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Abstract

Historically, power has flowed from large power plants to customers. Increas-
ing penetration of distributed energy resources such as solar power from rooftop
photovoltaic has made the distribution network a two-way-street with power
being generated at the customer level. The incorporation of renewables intro-
duces additional uncertainty and variability into the power grid. Distribution
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such studies require high quality solar irradiance data that adequately reflect
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realistic meteorological variability. Data from satellite-based products are spa-
tially complete, but temporally coarse, whereas solar irradiances exhibit high
frequency variation at very fine timescales. We propose a new stochastic method
for temporally downscaling global horizontal irradiance (GHI) to 1 min reso-

— - lution, but we do not consider the spatial aspect due to limited availability of
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the in situ irradiance measurements. Solar irradiance’s first and second-order
structures vary diurnally and seasonally, and our model adapts to such nonsta-
tionarity. Empirical irradiance data exhibits highly non-Gaussian behavior; we
develop a nonstationary and non-Gaussian moving average model that is shown
to capture realistic solar variability at multiple timescales. We also propose a new
estimation scheme based on Cholesky factors of empirical autocovariance matri-
ces, bypassing difficult and inaccessible likelihood-based approaches. The model
is demonstrated for a case study of three locations that are located in diverse cli-
mates through the United States. The model is compared against competitors
from the literature and is shown to provide better uncertainty and variability
quantification on testing data.
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1 | INTRODUCTION

Renewable energy integration studies are increasingly used as renewable energy technologies, in particular solar power,
are adopted in greater quantities. Such studies provide an analytical framework for evaluating a power system with high
levels of variable renewable resources. One of the primary goals of a renewable energy integration study is to address
stakeholder concerns that a power system can operate both reliably and efficiently with high penetration of renewable
resources. As a major renewable resource, solar irradiance data are required at high temporal resolutions, but direct
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observational irradiance data are scarce and are geographically limited, so simulated irradiances are often necessary.
Moreover, since solar power integration studies examine future scenarios with larger amounts of installed solar power,
simulated irradiances become an integral part of these studies. It crucial that simulated irradiances accurately represent
variability at multiple timescales so that the impact on the power system is appropriately represented in grid planning
studies. For power system integration studies, solar power output is often needed at the minute or second resolution.
Because the in situ irradiance measurements are limited, there is a need to combine available historical in situ mea-
surements with satellite-based irradiance estimates as the basis for generating solar irradiance time series used in such
studies.

In the literature of solar irradiance modeling, two major aspects for electric grid applications are forecasting and
resources assessment. Solar forecasting approaches enable grid operators to better predict how much solar energy will
be added to the grid while solar resource assessment provides the means to accurately determine the availability of
power generation on different time scales. There is a rich literature on solar forecasting techniques, including some
statistical approaches (Das et al., 2021; Iversen et al., 2014). Our temporal downscaling approach pertains to solar
resource assessment. Thus, we focus on a the modeling problem, and not forecasting. Producing simulated solar irra-
diance data is a problem that has been of interest for many years. Balouktsis and Tsalides (1986) simulate hourly solar
insolation data in Athens, Greece using a method in which annual and daily periodicities are first removed to cre-
ate a stationary random process that is simulated and then retransformed into a time series. Aguiar et al. (1988) use
a Markov approach to produce daily solar radiation values based on radiation data from over 300 months of data at
nine different locations. Graham and Hollands (1990) treat atmospheric transmittance as a substitute variable for irra-
diance and simulate its value by decomposing it into a trend and random component to produce hourly irradiance
values based on data from three Canadian cities with different climate characteristics. Glasbey and Allcroft (2008) pro-
pose a spatiotemporal auto-regressive moving average model with a Matérn noise process for simulating realizations
of energy output. Hocaoglu (2011) utilize hidden Markov models based on the relationship between ambient temper-
ature and solar radiation to generate time series data for two cities in Turkey. Ngoko et al. (2014) also use Markov
models to generate synthetic minutely solar irradiance data from hourly weather data but they started from daily clear-
ness index values. A similar approach was taken in Bright et al. (2015), though they included cloud cover scenarios in
the model. Lave et al. (2013) utilized a wavelet-based model to simulate the power output of a single solar PV plant
from a single irradiance sensor, similar to Marcos et al. (2011). Resampling and clustering techniques are also used
in the solar irradiance downscaling literature (Lave et al., 2012; Perez & Fthenakis, 2015). In Zhang et al. (2018a),
synthetic datasets are produced using log-additive non-Gaussian mixture models and resampling techniques. Zhang
etal. (2018b) extends the work of Zhang et al. (2018a) and proposes a stochastic method for generating synthetic data using
properly transformed mixtures of random variables and a clear-day rule to determine when stochastic downscaling is
applied.

Our goal is to conditionally model solar irradiance given satellite-based estimates at a single spatial location. In par-
ticular, the National Solar Radiation Database (NSRDB; Sengupta et al., 2018) contains estimates of multiple types of
irradiance at a 4 km spatial resolution and 30 min time resolution over the continental United States for the period
1998-2016. The NSRDB data product combines satellite data, numerical weather prediction data, as well as in situ mea-
surements. However, the 30 min resolution is limited in its use for understanding the impact of irradiance variability
on certain types of grid operations. Given the NSRDB estimate, we produce conditional realizations of 1-min irradiance
that capture plausible high frequency trajectories consistent with the NSRDB. The statistical challenges are comprised
of handling diurnal and seasonal variations in both mean and covariance structure, as well as the non-Gaussianity of
irradiance.

