
XBM: A Crossbar Column-wise Binary Mask Learning Method for
Efficient Multiple Task Adaption

Fan Zhang Li Yang Jian Meng Yu (Kevin) Cao Jae-sun Seo Deliang Fan
fzhang95@asu.edu lyang166@asu.edu jmeng15@asu.edu ycao17@asu.edu jseo28@asu.edu dfan12@asu.edu

Ira A. Fulton Schools of Engineering, Arizona State University, Tempe Arizona 85281

Abstract— Recently, utilizing ReRAM crossbar ar-

ray to accelerate DNN inference on single task has

been widely studied. However, using the crossbar

array for multiple task adaption has not been well

explored. In this paper, for the first time, we pro-

pose XBM, a novel crossbar column-wise binary mask

learning method for multiple task adaption in ReRAM

crossbar DNN accelerator. XBM leverages the mask-

based learning algorithm’s benefit to avoid catas-

trophic forgetting to learn a task-specific mask for

each new task. With our hardware-aware design in-

novation, the required masking operation to adapt

for a new task could be easily implemented in ex-

isting crossbar based convolution engine with mini-

mal hardware/ memory overhead and, more impor-

tantly, no need of power hungry cell re-programming,

unlike prior works. The extensive experimental re-

sults show that compared with state-of-the-art mul-

tiple task adaption methods, XBM keeps the simi-

lar accuracy on new tasks while only requires 1.4%

mask memory size compared with popular piggyback.

Moreover, the elimination of cell re-programming or

tuning saves up to 40% energy during new task adap-

tion.

I. Introduction

Nowadays, one practical limitation of deep neural net-
work (DNN) is its high degree of specialization to a sin-
gle task. It motivates researchers to develop algorithms
that can adapt the DNN model to multiple tasks sequen-
tially, meanwhile still performing well on the past tasks.
This process of gradually adapting the DNN model to
learn from different tasks over time is known as multi-
task adaption. Fine-tuning is a natural way to adapt
the current model (i.e., backbone model) to a new task.
However, updating the parameters of the backbone model
could result in the forgetting of old knowledge upon earlier
tasks, thus degrading the performance. Such phenomenon
is known as catastrophic forgetting, which widely exists
in multi-task adaption. To alleviate the catastrophic for-
getting, several mask-based methods have been proposed
i.e., Piggyback and KSM [1, 2], which only learn a task-
specific mask w.r.t all weights for each new task, while
keeping the backbone model fixed.

From the DNN hardware accelerator design domain,

DNN involves a huge amount of multiply–and-accumulate
(MAC) operations and data movement. In traditional
von Neumann architecture (e.g., CPU, GPU), the data
movement consumes∼100× higher energy than a floating-
point operation which is also known as “memory wall” [3].
Recently, the in-memory computing (IMC) has attracted
an increasing interest due to its ability to execute com-
puting tasks directly within the memory array. Such abil-
ity significantly alleviates the “memory wall” issue [4,
5, 6, 7]. Among different volatile/non-volatile IMC de-
signs, ReRAM crossbar based design is a promising can-
didate for the next generation DNN accelerator, due to its
simple structure, high on/off ratio, high density, multi-
bit per cell storage, and fabrication compatibility with
CMOS [3, 4, 5, 8].

Motivation: Almost all existing works utilize ReRAM
crossbar as an area and energy efficient hardware for de-
ployment of DNN inference on a single specialized task or
domain, but there is little consideration to support mul-
tiple task adaption based on ReRAM crossbar. In this
context, to adapt the current model deployed in ReRAM
crossbar for a new task, the most intuitive and straight-
forward way is to fine-tune the weight parameters (i.e.,
cell conductance) based on the new knowledge. However,
this scheme will require to update the conductance of al-
most all cells to reflect the new set of fine-tuned weight
parameters, which is inefficient and impractical in real-
world multi-task learning due to limitation in both the
ReRAM device (e.g., high re-programming power, limited
endurance, etc.) and algorithm (e.g., catastrophic forget-
ting for large scale multi-task learning). As discussed ear-
lier, the mask-based multi-task learning is one of the most
popular methodologies nowadays to address the catas-
trophic forgetting issue. To apply the representative Pig-
gyback [1] mask learning method to ReRAM crossbar
hardware, it will require to learn a binary element-wise
mask ({0, 1}) w.r.t all the weights for the new task, while
keeping the backbone model fixed. Thus, to implement
the learned mask in ReRAM crossbar hardware, it needs
to either develop complex control circuits to individually
turn on/off each cell in convolution computation, or repro-
gramming the cell conductance to reflect the mask value
- ‘0’ (meaning this cell should not be involved in the new
task computing path). It could be easily seen that both
possible designs will need large hardware overhead in ei-
ther much more complex extra peripheral circuits or still

