2021 58th ACM/IEEE Design Automation Conference (DAC) | 978-1-6654-3274-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/DAC18074.2021.9586096

Max-PIM: Fast and Efficient Max/Min Searching in
DRAM

Fan Zhang

School of Electrical, Computer

and Energy Engineering

Arizona State University

Tempe, USA
fzhang95 @asu.edu
Abstract—Recently, in-DRAM computing is becoming one
promising technique to address the notorious ‘memory-wall’
issue for big data processing. In this work, for the first time,
we propose a novel ‘Min/Max-in-memory’ algorithm based on
iterative XNOR bit-wise comparison, which supports parallel in-
memory searching for minimum and maximum of bulk data
stored in DRAM as unsigned & signed integers, fixed-point
and floating numbers. We then develop a new processing-in-
DRAM architecture, called Max-PIM, that supports complete
bit-wise Boolean logic and beyond. Differentiating from prior
works, Max-PIM is optimized with one-cycle fast XNOR logic-
in-DRAM operation and in-memory data transpose, which are
heavily used and keys to accelerate the proposed Min/Max-in-
memory algorithm efficiently. Extensive experiments of utilizing
Max-PIM in big data sorting and graph processing applications
show that it could speed up “50X and~1000X than GPU and
CPU, while only consuming 10% and 1% energy, respectively.
Moreover, comparing with recent representative In-DRAM com-
puting platforms, i.e., Ambit [1], DRISA [2], our design could
speed up “3X - 10X.
Index Terms—In-DRAM Computing, IMC, PIM, Min/Max

I. INTRODUCTION

In the era of big data, min/max searching from bulk
data array is one of the most important and widely used
fundamental operation in many data-intensive applications,
including but not limited to sorting, ranking, bioinformatics,
data mining, graph processing, route planning, etc. [3]-[5].
For example, online social and news media need real-time
ranking to evaluate the hottest information to show on their
website, which requires fast min/max searching from massive
data. Another example: min/max searching is the most time-
consuming computation (over 40%) in many large scale graph
processing algorithms, such as popular Dijkstra’s algorithm to
find the shortest path, Prim’s algorithm to find the minimum
spanning tree, maximum flow, or to solve the famous traveling
salesman problem. In those widely used “best-first algorithm”,
min/max searching operation is called for every node to find
the minimum/maximum value in the large scale graph.

However, implementing fast and efficient min/max search-
ing for big data faces significant challenges in conventional
computer system from both memory architecture and comput-
ing algorithm. (1) From memory architecture, the well-known

This work is supported in part by the National Science Foundation under
Grant No.2005209, No.2003749

Shaahin Angizi
School of Electrical, Computer
and Energy Engineering
Arizona State University
Tempe, USA
sangizi @asu.edu

Deliang Fan
School of Electrical, Computer
and Energy Engineering
Arizona State University
Tempe, USA
dfan@asu.edu

‘memory-wall’ challenge is causing issues, like long off-chip
memory access latency, data congestion due to limited memory
bandwidth, two orders higher energy consumption in data
movement than data processing, etc. [6]. (2) From computing
algorithm, the min/max searching is in general comparison-
based algorithm, where CPU needs to compare every element
serially for colossal raw data. Such computing property makes
it demand ultra-high computing resource and power.

Above challenges naturally motivate researchers to explore
implementing fast and efficient min/max searching operations
within memory where bulk data is stored, to greatly min-
imize power-hungry and low speed massive off-chip data
communication, aligning with the emerging ‘processing-in-
memory’ (PIM) concept. Among various types of PIM plat-
forms, ‘in-DRAM computing’ platform is a natural choice
for this problem due to its large memory capacity to store
bulk data and off-chip data transfer reduction [1], [2], [7], [8].
However, if directly deploying min/max searching in the most
popular existing in-DRAM computing platforms, e.g. Ambit
[1] or DRISA [2], it faces two challenges. (1) First, unlike
general-purpose CPU/GPU providing complex and complete
computing instructions, those in-DRAM computing platform
only supports bulk bit-wise Boolean logic and very limited
instructions, which requires a new design of ‘min/max-in-
memory’ algorithm to make it compatible with and fully
leverage the in-DRAM computing hardware supported opera-
tions. (2) Second, from logic computing perspective, min/max
searching function naturally relies on X(N)OR-based com-
parison operations. Although existing in-DRAM computing
platforms could provide such function, their in-memory-logic
designs are mainly depending on charge sharing based major-
ity gate, which requires multiple cycles to implement X(N)OR
logic [1], [2]. For example, Ambit [1] requires seven cycles
to realize X(N)OR logic. It will take high cost in power and
time due to large intermediate data write back, which reduces
the benefits of in-memory computing.