The statistically novel aspects of this work include a new nonstationary and non-Gaussian moving average model
for stochastic temporal downscaling. Moving average models constitute a classic approach to modeling stationary pro-
cesses, while nonstationarity is traditionally accommodated through differencing, forming the celebrated autoregressive
integrated moving average (ARIMA) class. However, differencing is a fairly restrictive type of nonstationarity which Box
et al. (2015) terms homogeneous nonstationary processes. There are a large number of approaches to handling non-
stationary and non-Gaussian processes in the time series literature. Some involve adapting Gaussian processes within
the ARIMA framework Beran (1995), but at the cost of computationally expensive estimation algorithms. Spectral
approaches for non-Gaussian processes are considered by Lii and Rosenblatt (1982), Cheng (1990), and Lii and Rosen-
blatt (1992), while spectral nonstationarity is taken up in Velasco (1999b), Velasco (1999a), and Robinson (1995). The
Whittle pseudo-maximum likelihood estimator for Gaussian processes was extended to the nonstationary setting in
Velasco and Robinson (2000). Chapman et al. (2020) uses a nonparametric approach to locally estimate the variance
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based on a wavelet framework. In Porcu et al. (2020), a detailed discussion on a bilevel skew-t stochastic model for
handling non-Gaussianity in wind field speed data is given. In this work we consider an alternative approach to handling
nonstationarity, non-Gaussianity and estimation within the ARMA framework simultaneously.

Our estimation idea bypasses difficult likelihood-based approaches, and relies on modeling Cholesky factors of auto-
covariance matrices. The Cholesky factor of an autocovariance matrix has two attractive properties: first, its inverse is a
decorrelating transformation on the time series, and second, its entries can be interpreted as parameters in an inhomo-
geneous moving average representation. Statistical modeling of the Cholesky matrix has primarily been explored in the
longitudinal data analysis literature. Pinheiro and Bates (1996) propose unconstrained parameterizations of a covariance
matrix using Cholesky decomposition. Pourahmadi (1999) start with the modified Cholesky decomposition of the preci-
sion matrix, and then parameterize the covariance matrix as a linear combination of covariates. Zhang and Leng (2012)
decompose the covariance matrix into generalized moving average parameters in the moving average Cholesky decom-
position, while Lee et al. (2017) combine the autoregressive and moving average modeling of the covariance matrix. Our
approach to exploiting the Cholesky factor for estimation is novel, easily allows for incorporation into a non-Gaussian
setup and also for nonstationarity.

The temporal downscaling model is broken into two components: the first is a stochastic decision rule that deter-
mines whether a given time period will be modeled as clear or non-clear (e.g., cloudy). In non-clear time periods, the
model is a correlated mixture of Laplace random variables whose coefficients vary diurnally and seasonally. As direct
likelihood calculations are inaccessible, we introduce a new estimation approach exploiting empirical Cholesky fac-
tors and decorrelated residuals. Our example focuses on location Eugene, Oregon from year 2010 to year 2013 and
uses 30 min estimates of global horizontal irradiance (GHI) from the National Solar Radiation Database (NSRDB;
Sengupta et al., 2018), combined with 1 min in situ pyranometer measurements of GHI from a subset of the Uni-
versity of Oregon’s Solar Radiation Monitoring Laboratory. The model is trained based on data of years 2011-2013
and is validated on year 2010. The proposed methodology is further validated on another two locations from the
Surface Radiation Budget Network (SURFRAD). The outputs of our model are conditional ensembles of down-
scaled irradiance at the 1 min time resolution. The model is compared against existing models from the solar lit-
erature on held-out testing data, and exhibits good coverage properties as well as statistical representations of time
dependence.

The remainder of this article is organized as follows. In Section 2, the data sources are introduced. In Section 3, we
formulate the general model for temporal downscaling and then a detailed estimation procedure is described. Section 4
includes model comparison and detailed validation of the proposed methodology. Section 5 concludes with discussion
and future work.

2 | DATA

The proposed model was originally trained based on one in situ observational time series dataset at Eugene, OR. The data
include minutely observations of irradiance on a flat surface together with half-hourly satellite-derived GHI and clear-sky
GHI. The pyranometer measurements are from the University of Oregon’s Solar Radiation Monitoring Laboratory (SRML;
Vignola & Perez, 2004). The data covers a period of 4 years from January 1, 2010 to December 31, 2013. We divide the period
into a training and test set, with the training set covering the last three years and the test set the first year. The method is
additionally validated on two other locations from SURFRAD. SURFRAD is a network of high quality observation stations
supported by NOAA’s Office of Global Programs (Augustine et al., 2000). These locations are located in variable climates
across the continental USA. Both the SRML and SURFRD data are available at 1-min resolution. Table 1 summarizes the
data used in this article.

Let Y(t,d) denote GHI at minute of the day t = 0, ..., 1439 and day of the year d = 1, ..., 365. The notation ¢ denotes
minute-level data throughout the article. The NSRDB contains two estimates of irradiance at 30 min snapshots for
each day of the year: GHI and clear sky GHI. Clear sky GHI is the amount of irradiance that would theoretically reach
the ground under clear conditions (that is, no clouds or aerosols such as dust), while GHI is the estimate based on
an empirical-physical model that incorporates satellite and in situ measurements as well as numerical weather predic-
tion model output. Denote by X(¢t,d) and Xc(t,d) the linearly interpolated NSRDB estimated GHI and clear sky GHI,
respectively. The choice of linear interpolation is simply to put the coarse-time NSRDB estimates at the same time reso-
lution as the in situ data Y (¢, d), and was seen to work as well as more complicated interpolation schemes in exploratory
analyses.
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TABLE 1 Dataused to train and validate the model
Database Source Training period Testing period Observations
Half-hourly data sets
Eugene, OR NSRDB January 1, 2011 to December 31,2013  January 1, 2010 to December 31, 2010 17,520
Boulder, CO NSRDB January 1, 2017 to December 31,2017  January 1, 2018 to December 31,2018 17,520
PSU, PA NSRDB January 1, 2016 to December 31,2018  January 1, 2019 to December 31,2019 17,520
1-min data sets
Eugene, OR SRML January 1, 2011 to December 31,2013  January 1, 2010 to December 31, 2010 525,600
Boulder, CO SURFRAD  January 1, 2016 to December 31,2018  January 1, 2019 to December 31, 2019 525,600
PSU, PA SURFRAD  January 1, 2016 to December 31,2018  January 1, 2019 to December 31, 2019 525,600

Note: All radiation measurements are in watts per meter squared.

