
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref80
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref81
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref81
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref81
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref82
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref82
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref82
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref83
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref83
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref84
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref84
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref84
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref85
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref85
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref85
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref86
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref86
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref86
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref87
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref87
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref87
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref87
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref88
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref88
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref88
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref89
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref89
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref89
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref90
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref90
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref90
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref91
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref91
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref92
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref92
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref92

¢? CellPress

Sanchez-Gorostiaga, A., Baji¢, D., Osborne, M.L., Poyatos, J.F., and Sanchez,
A. (2019). High-order interactions distort the functional landscape of microbial
consortia. PLoS Biol. 77, e3000550.

Sawada, E., Toshio, S., and Kitamura, H. (1978). Purification and properties of
a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium. Plant
Cell Physiol. 79, 1339-1351.

Sawhney, V., and Nicholas, D.J.D. (1978). Sulphide-linked nitrite reductase
from Thiobacillus denitrificans with cytochrome oxidase activity: purification
and properties. J. Gen. Microbiol. 106, 119-128.

Schober, A.F., Mathis, A.D., Ingle, C., Park, J.O., Chen, L., Rabinowitz, J.D.,
Junier, |., Rivoire, O., and Reynolds, K.A. (2019). A two-enzyme adaptive unit
within bacterial folate metabolism. Cell Rep. 27, 3359-3370.e7.

Scott, M., Gunderson, C.W., Mateescu, E.M., Zhang, Z., and Hwa, T. (2010).
Interdependence of cell growth and gene expression: origins and conse-
quences. Science 330, 1099-1102.

Seitzinger, S., Harrison, J.A., Bohlke, J.K., Bouwman, A.F., Lowrance, R., Pe-
terson, B., Tobias, C., and Van Drecht, G. (2006). Denitrification across land-
scapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064-2090.

Sela, I., Wolf, Y.I., and Koonin, E.V. (2019). Selection and genome plasticity as
the key factors in the evolution of bacteria. Phys. Rev. X 9, 031018.

Shou, W., Ram, S., and Vilar, J.M.G. (2007). Synthetic cooperation in engi-
neered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877-1882.

Si, Y.-Y., Xu, K.-H., Yu, X.-Y., Wang, M.-F., and Chen, X.-H. (2019). Complete
genome sequence of Paracoccus denitrificans ATCC 19367 and its denitrifica-
tion characteristics. Can. J. Microbiol. 65, 486-495.

Sieber, C.M.K., Probst, A.J., Sharrar, A., Thomas, B.C., Hess, M., Tringe, S.G.,
and Banfield, J.F. (2018). Recovery of genomes from metagenomes via a der-
eplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836-843.
Stein, L.Y., and Klotz, M.G. (2016). The nitrogen cycle. Curr. Biol. 26, R94-R98.
Stewart, V., Lu, Y., and Darwin, A.J. (2002). Periplasmic nitrate reductase (Na-
pABC enzyme) supports anaerobic respiration by Escherichia coli K-12.
J. Bacteriol. 7184, 1314-1323.

Strohm, T.O., Griffin, B., Zumft, W.G., and Schink, B. (2007). Growth yields in
bacterial denitrification and nitrate ammonification. Appl. Environ. Microbiol.
73, 1420-1424.

Subramanian, S., Hug, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M.A.,
Benezra, A., DeStefano, J., Meier, M.F., Muegge, B.D., et al. (2014). Persistent

546 Cell 185, 530-546, February 3, 2022

Cell

gut microbiota immaturity in malnourished Bangladeshi children. Nature 570,
417-421.

Taylor, J., and Tibshirani, R.J. (2015). Statistical learning and selective infer-
ence. Proc. Natl. Acad. Sci. USA 112, 7629-7634.

Tiedje, J.M., Sexstone, A.J., Myrold, D.D., and Robinson, J.A. (1982). Denitri-
fication: ecological niches, competition and survival. Antonie van Leeuwen-
hoek 48, 569-583.

Timkovich, R., Dhesi, R., Martinkus, K.J., Robinson, M.K., and Rea, T.M.
(1982). Isolation of Paracoccus denitrificans cytochrome cd1: comparative ki-
netics with other nitrite reductases. Arch. Biochem. Biophys. 215, 47-58.

Vaccaro, B.J., Thorgersen, M.P., Lancaster, W.A., Price, M.N., Wetmore, K.M.,
Poole, F.L., Deutschbauer, A., Arkin, A.P., and Adams, M.W. (2016). Deter-
mining roles of accessory genes in denitrification by mutant fitness analyses.
Appl. Environ. Microbiol. 82, 51-61.

Van Alst, N.E., Sherrill, L.A., Iglewski, B.H., and Haidaris, C.G. (2009).
Compensatory periplasmic nitrate reductase activity supports anaerobic
growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate
reductase. Can. J. Microbiol. 55, 1133-1144.

Verbaendert, ., De Vos, P., Boon, N., and Heylen, K. (2011). Denitrification in
Gram-positive bacteria: an underexplored trait. Biochem. Soc. Trans. 39,
254-258.

Ward, D.M., Bateson, M.M., Ferris, M.J., Kuhl, M., Wieland, A., Koeppel, A.,
and Cohan, F.M. (2006). Cyanobacterial ecotypes in the microbial mat
community of Mushroom Spring (Yellowstone National Park, Wyoming) as
species-like units linking microbial community composition, structure and
function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1997-2008.

Warnecke-Eberz, U., and Friedrich, B. (1998). Three nitrate reductase activities
in Alcaligenes eutrophus. Arch. Microbiol. 159, 405-409.

White, D., Drummond, J., and Fuqua, C. (2012). The Physiology and Biochem-
istry of Prokaryotes, 4th Edition (Oxford University Press).

Widder, S., Allen, R.J., Pfeiffer, T., Curtis, T.P., Wiuf, C., Sloan, W.T., Cordero,
0O.X., Brown, S.P., Momeni, B., Shou, W., et al. (2016). Challenges in microbial
ecology: building predictive understanding of community function and dy-
namics. ISME J. 10, 2557-2568.

Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Micro-
biol. Mol. Biol. Rev. 67, 533-616.


http://refhub.elsevier.com/S0092-8674(21)01542-7/sref93
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref93
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref93
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref93
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref94
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref94
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref94
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref95
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref95
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref95
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref96
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref96
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref96
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref97
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref97
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref97
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref98
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref98
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref98
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref99
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref99
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref100
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref100
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref101
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref101
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref101
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref102
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref102
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref102
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref103
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref104
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref104
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref104
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref105
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref105
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref105
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref106
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref106
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref106
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref106
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref107
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref107
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref108
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref108
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref108
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref109
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref109
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref109
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref110
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref110
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref110
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref110
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref111
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref111
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref111
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref111
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref112
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref112
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref112
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref113
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref113
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref113
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref113
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref113
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref114
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref114
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref115
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref115
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref116
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref116
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref116
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref116
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref117
http://refhub.elsevier.com/S0092-8674(21)01542-7/sref117

Cell

¢? CellPress

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and virus strains

Bacterial isolates This paper Table S2
Paracoccus denitrificans ATCC Cat#19367
Biological samples

Soils for bacterial isolation This paper Table S1
Chemicals, peptides, and recombinant proteins

N-(1-Naphthyl)ethylenediamine Sigma-Aldrich Cat#222488-10G
dihydrochloride

Sulfanilamide Sigma-Aldrich Cat#S9251-100G

Vanadium(lll) chloride

Fisher Scientific

Cat#AC197000050

Critical commercial assays

DNeasy UltraClean Microbial Kit Qiagen Cat#12224-250

MiSeq Reagent Kit v3 (600 cycle) lllumina Cat#MS-102-3003

Nextera DNA CD Indexes lllumina Cat#20018707

Nextera DNA Flex Library Prep Kit lllumina Cat#20018704

PhiX Control v3 lllumina Cat#FC-110-3001

Platinum Hot Start PCR Master Mix Invitrogen Cat#13000013

QIAquick PCR Purification Kit Qiagen Cat#28106

Qubit dsDNA BR Assay Invitrogen Cat#Q32853

Deposited data

Metabolite dynamics data, consumer- This paper https://doi.org/10.17605/0sf.io/t3prd
resource parameters, genome annotations

Paracoccus denitrificans complete genome Sietal, 2019 BioProject ID PRINA513156
Raw sequencing data and draft genome This paper BioProject ID PRUNA660495

assemblies

Oligonucleotides

16S rRNA universal primer (27F)
16S rRNA universal primer (806R)

Integrated DNA Technologies
Integrated DNA Technologies

AGAGTTTGATCMTGGCTCAG
GGACTACNVGGGTWTCTAAT

Software and algorithms

MATLAB R2017B

R 3.6.1

Original code
CASEU 0.1.2
MEGA X 10.1.8
phylosignal 1.3

QUAST 5.02
RAST
selectivelnference 1.2.5

SILVA ACT
SPAdes 3.13.0
Trimmomatic 0.39

Mathworks

R Core Team

This paper

Cermak et al., 2020
Kumar et al., 2018
Keck et al., 2016

Gurevich et al., 2013
Brettin et al., 2015
Taylor and Tibshirani, 2015

Pruesse et al., 2012
Bankevich et al., 2012
Bolger et al., 2014

https://www.mathworks.com/products/
matlab.html

https://www.r-project.org/
https://doi.org/10.17605/0sf.io/t3prd
https://bitbucket.org/DattaManoshi/caseu
https://www.megasoftware.net/
https://cran.r-project.org/web/packages/
phylosignal
https://github.com/ablab/quast
http://rast.theseed.org

https://cran.r-project.org/web/packages/
selectivelnference/

http://www.arb-silva.de/
https://github.com/ablab/spades
https://github.com/usadellab/Trimmomatic

(Continued on next page)

Cell 185, 530-546.e1-e16, February 3, 2022 et


https://doi.org/10.17605/osf.io/t3prd
https://mathworks.com/products/matlab.html
https://mathworks.com/products/matlab.html
https://r-project.org/
https://doi.org/10.17605/osf.io/t3prd
https://bitbucket.org/DattaManoshi/caseu
https://megasoftware.net/
https://cran.r-project.org/web/packages/phylosignal
https://cran.r-project.org/web/packages/phylosignal
https://github.com/ablab/quast
http://rast.theseed.org/
https://cran.r-project.org/web/packages/selectiveInference/
https://cran.r-project.org/web/packages/selectiveInference/
http://arb-silva.de/
https://github.com/ablab/spades
https://github.com/usadellab/Trimmomatic

¢ CellPress Cell

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Anaerobic glove box Coy Laboratory Products Cat#7601-110/220
Breathe-Easier membranes Diversified Biotech Cat#BERM-2000
Deepwell plates Axygen Cat#PDW20C
Digital mass flow controllers Sierra Instruments SmartTrak 50
High-throughput DNA sequencing system lllumina MiSeq

Liguid handling robot Formulatrix Mantis

Microplate reader BMG CLARIOstar

Plate shaker Troemner Talboys Professional 1000MP

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Seppe Kuehn (seppe.
kuehn@gmail.com).

Materials availability
Strains isolated in this study will be made available on request. No new or unique reagents were generated in this study.

Data and code availability

® Raw sequencing data and draft genome assemblies have been deposited to NCBI Sequence Read Archive and NCBI Gen-
Bank, respectively. The BioProject ID is listed in the key resources table. Metabolite dynamics data, phenotype data, and
RAST annotations of draft assemblies used to infer gene presence and absence have been deposited on Open Science Frame-
work and are publicly available as of the date of publication. The DOI is listed in the key resources table.

o All original code has been deposited at Open Science Framework and is publicly available as of the date of publication. The DOI
is listed in the key resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains
The bacterial strains and isolates used in this study are listed in Table S1.