To address above two challenges, in this work, we follow a
principle of software & hardware co-design to develop a par-
allel and efficient in-DRAM computing platform, called Max-
PIM, where the main technical contributions are summarized
below:

(1) We first propose a novel Min/Max-in-memory searching
algorithm based on iterative XNOR bit-wise parallel compar-
ison, which supports in-memory searching for minimum and
maximum of bulk data stored in DRAM as unsigned & signed

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 211

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 20:00:16 UTC from IEEE Xplore. Restrictions apply.

integers, fixed-point and floating numbers.
(2) A new in-DRAM computing circuit and architecture,
termed as Max-PIM, is then proposed to support complete
bulk bit-wise Boolean logic and optimized for our pro-
posed min/max-in-memory algorithm. Differentiating from
prior works, the novelty comes from a new micro-architecture
enabling an efficient in-memory data-transposing as well as
a new in-DRAM-logic circuit to perform computationally-
intensive XNOR logic operation in only one cycle.
(3) Detailed cross-layer experiments in a real-world dataset
are conducted to demonstrate the efficiency of our design
comparing with other state-of-the-art in-DRAM computing
platforms (e.g. Ambit [1], DRISA [2]), CPU and GPU.
(4) Sorting and Dijkstra’s algorithm in graph processing are
used as study cases to demonstrate the improvement of Max-
PIM.

II. PRELIMINARY

The Rowclone [9], Ambit [1] and DRISA [2] are among the
most recognized in-DRAM computing designs with bulk bit-
wise in-DRAM-logic operations. We will discuss their design
and compare them with ours in later experiments.

Rowclone [9] presents a high-speed (< 100ns) in-memory
copy operation within DRAM sub-arrays as opposed to ~ 1us
traditional operation in Von-Neumann computing architecture.
RowClone-Fast Parallel Mode (FPM) [9] essentially indicates
an in-memory copying technique that does not require to
transmit data back and forth to the processing units. In this
technique, a multi-kilo byte in-memory copy operation can
be implemented by issuing two back-to-back ACTIVATE
commands to the source and destination DRAM rows without
PRECHARGE command in between [9].

Ambit [1] focuses on performing bit-wise logic operations
in DRAM with minor modification. The basic AND, OR
functions are implemented through a 3-input charge sharing
based majority gates, called Triple Row Activation (TRA) in
memory, by simultaneously sending the ACTIVATE command
to three rows and then a PRECHARGE command. NOT func-
tion is also implemented considering two rows of Dual-Contact
Cells (DCC). Ambit incurs 1% area over commodity DRAM
chip [1]. But, it suffers from high-latency multi-cycle logic
operations to realize XOR2/XNOR2 on top of TRA.

DRISA [2] is a re-configurable in-DRAM computing plat-
form with different variations. DRISA not only has the ability
to perform bit-wise logic operation, but also shows the ability
to do arithmetical operations, such as ADD, MUL, and vector-
wise inner-product. DRISA-3T1C triples the DRAM cell area
to enable functionally complete NOR2 function on read bit-
line. However, it also requires multi-cycle operations to im-
plement XOR2/XNOR?2 operation. DRISA-ITIC is designed
to execute one particular logic function via upgrading the
sense amplifier (SA) unit by adding a CMOS logic gate in
conjunction with a latch. Therefore, a single function (here,
XNOR) could be implemented in two consecutive cycles with
add-on CMOS circuitry. So, to support such a great variety
of operations, DRISA requires much more modifications on
standard DRAM architecture than Ambit.