978-1-6654-2135-5/22/$31.00 ©2022 IEEE

8C-3

610

20
22

 2
7t
h
As
ia
 a
nd

 S
ou

th
 P
ac
ifi
c D

es
ig
n
Au

to
m
at
io
n
Co

nf
er
en

ce
 (A

SP
‐D
AC

) |
 9
78

‐1
‐6
65
4‐
21
35

‐5
/2
2/
$3
1.
00

 ©
20
22

 IE
EE
 |
 D
OI
: 1
0.
11
09
/A
SP
‐D
AC

52
40
3.
20
22
.9
71
25
08

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:44:47 UTC from IEEE Xplore. Restrictions apply.

re-programming partial ReRAM cell values. Also, since
it is a element-wise mask, it requires a much large mem-
ory overhead for the learned new mask. For example, for
an 8-bit DNN model, the learned new element-wise mask
in Piggyback will cause memory overhead of 1/8 of total
model size only for one new task.

Objective: These limitations motivate us to explore
a new ReRAM crossbar friendly mask-based learning
method that could leverage the mask based learning algo-
rithm’s benefit to avoid catastrophic forgetting in multi-
task learning, and also could be easily implemented in
existing crossbar based DNN accelerator hardware with
minimal peripheral circuits and mask memory overhead,
and more importantly, no need to re-program ReRAM
cell values.

Contributions: This work is the first to propose a
new crossbar friendly multi-task learning method, called
XBM (Crossbar Binary Mask), which learns a crossbar
column-wise binary mask for multi-task adaption, while
keeping the backbone model fixed. Note that, in popu-
lar crossbar-based DNN accelerator weight mapping, each
column corresponds to a group of kernels, e.g., a group
of 8×3×3 kernels could be mapped to one column of
one 72×72 crossbar array to implement parallel convolu-
tion computation. Therefore, in our XBM method, each
column-wise binary mask value (1/0) controls the on/off
of entire column, rather than each cell element in Piggy-
back. Through such, the above discussed objective could
be achieved, with minor hardware peripheral circuit mod-
ification and no need to re-program any ReRAM cell value
to implement masking operation. Our method is distin-
guished from prior works in the following aspects:

1. Hardware friendly crossbar column-wise
mask. To reduce the peripheral circuit overhead
for implementing the masking function in hardware
and avoid power hungry re-programming of ReRAM
cell in multi-task adaption, we are the first to
design a new crossbar column-wise binary mask
(XBM) based multi-task learning method, where
each learned mask value (1/0) controls the on/off of
entire crossbar column for the new task inference,
instead of each element in prior works.

2. Mask size reduction. Another benefit of our XBM
is the great reduction of mask size (thus, memory
overhead) depending on the crossbar size. For in-
stance, assuming 72×72 crossbar size, only a single
mask value is needed in our XBM to control one col-
umn, i.e., a group of 8×3×3 kernels, instead of 72
separate mask values, with 72 times smaller mask
size than prior element-wise mask.

3. Gumbel-Sigmoid trick. Different from the con-
ventional hard thresholding method [1] to learn the
binary mask, in our XBM learning, we propose to
leverage the Gumbel-Sigmoid trick to better estimate
the gradient of the mask during back-propagation.

��
�

��
�

��
�

��
�

��

��

��

�	

���

���
���

���
���

���
��	

��	

��� ��� ��� ��	

�����

��

��

��

�
������

Fig. 1. ReRAM 1T1R crossbar array.

II. Background

A. In-Memory Computing and NN Accelerator

Fig. 1 shows the basic structure of the 1T1R cross-
bar array which can efficiently perform the vector-matrix
multiplication (VMM) operation. In the 1T1R array, the
weight matrix is stored at the cross-point ReRAM cells as
the conductance G while the input vector is fed through
the horizontal SL as analog voltage Vin [8, 9]. According
to the Kirchhoff’s Current Law (KCL), IBL = G · Vin,
the current on bit-line is the VMM result. A m× n sized
crossbar array can perform the VMM operation in one
step which reduces the time complexity from O(mn) to
O(1). Since the 2D convolution can be transferred to
VMM either by Toeplitz matrix or unrolling the convo-
lution kernel. Recently a lot of ReRAM crossbar array
based neural network accelerator designs have been pro-
posed to leverage the IMC’s energy efficiency and high
throughput [3, 4, 5, 6].