Isolation of denitrifying bacteria from soils

Denitrifying bacteria were isolated from soil samples following a modified version of the protocol developed by Lycus etal. (Lycus et al.,
2017). 5-10 g soil samples were collected from local prairie and forest environments, agricultural land, and manicured lawns (Table
S2). Samples were stored separately in 50 mL centrifuge tubes at 4°C for no longer than three months before use.

Each soil sample was prepared for isolation by combining with 25 mL PBS (pH 7.4) and 5-10 g sterile 4 mm glass beads. Addi-
tionally 0.5 mL cycloheximide solution (10 mg/mL) and 20 uL nystatin solution (25 mg/mL) were added to prevent fungal growth.
In certain rounds of isolation (Table S2), sterile NaNO, solution (1 M) was added to enrich for nitrite-reducing bacteria. Tubes
were then vortexed (Vortex-Genie 2) at high speed for 1 min to homogenize the samples. In certain rounds of isolation (Table S2),
homogenized soils were incubated at either room temperature or 30°C for up to two weeks, and then briefly re-vortexed before
further processing.

Supernatants from homogenized soils were then diluted and plated. After vortexing, large particles in homogenized soil samples
were allowed to settle for 20-30 min before transferring 1 mL of supernatant to sterile 1.7 mL microcentrifuge tubes. Soil supernatants
were then serially-diluted in PBS to obtain 10~4-fold and 10~5-fold dilutions. 100 pL of the 10~* and 10~° soil supernatant dilutions
were plated on 1/10X tryptic soy agar (1/10X TSA, 1.5 g/L tryptone, 0.5 g/L soytone, 0.5 g/L NaCl, 15 g/L agar), with two replicates for
each dilution. Plates were then incubated under aerobic conditions at 30°C for 48 h.

Colonies from plated soil supernatants were picked and streaked to purity. Plated soil dilutions were examined for growth after
incubation. Plates showing little or no growth were incubated for an additional 24-48 h until colonies appeared. Plates showing likely
fungal growth were discarded. For each set of plates derived from a soil sample, 5-15 well-separated colonies were picked and
streaked to purity on 1/10X TSA plates, again incubating at 30°C. Whenever possible, colonies were selected which varied in
morphology, size, and color, in order to enhance the diversity of the isolate collection.
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Bacterial isolates were assayed for nitrate and/or nitrite-reduction capability. Isolates were first cultured aerobically in sterile 96-
deepwell plates (Axygen PDW20C) containing 1 mL per well 1/10X tryptic soy broth liquid medium (1/10X TSB), inoculated directly
from streak plate colonies. Deepwell plates were sealed with a gas-permeable membrane (Diversified Biotech BERM-2000) and incu-
bated/shaken at 30°C/950RPM (Talboys Professional 1000MP) for 48 h. 1 uL of each dense aerobic culture was then passaged to fresh
96-deepwell plates containing 1 mL per well 1/10X TSB supplemented with either sterile NaNO3; or NaNO,, solution (1 M) to yield a final
concentration of 2 mM NO; or NO, , with two replicates of each condition per isolate. Plates were sealed with gas-permeable mem-
branes (Diversified Biotech BEM-1) and transferred to an N2-purged anaerobic glove box (Coy Laboratory Products 7601-110/220).
Plates were incubated/shaken at 30°C/950RPM for 48 h under anaerobic conditions. After incubation, plates were sampled to deter-
mine endpoint concentrations of nitrate and nitrite.

Nitrate and nitrite-reduction capability for each isolate was determined by comparing endpoint concentrations of NO; and NO; in
each culture with the corresponding concentrations in uninoculated controls. Isolates showing lower endpoint levels of nitrate and/or
nitrite than the uninoculated controls were identified as nitrate and/or nitrite reducers, respectively. Strains that performed both ni-
trate and nitrite reduction were classified as “Nar/Nir” strains, while strains that performed nitrate or nitrite reduction only were clas-
sified as “Nar” or “Nir” strains, respectively. These isolates were cryopreserved by mixing 500 uL of saturated culture grown in 1/10X
TSB under aerobic conditions with 500 pL filter-sterilized 50% glycerol solution in 2 mL cryotubes, and freezing/storing at -80°C.

Defined growth medium

In order to eliminate the possibility of fermentative metabolism in subsequent (post-isolation) denitrification experiments, defined
growth media based on the medium designed by Heylen et al. (2006) for the cultivation of diverse denitrifying bacteria were used
(Table S4). A succinate-defined medium (SDM) that contained 25 mM succinate (100 mM C) as the sole (non-fermentable) carbon
source was used for most denitrification experiments. The medium also contained trace metals and vitamins, 15 mM ammonium
as the assimilatory nitrogen source, and a 40 mM phosphate buffer with the final medium pH adjusted to 7.3. It was expected
that nitrate and nitrite assimilation were inhibited by high concentrations of ammonia (Zumft, 1997). Additionally an acetate defined
medium (ADM) containing 50 mM acetate (100 mM C) in place of succinate was used for some experiments, with all other medium
components unchanged. In ADM, acetate served as the sole non-fermentable carbon source.

In denitrification experiments using defined media, nitrate or nitrite was provided in at most 2 mM concentrations, and it was ex-
pected that growth was nitrate and/or nitrite limited. This expectation was corroborated by measurements of endpoint biomass den-
sities for strains in axenic culture, in which typically higher biomass densities were observed in conditions where 2 mM nitrate or nitrite
was supplied (and completely reduced) than when 1 mM was supplied. Moreover, in a previous study, growth experiments using a
mineral medium containing 5 mM acetate (10 mM C), 3.7 mM ammonia, and 1.5 mM phosphate, demonstrated that nitrate and nitrite
were limiting at up to a5 mM concentration for the strains Paracoccus denitrificans and Pseudomonas stutzeri (Strohm et al., 2007). For
comparison, SDM and ADM supplied carbon, ammonia, and phosphate in significantly greater concentrations, and nitrate and nitrite
in lower concentrations, further supporting the claim that nitrate and/or nitrite were growth limiting under denitrifying conditions.

Denitrifying isolates were screened for growth on SDM under aerobic conditions by first growing axenically from freezer stocks in 1/10X
TSB, passaging 1:300 into 300 uL SDM in 96-well plates (with two replicates per isolate), and culturing at 30°C for 48 h. Endpoint optical
density was measured to assess growth on SDM using a microplate reader (BMG CLARIOstar). Denitrifying isolates unable to grow on
SDM (approximately 36% of isolates) were excluded from further experimentation and analysis. Strains that grew on SDM were also
further screened for growth on ADM (Table S1).

Denitrifying conditions

Post-isolation denitrification experiments were performed in a vinyl glove box (Coy Laboratory Products 7601-110/220) purged of
oxygen with a 99%/1% N,/CO, gas mixture. Provision of CO, was necessary to support the growth of cultures from low initial
biomass densities (OD600, <« 0.01), likely due to the CO,-fixation requirements of core anaplerotic metabolism (White et al.,
2012). Gas mixing and a purge rate of 20 SLPM were controlled using digital mass flow controllers (Sierra Instruments SmartTrak
50). Oxygen and CO, concentrations inside the glove box were continually monitored using Arduino-attached (Mathupala et al.,
2016) optical sensors (SST Sensing LOX-02, Gas Sensing Solutions EXPLORIR-M-20). Gaseous oxygen concentration was
maintained around 200 ppm, which was sufficient to prevent growth via aerobic respiration. This was verified using two denitrifying
isolates, the Nar strain Paracoccus sp. PARO1 and the Nir strain Pseudomonas sp. PDM13, which were grown under denitrifying con-
ditions for 64h with and without a suitable electron acceptor (i.e., nitrate for the Nar strain and nitrite for the Nir strain). The Nar strain
PARO1 was inoculated at biomass density OD600, =0.011 and grew to OD600g4 =0.072 with nitrate and remained at OD600g4 =
0.013 without nitrate. Similarly, the Nir strain PDM13 was inoculated at biomass density OD600; =0.010 and grew to OD600g4 =
0.026 with nitrite and remained at OD600g, =0.010 without nitrite.

METHOD DETAILS
Assay of nitrate and nitrite

Concentrations of nitrate and nitrite were measured using a microplate reader (BMG CLARIOstar) following a modified version of the
protocol by Miranda et al. (2001), where the conventional Griess assay for detection of nitrite is coupled with the chemical reduction of
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nitrate to nitrite using vanadium (1ll) chloride. Stock solutions of N-(1-Napthyl)ethylenediamine dihydrochloride (NEDD), sulfanilamide
(SULF, in 5% HCI), and VCl3 (in 1 M HCI) were prepared and stored as described in Miranda et al. (2001). Griess reagent was freshly
prepared on the day of each assay by mixing NEDD and SULF stock solutions with ultrapure H,O in a 5:5:9 ratio.

Nitrate and nitrite were measured using 10 puL samples of analyte in a 96-well microplate. Nitrite was first quantified by adding
190 pL of Griess reagent to each sample and recording blank-corrected maximum absorbance within the interval 450 to 650 nm,
denoted AbsS,, . Then nitrate was chemically reduced to nitrite by adding 50 uL of VCl; solution to each sample and incubating at
30°C for 6-7 h, which was sufficient time for complete reduction of nitrate to nitrite. After incubation, the maximum blank-corrected
absorbance within the interval 450 to 650 nm, denoted Abs!,, was recorded to quantify the sum total of nitrate and nitrite in the
sample.

Concentrations of nitrate and nitrite were determined using 8-point standard curves. Separate two-fold dilutions of NaNO, and
NaNO; standards spanning 31 uM-2 mM were prepared, and 10 uL samples of these standards were dispensed in triplicate into
a 96-well plate, along with 10 pL samples of ultrapure water that served as blanks. Griess reagents were used as described above
to measure nitrite in the NaNO, standards, and these data were parameterized by fitting the equation:

AbsC_ () = ag+ail +a.l?, Equation 1
max

where | is the concentration of NO, . A quadratic term was included to account for the slight nonlinearity of the absorbance at high
values of concentration. Then VCls solution was used as described above to measure nitrate in the NaNOj3 standards, and these data
were parameterized by fitting the equation:

AbsY

max

(A) = by +b1A +boA2, (Equation 2)

where A is the concentration of NO; . Standard curves were run in triplicate on each day that an assay was performed.

The nitrate and nitrite concentrations in a new sample, for which AbsS,, and Abs),, were recorded, were then determined by:

1. Solving Equation 1 to determine / from Abs&,, (1),

2. Solving Equation 2 to determine the quantity A +/ from Abs
nitrate and nitrite in a sample),

3. Subtracting the result of step 1 from the result of step 2 to obtain A.

v

rax(A +1) (since this step of the assay measures the sum total of

This approach was validated using mixed standards containing both nitrate and nitrite in a 1:1 ratio, and relative error was found to
be typically less than + 5% for concentrations > 62.5 uM.

In this study, nitrate and nitrite assays were performed directly on samples taken from denitrifying cultures (i.e., without first
removing cells via filtration or centrifugation). To verify that neither the presence of cells nor molecules secreted by strains during
denitrification interfere with the assay, measurement error was evaluated in standards combined with samples taken from denitrifying
cultures of four representative strains. The strains Achromobacter sp. ACMO01, Ensifer sp. ENS09, Paracoccus denitrificans ATCC
19367 (PAR19367), and Pseudomonas sp. PDM21 were grown in a succinate defined medium under denitrifying conditions from
low initial abundance (OD600, = 0.01) for 64 h, by which time cells were in stationary phase (OD600g4 = 0.052-0.148). 10 puL samples
of these cultures were then then combined with 10 uL samples of nitrate and nitrite standards and then assayed as described
above. In standards containing nitrate or nitrite separately, relative error of the assay was typically less than + 5% for concentrations
> 125 uM, with relative error = 10% at 62.5 pM. In standards containing mixtures of both nitrate and nitrite in a 1:1 ratio, relative error
was again found to be typically less than + 5% for concentrations > 125 uM, with relative error + 10% at 62.5 uM. This indicates that
presence of cells and/or molecules secreted by strains during denitrification do not appreciably increase measurement error above
concentrations of 125 puM.