3 | METHODOLOGY
In this section, we present our temporal downscaling framework along with exact details and specifications for our data
example. In particular, we detail the two components of the downscaling model.

The basic idea behind the model is straightforward—for any time point we classify irradiance into one of three
categories: (1) a clear period where clear sky GHI is achieved, (2) a non-clear period where a stochastic model
provides variability, and (3) a non-clear period where effects such as cloud enhancement generate GHI no more
than 20% higher than the current clear sky GHI. The cutoff of 20% is a standard level for such clear sky GHI
exceedances (Zhang et al., 2018a). Note we only consider irradiance modeling during the day when it is strictly
positive.

We propose the following log-additive temporal downscaling model,

log Y(t,d) = Z(t,d) log(Xc(t, d)) + (1 — Z(t, d)) min {log(X(t, d)) + £(t, d), log(1.2Xc(t, d)) } €))

where £(t, d) is the stochastic term that models variability due to extant atmospheric conditions and Z(t, d) is a time series
of Bernoulli random variables that determines whether a given time point is clear or not. When the sky is clear, we have
Z(t,d) = 1, in which case log Y(t, d) = log(Xc(t, d)). If the sky is not clear, that is, Z(t, d) = 0, GHI is generated based on
NSRDB GHI estimate with variability provided by our stochastic model, with the restriction that GHI cannot go beyond
120% of clear sky GHI. This log-additive model always results in a nonnegative GHI, and flips back and forth between clear
and non-clear time periods. Additionally, our log-additive model is equivalent to modeling the so-called clear sky index
that is common in the solar energy literature (Bright et al., 2015). Sections 3.1 and 3.2 detail the clear sky classification
model and the stochastic time series model for £(¢, d), respectively.

3.1 | Clear sky classification

The first step is determining whether a given time point is clear or not, by specifying the model for Z(¢,d). There is
auxiliary information available in the NSRDB, apart from estimates of GHI, namely current cloud conditions represented
by 13 classes (at each 30 min snapshot). We aggregate these 13 classes into two groups of clear and not clear (that includes
water and ice) according to Zhang et al. (2018a). We use a logistic regression framework for the binary random variable
Z(t,d), incorporating cloud type from NSRDB as a predictor.

The NSRDB cloud type predictors are only available every 30 min. Thus, to fully describe the stochastic model for
the binary process Z(t, d), we require some additional notation. Denote by n; the number of half-hour intervals during
daylight hours on day d and let I, ..., I, . be sets of minutes in half-hour intervals for this day that center on the hourly
and half-hourly satellite data (e.g., I = {705, ...,734} represents 11:45 a.m.-12:14 p.m. for the satellite data available at
t = 720,12 p.m.). Note that Z(t,d) with t € Iy and k = 1, ..., nq is just the binary response variable for interval Iy on day d
with two situations of clear, Z(t,d) = 1 and not clear, Z(t,d) = 0.
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TABLE 2 Maximum likelihood estimates with standard errors in parentheses for parameters of the clear/non clear interval logistic
regression model

Parameter %o & & & Ca s
Estimate —4.35(0.32) 3.78 (0.38) 1.95 (0.36) 2.01 (0.38) —0.66 (0.03) ~0.30 (0.03)

Consider a triplet of intervals (I_1, Ik, I+1). Heuristically, if the NSRDB’s cloud type in all three intervals are clear, we
would expect to be more confident that Iy is indeed clear, that is, Z(t,d) = 1 for t € Ix. On the other hand, if I} is preceded
or followed by a non-clear interval, then we would expect less confidence in Iy being clear. Thus, for interval k let Cy
denote the clear classification from the NRSDB, while Ny denotes a non-clear classification; note that Cy, = Cy(d) depends
on the day, which we drop from notation for ease of exposition.

The classification model for Z(t, d) is based on a logistic regression with mean function

2xd . 2xd
So+ &l e T Slic, oonNg T Gl g T Gacos <%> + {ssin <%> , (2)

where 1y, ,.c,.c,,,) for example, is an indicator function of three clear sky NSRDB classifications corresponding to the
triplet (Ix—1, I, Ir+1)- The inclusion of the harmonics allows for seasonally varying probabilities. We do not include triplets
of the form (Nk_1, Ck, Ni+1) due to separability. To determine the classification threshold, we perform a receiver operating
characteristic (ROC) analysis and compute the Youden index. The threshold associated with the highest Youden index is
0.33, which we adopt for the ensuing analyses.

The available GHI data are not already classified into clear/not clear for training purposes. Thus, we develop an
ad hoc classification rule to generate binary training data to estimate the parameters in (2). For each interval, we gen-
erate the so-called clear sky index K(¢t,d) = Y(t,d)/Xc(t,d) which is a standard quantity in the solar energy literature
(Bright et al., 2015). Then, we set Z(t,d) = 1 for ¢ € I;if min,e;, K(t,d) > 0.8 and max;e;, K(t, d) — min,g;, K(£,d) < 0.05,
and Z(t, d) = 0 otherwise. These two criteria are suggested by requiring the observed GHI to be similar to the theoretical
clear sky GHI, and are seen to work well empirically, although other criteria can be imagined.