Existing ReRAM crossbar designs focus on improving
energy efficiency for fixed off-line trained model. Repro-
gramming is necessary if the dataset or task changes. Al-
though Fouda et al. [10] proposed a mask based method
for crossbar array, this mask is used only during off-line
training. Moreover, that method is employed to alleviate
sneak path problem, not for multi-task adaption.

B. Multi-Task Adaption

Multi-task adaption [11, 12] aims to build a model,
which can adapt a task into multiple visual tasks/domains
without forgetting previous knowledge, and meanwhile
using as fewer parameters as possible. [12] proposes to re-
combine the weights of the backbone model via controller
modules in channel-wise. [13] proposes domain-specific
attention modules for the backbone model. One of the
most related method is Piggyback [1], which solves the
issue by learning task-specific binary masks for each task.
They achieve this by generating the real-value masks
which own the same size with weights, passing through
a binarization function to obtain binary masks, which are
then applied to existing weights. We denote the real-value
mask and binary mask as mr and mb respectively. Then,

8C-3

611
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:44:47 UTC from IEEE Xplore. Restrictions apply.

� � � � � � � �

�������	
 �	�

�
��� �����	�

� �

��

��

���

���������

��
��

���
� ������

���
��

�����������
�����������

	�����������
���� ������

������
������

Real-valued mask

�

1.2

Sigmoid
0.4

0.8

0.3

1

0

0

0

≥ 0.5
Forward

Real-valued mask

Binary mask

Gumbel noise

Backward

Fig. 2. Left: Overall working flow of our proposed XBM. Right: The binary masks are trained using a combination of Gumbel-Sigmoid
function and hard thresholding.

the binarization function is given by:

Forward : mb =

{
1 if mr ≥ τ

0 otherwise
(1)

Backward : ∇mb = ∇mr (2)

Where τ is a constant threshold value. However, the
gradient of binarization is non-differential during back-
propagation. They use the straight-through estimator
(STE) [14] to solve this problem, which estimates the gra-
dient of real-value mask by the gradient of binary mask.
Furthermore, [2, 15] combine the binary mask with addi-
tional floating-point scaling values to improve the adap-
tion capacity, but suffer from even more computation and
memory cost during the training procedure.

III. Methodology

In this work, we propose XBM, a crossbar-based
column-wise binary mask learning method for fast and ef-
ficient multiple task adaption. Following the multiple task
adaption setting in [2, 11], new tasks ({T1, T2, ..., TN})
arrive sequentially and past tasks cannot be used for
training future tasks. Based on this, we aim to learn a
task-specific mask for each arriving task without chang-
ing the parameters of the backbone model. Specifi-
cally, given a convolution layer, we denote the weights
w(l) ∈ R

cin×cout×kh×kw, where cin, cout, kh, kw refer the
weight dimension of l-th layer, including #output chan-
nel, #input channel, kernel height and width, respec-
tively. We also denote the dataset of the t-th task (Tt) as
Dt = {xt, yt}, where xt and yt are vectorized input data
and label pair. To adapt the pre-trained backbone model
with the parameter {w1} from the initial task T1 to a new
task Tt with crossbar deployment efficiency, we intend to
learn a task-specific mask in column-wise m ∈ R

G×kh×kw

that is applied to the fixed parameter w1. By doing so,
each mask element is shared by a column-wise G×kh×kw
kernels as shown in Fig. 2 (left). Based on this idea, to
learn the task Tt by masking the fixed parameter w1, the
optimization objective can be mathematically formalized
as:

min
mt

L
(
f(xt; {mt ×w1}),yt

)
(3)

In the following, we will present the detailed setting,
learning method and hardware mapping of the column-
wise mask respectively.