Denitrification dynamics experiments
Strains were pre-cultured under aerobic conditions (using first broth then defined medium) prior to growth under denitrifying (anaer-
obic) conditions in defined medium. Strains were first grown axenically to saturation from freezer stocks in 1/56X TSB, then passaged
1:100 into defined medium and again grown to saturation. All pre-cultures were grown in 24-well plates containing 1.7 mL medium
per well and incubated/shaken at 30°C/400RPM under aerobic conditions. Since strains in the library vary widely in the time required
to grow to saturation in 1/5X TSB and defined medium (12-96 h), inoculation and passaging of strains was timed so that defined me-
dium aerobic cultures would enter stationary phase within 12 h of the start of an experiment in denitrifying conditions.
Experiments to measure the nitrate/nitrite-reduction dynamics of strains in monoculture were performed with multiple initial media
and biomass density conditions: (a) 2 mM NO_, OD600, = 0.01, (b) 1 MM NO_, OD600, = 0.01, (c) 2 mM NO_, OD600, = 0.001, where
Nar/Nir strains were cultured with NO3 and NO, separately (6 conditions total), Nar strains were cultured with NOj3 (3 conditions to-
tal), and Nir strains were cultured with NO; (3 conditions total). Medium containing (separately) 2 mM NO;, 1 mM NO3, 2 mM NO;,
and 1 mM NO, were prepared by supplementing fresh defined medium with sterile NaNO3 or NaNO, (1 M) solutions. Aerobic defined
medium pre-cultures were normalized to two levels of optical density (OD600 = 1.2 and 0.12) by diluting with PBS, and these normal-
ized densities were recorded. 96-deepwell plates containing 1.2 mL of NO5 or NO, -supplemented defined medium were then
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inoculated with 10 pL of density-normalized culture, resulting in OD600 = 0.01 and 0.001 cell density conditions. 2—4 replicates were
used for each combination of media and cell density conditions.

Inoculated plates were sealed with gas-permeable membranes (Diversified Biotech BERM-2000) and transferred to an anaerobic
glove box for incubation/shaking at 30°C/950RPM. Cultures were manually sampled with a multichannel pipette (10 pL per well) at 2,
4,6, 8,16, 32, and 64 h from the start of anaerobic culture. Samples were stored in clean 96-well plates, and immediately sealed (Bio-
Rad MSB1001) and frozen at -20°C for later assay of nitrate and nitrite. Additionally, at 64 h, 300 uL per well of culture was sampled
into clean 96-well plates and the optical density (pathlength normalized to 1 cm) immediately measured to quantify endpoint biomass
density. Strains observed to form excessive cell aggregation (to the extent that quantification of endpoint biomass by optical density
was not possible) were at this point excluded from further experimentation and analysis (Table S3).

Additional experiments to measure nitrate/nitrite-reduction dynamics on communities of 2-5 strains (including monoculture con-
trols) were performed in separate 2 mM NO; and 2 mM NO; conditions. Aerobic pre-cultures were normalized to OD600 = 1.2 with
PBS. Using liquid handling robotics (Formulatrix Mantis), 96-deepwell plates containing 1.2 mL of 2 mM NO; or NO, SDM was inoc-
ulated with 10 pL droplets of density-normalized culture in defined combinations (e.g., a pair community containing strains A and B
would be inoculated with separate 10 uL droplets of strain A and strain B). Following inoculation, all culture and sampling details were
the same as described above.

Measurements were post-processed to correct for gradual evaporation of H,O that increased apparent concentrations with time.
3-8 uninoculated controls containing nitrate or nitrite-supplemented medium were used on each culture plate to quantify the effect of
evaporation. Raw nitrate and nitrite measurements for cultures were scaled at each time point by the concentration of initially sup-
plied nitrate or nitrite divided by the median concentration across blank measurements at that time point.

Whole genome sequencing and annotation

Denitrifying strains were grown axenically from freezer stocks or plated colonies in 1/10X TSB incubated at 30°C with shaking. Satu-
rated cell cultures were harvested and DNA extracted using the DNeasy UltraClean Microbial Kit (Qiagen). DNA concentrations were
quantified using the Qubit dsDNA BR Assay Kit (Invitrogen).

Library preparation for sequencing of DNA extracts was performed using the Nextera DNA Flex Library Prep Kit (llumina) and the
Nextera DNA CD Indexes (lllumina). Barcoded libraries for each strain were pooled in groups of 21-24 strains and quantified using the
Qubit dsDNA BR kit and an Agilent 2100 Bioanalyzer (Carver Biotechnology Center, University of lllinois at Urbana-Champaign). Each
pooled library was then separately sequenced using a MiSeq Reagent Kit v3 (lllumina, 2 x 300 bp paired-end), with a 12 pM library
loading concentration and a 1% spike-in of PhiX Control v3 (lllumina). Sequencing was performed on a locally maintained and oper-
ated lllumina MiSeq system.

Raw paired-end reads were trimmed of low-quality regions and lllumina adapters using Trimmomatic 0.39 (Bolger et al., 2014).
Trimmed reads were assembled into contigs de novo using SPAdes 3.13.0 (Bankevich et al., 2012) with k-mer lengths of 21, 33,
55, 77,99, and 127 and the error-correction option “careful” enabled. Assembly quality was assessed using QUAST 5.02 (Gurevich
etal., 2013). The draft assembly of the laboratory strain Paracoccus denitrificans ATCC 19367 was compared to a complete assembly
of the same strain by Si et al. (Si et al., 2019), which served as a reference. The comparison indicated a 97.8% genome fraction (per-
centage of bases in the reference that align to the draft assembly), with one 30.8 kbp relocation misassembly, 7.02 mismatches
(sequencing errors or single nucleotide polymorphisms) per 100 kbp, and 0.43 indels per 100 kbp. The draft assembly produced
4635 predicted genes relative to 4644 genes predicted in the reference. The coverage depth of the P. denitrificans draft assembly
was 32X, compared to a median of 35X for the other strains in the library. Together these analyses suggest that the draft assemblies
are likely to cover the vast majority of the protein-coding sequences, with relatively few errors that would affect the inference of gene
presence or absence.

Contigs were uploaded for gene annotation on the RAST Server (http://rast.theseed.org) using the RASTtk pipeline (Brettin et al.,
2015). Denitrification gene presence and absence information was obtained from annotation files by a text search of gene function
labels (Table S6). The NarXL two-component nitrate/nitrite sensing system was considered “present” if a gene encoding the sensor
(narX) and/or the response regulator (narL) were identified in the annotation. Each gene identified as a NarK-type nitrate transporter
was classified post-annotation as encoding either a nitrate/H* symporter (narK1), a nitrate/nitrite antiporter (nark2), or a fusion of
both transporters (narK71K2). This classification was performed by locally aligning each transporter sequence with the narK1K2
gene previously identified in Paracoccus denitrificans PD1222 (Goddard et al., 2017), for which the N-terminal domain has been iden-
tified to be NarK1 and the C-terminal domain NarK2. From this it was determined which RAST gene function labels correspond to
narK1, narK2, and narK1K2.

Additionally annotation files were searched for the cytochrome c nitrite reductase gene (nrfA) associated with dissimilatory nitrate
reduction to ammonia (DNRA). Strains possessing this gene were excluded from further experimentation and analysis (Table S3).

Phylogenetic classification of strains

Phylogenetic analysis of denitrifying strains was performed using full 16S rRNA sequences identified in annotated draft genome as-
semblies. 16S sequences were uploaded for classification up to the genus level using the SILVA ACT service (http://www.arb-silva.
de/) (Pruesse et al., 2012). A maximum-likelihood phylogenetic tree was computed using MEGA X 10.1.8 (Kumar et al., 2018).

Cell 185, 530-546.e1-e16, February 3, 2022 e5



http://rast.theseed.org/
http://arb-silva.de/
http://arb-silva.de/

¢? CellPress Cell

Measuring relative abundances and contamination

The N-strain consumer-resource model provides predictions of the relative abundances of each strain in a community. These pre-
dictions were tested by measuring relative abundances for a set of 2-strain communities using the package CASEU 0.1.2 in R 3.6.1
(Cermak et al., 2020). Compositional Analysis by Sanger Electropherogram Unmixing (CASEU) infers relative abundances in commu-
nities via Sanger sequencing amplicons of a marker gene that distinguishes the different strains (e.g., the 16S rRNA gene). The
approach works by deconvolving mixed Sanger electropherograms of amplicons from a community using the pure electrophero-
grams obtained by sequencing amplicons from axenic cultures. Therefore the approach requires that (a) the constituents of a com-
munity can be cultured axenically, and (b) the electropherograms of a marker gene for each strain individually be sufficiently distinct
(i.e., having pairwise electropherogram correlations less or equal to than approximately 0.8; Cermak et al., 2020).

All pair combinations and monocultures of six taxonomically and phenotypically representative strains, Achromobacter sp. ACMO1
(Nar/Nir), Ensifer sp. ENS09 (Nar/Nir), Paracoccus sp. PARO1 (Nar), Pantoea sp. PNTO3 (Nar), Agrobacterium sp. AGBO1 (Nir), and
Pseudomonas sp. PDM13 (Nir), were inoculated, grown, and periodically sampled in denitrifying conditions. All cultures were initiated
with 2 mM NOj3, with the exception of monocultures of Nir strains AGB01 and PDM13 and the pair culture of these two strains, which
were initiated with 2 mM NO, . Cultures were harvested at 64 h, at which time optical densities were measured. In order to calibrate a
conversion from relative biomass density (as measured by OD600) and relative abundance of 16S amplicons, equal volume (450 pl)
synthetic mixtures of all pairs of monocultures were also prepared with known relative abundances of each strain.

DNA was extracted from monocultures, pair cultures, and synthetic pair mixtures using the DNeasy UltraClean Microbial Kit. A
fragment of the 16S rRNA gene was amplified using the 27F (AGAGTTTGATCMTGGCTCAG) and 806R (GGACTACNVGGGTWTCT
AAT) universal primers. The following reagents were used for each reaction: 22 uL nuclease-free H,O, 1 uL 27F primer (10 uM), 1 uL
807R primer (10 uM), 1 uL DNA extract, 25 L Platinum Hot Start PCR Master Mix (Invitrogen). The following thermocycler settings
were used: initial denaturation, 2 min at 94°C; amplification (35 cycles), 30 sec at 94°C, 30 sec at 53°C, 60 sec at 72°C; final extension,
10 min at 72°C. PCR products were cleaned using the QIAquick PCR Purification Kit (Qiagen). Sanger sequencing of cleaned PCR
products was performed at the University of Chicago Comprehensive Cancer Center DNA Sequencing and Genotyping Facility.

Resulting AB1 files containing electropherogram signals were analyzed using CASEU to infer relative abundances in each sample.
First, it was verified that the six pure electropherograms from monocultures of the different strains were sufficiently distinct to distin-
guish signals in mixed electropherograms. Pairwise correlations between pure electropherograms were computed using CASEU,
and were generally found to be much smaller than 0.8, with the exception of the Alphaproteobacteria ENS09, PARO1, and
AGBO01, pairs of which had electropherogram correlations of approximately 0.8. It was therefore concluded that these strains could
be distinguished in a community using the CASEU approach.