Parameters in (2) are fit by maximum likelihood on data from Eugene, OR during the years 2011-2013. Table 2 contains
these estimates and standard errors based on the training data. As intuition would suggest, the effect of a triple of clear
NSRDB classifications yields stronger influence on the probability of a true clear interval versus cases with neighboring
non-clear NSRDB predictors.

Since the temporal resolution of the satellited-derived data is half-hourly, we only utilize the model (2) for Z(¢, d) at
time points ¢ in the center of a given interval I;. It is not realistic that the transitions to/from Z(t,d) = 0 or Z(t,d) = 1
happen at exactly certain minutes before or after the hour/half-hour; to this end we propose randomizing the transition
point. Exploratory analyses suggests a uniform distribution for the transition time is appropriate, which we adopt. To be
explicit, let c,_; and ¢, denote the midpoints of intervals I;,_; and Iy, respectively. If interval I;_; is classified as Z(cy_1,d) =
0, and Iy as Z(ck,d) = 1, then the transition time between the two regimes is sampled from U(ck-1,cx). The time for
transition from Z(ck—1,d) = 0 to Z(ck, d) = 1 is analogous.

3.2 | A nonstationary and non-Gaussian time series model
In the situation that a given time point with Z(¢, d) = 0 and GHI is less than 120% of the clear sky GHI, model (1) includes

the process £(t, d), to which we now turn. The first step is to disentangle diurnal and seasonal heteroskedasticity from
correlation and other distributional assumptions, in particular we suppose

e(t,d) = o(t,d)é(t, d) 3)

where Var &(t,d) = 1 for all t and d, and o(t, d) is a time and day-varying standard deviation (SD) function. The model for
&(t,d) is a nonstationary (and possibly non-Gaussian) moving average process

Et.d) = Y as(t. Dot — £, d) (4)
=0
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for some white noise process w(-, -) and real-valued functions {as(-, -)} . It is well known that stationary moving average
(MA) and autoregressive (AR) processes are identical under an infinite lag representation. We use an MA specifica-
tion in (4), rather than a more traditional AR specification, due to a physical motivation. Specifically, solar irradiance is
affected by local cloud and aerosols that are moving across the domain. The direct effect on irradiance at a given site is a
weighted combination of these clouds/aerosols, which is consistent with a MA representation, if we view w as representing
atmospheric phenomena.

3.2.1 | Modeling heteroskedasticity

We turn to the model for o(t, d) in (3). To assess the possibility of heteroskedastic residuals, we take empirical residuals
e(t,d) = log(Y(t,d)/X(t,d)) and create empirical SDs that vary over time of day, and day of year. Specifically, we esti-
mate the variability at time point ¢ on day d, 6(t, d) as the empirical SD of residuals for time points in [t — 14, ¢ + 15] on
days in [d — 14,d + 15] using data from Eugene, OR during 2011-2013. The windowing in minutes and over days rep-
resents an assumption that the distribution of residuals varies slowly over time, and within a +£15 min, or day window
the second-order structure of the residuals does not change substantially. We leave out time intervals with data at the
boundary where t — 14 or t — 15 have zeros due to morning/night.

Figure 1 shows a heat-map of {6(¢, d)} where the x-axis represents time of day (minutes) and the y-axis indexes day of
year. Note that, due to the moving window empirical estimation procedure, empirical estimates are not available for the
first and final 15 days of the year (and similarly truncated in morning and evening); however, our fitted model extrapolates
values to these cases so that simulations can always be created. There are clear diurnal and seasonal cycles which is
suggestive of a (log) linear model with periodicity whose frequencies respect the diurnal and seasonal variation. Thus,
the form of a log linear model is

logo(t,d) = By + p1 cos (124% + 51) + f, cos (23%1 + 52> + f; cos (124% + 51> cos <% + 52> , (5)
where fy, p1, B2, f5 are coefficients for each parameter and 63, 6, are phase shifts. We estimate the model parameters by
minimizing a sum of squared difference over t = 1, ...,1440 and d = 1, ..., 365, noting that times for which irradiance is
exactly zero (which depends on the day of year) are discarded. The empirical and fitted heatmaps are shown in Figure 1.
The oval shape of non-missing values is due to seasonality in the Pacific Northwest, with more sunlight hours in the
summer and fewer in the winter. The heatmap suggests enhanced variability of residuals at the shoulders of the day, in the
morning and evenings; the proposed harmonic model captures the interaction between daylight hours and seasonality.

3.2.2 | Moving average coefficients

We now turn to the details of the moving average model (4), beginning with specification and estimation of the nonsta-
tionary moving average parameters {a.(-, -)},. Note there are 30 data points &(t,d)fora given d and all ¢ € Ii; concatenate
these into a time-ordered vector E(Ik, d). Define an averaged interval and day specific empirical covariance matrix as

d+50
1

o5 2 @l d = &k d)' €Tk D) — £k ). (6)

i=d—49

21, d) =

where £(I, d) is the empirical mean of £(I;, d). As we have three years of training data we average the empirical covariance
matrices from all three before moving forward.

One can interpret the last row of the Cholesky factor of 3:(I, d) as empirical estimates of ay(t, d), ... , ax(t, d). Figure 2
shows a smoothed version of the first 15 empirical moving average coefficients averaged across different seasons at dif-
ferent half-hourly time intervals; the smoothing is simply to help the eye identify patterns in the coefficients. Each plot
stands for a representative morning (10:00 a.m.-10:29 a.m.), noon (12:00 p.m.-12:29 p.m.), and afternoon (2:00 p.m.-2:29
p.m.). In each plot, different colors represents different seasons. Plotting these final rows for varying I and d suggests that
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FIGURE 1 Panels(a)and (b) show the heatmaps of the empirical estimator log 6(¢, d) and modeled log SD log o(t, d) (b), respectively.
The unit of measure of the x-axis is minute
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FIGURE 2 A smoothed version of the first 15 MA coefficients averaged across different seasons at different half-hourly time intervals.
Columns indicate 30 min time intervals for a representative morning (10:00 a.m.-10:29 a.m.), noon (12:00 p.m.-12:29 p.m.), and afternoon
(2:00 p.m.-2:29 p.m.)