A. Column-wise mask

According to the 1T1R crossbar’s structure, the tran-
sistor’s gates are connected by SL either horizontally or
vertically. Then, individually controlling each transistor
to apply a binary element-wise mask is difficult to realize.
However, benefiting from the row/col wise parallelism,
controlling the SL to turn on/off the entire row/column
is an easy job for the existing crossbar design. In the con-
ventional convolution kernel mapping method, the kernel
has been divided by output feature map dimension. For
example, a Cout ×Cin × kh× hw kernel will be reshaped
to a (Cin × kh × kw,Cout) sized 2D matrix. With the
develop of deep learning in recent layers, the deep neural
networks grow into more complex and larger structures,
the size of one filter Cin × kh × kw usually is too large
to fit into a single crossbar column. A general solution is
to further partition and then map one filter into multiple
columns.
Therefore, we define the mask size as G × kh × kw to

make it consistent with the size of a crossbar column,
namely column-wise mask, where the group G ∈ {1, Cin}.
By doing so, a single mask value can control the entire
column of a crossbar array, which improves the compu-
tation efficiency significantly compared to element-wise
mask. In our design, the size of crossbar column is set
as 72×1. Equivalently, we define the group size of the
kernel-wise mask as 8×3×3 with the group G = 8 in the
algorithm.

B. Learning the binary mask

The conventional way [1] of generating the binary train-
able mask is to train a learnable real-valued mask (mr)
followed by a hard threshold function (i.e., sign function)
to binarize it as shown in Eq. (1). However, such a hard
threshold function is not differential, and the general so-
lution is to approximate the gradients by skipping the
threshold function during back-propagation and update

8C-3

612
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:44:47 UTC from IEEE Xplore. Restrictions apply.

the real-value masks directly. Different from that, in this
work, we propose a method to better estimate the gra-
dient by using Gumbel-Sigmoid trick as shown in Fig. 2
(right).
First, we relax the hard threshold function to a contin-

uous logistic function:

σ(mr) =
1

1 + exp(−βmr)
, (4)

where β is a constant scaling factor. Note that the logistic
function becomes closer to the hard thresholding function
for higher β values.
Then, to learn the binary mask, we leverage the

Gumbel-Sigmoid trick, inspired by Gumbel-Softmax [16]
that performs a differential sampling to approximate a
categorical random variable. Since sigmoid can be viewed
as a special two-class case of softmax, we define p(·) using
the Gumbel-Sigmoid trick as:

p(mr) =
exp((logπ0 + g0)/T)

exp((logπ0 + g0)/T) + exp((g1)/T)
, (5)

where π0 represents σ(mr). g0 and g1 are samples from
Gumbel distribution. The temperature T is a hyper-
parameter to adjust the range of input values, where
choosing a larger value could avoid gradient vanishing
during back-propagation. Note that the output of p(mr)
becomes closer to a Bernoulli sample as T is closer to 0.
We can further simplify Eq. (5) as:

p(mr) =
1

1 + exp(−(logπ0 + g0 − g1)/T)
(6)

Benefiting from the differential property of Eq. (4) and
Eq. (6), the real-value maskmr can be embedded with ex-
isting gradient based back-propagation training. To rep-
resent p(mr) as binary format mb, we use a hard thresh-
old (i.e., 0.5) during forward-propagation of training. Be-
cause most values in the distribution of p(mr) will move
towards either 0 or 1 during training, generating the bi-
nary mask by p(mr) (instead of the real-value mask mr

directly as mentioned in Eq. (1)) could have more accu-
rate decision, resulting in better accuracy.

C. Hardware structure and weight mapping

Fig. 3 shows the ReRAM crossbar based NN accelerator
design to support the proposed column-wise binary mask.
Unrolled backbone model’s convolutional kernel mapped
to the ReRAM crossbar sub-array. To be consistent with
the aforementioned group size, we use the 72×72 crossbar
array. Each crossbar array can map a 72×8×3×3 convolu-
tion kernel. Any convolution kernel large than 72×8×3×3
will be partitioned into multiple arrays. In that case, each
array will generate a partial sum instead of the activation.
The global adder tree takes those partial sum and carry
out the corresponding activation. Then send it to the

�

��

	

��

��
��
�

���	
���

�������
���	
�����������

�
��
�����

����
�����

����
�����

����
�����

����
�����

����
�����

����
�����

����
�����

����
�����

��

��

��

�
�

��������	

���������
�����

��
�

��
�

��
�

��
�

��

��

��

�	

���

���

���

���

���

���

��	

��	

	�� 	�� 	�� 	�	

��
���

��	�	

���
�����

��
����� ��		
�

��

��
����		
�
�������
�

������
������		�
��

��
�
����

��������
��

Fig. 3. ReRAM crossabr based NN accelerator architecture and
weight mapping.