Next, the six pure electropherograms were used to infer relative abundances in the pair cultures. In order to assess the extent of
cross-contamination in these pair cultures, CASEU was allowed infer relative abundance using all six pure electropherograms for
each pair culture, in essence assuming that any of the six strains could be present in any given pair culture. In every community,
no evidence of cross-contamination was observed (i.e., in each pair community, only the intended pair of strains was measured
at non-zero relative abundance. Though the CASEU approach cannot reliably resolve relative abundances below 1-2% (Cermak
et al., 2020), if cross-contamination was present at these levels, it would have little to no impact on community metabolite dynamics.
Therefore it was concluded that cross-contamination was generally negligible in denitrification experiments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Consumer-resource model for metabolite dynamics
A consumer-resource model was used to parameterize the dynamics of nitrate and nitrite-reduction. For a single strain that performs
both nitrate and nitrite reduction (Nar/Nir strain), the model is as follows:

dX_ I, A + vy, ! X
at \ ", AT )
dA

gt K AS

a_(. A I
at~ (rAKA +A r’K,+I>X'

The variable x (in units of OD at 600 nm) is the biomass density of a single population, and A and / (mM) are the concentrations of
nitrate and nitrite respectively. The model is parameterized by reduction rates r4 and r; (mM/OD/h), yields v, and v, (OD/mM), and
substrate affinities and K4 and K; (mM), for growth on nitrate and nitrite, respectively.

The model, which resembles the Monod model for bacterial growth (Monod, 1949), assumes that growth of the population occurs
at a rate proportional to the reduction rates of nitrate and nitrite, with the two resources treated as substitutable. Nitrite is the direct
product of nitrate reduction (in a 1:1 stoichiometry). Nitric oxide, the product of nitrite reduction, is not explicitly modeled, and thus
mass leaves the system when nitrite is reduced. For a strain that performs only nitrate reduction (Nar strain), the model simplifies by

(Equation 3)
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setting r,y, = 0. Likewise for a strain that performs only nitrite reduction (Nir strain), ra,y, = 0. This model assumes that nitrate and/or
nitrite are the growth-limiting nutrients and therefore the concentration of electron donors (e.g., succinate) is not explicitly modeled.

Inferring phenotypic parameters from data
Monoculture experiments were performed for 78 soil isolates and one reference strain Paracoccus denitrificans ATCC 19367 under
denitrifying conditions in succinate defined medium (SDM) in order to estimate parameters of the consumer-resource model (Equa-
tion 3). Monoculture experiments were also performed in acetate defined medium (ADM) for the 64 strains that grew aerobically on
ADM (Table S1).
Fitting yield parameters
The yield parameters v, and/or v, were directly measured for each strain from endpoint measurements of optical density and nitrate/
nitrite concentration.

To demonstrate how this is possible, Equation 3 gives:

ax dA (dA dl)

G- YA WJrE . (Equation 4)

Therefore it follows from the fundamental theorem of calculus that:

T T
ax dA "dA dl
—dt=X7 —Xo= — —dt — —dt+ [ —dt
0/ at T Ta O/ at K ( at dt ) (Equation 5)

0
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where the subscripts 0 and T denote the values of the variables at t =0 and T, respectively.

Equation 5 indicates that v, and v, can be inferred using measurements of biomass density and nitrate/nitrite concentrations at
some time t = T, given knowledge of the experimentally-specified initial values of these variables. Because this equation is linear
with up to two unknowns (recall that v, = 0 for Nar strains and vy, = 0 for Nir strains), fitting this equation could in principle be accom-
plished using data from a single experimental condition for Nar and Nir strains or two experimental conditions for Nar/Nir strains.
Instead v, and v, were fit to data from many conditions in order to obtain more robust estimates. Specifically, monocultures were
grown in the following conditions: (a) 2 mM NO, , OD600g = 0.01, (b) 1 mM NO_, OD600, = 0.01, (c) 2 mM NO, , OD600, = 0.001,
where Nar/Nir strains were cultured with NO; and NO, separately (6 conditions total), Nar strains were cultured with NO3 (3 condi-
tions total), and Nir strains were cultured with NO, (3 conditions total). Then the equation

OD60064 — OD6000 =Yoo+ /YA(AO — A64) + ’Y,(Ag — A64 + Io — /64), (Equation 6)

was fit via ordinary least squares regression using endpoint measurements from all conditions taken at t = 64 h. The intercept term v,
was included in Equation 6 to account for small systematic measurement errors, and was typically close to zero (Figure S1A). Exam-
ples of fits to Equation 6 are shown in Figures S1B-S1D.

Parameterizing Equation 3 in terms of OD assumed that biomass (g dry weight/L) is proportional to OD600, and that the constant of
proportionality is the same for all strains in the library. Previous literature reports that the ratio g dry weight/L/OD is typically 0.4 (Coul-
tate and Sundaram, 1975; Rosenberger and Elsden, 1960; Hassen et al., 1998; Péquignot et al., 1998; Nikel et al., 2021; Lee et al.,
2007). In order to test whether some strains might secrete optically active compounds that absorb strongly at 600 nm, and thereby
corrupt the biomass to OD conversion, four representative strains (Achromobacter sp. ACMO1, Ensifer sp. ENS09, Paracoccus de-
nitrificans ATCC 19367, and Pseudomonas sp. PDM21) were cultured in SDM under denitrifying conditions for 64 h. Cells were then
removed from the endpoint cultures by filtration and OD600 of the filtered medium was measured. It was observed that absorbance
levels were at or below that of fresh medium. It was therefore concluded that secretion of optically active molecules likely does not
impact the inference of biomass from OD, and that using OD600 as a proxy for biomass incurs only a modest error. However, it is
important to recognize that directly measuring the biomass of each strain in the library may improve the quality of model fits to
data and alter regression results.

Fitting rate parameters

For each strain, having determined the yield parameters, the rate parameters r, and r; were then globally (simultaneously) fit to nitrate/
nitrite dynamics data across all experimental conditions by minimizing the sum of squared residuals between the data and numerical
solutions to Equation 3 (see example in Figure S1E). Equation 3 was solved numerically using the differential equation solver ode23s
in MATLAB R2017b. The solver was initialized at t =t; (where t; is the time point of first nitrate/nitrite measurement, approximately 2
h), setting initial conditions N(t;) = OD600g, and A(t1) and /(t1) to the median measured values of nitrate and nitrite concentration at
t =t; over experimental replicates within a given condition. The constrained optimization function fmincon was used in conjunction
with the global minimum search function GlobalSearch to minimize the sum of squared residuals and obtain optimal values of r4 and
r;. Values of ry and r; were constrained between 0 and 50 mM/OD/h.

Initially, this approach was used to simultaneously fit both rates (r4 and r;) and substrate affinities (K4 and Kj), but it was observed in
nonparametric bootstrap estimates of parameter error that the affinities K4 and K, were not well constrained by experimental
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measurements (Figure S1F, median fractional errors of 30.0% and 26.5% for K4 and K; in SDM, respectively). This is likely because
the true values are small relative to the typical scale of substrate concentrations in the experiments: values for nitrate/nitrite affinity
constants between 0.003-0.055 mM have been identified for denitrifying cultures previously (Beccari et al., 1983; Claus and Kutzner,
1985; Kornaros et al., 1996; Dincer and Kargi, 2000), while cultures were initialized with 1-2 mM nitrate/nitrite. In the dynamical re-
gimes of Equation 3 where substrate concentrations are much greater than affinity constants (i.e., A>>Kj,, I> K;), the dependence of
Equation 3 on K4 and K| vanishes. This restricts identifiability of the affinity parameters to the regime where A, are on the same scale
as Ka, K| (likely in the micromolar range). This regime typically occurs only briefly during the experiments, just before the substrates
are exhausted, and sampling this regime for all strains would require a much greater sampling frequency than what was attempted in
this study. Alternatively, the affinity parameters could be measured by comparing differences in growth/reduction rates at very low
substrate concentrations, so that growth occurs in a regime where these rates depend more strongly on the affinity parameters (i.e.,
Ao < Ka, lp < Kj). Doing this would require much more sensitive measurement of biomass density or nitrate/nitrite concentration
than what was attempted in this study. Regardless, it was observed in nonparametric bootstrap estimates of parameter error that
fitted values of r4 and r; were insensitive to Ka and K; (Figure S1G, median fractional errors of 3.8% and 4.2% for ra and r; in
SDM, respectively), as was the qualitative model behavior (Figure S1H) and the fit quality (Figure S1I). Therefore K4 and K; were fixed
to 0.01 mM.
Treatment of poorly-fitting strains
By fitting metabolite dynamics across multiple initial media and biomass density conditions to the model Equation 3, it was assumed
that this simple model is a good representation of the metabolic phenotypes of denitrifying strains, with a few parameters capturing
the full extent of the metabolite dynamics. In the majority of cases it was observed that the model fit the metabolite dynamics well (see
example in Figure S1E), indicating that the assumptions of model Equation 3 were appropriate. However in some cases (e.g., Figures
S1J and S1K) the observed metabolite dynamics departed significantly from the optimal model fits. Often it appeared that different
parameterizations were necessary for different initial conditions, e.g., nitrite reduction rates appeared to differ depending on whether
nitrite was initially supplied (for example Figure S1J). In these cases, while the model apparently failed to capture the metabolite
dynamics phenotypes across all conditions simultaneously, it appeared that it was still possible to estimate consumer-resource pa-
rameters for a subset of initial conditions.

Therefore a pipeline was developed for parameterizing the model Equation 3 on a subset of experimental conditions if poor fits
were obtained when fitting to all conditions. First yields on nitrate and nitrite were fit using all experimental conditions. Then the pipe-
line proceeded as follows for each strain:

1. Fit reduction rates to all experimental conditions. If the root-mean-square error RMSE) evaluated between observed data and
model solutions across all experimental conditions and replicates exceeds a threshold T, then proceed to step 2. If not, accept
the parameter fit.

2. Fit reduction rates only to experimental conditions where OD600, = 0.01. If the RMSE evaluated across these high biomass-
density conditions exceeds T, proceed to step 3. If not, accept the parameter fit.

3. (Nar/Nir strains only) Fit reduction rates only to experimental conditions where nitrate was initially supplied. If the RMSE eval-
uated across these conditions exceeds T, then proceed to step 4. If not, accept the parameter fit.

4. (Nar/Nir strains only) Fit reduction rates only to experimental conditions where OD600, = 0.01 and nitrate was initially supplied.
If the RMSE evaluted across these conditions is less than or equal to T, accept the parameter fit.

This pipeline was used with T =0.17 to obtain fits for monocultures of all 79 strains in SDM and 64 strains in ADM. The RMSEs for
strains at each step in the fitting pipeline are shown in Table S5. An example of a fit obtained using the first three steps of the pipeline is
shown in Figure S1J, and a fit obtained using the first two steps is shown in Figure ST1K. Only the first three steps of the pipeline were
necessary to produce parameter fits with error less than T = 0.17 for the monocultures in SDM, while step 4 was necessary for only 4
out of 64 ADM monocultures (Table S5).

Finally, there were 7 Nar strains (PDM26-PDM32) for which nitrate concentrations appeared to asymptotically approach nonzero
values in SDM (see example in Figure S1L). However, since it was possible to fit consumer-resource parameters to these cases with
relatively low error (Table S5), these parameter fits were accepted for use in subsequent analyses.

Validating predictions for biomass density dynamics

Although the rate parameters rn and r; for each strain were fit by directly measuring the dynamics of nitrate and nitrite reduction, only
endpoint measurements were used to fit the yield parameters v, and v,, and biomass density dynamics were not directly measured.
Though the yield parameters are identifiable via endpoint measurements (Equation 5), the accuracy of predictions for biomass den-
sity dynamics depends on the consumer-resource model (Equation 3) being reasonably well-specified. For instance, if mortality is an
important factor that causes biomass density to change significantly on the timescale of the experiment, then the measurement of
yields would lead to poor biomass predictions because cell death is not accounted for in the model.