(a) the moving average coefficients fall off approximately exponentially and (b) there is diurnal and seasonal variability
in the coefficients.
Thus we propose the following model for the real-valued functions {a,(-,)}¢,

J
ag(t,d) = Z‘Ij(t’ d)e—bj(t,d)(t—f)cj’ (7)

J=1

where J is the number of exponential basis functions and a;(¢, d) and b;(¢, d) > 0 are the weights and exponential rates for
the jth basis, respectively. The model (7) includes a standard AR(1) in the case thatJ = ¢; = 1 and a; and b; are constants.
In the meantime, we make sure variances of each row are one consistently over time. However, based on exploratory
analysis, we parameterize the weight and scale rate parameters as time-day surfaces where log(a;(t, d)) and log(b;(t, d))
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Due to the choice of white noise model in the next section, direct likelihood-based estimation routines are difficult;
we thus propose a weighted nonlinear least squares approach. As the final elements of the last row of the Cholesky factor
of £(I,, d) can be used to approximate the correlation structure of £(t, d), we minimize the weighted squared difference
between the sum of all such Cholesky-based estimates and the model with weights that are exp{ %zszﬁ }fort=1,...,15
and otherwise 0 where j = 30.

We select J by comparing residual sums of squares between all available Cholesky estimates and the fitted model. The
model with J = 2 is favored by this criterion with ¢; =1 and ¢, = 1.1, whereas models with higher order sums do not
substantially improve the fit.

Now the model for the real-valued function {a(-, -)}, with two exponential functions is as follows:

a(t,d) = ar(t, e DD 4 gy (t, de DO ©)

where a;(t, d), a,(t, d), b1(t, d), and b,(¢, d) are parameterized using model (8), respectively.
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TABLE 3 The first four moments of decorrelated residuals
Moments Mean Variance Skewness Kurtosis

Value 0.0050 0.8988 0.0540 5.7734

TABLE 4 Akaike information criterion (AIC) for mixture models using Gaussian or Laplace components

Number of components 1 2 3 4 5
Gaussian 992,170 893,860 879,795 877,550 878,338
Laplace 385,260 375,420 376,520 376,422 376,360

Note: The lowest value is in bold.

3.2.3 | White noise model

The final step is to diagnose and model the driving white noise process of (4). Using the same setup as the prior section we
calculate the Cholesky factor ﬁ(Ik, d) of SU,d)forallk=1,...,30and d = 1, ..., 365. Define the decorrelated empirical
residuals for interval I and day d as

oy, d) = LI, d) &Iy, d). (10)

Figure 3 contains a histogram of decorrelated residuals over all intervals and days. Generally the distribution is
approximately symmetric and values are concentrated on the interval [—5, 5] with heavier-than-Gaussian tails. The four
moments of @Iy, d) are shown in Table 3. Based on the values of skewness and kurtosis, decorrelated residuals have a
thin peaked distribution with heavy tails of large values.

We entertain two possible modeling approaches for the decorrelated residuals: mixtures of Gaussian or Laplace dis-
tributions. In both cases we assume the mixture component mean parameters are zero, and estimate weights and scale
parameters by maximum likelihood using the decorrelated residuals. To assess quality of model fit we compare Akaike
information criterion (AIC) values using differing numbers of mixture components. Table 4 compares AIC values for
Gaussian or Laplace mixtures using anywhere between one to five components. The Laplace mixture fits are substantially
better, and a mixture of two Laplace variables is favored over the four component mixture of Gaussians.

3.3 | Estimation discussion and overview

Here we outline the exploratory analysis approach we took to arrive at the nonstationary non-Gaussian moving average
model. The exploratory manner in which we developed the model is intimately tied to estimation. The rough outline is

1. Empirically estimate o(t, d), develop and fit an appropriate parametric model, yielding fitted values 6(t, d)

2. Calculate standardized residuals &(t, d) = (¢, d) /6(t,d) and group into interval-localized vectors of residuals EI, d)
for interval I,

3. Empirically estimate a set of covariance matrices $(Ix, d) based on f,‘(Ik, d)

4. Calculate the Cholesky factor of (I, d), denoted L(I, d)

5. Identify the last row of L(Ix, d) as estimates of moving average parameters, based on these develop and fit an appropriate
parametric model for a,(t, d)

6. Calculate @(I, d) = LIk, d)"tE(L, d)

7. Develop and fit an appropriate white noise model for w(-, -) based on &I, d).

In the prior sections we detailed this exploratory procedure, which coincided with the estimation procedure. Here,
Steps 5 and 6 warrant further discussion. The basic idea behind Step 5 is that if Z = (Z(1), ..., Z(n))" is a mean zero
finite variance time series with covariance matrix £ and L is the Cholesky factor of X, we can represent Z = Lw for an
uncorrelated random vector w. In particular, extracting the last row of L, we have Z(n) = Y., L,;w;, which is suggestive
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of a moving average representation. Step 6 is simply the decorrelating nature of this transformation in that L='Z is a vector
of uncorrelated random variables.

The exploratory approach is intimately linked to estimation of model parameters, which is done in a stepwise fash-
ion, allowing for diagnosing different layers of the model. A more statistically principled approach, for instance, would
be based on likelihoods. The moving average model is weighted combinations of Laplace mixtures (which is just a
higher-order mixture of Laplace variables). The Laplace distribution is not an infinitely stable distribution, and the like-
lihood of a mixture of Laplace variables is complicated. Although we make no claims about the statistical efficiency of
our approach, we find it attractive due to its link to model development. Moreover, as will be shown in the next section,
the estimated model performs well in cross-validation experiments where it is not clear that a likelihood-based approach
would provide any superior performance.