global ReLU unit. In the crossbar array, each ReRAM
cell stores 2-bit. We use two adjacent columns to rep-
resent the 4-bit weight. Shift-adder (SA) combines the
two 2-bit results on BLs to generate the 4-bit partial sum
activation.
For the fine-tuning or Piggyback methods, we choose

the re-programming method to update the fine-tuned
weight or masked weight. During the inference, SL driver
turns on the whole array’s 1T1R cells to perform the
72×8×3×3 convolution simultaneously.
In order to support the column-wise binary mask, we

add mask buffer to store the binary mask next to corre-
sponding crossbar array, as highlighted in Fig. 3 associ-
ated with SL driver. To easily control the column on/off
based on mask value, we connect the SL vertically instead
of horizontally. The SL connects with cell transistor gates
of the whole column. This way, the column-wise binary
mask value could be sent to the SL driver’s input to turn
on/off the entire column, with no modification to other
existing peripheral circuits. For one 72×72 crossbar ar-
ray, the memory buffer overhead is 72 bits. For example,
for the whole ResNet-50 model, with 8×3×3 group size,
the total memory overhead is 23M/(8 ∗ 3 ∗ 3)/8 ≈ 40KB.
Comparing with the 4-bit weight ResNet-50 model with
23M/2 = 11.5MB, such 40KB mask buffer is only 0.35%
overhead.

IV. Experiment

In this section we evaluate our proposed XBM from two
aspects: algorithm and hardware. Similar to prior works,
five image classification datasets are used: CUBS [17],
Stanford Cars [18], Flowers [19], Wikiart [20], and
Sketch [21]. We use the ResNet-50 as the backbone model
which is pre-trained on ImageNet dataset [22].

A. Algorithm Evaluation

Table I shows the inference accuracy on different
dataset. Here we use ResNet-50 as backbone model which
is trained on ImageNet dataset with 4-bit weight and 4-
bit activation quantization. The quantization method is
adopted from PROFIT [23]. We choose the group size
G = 8 in the experiment.
Fine-tuning the backbone model achieves the best ac-

curacy in most datasets, since fine-tuning has the highest

8C-3

613
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:44:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Multi-task Adaption Accuracy

Continual Learning (4-bit Quantization)
Finetune Piggyback XBM (This work)

CUBS 73.02% 74.47% 75.53%
Stanford cars 85.92% 86.85% 85.96%

flowers 95.34% 91.09% 90.81%
Wikiart 74.96% 68.97% 67.6%
Sketches 80.92% 78.88% 76.95%

flexibility to change any weight to any quantized level. Al-
though Piggybask can adapt any weight, the binary mask
makes it lose some representation ability. Thus Piggyback
shows slightly worse accuracy than fine-tuning. Our pro-
posed XBM not only has the same binary limitation but
also has the group concept. Those limitations suppose to
further contaminate the accuracy. However, owing to the
softmax trick that can better estimate the gradient, there
is not much accuracy drop compared to the element-wise
Piggyback, even though we share one mask value among
72 weights. Due to the group mask sharing, XBM’s mask
size is only 1

72 of Piggyback. For the ResNet-50 back-
bone model, Piggyback’s element-wise binary mask re-
quires 23M/8 = 2.88MB, while the XBM only consumes
around 40KB.
Fig. 4 shows the mask sparsity among Piggyback and

our XBM. Since the Finetune’s sparsity values are too low,
we do not plot them in this figure. Our proposed method
always achieves more than 30% mask sparsity. Due to
the group mask, it can be easily applied on crossbar ar-
ray. Such high sparsity leads to more than 30% energy
reduction, which will be explained in the next sub-section.

��

���

���

���

���

���� ���������	��� ���
��� �
�
��� ����	���

���� �����	
�

��������	 �������
��	
��

Fig. 4. Binary mask sparsity comparison

B. Hardware Evaluation

For a fair comparison, we implement all multi-task
adaption methods on the same evaluation hardware plat-
form as shown in Fig. 3.
We use the circuit level simulator NeuroSim [24] to

evaluate the hardware performance of different learning
schemes. The 4-bit quantized targeted DNNs are im-
plemented based on 2-bit per cell HfO2 1T1R ReRAM
devices, characterized from [25] and projected to 32nm
CMOS node. Table II and Figure 5 summarizes the de-
tailed ReRAM array characteristics and total area con-
sumption. Each ReRAM column is connected to a 5-bit