To validate the inference of yields and model predictions for biomass density dynamics, these dynamics were directly measured
for a set of four taxonomically-representative Nar/Nir strains: Achromobacter sp. ACMO01, Ensifer sp. ENSQ09, Paracoccus denitri-
ficans ATCC 19367, and Pseudomonas sp. PDM21. These four strains were cultured in SDM under denitrifying conditions with
2 mM NOj, OD600, = 0.01, and 21 experimental replicates. Cultures were manually sampled (300 uL) from 3 replicates at 7
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time points (2, 4, 6, 8, 16, 32, and 64 h from the start of anaerobic culture), with different replicates sampled at each time point.
Optical density was measured immediately after sampling, and measurements were post-processed to correct for evaporation.
The measured values of biomass density are shown in Figure S1M, alongside predictions of the model Equation 3 using previous
inferences of rate and yield parameters for these strains in SDM. Predicted biomass dynamics agree well with the measured optical
densities, both in the exponential and stationary phases. The errors of predicted biomass density relative to measurements at t =
64 h are all less than 10%, indicating that the yields were well-estimated by the fitting protocol. No appreciable evidence for mortality
was observed, with little to no decline in biomass density observed after nitrate and nitrite were exhausted. This is consistent with
previous measurements of low-density starving cultures of Escherischia coli K12, where negligible cell death was observed after
approximately 50 h (Phaiboun et al., 2015). It was concluded that the fitting procedure for rates and yields faithfully captures biomass
density dynamics, despite the fact that biomass density is only measured at t = 64 h.
Estimating parameter error
A nonparametric bootstrap was used to estimate the sampling distributions of {ra,v4,r,v,} for the 79-strain library in SDM. Boot-
strap datasets were generated by resampling (with replacement) among replicates; that is, for an experimental condition (e.g.,
Ao =2 mM, Ip = 0 mM, OD600, = 0.01) performed with four replicates, a new dataset was created by randomly selecting a set of
four replicates with replacement, doing this for all conditions. Then {ra,r,va,v,} were refit to these bootstrap resamples. This
was repeated 100 times for each strain to obtain sampling distributions for these parameters. Fractional errors, defined as the ratio
of the interquartile range to the value of the parameter, are less than 10% for the vast majority of inferred parameters. Since v, and v,
inferences are error-prone when measured biomass densities (and therefore yields) are low, a yield parameter was set identically to
zero if its estimate was negative or within one standard error of zero.

Regressing SDM phenotypes onto denitrification gene content

Formulating the regression problem

Linear regression was used to predict the measured consumer-resource parameters {ra, v, 1, v,} from the presence and absence of
denitrification-related genes in the genomes of each strain. The regression problem was formulated as follows:

P
Yi=Bo+ Y _Bgj+e fori=1,. . N. (Equation 7)

=

The response variable y; is the observed value of a consumer-resource model parameter (e.g., ra) for strain i, with N such obser-
vations in total. The predictors g; are indicator variables that take the value 1 if strain / has gene j and take 0 otherwise, with P= 17
predictors in total. The coefficients §; and intercept 3, are fit by the regression, which determines the residual term ;. This formulation
assumes that genes contribute additively (and not quadratically, etc.) to the value of a phenotypic parameter. While in principle there
may exist a formulation of this regression with greater predictive power that takes into account the nonlinear interactions between
predictors (e.g., a model with quadratic terms), a linear formulation was chosen to keep the number of fitting parameters small relative
to the number of observations.

The LASSO regression method (Hastie et al., 2008; Hastie et al., 2016) was used to solve Equation 7. For given gene presence/
absence vectors 6,- and response vector y, LASSO regression solves:

. 1 N —T— 4 i
mind o " (v~ 60— G/ B )7+ 1B, 1. (Equation &
607 (2N

performmg both variable selection and regularization by penalizing the sum of squared residuals by the L; norm of the coefficient
vector (. The strength of the penalty is controlled by the hyperparameter A, which at moderate values sets the coefficients of
poor predictors identically to zero, thus resulting in a sparse model. Typically the hyperparameter value 1 = Ais selected by minimizing
prediction error in cross-validation, which optimizes the ability of the model to generalize out of sample, and makes the method suit-
able for datasets where overfitting via an approach such as ordinary least squares (OLS) is likely because the number of predictors
and the number of observations are on the same order of magnitude.

LASSO regressionj were performed in MATLAB R2017b for each consumer-resource parameter measured in SDM separately,
obtaining different 8 and @, for each regression. The fits and coefficients for regressions on consumer-resource parameters
measured in SDM are shown in Figures 4C-4J. Note that for nitrate-related parameters (r4 and v,), only strains capable of nitrate
reduction (Nar and Nar/Nir phenotypes) were included in the predictor-response datasets. Similarly for the nitrite-related parameters,
only strains with Nar/Nir and Nir phenotypes were included in the predictor-response datasets. Prior to fitting, all predictors were
standardized to have zero mean and unit variance.

Hyperparameter selection via cross-validation

For each regression of the form given in Equation 7, iterated K-fold cross-validation was used to determine the value A= 7 that min-
imizes estimated prediction error. Optimal hyperparameter values were determined for each regression individually, rather deter-
mining than one hyperparameter value to be used for all regressions. This was done because the hyperparameter controls the level
of sparsity in the resulting solution (i.e., the number of genes that are nonzero in the optimal set of regression coefficients), and a priori
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the optimal level of sparsity may differ among the different regressions on consumer-resource parameters. Choosing an optimal
value of 1 for each regression individually ensured that the best LASSO solution for each regression was identified.
Let 4 be a set of discrete values of 4 for which Equation 8 is solved. Each iteration of cross-validation proceeds in the following way:

1. Randomly partition the data into K subsamples of roughly equal size.
2. Foreachk =1,2,...,K:
(@) Holding out the kth fold (test set), solve Equation 8 at each Ae A using the union of the remaining remaining K — 1 folds of
data (training set).
(b) Use the resulting regression coefficients to predict the responses in the test set.
(c) Evaluate root-mean-square error of the test set prediction.

This process is iterated M times, each time choosing a new random partition of the data into K subsamples. The average over the
KM estimates of prediction error was recorded at each value of e 4, and the optimal value A =7 was then selected as that which
minimized this estimate of error. An iterated K-fold cross-validation approach was chosen over either basic K-fold (M =1) or
leave-one-out (K = N) cross-validation because iterated cross-validation averages over the sampling variability inherent in randomly
partitioning the dataset into groups, and also because partitioning into KN folds allows the estimation the out-of-sample perfor-
mance of the model through statistics such as the coefficient of determination between observed and predicted values on each
test set.

Avalue of K = 4 for iterated cross-validation (M = 10* iterations) was chosen to balance the relative sizes of training and test sets for
the purpose of evaluating out-of-sample performance; as K increases, the size of the cross-validation training set increases, while the
size of test set decreases. It was observed that A was insensitive to the choice of K.

Estimating out-of-sample performance

The out-of-sample performance of regressions on each consumer-resource parameter was estimated during iterated K-fold cross-
validation by computing the coefficient of determination (R?) between observed and predicted response values in each test set. The
median values of R? obtained via iterated 4-fold cross-validation (M =10* iterations) at 1 = %, denoted RCV, is positive for all
regressions.

The significance of F”cv for regressions on each consumer-resource parameter was evaluated under the null hypothesis that there
is no relationship between the predictor and the response via a permutation test. The response variable for each regression was
repeatedly permuted (1x10% permutations) and regression coefficients were re-fitted, using |terated 4-fold cross-validation (M =
10? iterations) to select the hyperparameter for each permutation. Under the null distributions of Rcv computed using this approach
for regressions on SDM consumer-resource parameters, p<0.001 in all cases.

Post-selection inference

When the data used for model training via LASSO are also used for inference of significant regression coefficients, it is necessary to
account for the fact that LASSO performs variable selection (i.e., selects some coefficients to be nonzero over others) (Hastie et al.,
2016; Taylor and Tibshirani, 2015). Because LASSO preferentially selects variables with high predictive power in the training set, ne-
glecting this selection results in overoptimistic confidence intervals and p-values.

To illustrate how and why this was done, first consider the simpler case of inference on regression coefficients determined by OLS.
If the residuals ¢; are normally distributed, it can be shown that the sampling distribution of a coefficient g; is also normal, with a sam-
pling variance that can be estimated from the data. This sampling distribution can then be used to test the hypothesis that the true
value of g; is zero. In contrast, in the case where LASSO regression is used and the coefficient g; is selected to be nonzero, it can be
shown that a normal distribution is not appropriate for the sampling distribution of g; (Taylor and Tibshirani, 2015). Instead the appro-
priate distribution is a truncated normal distribution, i.e., a normal distribution only defined along a finite interval. Intuitively, the dis-
tribution is truncated because the likely range of §; must be conditioned upon the knowledge that LASSO selected it (along with a set
of other elements of 6) to be nonzero. The bounds of the truncated distribution are determined by both the data and by the set of
other nonzero elements of 6 via analytical relations, and can be_c)omputed using the package selectivelnference 1.2.5in R 3.6.1 to
estimate the sampling distributions for each nonzero element of 8. An intuitive description of this post-selection inference approach
applied to the simpler context of forward stepwise regression can be found in Taylor and Tibshirani (2015), and a technical description
of the approach applied to LASSO can be found in Hastie et al. (2016).

The function fixedLassolnf in the selectivelnference package was used to compute 90% confidence intervals and to obtain
p-values under the null hypothesis the true value is zero for each nonzero coefficient for regressions on SDM consumer-resource
parameters, evaluated at the hyperparameter value A =1 selected by cross-validation.

Characterizing phylogenetic correlation

Microbial phenotypic traits exhibit varying degrees of phylogenetic correlation as a result of shared evolutionary history (Martiny et al.,
2015). To characterize the extent of phylogenetic correlation in the consumer-resource parameters {ra,v4,,v,}, the function phy-
loCorrelogram in the package phylosignal 1.3 for R 3.6.1 (Keck et al., 2016) was used. This function estimates autocorrelation in trait
values by computing Moran’s / index as a function of phylogenetic distance, measured here using the 16S rRNA phylogenetic tree.
Statistically significant correlation (95% confidence intervals estimated using 1x 10° bootstrap replicates) was observed over varying
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levels of phylogenetic distance for the different parameters. The rate r4 was correlated to a small degree (max(/) =0.16 ) over a rela-
tively short interval of phylogenetic distance (16S tree distance 0.01), while y 4, r;, and v, were correlated to a modest degree (max(/) =
0.33, 0.27 and 0.48, respectively) over longer intervals (0.16, 0.06 and 0.12, respectively).

Because the strain library contains a few clades of very closely related strains (e.g., ENS01-08, PDM20-23, Figure 3C), it is possible
that some of the phylogenetic correlation measured in the full 79-strain library is attributable to the over-representation of these close
relatives. In addition, the over-representation of these close relatives could in principle skew the results of the regressions. To esti-
mate the influence of over-represented close relatives in the strain library on phylogenetic correlations and regression results, clades
comprising strains with identical 16S rRNA sequences were pruned by randomly selecting one representative and removing the re-
maining strains from the dataset. This removed 15 strains from the library, resulting in a subsampled dataset of 64 strains. Phyloge-
netic correlograms were then computed for the SDM consumer-resource parameters on this pruned dataset. Pruning the dataset
reduced correlations for v,, r;, and v,, with maximum correlations decreasing for all three parameters (max(/) = 0.30, 0.21 and
0.39, respectively), and significant correlation lengths decreasing for v, and «, (0.05 and 0.09, respectively). The correlogram for
the rate r4 in the pruned dataset, which showed a small degree of correlation in the full dataset, changed little. It was concluded
that some of the phylogenetic correlation estimated for the full dataset was attributable to the over-representation of close relatives,
but it is still the case that there exists statistically significant phylogenetic correlations at short distances. Next LASSO regressions
were performed on the pruned dataset. Both in-sample and out-of-sample metrics of model performance (R2, and ﬁév, respectively)
changed little relative to the corresponding values for regressions on the full dataset. Similarly, the regression coefficients did not
change substantially. From this it was concluded that the over-representation of close relatives did not have a large impact on
the results of regressions on the consumer-resource parameters.