III. PROPOSED MAX-PIM
A. Min/Max-in-Memory Algorithm

As discussed in [10], [11], finding the minimum/maximum
(Min/Max) number equals to finding the last/first ranked num-
ber in a given list. To fully leverage the parallel bit-wise in-
DRAM computing capability due to parallel sensing of multi-
ple bit-lines [1], [2], [7], our core idea of developing min/max-
in-memory algorithm is to convert traditional software-based
sequential comparison operations to XNOR based bit-wise
parallel comparison for all the data stored in the same memory
array. Note that, the algorithm we discuss in this section
refers to min/max function within one memory array. A large
dataset will be first partitioned into multiple memory arrays
to get memory-array level min/max in parallel, then an overall
min/max will be identified similarly. Algorithm-1 shows the
pseudo code of our proposed bit-wise parallel Min/Max-in-
memory algorithm. It mainly leverages the property that each
bit in the binary format has different significance, and parallel
in-DRAM-XNOR logic based comparison operation could
gradually exclude smaller (or larger) data from MSB (Most
Significant Bit) to LSB (Least Significant Bit). Note that, our
algorithm has a constant searching time determined by the bit
length of numbers. It is compatible with unsigned and signed
integers, fixed-point numbers and floating numbers, which will
be discussed in separate sub-sections below.

Algorithm 1: Parallel Bit-wise Min/Max-in-Memory

Input : Array X has M elements, where each element contains N bits.

Result: Returning the Min/Max value in given array.

Storing the input array into 2D bit-array(NxM size) where each element in X
occupies one column;

Matching_Vector = ones(1,M);

if find min then

Matching_Sign_Bit=1 ; > For signed number, the sign bit
and the rest have different XNOR operands

Matching_Bit = 0;

-

PRI

else
Matching_Sign_Bit=0;
Matching_Bit = 1;

© % 9 w;m

end

10 if unsigned number then

1 Matching_Sign_Bit = Matching_bit; ; > For unsigned bit, we
do not need to distinguish sign bit and others.

12 end

13 while current_bit_position < N do

> Go through every bit from MSB to LSB.;

14 if current_bit_position == 0 then

15 ‘ Matching_Result = XNOR(current_bit,Matching_Sign_Bit);

16 else

17 ‘ Matching_Result = XNOR(current_bit,Matching_Bit);
18 end

19 if Matching_Result == All_Zeros then

20 | Continue;

21 else

22 \ Matching_Vector = Matching_Result;

23 end

24 end

1) Unsigned Integer: Fig.l gives an example to find the
minimum value in a 4-bit unsigned int array. Since 4 bits are
used to represent unsigned value, 4 iterations are required to
compute the index of minimum value(s). First, it initializes
a matching vector with all ‘1’s, whose length equals to the
number of data in the array, and this matching vector will
be updated with the outputs of parallel XNOR logic in every

212

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 20:00:16 UTC from IEEE Xplore. Restrictions apply.

Decimal bity bit, bit; bity

bits bit, bit; bity

7 Update N
;

[s=[[A0IE [[eI[EIE] [of
10 = [{I[I[[0] [9] [0]
[7 =[O [[o]
6= IFEI0 Ole] [o
nitia Update Step T XNOR Matching Step 2 XNOR No
Matching Result /_\Veclor Result Update
vecer LIEEE ™0
oot | 0] EHetERfet- [0l
Minimum Value| @ [][][]D @ @
ryienienliny
[RA|EEjuE]

=
Matching XNOR Ma(chmg XNOR Matching
Vector Resut °'¢ b”’ m‘ ol "Vector Resut O bllz bm % Vector

Fig. 1. Tllustration of pdrallel b1t—w1se operations to ﬁnd the minimum value
of a unsigned integer array.

iteration except when the parallel XNOR outputs are all ‘0’s
(line 18 to 22 in algorithm-1). Each element in the matching
vector corresponds to one number in the array, where ‘1’
indicates this number will be compared in the following
iteration, while ‘0’ indicates the corresponding number will be
excluded. Starting from MSB, it applies parallel XNOR logic
to MSB of every number with constant ‘0’ for min function
(XNOR with constant ‘1’ for max function), corresponding
to line 3 to 11 in algorithm-1. Next, the matching vector value
of ‘1111" is updated with current iteration parallel XNOR
output-‘1011°, since XNOR outputs are not all ‘0’s (line
18 to 22). As shown in Fig.1, in the second iteration, the
new matching vector value-‘1011" indicates that the second
row (marked as ‘0’) should be excluded from XNOR based
comparison operation, and this position will remain as ‘0’
in all following iterations. The next iteration will compute
parallel XNOR between the second MSBs of non-excluded
numbers and constant ‘0’ (line 16). In this example, in the
second iteration, after computing XNOR between the rest bits-
‘111" with constant ‘0’, the outputs are all ‘0’. Based on
our algorithm-1 line-18, it will skip the update of matching
vector of this iteration and continue to next iteration. Similar
process will continue based on the same rule until LSB. As
our example shown in Fig.1, when the comparison in LSBs is
finished, the position(s) remained as ‘1’ in the matching vector
is(are) the identified minimum number(s).