The first step is to empirically estimate o(t, d), develop and fit an appropriate parametric model. The fitted values are
denoted as 6(t, d). For example, in the application of downscaling the satellite-derived solar irradiance in Section 3.2, a
log linear model is proposed and parameters are estimated by minimizing a sum of difference over ¢t =1, ...,1440 and
d=1,...,365. Then we calculate standardized residuals (¢, d) = £(t,d)/6(t,d) and group into interval-localized vectors
of residuals (I, d) for I, where I, is a set of minutes in intervals that are consistent with the time resolution of satellite
data. A set of covariance matrices can be empirically estimated based on &Iy, d) as follows: Define an averaged interval
and day specific empirical covariance matrix as

d+N

(I, d) = f\] Y @i i) - &l )" EUk, D) — €T, d)), an

i=d—N+1

where E(Ik, d) is the empirical mean of fj(I k> d). The Cholesky factor of S, d) is calculated and denoted as L(I}, d). Each
row of L(Iy; d) are time-varying moving average coefficients and show similar exponential decay from the diagonal entry.
We thus use the last row as empirical estimates of moving average parameters. Based on these, we develop and fit an
appropriate parametric model for a,(t, d). The statistical justification for this idea is that if V = (V(1), ..., V(n))T is a mean
zero finite variance time series with covariance matrix £ and L is the Cholesky factor of X, we can represent V = Lw
for an uncorrelated random vector w. In particular, extracting the last row of L, we have V(n) = Z;’zaniwi, which is
suggestive of a moving average representation. Pourahmadi (1999) uses modified Cholesky decomposition (MCD) to
obtain both unconstrained and interpretable parameters and assumes low-order polynomial dependencies among the
innovation variances and autoregressive parameters. The method is developed for the inverse Cholesky matrix, whereas
our approach directly utilizes the structure of the raw Cholesky factor, which is subsequently linked to a parametric
model. The parameters are then estimated using a weighted nonlinear least squares approach. The white noise process
is empirically estimated as @(Ix, d) = L, d)~1&(I,, d), which is simply the decorrelating nature of this transformation in
that L='V is a vector of uncorrelated random variables. For the last step, we develop and fit an appropriate (and possibly
non-Gaussian) white noise model for w(-, -) based on &Iy, d). In our application, weights and scale parameters for mixture
of Laplace distributions are estimated by maximum likelihood.

4 | VALIDATION

The model outlined in Section 3 was fit to pyranometer measurements and NSRDB data at Eugene, OR for the years
2011-2013 and tested for the year 2010. First, we check the efficiency of the proposed Cholesky-based estimation
approach based on a small simulation study. Then, we compare the proposed logistic regression model with other clear
sky detection methods. In order to validate the adequacy of the downscaled distributions, we hold out in situ data for
the same location for the year 2010. We also compare the approach with a simpler time series model, a Gaussian moving
average model. Next, we check autocorrelation and coverage properties of the proposed model where we include some
results from Boulder and Penn State University (PSU) to show the generality of our approach. Finally we close this
section with uncertainty quantification.

4.1 | Efficiency of the Cholesky-based estimation approach

We consider a small simulation study using our proposed moving average estimation procedure to examine if the
approach can suitably estimate parameters of a time series model. In particular, essentially matching rows of the Cholesky
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TABLE 5 Averaged Cholesky-based estimates with standard errors using k realizations for selected simulations using our
proposed model

k a,=0830 a,=1448 b; =025 b, =0052 w; =081 w,=0199 5 =0739 s, =0168

50  0.784(0.112) 1.398(0.161) 0.156(0.112) 0.053 (0.043) 0.768 (<1075) 0.232(<1075) 0.775(0.013) 0.180 (0.013)
100 0.825(0.091) 1.442(0.121) 0.250(0.100) 0.052 (0.030) 0.788 (<1075) 0.212(<10-%) 0.740 (0.005) 0.170 (0.006)
300 0.829 (0.062) 1.446(0.079) 0.252(0.073) 0.052(0.019) 0.800 (<1075)  0.200 (<10~5) 0.736 (0.002) 0.167 (0.005)

factor is not expected to be a statistically efficient approach, but it is straightforward to implement and bypasses diffi-
cult likelihood-based approaches for our non-Gaussian setup. As simulations based on our proposed model are indeed
nonstationary and non-Gaussian, we perform a small test on estimating parameters of selected simulations of irradiance
under our model for various sample sizes.

The simulations of standardized residuals, &(¢, d), are defined by parameters a;, a,, b1, b, in the moving average model,
location parameter u and scale parameter s in the white noise model. In the first step of the simulation study, we simulate
k € {50,100, 300} independent realizations of 30-min standardized residual processes for a representative morning (9:00
a.m.-9:29 a.m.), noon (12:00 p.m.-12:29 p.m.), and afternoon (3:00 p.m.-3:29 p.m.). Following our procedure, we then
calculate empirical covariance matrices of each realization and average these to estimate a covariance matrix 3. The
Cholesky factor L of £ is then calculated and we identify the last row of L as estimates of moving average weights. The
parameters a;, az, by, b, in the moving average model are estimated by minimizing the weighted squared difference
between the sum of all such Cholesky-based estimated and the model with the same weights that used in Section 3.2.2.
Then location parameter u and scale parameter s in the white noise model are estimated using maximum likelihood based
on the decorrelated residuals. This process is repeated 500 times to estimate standard errors of the point estimates.