TABLE II
Hardware specification

RRAM Sub-Array
Components Area (μm2) Energy (pJ)

Memory Array (72× 72) 84.93
Switch Matrix (WL and SL) 457.3 1.1

SAR ADC (5-bit) 8,409.3 8.3
Shift-Add-Input 1,412.9 6.8

Shift-Add-Weight (2 col use 1) 825.8 1.0
Mask Buffer (72× 1) 190.4 0.003/bit/access

Total 11,380.2 17.2

Peripheral Circuits
1 stage AdderTree (128 units) 2,510.3 4.4
2 stage AdderTree (128 units) 7,740.1 13.7
3 stage AdderTree (128 units) 18,408.8 32.6

Global Buffer (64× 112× 112× 4) 8,490,034 0.003/bit/access
ReLU (128 units) 939.5 0.9

TABLE III
Inference Energy perimage

4-bit ResNet-50
Method /
Dataset

Finetune Piggyback
XBM(Binary
Group Mask)

CUBS 30.25 μJ 30.25 μJ 21.20 μJ
Stanford cars 30.25 μJ 30.25 μJ 20.82 μJ

flowers 30.25 μJ 30.25 μJ 22.53 μJ
Wikiart 30.25 μJ 30.25 μJ 20.63 μJ
Sketches 30.25 μJ 30.25 μJ 21.12 μJ

RRAM Array
92.49%

Global buffer
6.40%

Adder tree + ReLU + Mask
buffer
1.11%

ResNet-50 IMC: Area breakdown

RRAM Array Global Buffer Adder + ReLU + Mask Buffer

Fig. 5. Area breakdown of 4-bit ResNet-50 backbone model
hardware deployment

successive approximation register (SAR) analog-to-digital
converter (ADC). To avoid frequent off-chip memory ac-
cess, we choose the global buffer as the same size of the
largest feature map during the inference process.

Table III summarizes the total energy consumption per
input image (224×224×3). The element-wise masks gen-
erated by Piggyback [1] partially program the weights to
zero, but it cannot effectively reduce the overall energy
consumption since the rest of the cells along each column
remains active. Therefore, the inference energy consump-
tion is identical after fine-tuning or Piggyback [1] learning.
The proposed XBM algorithm exploits the mask sparsity
in a column-wise fashion. As a result, the entire column
can be removed from the hardware inference process, and
the overall energy consumption will be reduced. Com-
pared to the normal fine-tuning and Piggyback [1] learn-

8C-3

614
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:44:47 UTC from IEEE Xplore. Restrictions apply.

20.8X

12.8X
15.2X

9.5X

16.7X

2.6X 2.4X
0.9X

3.6X

7.2X

0 0 0 0 0
0

5

10

15

20

25

CUBS Stanford_cars Flowers Wikiart Sketches

Reprogramming energy / Inference energy per dataset

Finetune Piggyback XBM (This work)

Fig. 6. Energy consumption of the reprogramming with different
learning methods

ing schemes, the XBM can reduce the energy consumption
by ∼1.5× with negligible hardware overhead.
Fine-tuning the model entirely or learning the element-

wise masks requires reprogramming or even second-time
deployment, which consumes enormous amounts of en-
ergy. The energy consumption caused by the weight
increase/decrease during the programming can be com-
puted based on the writing voltage, writing pulses, and
conductance level changes [25, 26]. Fig. 6 demonstrated
the energy consumption overhead of the reprogramming.
Compared to the inference energy consumption of the en-
tire test set, reprogramming the entire model causes a
massive amount of energy overhead (over 20×). Such sig-
nificant energy overhead of the previous method promoted
our proposed method as the best solution. Learning the
new features by turning off the ReRAM columns enables
us to skip the reprogramming and second-time deploy-
ment.

V. Conclusion

In summary, we proposed XBM, a binary crossbar mask
to efficiently deploy the multi-task adaption to crossbar-
based neural network accelerator design with the consid-
eration of hardware cost. Comparing with state-of-the-art
methods, XBM do not need to change the neural network
structure or re-program any ReRAM cell. Comparing
with other mask-based method, XBM saves up to 40%
inference energy and reduces the mask size to only 1.4%
while maintaining the similar accuracy.

Acknowledgements

This work is supported in part by the National Science
Foundation under Grant No.2003749 and No.1931871

References

[1] A. Mallya et al., “Piggyback: Adapting a single network to multiple
tasks by learning to mask weights,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 67–82.