Evaluating randomly-selected genes as predictors

In order to assess whether denitrification genes make better predictor variables than other possible sets of genes, the SDM con-
sumer-resource parameters {ra,va,,v;} were regressed onto the presence and absence of randomly-selected genes from the
set of all annotated genes in strains in the library.

First the set of all uniquely-labelled protein-encoding genes present in the RAST annotations were identified for the 79-strain li-
brary. From this set of 13415 unique genes, 51 genes associated with denitrification were removed; this included not only terminal
reductases, sensors/regulators, and transporters that were used as variables in the regression (Table S6), but also related chaper-
ones, structural genes, and biosynthesis genes that frequently occur in clusters with the denitrification genes (Table S7).

New sets of predictor variables were then generated by randomly selecting genes from the set of 13364 non-denitrification genes
and constructing binary presence/absence matrices as for denitrification-related genes. In order to create a fair comparison between
these randomly-selected predictors and the denitrification gene predictors, (a) sets of only 17 genes were selected, matching the
dimensionality of the denitrification gene presence/absence matrix, and (b) rejection sampling was performed to match the gene
presence frequency (fraction of strains that possess a given gene) distribution of the denitrification genes. The latter was a necessary
consideration because the distribution of presence frequencies of non-denitrification genes is heavily skewed toward zero relative to
the frequencies of denitrification genes (Figure S2A), indicating that a large portion of genes occur only in a small number of strains.

To perform rejection sampling, densities for the gene frequency distributions were estimated, and these densities were used to
define acceptance probabilities for random samples. Let f(x) denote the probability density of gene frequencies for non-denitrifica-
tion genes and similarly g(x) for denitrification genes, where x here denotes gene presence frequency, and set the constant H so that
g(x)/f(x)/H<1 for all xe [0, 1]. Rejection sampling was then performed in the following way:

1. With uniform probability, randomly sample a candidate gene from the set of non-denitrification genes. Denote the frequency of
this gene as xp.

2. Accept the candidate gene as a predictor with probability g(xo)/f(x0)/H. Otherwise reject the candidate and return to step 1.

3. Return to step 1 until 17 genes are accepted.

This process results in a set of 17 predictors that have a gene presence frequency distribution approximately equal to g(x). The
ksdensity function in MATLAB R2017b was used to estimate f(x) and g(x) using a bandwidth parameter value of 0.4 (Figure S2A).
This rejection sampling approach was used to generate 1x10° different sets of 17 predictors for regressing against each of the
SDM consumer-resource parameters {ra,va,’,v;}-

LASSO regressions were performed on each of the SDM consumer-resource parameters {ra,ya,,v;} using the rejection-
sampled sets of gene predictors, where the optimal hyperparameter value A=7 was selected via iterated 4-fold cross-validation
(M =108 iterations). Out-of-sample performance of each regression was also evaluated in cross-validation by computing ﬁzcv, the
median coefficient of determination value computed across cross-validation test sets The distributions of these Ry, values across
different sets of random genes are shown in (Figure S2B), alongside the values of Rcv obtained via the regressions onto denitrifica-
tion-related genes. The denitrification genes performed better than the typical set of random genes in regressions on two out of four
consumer-resource parameters (ra and v,), and as well as random genes for one parameter (y,). On the whole, this analysis sug-
gested that denitrification genes were better predictors than arbitrary genes, but it remains unclear why arbitrary genes tend have
modest predictive power (RCV >0), and why the denitrification genes performed worse than the typical set of random genes for
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the r; parameter. One possible explanation is that some random genes served as good predictors only because they resemble the
denitrification genes in terms of presence and absence.

To investigate whether the predictive power of random genes arises because of correlations (in terms of presence and absence)
with the denitrification genes, new sets of random gene predictors were constructed via rejection sampling as described above, but
this time sampling only from the set of genes that have low or non-significant correlation with denitrification genes. Specifically, for
each of the non-denitrification gene presence/absence vectors, the Pearson correlation p was computed with each of the denitrifi-
cation gene presence/absence vectors. This identified the set of non-denitrification genes that have large correlations (|p| > 0.5) with
any of the denitrification genes that are significant at the 1% level, where significance was evaluated by generating a zero-correlation
null distribution via a permutation test. The latter consideration is important for evaluating correlations between very high or very low-
frequency genes, for which the probability of spurious large correlations can be high. These denitrification gene-correlates were
excluded from sampling when generating the new sets of random gene predictors. As before, 1x 103 different sets of 17 predictors
for regressing against each of the consumer-resource parameters were generated.

LASSO regressions on each of the SDM consumer-resource parameters {ra, ya,, v,;} were again performed using the rejection-
sampled genes that exclude denitrification gene correlates. The distributions of the resulting R, values are shown in Figure S2C. The
following changes in these distributions relative to Figure S2B were observed: (a) the median predictive power for all random gene
regressions decreased substantially (i.e., ﬁév decreased), indicating that indeed a substantial part of the predictive power of random
genes arises due to large correlations with denitrification genes, and (b) denitrification genes now outperformed the typical set of
random genes as predictors for even the r; regression, demonstrating the superiority of denitrification genes as predictors for regres-
sions on all consumer-resource parameters.

While the superior predictive power of the 17 denitrification genes was demonstrated in direct comparisons with sets of 17
randomly-selected genes, there may exist genes outside of the denitrification pathway with complementary predictive power
when added to the denitrification genes. Therefore it was investigated whether adding additional randomly-selected genes to the
denitrification genes further improves the predictive power of regressions on the consumer-resource parameters. To address this
question, sets of predictor variables were generated by randomly sampling (without replacement) P — 17 genes from the set of
13364 non-denitrification-related genes and constructing binary presence/absence matrices using the denitrification genes as the
first 17 predictors and the randomly-selected genes as the subsequent P — 17 predictors. P was varied between 32 and 2048 to
investigate the dependence of prediction quality on the number of additional genes added. 10 sets of predictor variables were
randomly generated for each value of P. Then LASSO regressions on each of the SDM consumer-resource parameters
{ra,va,n, v/} were performed using these predictors. The distributions of ﬁév as a function of P are shown in Figure S2D. Adding
additional predictors beyond the 17 denitrification genes did not substantially improve the predictive power of the models, regardless
of how many additional predictors were added. This indicates that the 17 denitrification genes harbor the majority of gene presence/
absence predictive power.

Evaluating alternative genomic predictors

It was investigated whether either 16S rRNA copy number, genome size, or GC-content could serve as better predictor variables for
the consumer-resource parameters {ra, v, v} than denitrification genes. Previous work demonstrates a positive relationship be-
tween 16S copy number and maximum potential growth rate across diverse taxa in nutrient-replete conditions (Roller et al., 2016; Li
et al., 2019), likely because increased ribosome production allows a higher rate of protein synthesis, thereby increasing growth rate
(Scott et al., 2010). A negative relationship between growth rate and genome size has also been observed (Li et al., 2019), possibly
due to a reduced nutrient burden required by smaller genomes (Hessen et al., 2010). GC-content has been investigated as a genomic
predictor for various bacterial phenotypes such as optimal growth temperature (Galtier and Lobry, 1997), and can serve as a baseline
for spurious phylogenetic correlations because it is a slowly-evolving genomic property (Haywood- Farmer and Otto, 2003).

16S copy number was estimated for all 79 strains in the library using the 16Stimator pipeline (Perisin et al., 2016). This approach
uses lllumina sequencing reads and annotated draft assemblies to compute the coverage ratio of the 16S gene relative to a curated
set of single-copy genes. The genome size was estimated for all strains in the library by summing the lengths of all assembled contigs
for each strain. Genomic GC-content was computed from draft assemblies using QUAST 5.02 (Gurevich et al., 2013). For the refer-
ence strain Paracoccus denitrificans ATCC 19367, a complete genome assembly (Si et al., 2019) showed 3 copies of the 16S gene, a
genome size of 5.24 mb, and a GC-content of 66.80%, and 3.36 16S copies; a genome size of 5.15 mb, and a GC-content of 66.81%
were estimated using the draft assembly.

First the relationships between 16S copy number, genome size, GC-content, and the SDM consumer-resource parameters
{ra,va,n,v/} were considered. No significant (permutation test) correlations were observed between 16S copy number and the
consumer-resource parameters, significant positive correlations were observed between genome size and v, (p = 0.40, p< 1x
1074 and v, (p = 0.63, p<1x10~%), and significant but weak positive correlations were observed between GC-content and v,
(p=0.24,p=0.02) and r; (p = 0.23, p = 0.04). These data suggest that genome size may be a good predictor for the yields vy,
and ;.
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In order to compare consumer-resource parameter measurements to previous findings relating growth rate to 16S copy number
and genome size, growth rates on nitrate and nitrite were computed for each strain. Equation 3 can be recast in terms of growth rates

u, (1/h) by setting r. = u,/7v,:

ax_( A 1,
at - \MKk A MK 1)
GA_ A
dt oy KatAY

d_(ka A ]
dt_( X

(Equation 9)

In this form the u, represent the exponential growth rates when substrates are not limiting (e.g., when A>>Kjy or I>> K)). Therefore
u, =r.v, were computed using the SDM consumer-resource parameters.

No significant positive correlations were observed between either of the growth rates with 16S copy number. This differs from what
has been previously observed under aerobic, nutrient-replete conditions (Roller et al., 2016; Li et al., 2019), where ribosomal produc-
tion is likely to be growth limiting. This may be because these previous studies were based on maximum potential growth rates
(measured across a variety of medium and culturing conditions), whereas maximum potential growth rates were not systematically
identified for strains in the library. Moreover it is likely that most of the measured growth rates in denitrifying conditions with a suc-
cinate defined medium are much smaller than maximum potential growth rates, because denitrification is generally a significantly
lower ATP-yielding process than aerobic respiration (Strohm et al., 2007), and also because succinate defined medium likely imposes
more stringent biosynthesis demands than a complex, rich medium (Scott et al., 2010). Therefore the relative benefit of high gene
copy number of rRNA for many strains under denitrifying growth conditions may be small. However significant (permutation test) pos-
itive correlations were observed between genome size and u, (0 = 0.21, p = 0.04), and y, (0 =0.63 0.52, p<1x10~4). This finding also
differs the previous observation of a negative relationship between genome size and growth rate (Li et al., 2019).

Finally, the potential of 16S copy number, genome size, and GC-content as predictor variables was evaluated in a head-to-head
comparison with denitrification genes by using all these predictors simultaneously in LASSO regressions on the SDM consumer-
resource parameters {ra,va,t,v;} (4-fold cross-validation, iterated 1x10* times). As before, all predictors were standardized to
have zero mean and unit variance before fitting. The following was observed: (a) 16S copy number, genome size, and GC-content
were not assigned large coefficients in any regression, (b) the statistics of fitting and generalization quality (RZ, and ﬁgv) were essen-
tially the same as those obtained in the original regressions, and (c) the coefficients for denitrification genes were very similar to those
obtained in the original regressions. It was concluded that the denitrification genes hold greater predictive power than 16S copy num-
ber, genome size, and GC-content, since the latter predictors are not selected as important variables by LASSO regression.

Regressing ADM phenotypes onto denitrification gene content

Regressions for the consumer-resource parameters measured in ADM were performed as for those parameters measured in SDM.
The median values of R? obtained via iterated 4-fold cross-validation (M = 10* iterations) (ﬁzv) were positive for all regressions. The p-
values of ﬁf:v (permutation test) were all <0.01.