Table 5 presents the representative findings of this small study for noon (12:00 p.m.-12:29 p.m.) on June 20, including
average point estimates and standard errors of all parameters. We see that for k = 300 (the same sample sizes used in
the data example) there is reasonable efficiency in estimating the model parameters, with slight bias. The bias becomes
apparently severe as the sample size is reduced, but seems to be practically negligible for the sizes used in our data study.

4.2 | Model comparison
4.2.1 | Comparison with other clear sky detection methods

In the solar energy literature there is sustained interest in developing and validating clear sky identification techniques
(Gueymard et al., 2019). Time scale turns out to be an important factor in considering clear sky detection methods, with
usual time scales being daily, hourly or minutely. In the following we consider two competing methods from the solar
energy literature that focus on sub-daily data.

Two clear sky detection methods with similar input requirements are Reno and Hansen (2016) and Polo et al. (2009).
Reno and Hansen (2016) develop a 5-step method using irradiance data and corresponding clear sky irradiance estimates
using a moving window of irradiance observations during any given time period to their clear sky modeled counter-
part. Threshold values are established empirically, based on one year of data at a single site. The period is identified
as clear if the threshold value of each criterion is not reached. Polo et al. (2009) use the daily Linke turbidity factor in
identifying clear days. For each day, empirical correlations between observed and clear sky GHI are calculated. The deter-
minant of the correlation coefficient matrix can be used as a measure of the strength of relationship between the two time
series: values close to zero indicate stronger correlation between measured and clear sky GHI. Thus, Polo et al. (2009)
classify a period as clear if the determinant is lower than a certain threshold value (0.005 is suggested, which we
adopt).

We compare classifications from our logistic regression model with Polo et al. (2009) and Reno and Hansen (2016) by
training all three on data from Eugene, OR during the years 2011-2013, and validating on 2010. Table 6 contains compar-
isons of summary statistics from each classifier. Accuracy describes how often the classifier is correct. Specificity shows
true negative rate while sensitivity represents true positive rate. The proposed logistic model substantially outperforms
both ad hoc models in terms of accuracy and specificity, but tends to underpredict true clear days in favor of non-clear
days.
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TABLE 6 Validation statistics for clear interval classification rules of (Polo et al., 2009; Reno & Hansen, 2016) and the proposed logistic
regression model

Method Accuracy Sensitivity Specificity Pos. pred value Neg. pred value
Polo 0.72 0.98 0.70 0.27 0.99
Reno 0.68 0.99 0.64 0.24 0.99
Logistic 0.87 0.88 0.86 042 0.98

Note: Bold values indicate the best performance for a particular statistic.

TABLE 7 The averaged likelihood information using MA(q)

q 1 2 3 4 5 6
Likelihood 1243 1569 3422 4251 5695 5702
4.2.2 | Comparison with a nonstationary Gaussian moving average model

Here we compare our model against a more traditional nonstationary Gaussian moving average time series model to
motivate the importance of modeling the heavy-tailedness of the innovations. A gth-order moving average process is
defined by

£ = o) + 010t —1) + - - - + O400(t — q), 12)

where £(-) and w(-) are standardized residuals and mean zero unit variance white noises, respectively, while {6; }?zl are
moving average coefficients. To fairly mimic our nonstationary approach, we generalize (12) to

&t d) = w(t) + Ik, Dot = 1) + - - - + 0Tk, Do(t — q), (13)

for some fixed q and where ¢ is in 30 min interval I.

We estimate and parameterize (13) as follows. Recall that in our new model’s estimation scheme, the standardized
residuals are first calculated as &(t, d) = (t,d)/6(t, d) and grouped into interval-localized vectors of residuals E(Iy., d) for
interval I.. To estimate the parameters of model (13) we first estimate interval-dependent coefficients 6, (I, d), ... , 03I, d)
by maximum likelihood using &Iy, d), and assuming samples from different years are independent. We explore differ-
ent possible model complexities by comparing likelihood values. Table 7 contains the likelihood value averaged over all
30-min time intervals using moving average models estimated by maximum likelihood with different ordersq =1, ..., 6.
Clearly, averaged likelihoods increase with g, but a point of diminishing returns is hit around g = 5; we thus adopt this
value and compare the proposed model against (13) for the case g = 5.

With interval-dependent coefficients varying across time of the day and day of year, we fit a time-day surface model
for each 0;(Ix, d) as a linear function of the form

. [ 2xk . (2nd . [ 27k . 2nd
o+ wisin | — + 6; +ypsin (| — + 6; +yizsin | — + 6; sin | — + 6; s 14
Yio T Vi1 < 48 ll> Yi2 < 365 12) Vi3 < 48 11> < 365 12> ( )

where i, Wi1, Wiz, Wi are coefficients for each parameter and 6;, 6;; are phase shifts. These surface parameters are esti-
mated by minimizing a sum of squares difference between the prior interval-dependent moving average coefficients and
the modeloverk =1,...,48andd =1, ..., 365.

Using both the proposed model, and the nonstationary Gaussian MA(5) model, we simulate GHI Y(t,d) for the
year 2010, and compare the downscaled distribution coverage intervals, a critical quantity in probabilistic resource
assessment (Zhang et al., 2015). To examine calibration of the proposed model, empirical coverage against nominal
confidence levels based on 1000 downscaled ensembles are calculated. Table 8 contains the corresponding average
coverage probabilities at different nominal levels. The proposed model has better coverage at nearly all nominal lev-
els, with slight overdispersion above the 90%. The mean squared error of empirical-to-nominal coverages is 0.04
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TABLE 8 Average coverage probabilities at different nominal levels validating at Eugene, OR in 2010 based on 1000
downscaled ensembles

Nominal levels (%)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95
MA(5) 33 6.7 10.0 150 20.0 25.0 30.0 33.3 383 433 50.0 55.0 61.7 66.7 71.7 76.7 83.3 90.0 95.0
Proposed 4.8 9.6 11.7 16.7 21.7 26.7 32.6 38.7 453 493 543 585 650 70.0 75.0 80.0 86.7 91.5 97.5

Note: Bold values indicate closest to nominal coverage.
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FIGURE 4 Empirical (black dot) and model (red dot) autocorrelations with 95% confidence interval (grey band) on GHI at 1 min time
resolution split by time of day on a representative day for summer (June 20) at Eugene, OR. Columns indicate examples of 30 min time
intervals for a representative morning (9:00 a.m.-9:30 a.m.), noon (12:00 p.m.-12:29 p.m.), and afternoon half-hour (3:00 p.m.-3:29 p.m.)

for the MA(5) model, and 0.01 for the proposed model, indicating substantially better coverage performance on
average.