Theoretically, we could stop the process when there is
only one ‘1’ left in the matching vector (e.g. iteration-3 in
our example) to save searching time. However, our target
in this work is that all the operations in the algorithm-1
will be implemented by a corresponding circuit module in
our proposed Max-PIM platform. Designing such early stop
detection will incur extra overhead to the hardware. Thus, we
choose to simplify the hardware design with no early stop,
leading to a constant searching time determined by the bit
representation length.

2) Signed Integer: For signed numbers in the min/max-in-
memory algorithm, the basic procedure is the same as the
above discussed unsigned numbers except sign bit. In signed
number, the first bit represents the sign, where ‘1’ and ‘0’
indicate negative and positive, respectively. When for min (or
max) function, the algorithm will first check the sign bit. If
negative (or positive) values are found, it will exclude all
positive (or negative) numbers for the following computation.
To do so, as shown in line-3 to -8 in algorithm-1, a parallel

Decimal Sign bit, bit, bit, 7 Update N Sign bit, bit, bit,
1.25 » [ol[M[0l[A [o] [o]
I 125 [0 IIIEII
[o]
i e e f\
pdate
veeer ol fotHtfeti-[ol iEfetEd—[o]
Index of Ql0lelnl o HHeIA
Minimum Value; @ [][-”_-”? @ ['_]EE @
O] [M0ME G o GIGIRIE
Matching XNOR Sign bit, bit, bit, Matching XNOR g bit, bit, bit, Matching
Vector Result Vector Result Vector
Step 4 Step 3

Fig. 2. Finding the minimum value from a signed fixed point number array.
XNOR between sign bits with constant-‘0’ (or ‘1’) for max (or
min) function is needed. The rest procedure will be similar.

3) Fixed-Point Number: Fig. 2 provides an example to
implement min-in-memory function for a group of four 4-bit
fix numbers. To start, matching vector will be initialized with
all “1’s. Then, XNOR logic is applied to all sign bits with ‘1°,
where the matching vectors will be updated based on XNOR
outputs to exclude any positive number for next iterations. The
rest 3 iterations are similar to the above discussed unsigned
integer number process. In this specific example, it can be
seen that if there are multiple minimum values in the array,
our final matching vector will also indicate with multiple ‘1’s.

4) Floating Number: Our algorithm is also compatible with
floating numbers. For example, the IEEE754 [12] floating
number representation is a popular floating-point arithmetic
standard. It contains three parts: signed bit, exponent bits, and
significand precision. According to the IEEE754, the binary
floating number may take 16 bits to 256 bits to represent
one floating number. Taking the 64 bit floating number as an
example, the representation (—1)*9" x (14372, bsy;27%) x
2071023 can be written as (—1)%9" x 2671023 x| fraction.
That means the bits in the exponent parts have higher signifi-
cance than the bits in the fraction parts (significand precision).
And the bits within exponent parts and significand precision
obey the same rule as unsigned integer number, where the
bit significance decreases along bit position. Thanks to the bit
organization that exponent is on the left side of the fraction
part in the endianness(little-endian) sequencing, our proposed
Min/Max searching function can be directly applied to the
floating number without modification.

B. Max-PIM Logic Circuit and Architecture

It can be summarized that several important functions are re-
quired to be implemented efficiently for in-DRAM computing
platform to fully support above algorithm: 1) transpose data
copy; 2) fast and parallel in-DRAM XNOR logic; 3) matching
vector update; 4) identified min/max index decode.