Predicting community metabolic dynamics
The consumer-resource model (Equation 3) was extended to generate predictions for community (i.e., multi-strain) metabolite dy-
namics. For an N-strain community, the extended model is as follows:

ax; A o .
d—{:(yArl’qm+y;r;m)x,, fori=1,...,N

dA NooA
at ;HAKA+AX”

a_ XN: (r’ A r"L)xl (Equation 10)
at~ 2\, +A K1) a

For each strain i, which has biomass density x;, the parameters {r},, v4, ], ¥} were measured in monoculture. Note that, as before,
Ka =K;= 0.01 mM for all strains. This “additive” model sums the independent rate contributions of each strain to the nitrate and nitrite
differential equations, in effect assuming that strains only interact via cross-feeding and competition for extracellular nitrate and ni-
trite. The model does not assume that strains interact through Lotka-Volterra-type (quadratic) terms in the biomass density equa-
tions, nor does it assume that the parameters {r,,v,r!,v}}, measured in monoculture, are modulated by the presence of any other
strain. Thus Equation 10 represents a null model for community metabolite dynamics where each strain in a community behaves as it
does in monoculture, and as a result provides a prediction requiring no additional free parameters.
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Simple communities were assembled and cultured to test the predictions of Equation 10, drawing from a representative 12-strain
subset of the 79-strain library: Nar/Nir strains Achromobacter sp. ACMO01, Ensifer sp. ENS09, Paracoccus denitrificans, Pseudo-
monas sp. PDM21; Nar strains Acidovorax sp. ACV02, Paracoccus sp. PARO1, Pseudomonas sp. PDM12, Pantoea sp. PNT03;
Nir strains Agrobacterium sp. AGB01, Pseudomonas sp. PDM13, Pseudomonas sp. PDM14, and Pseudoxanthomonas sp.
PXMO3. Nitrate/nitrite dynamics and endpoint optical density were measured for (a) all 66 2-strain combinations, (b) a random set
of 81 three-strain combinations, (c) 21 four-strain combinations, (d) 6 five-strain combinations, and () controls of each strain in mono-
culture. 6 of the four-strain combinations were chosen randomly from the set of 12 strains, while the remaining 15 four-strain com-
binations and all five-strain combinations were exhaustive combinations of the six strains ACM01, ENS09, PARO1, PNT03, AGBO1,
and PDM13. All communities/controls were cultured in SDM in each of two media conditions, 2 mM nitrate and 2 mM nitrite, with 2-3
experimental replicates per condition. Initial biomass densities were OD600, = 0.01 for each strain in a given community.

First endpoint biomass densities were compared with the values predicted by the additive model, Equation 10. Since the optical
density measurement cannot discern between strains in a mixed population, a model prediction for total endpoint biomass density
was computed by summing the endpoint biomass densities of each strain. Endpoint biomass densities were well-predicted by Equa-
tion 10 (Figure S4A). This gives one indication that the additive consumer-resource model in Equation 10 accurately predicts com-
munity behavior using only information from monocultures.

The ability of the additive model to predict relative abundances for a subset of pair cultures was evaluated. All pair combinations
and monocultures of six taxonomically and phenotypically representative strains (Nar/Nir strains Achromobacter sp. ACMO1 and En-
sifer sp. ENS09; Nar strains Paracoccus sp. PARO1 and Pantoea sp. PNTO3; Nir strains Agrobacterium sp. AGB01 and Pseudomonas
sp. PDM13) were cultured and periodically sampled. All cultures were initiated with 2 mM NO3 , with the exception of monocultures of
Nir strains AGBO1 and PDM13 and the pair culture of these two strains, which were initiated with 2 mM NO; . Then the relative abun-
dance of 16S rRNA amplicons in the pair cultures was measured using CASEU (Cermak et al., 2020). In order to enable a comparison
with the predictions of the model, Equation 10, which makes predictions in terms of biomass density (in units of OD), conversion con-
stants were measured to transform 16S amplicon relative abundances to OD600 relative abundances. Doing so is necessary
because (a) strains generally differ in 16S rRNA gene copy number per cell (ranging from 4-7 copies per cell for these strains),
and (b) strains will have generally different conversion factors from OD600 to cells/mL, arising for instance due to differences in
cell size. Therefore, the ratios of 16S amplicon abundances will be related to the ratio of biomass densities by the equation:

a _bcxi . X

g bex X

(Equation 11)

where for strain /, a; is the 16S amplicon relative abundance, x; the biomass density relative abundance, and b; and c; are respectively
the 16S rRNA gene copy number (16S rRNA copies/cell) and cell density to OD600 conversion factor (cells/mL/OD). This means that
the ratio of 16S amplicon abundances for strains i and j will be related to the ratio of OD600 abundances by the conversion factor Kj;.
Therefore K;; was directly measured for each pair of strains by growing monocultures of each strain in denitrifying conditions, har-
vesting cells after 64 h, measuring OD600, combining monocultures in equal-volume (450 pL) mixtures, and then processing,
sequencing, and analyzing mixtures. Relative amplicon abundances of these mixtures along with OD600 measurements of the con-
stituent monocultures were used to solve Equation 11 for the parameters Kj; for each pair. Then these conversion factors were used
to transform the 16S amplicon relative abundances for pair cultures to OD600 relative abundances. These measurements were
compared with the OD600 relative abundance predictions of Equation 10 (Figure S4B). In general, the model predictions for strain
relative abundances closely matched the observed values, indicating that the model accurately predicts community compositions
in the majority of cases using only information from monocultures. There were a small number of pair cultures with modest differences
between predicted and observed relative abundances, mainly involving combinations of the Nar strains PARO1 and PNT03 and the
Nir strains AGB01 and PDM13. These lower quality predictions may reflect interactions between these phenotypes not captured in
the model (Equation 10).

Finally the ability of additive model to predict community nitrate and nitrite dynamics from individual strain consumer-resource pa-
rameters was evaluated. To do this, a normalized root-mean-square error (NRMSE) was computed for a given N-strain community as:

NRMSE; y=— e N (Equation 12)

where RMSE; _y is the root-mean-square error between measurements and predictions for the community, and RMSE; is the error
for each constituent strain in monoculture, with errors averaged over experimental replicates. The monoculture RMSEs of each strain
were used in this normalization in order to correct for variations in monoculture fit quality. NRMSE in the range 0-2 indicates errors in
2-strain communities that are within twofold of fits associated with their constituent monocultures, while values of NRMSE much
greater than this indicate low quality predictions. It should be noted that, because the denominator of Equation 12 depends on
the RMSE of the constituent monocultures in a community, a potential pathology is that NRMSEs can be modestly inflated when
the RMSEs for constituent monocultures are all small (indicating a strong correspondence between the data and the model).
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However, this pathology is expected to be rare because it requires all monoculture RMSEs to be small.

The NRMSEs for all pairs of 12 strains cultured in separate nitrate and nitrite medium conditions are shown in Figures S3A and S3B.
For most pair communities, typically low values of NRMSE indicated that Equation 10 made high quality predictions in most cases.
The apparent exception to this was Nar + Nir communities (comprising any combination of Nar strain and Nir strain) initialized with
nitrate (Figure S6), for which NRMSE values appeared much higher than for any other group. Permutation tests were then performed
on the mean NRMSE values within phenotypic groups to determine whether the Nar + Nir group had significantly higher NRMSE than
other groups (1x10% permutations). Since 10 hypothesis tests were performed in this manner, a Bonferroni-corrected threshold of
p=0.05/10=0.005 was used for testing at the 5% significance level. These tests indicated that only the Nar + Nir group in nitrate
medium conditions had a significantly large mean NRMSE value (p <1 x107%).

The NRMSEs for 108 3-5-strain communities cultured in separate nitrate and nitrite medium conditions are shown in Figure S3E. As
with pair cultures, many 3-5-strain communities communities have low values of NRMSE indicating that Equation 10 made high qual-
ity predictions of nitrate and nitrite dynamics. Also, most apparent failures of the model predictions occurred when a community con-
tains both a Nar strain and a Nir strain.

Up to this point, to test the ability of the consumer-resource model to predict community metabolic dynamics, directly measured
values of the consumer-resource parameters were used to make community predictions. Using regressions instead to make predic-
tions of single-strain phenotypes from gene presence/absence would be expected to add some degree of error to community metab-
olite dynamics predictions. To quantify this additional error, regressions on each of the SDM consumer-resource parameters (Figures
4C-4F) were used to predict these parameters for the each of the 12 strains, and then these parameters were used to predict com-
munity dynamics in the pair cultures and 3-5-strain communities. The NRMSEs evaluating the accuracy of these predictions relative
to observed community metabolite dynamics are shown in Figure S5. For pair cultures (Figures S5A and S5B), NRMSEs changed little
relative to using the directly measured parameters to make predictions; the median difference between NRMSEs using regression
predicted parameters versus measured parameters for pair cultures in nitrate was -0.1, and for pair cultures in nitrite the median dif-
ference was approximately zero. NRMSEs increased modestly for 3-5-strain communities (Figure S5C); the median difference was
0.5 for communities in nitrate, and 1.4 for communities in nitrite.

Correcting for Nar + Nir interactions

The additive N-strain consumer-resource model, Equation 10, generally failed to predict the dynamics of communities initialized with
nitrate that included both a Nar and a Nir strain (see plots of all Nar + Nir pairs in Figure S6). In every instance, the nitrate reduction rate
of the Nar strain appears to be diminished relative to the rate in monoculture, and in some instances the nitrite reduction rate for the
Nir strain appears to be increased relative to monoculture. Since Nar and Nir strains utilize different electron acceptors and therefore
do not plausibly compete for any resource under these experimental conditions, it was concluded that interactions aside from
resource competition must be taking place.

It was therefore investigated whether the predictions of the additive model in Equation 10 could be improved by correcting for in-
teractions between Nar and Nir strains. To do this, the nitrate and nitrite reduction parameters ri‘ and H, of the Nar strain j and the Nir
strain j, respectively, were refit using the measured metabolite dynamics data from the pair cultures of these strains. Changes to the
reduction rate parameters rather than the yields (y/, and yf) were investigated because the additive model accurately predicted
endpoint optical densities in all pair communities (Figure S4A), and therefore there was no evidence that interactions between Nar
and Nir strains involved a change in yields. However, given the hypothesis that Nir strains inhibit Nar strains via excretion of cytotoxic
nitric oxide (see discussion), it is plausible that interactions may involve a change in yields that are not detectable given the precision
of the optical density measurement.

Nitrate and nitrite reduction rate parameters for each Nar + Nir pair culture were refit in the following way:

1. Refit ri, for the Nar strain i, holding all other parameters fixed. Record the NRMSE for the resulting prediction.

2. Refit both r}, for the Nar strain i and r{ for the Nir strain j, holding all other parameters fixed. Record the NRMSE for the resulting
prediction.

3. If the NRMSE obtained in step 2 was more than 10% smaller than the NRMSE in step 1, then accept the refit parameters ob-
tained in step 2, denoting these values as FX and F’,’ Otherwise, accepted the refit parameter obtained in step 1 as 74, and let

o=,

Refitting was performed as described above for Equation 3. In step 3, improvements in fit quality obtained by refitting only r4 versus
refitting both ry and r; were compared in order to identify cases where increases in nitrite reduction rate were necessary to improve
fits of Equation 10 to the data.