4.3 | Autocorrelation and coverage properties

We now break out validation of the proposed model by time of day and day of year to show that it is necessary to consider
both diurnal and seasonal variations. Here we show representative results based on a summer day. Figure 4 shows rep-
resentative results of empirical and model autocorrelations on irradiance split by time of day on a representative day in
summer (June 20) at Eugene, OR. The representative half-hour time periods for time of day are 9:00 a.m.-9:30 a.m. (morn-
ing), 12:00 p.m.-12:29 p.m. (noon), and 3:30 p.m.-3:29 p.m. (afternoon). First, apparent diurnal variability in temporal
structure is present. The model not only captures general trends, but also the important correlations at the first few lags,
which implies that our proposed method adequately adapts to diurnal variation. The 95% confidence interval shows good
coverage of the empirical autocorrelations with only a slight overestimation of high-lag autocorrelations in the afternoon.

Figure 5 contains reliability plots split out by time of day and season for three locations with different climates through-
out the US. Using the downscaling framework in Section 3, we demonstrate the value of our method for two additional
case studies at locations Boulder, CO and Penn State University, PA. The training period and testing period for both loca-
tions are summarized in Table 1. Each reliability plot contains boxplots of empirical coverage against nominal coverage;
a perfectly calibrated simulation would follow the identity line. Each coverage percentage is based on 1000 downscaled
ensembles, which is repeated 100 times as represented by the boxplot. As can be seen from Figure 5, the median of each
boxplot is generally close to the identity line, with slight underdispersion in winter. Such plots indicate that our model is
well calibrated, both at different times of day, but also in different seasons. As a final validation, we consider the marginal
probability density function (pdf) of GHI in Eugene, OR for the year 2010, shown in Figure 6. This figure contains kernel
smoothed estimates of empirical GHI, and GHI based on a single trajectory from the proposed model. Our model seems to
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FIGURE 6 Probability density distribution of GHI over Eugene’s simulated and in situ data in 2010

accurately reproduce the general behavior of the empirical pdf, but moves some probability from lower values to slightly
higher values. The drop around GHI= 900 is due to the constraint of maximal possible GHI during the sunniest months
in summer, which is also captured by the model.

4.4 | Uncertainty quantification

Our main interest is in developing a model that can appropriately identify and capture dependencies and nonstationarities
of irradiance processes. One component to validation is a detailed quantification of parametric uncertainty; for instance,
all parameters in Section 3 are uncertain. We adopt a bootstrap procedure to estimate parametric uncertainty; however, in
order to maintain the temporal dependency structure, we cannot sample the data independently. Thus we adopt a moving
block bootstrap (MBB) method. The MBB method was proposed by Kiinsch (1989). Instead of taking random observations
from the initial sample like the bootstrap process for independent data, the MBB samples blocks and concatenates them.
Therefore, the time series structure of original data is preserved within each particular block of data.

We apply the MBB for estimation of parameters in Section 3. Recall that we have three-year period of training data and
here we form the blocks by choosing n consecutive days of data. We first randomly choose a start-point s from U(1, 1065)
and then n is then sampled from U(30,1095 — s). So that the length of the blocks at least covers one month of data.
We generate 1000 bootstrap resamples and perform our estimation procedure. Due to the large number of parameters
included in our model, we illustrate this assessment of parametric uncertainty with the white noise model parameters
based on our empirical training data and 1000 sampled blocks in Table 9, respectively. Here w; and s; denotes weights
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TABLE 9 Estimation of parameters in white noise model using empirical training data and 1000 sampled blocks, respectively

wy w, 81 L))
Empirical 0.8013 0.1990 0.7450 0.1668
MBB 0.8138 (0.0602) 0.1880 (0.0165) 0.7580 (0.0530) 0.1528 (0.0225)

Note: Standard errors are in parentheses.

and scales for the ith component of Laplace mixtures where i = 1, 2. Standard errors with respect to sampled blocks are
in parentheses. The results show that the estimation of the parameters based on 1000 sampled blocks is consistent with
what we have based on our original training data.

5 | CONCLUSIONS AND FUTURE WORK

We have presented a postprocessing method that downscales satellite-based estimates of GHI from 30 min snapshots to 1
min time resolution. The model enables the accounting for both seasonal and temporal variability. Such high resolution
data is important for renewable energy integration studies and grid operational management. Overall, the proposed down-
scaling model is shown to appropriately capture variability and distributional characteristics at higher time frequency
than is available in typical satellite-based products. The method exhibits good statistical calibration at most nominal levels.
The success of our model is attributable to both the nonstationary covariance structure and non-Gaussian noise driving
the moving average model.

Future work might consider extending this method to spatially correlated fields of irradiance: spatial consistency is an
important factor that affects how implied photovoltaic variability smooths and aggregates across geographical regions.
Extension to the space-time setting is a natural next step that we are currently exploring, but unfortunately access to high
quality high resolution solar irradiance data is highly limited, with most datasets being proprietary.
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