The overall architecture diagram of our proposed Max-
PIM is given in Fig. 3. It keeps the original memory hier-
archy by dividing every DRAM chip into multiple banks that
share I/O and buffers. Each bank contains multiple normal
memory matrices (MATSs) consisting of typical DRAM sub-
arrays and a single computational array shown in blue. The
computational array is developed similar as Ambit [1] [13],
with all Ambit supported logic and instructions, but enhanced
to support a new Dual Row Activation (DRA) mechanism to

213

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 20:00:16 UTC from IEEE Xplore. Restrictions apply.

,,,,,,,,,,,,,,,,, Bitlineo Bitlines
;’ wordlineo = high-t§ — low-vs— normal-s| Max-PIM supported functions
! DCC,, 1 SN o3| _OPs.__enw _en init
H . \ oul
Chi Computational Array | _* ‘F_'__,_—LTl_ 0& vy Bl R0 Mo
p | Data_ 0§ oo ourh, (NOR2 1 0 Yes
s N I wordline — >4 . W\ (NAND2 1 0 Yes
------ ; PR
/ o eCO‘i_ /'q; -] T_%E—‘ 0.2 ‘%"V"/’/z‘ \ {NOT/buffer 1 0 Yes
/ K . N st X(N)OR2 0 1 N
(a2 Bk (@ Aotef] | /| eep, i o
\ | {@ } Rbws | d-wordlineo d-wordline i
H R . B p——
[HE 4 ! T |
% L } =() ./ ”':" ” ﬂ% i‘ i 6 ﬂ% I} =T
7 | Data Rqws | pen Fi: F Al
! | 1 1 = =
| .(356) & i i N5 S
S ; L. PoE N
: U Jaword 1 Txwor |_Bitime
i - /‘} ;’ Latchy Latch; _} v;Latch,en
| ! Latch_en !
! N 1 |
((«575)] SA YY) | -1 | Priority Encoder | i
\ _(_Peripheral) i I |
! Index of the Min/Max i
(a) () (©)

Fig. 3. (a) The architecture diagram of our proposed hardware design, (b) The c
based XNOR logic and peripheral circuits for other operations.

BL255 BL1 BLO Bl Bit]023 &

>, | WL1023 _:,L._) o2 2 Data255| LB | 3

© T T 2

£ | 1TDRAM : : | &

§ L — Data1 %’»

g — —F = : Data0} MSB g

B iWLO] T 2
T T | T |

2 e S DCC :1:(‘>

. Priority Encoder 2

Fig. 4. Single-cycle transpose copy operation.

perform XNOR operation in addition to the typical Triple Row
Activation (TRA). Each computational array consists of: two
row decoders (one for data rows and one for all 1/0 rows),
one column decoder (to enable transpose copy), modified logic
sense-amplifier (to support XNOR logic) with Typical Sense
Amplifier (TSA, for memory sensing and charge sharing based
majority gate), one latch per bit-line (to store the matching
vector and control the logic-SA), pseudo-OR gate (to detect
all-zero XNOR outputs), one priority encoder (to return final
index of identified min/max locations).

1) Transpose Copy: Due to DRAM’s destructive read prop-
erty, any in-DRAM computing needs to make a copy of
operand data to perform in-DRAM-logic [1], [2], [7]. More
importantly, based on our min/max-in-memory algorithm, one
important operation of each iteration is that we need to
implement parallel XNOR logic between the bits in the same
location of all numbers with constant-‘1’/‘0’, which brings two
requirements for in-DRAM computing hardware: 1) for single
XNOR logic, both operands (i.e. one specific bit from one
number and constant-‘1’/‘0’) need to be stored in the same
bit-line based on the circuit design of in-DRAM-logic that
will be explained in next paragraph; 2) to fully leverage the
parallelism of in-DRAM computing, similar as prior works,
multiple logic-SAs could be simultaneously activated, which
is determined by the size of memory array. Therefore, to
conclude, in the computational memory array, the binary data
of a number needs to be stored along the bit-line direction,
not along the traditional word-line direction, which requires a
transpose copy from data memory to computational memory.

To support the transpose copy operation, we adopt the
similar dual-contact cell (DCC) design (Fig.3) as [1]. In DCC,
one transistor shares the gate with other transistors on the same

omputational sub-array with components, (c) The proposed dual-row activation

row to form the normal row-wise word-line. Another transistor
shares the gate with other transistors on the same column to
form the column-wise write word-line, which is controlled
by the column decoder. The drain and source of the second
transistor connect to the cell capacitor and the other normal
DRAM array, respectively (the Data port in Fig. 3(c)). Copying
operand data from data storage array to computational array
requires two steps: (1) reading entire word-line from the data
storage array and (2) writing them to one bit-line (column)
of the computational array with the help of DCC and column
decoder. Fig. 4 gives a demonstration for this transpose copy.