The results of this refitting procedure are shown in Figure S7. These results demonstrate that, in all cases, the nitrate reduction rate
of the Nar strain was slowed (74 <ra) in Nar + Nir pair culture. Additionally, in several cases the nitrite reduction rate of the Nir strain
was increased (r;>r;) in Nar + Nir pair culture. Each Nar strain is affected in essentially the same way by every Nir strain (e.g., the
nitrate reduction rate of Nar strain PARO1 diminished by approximately 50% in every pair culture with a Nir strain). This observation
is consistent with the proposal that nitric oxide toxicity impacted nitrate reduction by the Nar-strain in a manner that is specific to each
Nar strain (see discussion).
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These refit parameter values were then used in Equation 10 to generate new predictions for 3-5-strain communities containing at
least one Nar + Nir pair. To do so, the following rules were employed for replacing ra and r; in Equation 10, which depend on the num-
ber of Nar and Nir strains in the community:

1. One Nar strain j and one Nir strain j: r, = F’X,r{ = F’,’

2. Two Nar strains i and j and Ni ink:ry, = 25 r = A ik = (P 7

. jandone Nirstraink:rj, = Py, ry = Fy, rf = (F" +17)/2.
3. One Nar strain i and two Nir strains j and k: rly = (P4 +F5)/2,r = /', rk = &7,
4. General case with N Nar strains in the set Sy, and M Nir strains in the set Sy
ry=1/MY s, 7A for all ie Snar and 1} =1 /N, 7' for all je Snir-

The results of using refit Nar and Nir parameters to predict 3-5-strain cultures are shown in Figure 7B (yellow points). Correcting

predictions using refit r4 and r; parameters substantially improved prediction quality, reducing median NRMSE values from 1.68 to
0.92. These results did not appreciably change if a min or max function is used instead of a mean.
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Figure S1. Fitting consumer-resource parameters, related to Figure 3

(A) Histogram showing the distribution of yield intercept (v,) values for 79 strains cultured in SDM. Units are dimensionless absorbances at 600 nm, path length
normalized to 1 cm.

(B-D) Examples of yield parameter fits using data obtained in different growth conditions. Points show observed values of AOD600 = OD600g, — OD600, from
different conditions where different amounts of nitrate and nitrite are reduced (AA=Aq — Aps and Al = Ag — As4 + 1o — lsa, respectively) with 4 replicates used in
each condition. The plane/lines show the least-squares fits of the data to Equation 6 (STAR Methods). (B) shows the yield fit for the Nar/Nir strain P. denitrificans
ATCC 19367 in SDM. (C) shows the yield fit for the Nar strain Raoultella sp. RLTO1 in SDM. (D) shows the yield fit for the Nir strain Pseudomonas sp. PDM13
in SDM.

(E) Example global fits of the consumer-resource model (Equation 3; STAR Methods) to nitrate and nitrite dynamics data for the Nar/Nir strain P. denitrificans
ATCC 19367 cultured in SDM. Points show measured concentrations of nitrate and nitrite, and curves show optimal model fits. Four replicates were used in each
experimental condition.

(F and G) Distributions of fractional errors (%) for (F) the affinity parameters K4 and K; and (G) the rate parameters r4 and r;, fit using SDM monocultures. Dis-
tributions were computed via nonparametric bootstrap with K4, K; constrained during fitting between 0.001 and 10. Fractional error is defined as the ratio of the
interquartile range obtained via bootstrapping to the value of the parameter obtained using a standard fit to all experimental data.

(H) Example nitrate and nitrite dynamics for the Nar strain Raoultella sp. RLTO1 cultured in SDM. Solid lines show the fit to Equation 3 (STAR Methods) holding K4
fixed at 0.001, while dashed lines show fits holding K4 = 0.1.

(I) Comparison of model fit errors (RMSE) for N =79 denitrifying strains cultured in SDM. Fits that hold K4 =K; =0.01 and fits that take K4 and K; as free fitting
parameters are compared. A two-sample Kolomogorov-Smirnov test accepts the null hypothesis that underlying distributions for the two samples are the same
(p = 0.97). Boxplots indicating quartiles of each distribution are shown.

(J) Example Nar/Nir strain PDM25 cultured in SDM for which reduction rates were fit using all experimental conditions (dashed lines, RMSE = 0.177) and using
only conditions where nitrate was initially supplied (solid lines, RMSE = 0.138).

(K) Example Nar strain ENTO3 cultured in SDM for which the reduction rate ra was fit using all experimental conditions (dashed lines, RMSE = 0.254) and using
only conditions where OD600, =0.01 (solid lines, RMSE = 0.095).

(L) Example Nar strain PDM27 cultured in SDM for which nitrate concentrations appear to asymptotically approach a nonzero value.

(M) The biomass densities of four Nar/Nir strains (Achromobacter sp. ACMO1, Ensifer sp. ENS09, Paracoccus denitrificans ATCC 19367, and Pseudomonas sp.
PDM21) grown in SDM were measured in denitrifying conditions over 64 h (points) to validate the predictions (curves) of the consumer-resource model (Equation
3; STAR Methods). The parameters for each strain were inferred in previous SDM monocultures (STAR Methods). 2 mM NO; was initially supplied to each culture,
and three experimental replicates were used for each time point. The median relative errors in biomass density predictions att= 64 h were —5.2%, —7.5%, 9.4%,
and 6.4% for ACMO1, ENS09, PAR19367, and PDM21, respectively.
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Figure S2. Randomly selected genes as alternative predictors for consumer-resource parameters, related to Figure 4

(A) Distributions of gene presence frequency (fraction of strains that possess a given gene) for denitrification-related genes (red) and the distribution of gene
presence frequency for all other annotated genes (black), both in the ensemble of the 75 nitrate-reducing strains. Solid lines show empirical cumulative distri-
bution functions (CDFs) of gene frequencies, and dashed lines show kernel density estimates of these distributions (bandwidth = 0.4).

(B and C) Distributions of ﬁév values obtained by regressing each of the SDM consumer-resource parameters onto the presence and absence of sets of randomly
selected genes (1x10° sets of random genes per consumer-resource parameter). (B) shows results for genes randomly selected from the set of all annotated
genes across strains in our library, while (C) shows results for genes randomly selected from the set of all annotated genes excluding those that have large and
significant correlation (Jp|> 0.5) with any denitrification genes. Dashed lines indicate ﬁév values obtained in regressions onto the presence and absence of
denitrification-related genes (the same values are shown in both panels) with the corresponding quantile values (q).

(D) Points show distributions of ﬁzcv obtained by regressing the SDM consumer-resource parameters onto sets of the 17 denitrification genes plus P— 17
additional randomly selected genes (10 predictor sets per consumer-resource parameter), and the solid lines pass through the median values of these distri-
butions as a function of P. The values of ﬁév shown at P=17 are the same as the values indicated by dashed lines in (B) and (C).
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Figure S3. Accuracy of consumer-resource nitrate/nitrite dynamics predictions for simple communities, related to Figures 6 and 7

(A and B) Normalized RMSE (NRMSE) values comparing measurements and predictions for nitrate and nitrite dynamics in all pair communities of 12 strains.
Values are grouped according to the constituent phenotypes in a community, with Nar/Nir strains labeled in purple, Nar strains in blue, and Nir strains in orange.
(A) shows NRMSEs for communities initialized with 2 mM nitrate (with “Nir + Nir” communities omitted, since Nir strains do not utilize nitrate as an electron
acceptor). (B) shows NRMSEs for communities initialized with 2 mM nitrite (with Nar + Nar communities omitted, since Nar strains do not utilize nitrite as an
electron acceptor). All cultures were performed in SDM.

(C and D) Hypothesis testing on means of NRMSEs grouped by constituent phenotypes (e.g., Nar/Nir + Nar/Nir communities, etc.). Null distributions for group
means are generated via permutation of group labels for each pair community (1% 10° permutations) and are compared with the observed mean NRMSEs in each
group (dashed lines). A Bonferroni-corrected threshold for 5% significance over 10 hypothesis tests is 0.005. Note that some groups contain only 6 NRMSE
values (e.g., Nar/Nir + Nar/Nir communities), while others contain 16 NRMSE values (e.g., Nar/Nir + Nar communities). Panel C shows hypothesis testing on the
NRMSE values in (A) (communities initialized with nitrate), while (D) shows inference on the values in (B) (communities initialized with nitrite).

(E) Distributions of NRMSE values comparing measurements and predictions for nitrate and nitrite dynamics in 3-5-strain communities (N = 108). Communities
were cultured in SDM and separately initialized with 2 mM nitrate or 2 mM nitrite. Points in yellow indicate values for communities that contain both a Nar strain and
a Nir strain.
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Figure S4. Accuracy of consumer-resource endpoint biomass density and composition predictions, related to Figure 6

(A) Comparisons between observed endpoint optical densities and values predicted by the additive consumer-resource model (Equation 10; STAR Methods),
where the latter was obtained by summing the endpoint biomass densities of each strain in the community. Comparisons are shown for monoculture controls, pair
cultures, and 3-5-strain communities, in 2 mM nitrate and nitrite media conditions separately. All cultures were performed in SDM. Initial optical densities are
indicated (red cross), and coefficients of determination R? and root-mean-square errors (RMSE) for observed versus predicted values are shown.

(legend continued on next page)
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(B) Comparisons between observed relative biomass densities and relative biomass densities predicted by the additive consumer-resource model (Equation 10;
STAR Methods). Root-mean-square error for observed versus predicted relative abundances across all pairs is 0.16. Endpoint community relative abundances
were measured for all pair cultures of the six strains Achromobacter sp. ACMO01 (Nar/Nir), Ensifer sp. ENS09 (Nar/Nir), Paracoccus sp. PARO1 (Nar), Pantoea sp.
PNTO3 (Nar), Agrobacterium sp. AGBO1 (Nir), and Pseudomonas sp. PDM13 (Nir). All cultures were performed in SDM initiated with 2 mM NOj; , with the exception
of the pair culture of the two Nir strains AGB01 and PDM13, which was initiated with 2 mM NO, . Relative abundances of 16S rRNA amplicons were measured
using CASEU (Cermak et al., 2020; STAR Methods). To make comparisons in terms of relative biomass densities, conversion factors from 16S amplicon relative
abundance to relative biomass density were computed using mixtures of monocultures (Equation 11; STAR Methods).
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Figure S5. Accuracy of consumer-resource nitrate/nitrite dynamics predictions for 2-5-strain communities using genomic predictions of
phenotypes, related to Figures 6 and 7

(A-C) NRMSE values comparing measurements and predictions for nitrate and nitrite dynamics in (A and B) pair cultures and (C) 3-5-strain communities (N =
108). Predictions were made using regressions in Figure 4 to predict single-strain consumer-resource parameters from gene presence/absence, which were, in
turn, used by the consumer-resource model to predict metabolite dynamics. This is in contrast to Figures 6, 7, and S3, where predictions for metabolite dynamics
were made using directly measured values of consumer-resource parameters. Communities were cultured in SDM and were separately initialized with 2 mM
nitrate and 2 mM nitrite. Points in yellow indicate values for communities that contain both a Nar strain and a Nir strain.
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Figure S6. Nitrate/nitrite dynamics for Nar + Nir pair cultures, related to Figures 6 and 7

Monoculture controls are shown for Nar strains (left column) and Nir strains (bottom row). Points show measured concentrations of nitrate and nitrite, and curves
show predictions of Equation 10 (STAR Methods). NRMSE values for pair cultures are shown. 2-3 experimental replicates are used for each combination of
strains. All cultures were performed in SDM.
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Figure S7. Refitting model parameters for Nar + Nir pair cultures, related to Figure 7

(A) The ry parameter for the Nar strain and/or the r; parameter for the Nir strain were refit to the Nar + Nir pair culture measurements to obtain new parameter
values 74 and 1y, respectively. In some cases (panels with only solid lines), it was only necessary to refit the r4 parameter to obtain a good model fit. In other cases
(panels with both solid and dashed lines), better fits (more than 10% smaller NRMSE) could be obtained by refitting both r4 and r; (solid lines). NRMSE values for
refit models are indicated. 2-3 experimental replicates are used for each combination of strains.

(B) Relative changes inra and r; parameters. Nar strains are coded by color: ACV02 (yellow), PARO1 (green), PDM12 (blue), and PNTO3 (red). Nir strains are coded
by symbol: AGBO1 (circle), PDM13 (square), PDM14 (triangle), and PXM03 (diamond). NRMSE values for pair cultures are shown. All cultures were performed
in SDM.
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