[2] L. Yang et al., “Ksm: Fast multiple task adaption via kernel-wise
soft mask learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 13 845–
13 853.

[3] S. Mittal, “A survey of reram-based architectures for processing-in-
memory and neural networks,” Machine Learning and Knowledge
Extraction, vol. 1, no. 1, pp. 75–114, 2019.

[4] L. Song et al., “Pipelayer: A pipelined reram-based accelerator for
deep learning,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 541–552.

[5] X. Sun et al., “Xnor-rram: A scalable and parallel resistive synap-
tic architecture for binary neural networks,” in 2018 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2018,
pp. 1423–1428.

[6] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA
’18. IEEE Press, 2018, p. 383–396. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00040

[7] D. Fan et al., “Energy efficient in-memory binary deep neural net-
work accelerator with dual-mode sot-mram,” in 2017 IEEE In-
ternational Conference on Computer Design (ICCD), 2017, pp.
609–612.

[8] M. Hu et al., “Dot-product engine for neuromorphic computing:
Programming 1t1m crossbar to accelerate matrix-vector multipli-
cation,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6.

[9] F. Zhang et al., “Cccs: Customized spice-level crossbar-array cir-
cuit simulator for in-memory computing,” in Proceedings of the
39th International Conference on Computer-Aided Design, ser.
ICCAD ’20. New York, NY, USA: Association for Computing
Machinery, 2020.

[10] M. E. Fouda et al., “Mask technique for fast and efficient training
of binary resistive crossbar arrays,” IEEE Transactions on Nan-
otechnology, vol. 18, pp. 704–716, 2019.

[11] S.-A. Rebuffi et al., “Learning multiple visual domains with resid-
ual adapters,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 506–516.

[12] A. Rosenfeld et al., “Incremental learning through deep adapta-
tion,” IEEE transactions on pattern analysis and machine intel-
ligence, 2018.

[13] S. Liu et al., “End-to-end multi-task learning with attention,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 1871–1880.

[14] I. Hubara et al., “Binarized neural networks,” in Advances in neu-
ral information processing systems, 2016, pp. 4107–4115.

[15] M. Mancini, E. Ricci, B. Caputo, and S. Rota Bulo, “Adding new
tasks to a single network with weight transformations using binary
masks,” in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, 2018, pp. 0–0.

[16] E. Jang et al., “Categorical reparameterization with gumbel-
softmax,” 2017.

[17] C. Wah et al., “The Caltech-UCSD Birds-200-2011 Dataset,” Cali-
fornia Institute of Technology, Tech. Rep. CNS-TR-2011-001, 2011.

[18] J. Krause et al., “3d object representations for fine-grained catego-
rization,” in 2013 IEEE International Conference on Computer
Vision Workshops, 2013, pp. 554–561.

[19] M.-E. Nilsback et al., “Automated flower classification over a large
number of classes,” in 2008 Sixth Indian Conference on Computer
Vision, Graphics Image Processing, 2008, pp. 722–729.

[20] B. Saleh et al., “Large-scale classification of fine-art
paintings: Learning the right metric on the right fea-
ture,” CoRR, vol. abs/1505.00855, 2015. [Online]. Available:
http://arxiv.org/abs/1505.00855

[21] M. Eitz et al., “How do humans sketch objects?” ACM Trans.
Graph. (Proc. SIGGRAPH), vol. 31, no. 4, pp. 44:1–44:10, 2012.

[22] O. Russakovsky et al., “Imagenet large scale visual recognition
challenge,” 2015.

[23] E. Park et al., “Profit: A novel training method for sub-4-bit mo-
bilenet models,” 2020.

[24] X. Peng et al., “DNN+NeuroSim: An end-to-end benchmarking
framework for compute-in-memory accelerators with versatile de-
vice technologies,” in IEEE International Electron Devices Meet-
ing (IEDM), 2019, pp. 32.5.1–32.5.4.

[25] W. Wu et al., “A methodology to improve linearity of analog
RRAM for neuromorphic computing,” in IEEE Symposium on
VLSI Technology, 2018, pp. 103–104.

[26] P.-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level
macro model for benchmarking neuro-inspired architectures in on-
line learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 12, pp. 3067–3080,
2018.

8C-3

615
Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 19:44:47 UTC from IEEE Xplore. Restrictions apply.