2) Parallel XNOR logic in one cycle: Max-PIM supports
all traditional charge sharing based majority gate logic and
optimize heavily used XNOR logic with only one cycle.
In our min/max-in-memory algorithm, since one operand of
XNOR comes from one bit in specific location of one number
in the array, and the other one is constant-‘1’ or ‘0’ for
min or max function, respectively, we reserve several rows
in the computational array for storing such constant bits.
Traditionally, due to the destructive read in DRAM, we have
to wait for data refresh of all ones/zeros rows after every
computation. Thanks to the DCC cell design, which separates
write and read, we could only use 2 rows for all ‘1’s and
2 rows for all ‘0’s without introducing extra refresh time by
refreshing one row while using the other row for XNOR logic.
For the all ‘1/0’ rows, we connect the data port of DCC cells
to VDD/GND.

Regarding in-DRAM XNOR logic circuit, it is based on the
popular Dual-Row Activation scheme [7]. First, the bit-lines
will be pre-charged to V? D Then, two word-lines storing
the operand data are activated simultaneously, which leads
to charge sharing between the two cells in the same bit-
line and generates different sensing voltage at the associated
logic-sense-amplifier (logic-SA) circuit depending on different
values stored in these two cells. Then this sensed voltage will
be compared with different reference voltages to implement
different logic functions. In this work, we present a logic-SA
circuit design that could implement XNOR logic in only one
cycle as shown in Fig.3(c), where typically multiple cycles
are needed in most prior works [1], [2]. In the circuit, the

214

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 20:00:16 UTC from IEEE Xplore. Restrictions apply.

plus sign marked inverter has higher threshold voltage, and
the minus sign marked inverter has lower threshold voltage
than normal inverter. It is designed as, for the high threshold
inverter, the output goes to zero only when both activated
cells have high voltage (storing ‘11°), implementing NAND
function. The low threshold inverter works on the opposite
situation that it only generates a high output when both cells
have low voltage (storing ‘00’), implementing NOR function.
Therefore, based on XNOR = NAND(OR, NAND), the XNOR
logic is implemented by adding an inverter and NAND logic
circuit following the two skewed inverter as shown in Fig.3(c).

3) Matching Vector Update: As described in our algorithm-
1, matching vector needs to be updated in every searching
iteration, except all-zero XNOR outputs. To avoid writing back
the XNOR outputs to memory for matching vector update,
we incorporate latches in the logic-SA circuits as shown in
Fig.3(c) to store and update matching vector. Moreover, to
exclude update in case of all-zero XNOR outputs, one all-
zero detection unit circuit is designed based on a pseudo OR
gate (dotted box of Fig.3(c)) to control the matching vector
latch update.

4) Identified Min/Max decode: When the iterative XNOR
comparison is done, the final matching vector indicates the
indices/ location(s) of found min/max values. Max-PIM is able
to return the identified min/max data address to user through
a priority encoder.

IV. EXPERIMENTS AND RESULTS
A. Experiment Setup

In our experiments, we set each bank has 16 MATs and
each MAT consists of 2 sub-arrays with size of 1024 x256.
Each bank contains one computational array shared by all
the sub-arrays within the same bank. The computational array
size is 260x 1024, where 256 rows are used to store data
and 4 reserved rows store constant ‘0/1°. Thus, one bank
stores ~1MB data. Considering 1GB DRAM capacity, there
are 1024 banks for the whole DRAM. As the competitors, we
built Ambit and DRISA platforms with the same organization
as Max-PIM, but with their own in-DRAM logic circuits.
For a fair comparison, all designs use DCC cells for entire
computational array to support transpose write.

To evaluate the performance, we use the similar cross-
layer evaluation framework in [7], starting from circuit-level
evaluation with TSMC 65nm technology. We use the same
process node to re-implement all counterpart designs. The
memory peripherals are simulated using the same technology
library in Synopsys Design Compiler. We then feed the cir-
cuit simulation results into architecture-level tools. We then
extensively modify CACTI7.0 [14] to extract the performance
results. An in-house mapping algorithm is then developed on
top of architecture level to parse the input vector coming from
various data-sets and evaluate the performance.

B. Comparing with other in-DRAM computing platforms

We compare Max-PIM with two start-of-the-art in-DRAM
computing platforms: Ambit [1] and DRISA [2]. To conduct

x10*

12
g EDCC array
=
= [CIsA+Latch DRISA(3TIC) | # cycles =4
g
: DRISA(ITIC) | # cycles =2
=
5 Ambit | # cycles =7
=}
3
k] Max-PIM | # cycles = 1
B o ~ 0 25 50 75 100 125 150
PN et 1O \O) X
(a) o~ P;) Y\\SN\;Y\\‘éP‘O‘ ® power consumption (mW)

Fig. 5. (a) Area overhead. (b) Power consumption of a single computational

ma:,_\ 60‘ Il Data transpose [XNOR for all bits [_|Data transpose+XNOR ‘
© T T T T
2 s0f 8.5x] o
5" 40 - b
8 30+ b
5 fol1as N2'4X.]
oL h—mm
(a) Max-PIM Ambit DRISA(ITIC) DRISA(3TIC)
10000 ; — ~1980ndJ ——
= ~427nd
E£.1000 ¢ E
2 L]
%1) 100
= 10¢]
- 1
(b) Max-PIM Ambit DRISA(ITIC) DRISA(3TIC)

Fig. 6. (a) With the DCC and transpose write, data mapping is faster than the
computation. Max-PIM is much faster than other counterparts in computing
due to one-cycle XNOR design. (b) Max-PIM shows best energy efficiency
as well in min/max searching.

fair comparison in min/max searching, we re-implement those
designs with all required peripherals, including DCC array,
column decoder, multiple row decoder, pseudo OR gate, latch
(Matching vector), and priority encoder.

Fig. 5(a) shows the area overhead of a single computational
array. All the peripheral circuits required to support min/max-
in-memory algorithm is the same. The area difference comes
from different logic-SA circuit designs. It shows Max-PIM has
similar area overhead as Ambit and DRISA(1T1C) design, but
DRISA(3T1C) design has much larger area overhead. Fig.5(b)
provides the power comparison and cycles for XNOR logic.
The DRISA(ITIC) uses XNOR gate at the bottom of every
bit-line instead of leveraging the DRA to perform the XNOR,
requiring two cycles. Both Ambit and DRISA(3T1C) leverage
the multi-row activation to achieve the logic operations, such
as AND, OR, and NOT. Ambit needs up to 7 cycles for
XNOR. DRISA3TI1C) needs to do NOR 4 times and stores
back the intermediate data. The Max-PIM could implement
XNOR logic in only one cycle. It avoids intermediate data
write back compared with other designs, and thus greatly
reducing power and latency. Fig. 6 summarizes the distribution
and comparison of latency and energy for Min/Max searching
within one computational sub-array.

C. Min/Max searching in real word dataset

To evaluate the performance of our Max-PIM platform in
min/max searching in a real world dataset, we adopt a pop-
ular data-set T10I4D100K [15] containing 1010228 numbers,
where each number is represented as 256-bit unsigned integer
numbers stored in DRAM. We report the execution time and
energy consumption measurement in Fig.7 for different com-
puting platforms including Ambit, DRISA, CPU, GPU. For

215

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 20:00:16 UTC from IEEE Xplore. Restrictions apply.

all in-DRAM computing platforms, including our Max-PIM,
Ambit and DRISA, such large array cannot fit into a single
computational array, requiring necessary data partitioning. The
total 1010228 numbers are partitioned into 987 computational
sub-arrays, where each sub-array will compute in parallel to
return a local minimal number. Then, such local minimal
numbers will be wrote into another computational array to get
the global minimal number. For CPU&GPU evaluation, the re-
ported time is total execution time, including data loading from
main memory and processing. For energy estimation, similar
as DRISA [2], we scale down 50% of CPU&GPU average
power to exclude the power cost by cooling, voltage regulators,
etc. Among in-DRAM computing platforms, our Max-PIM
achieves the minimal latency and energy consumption. Max-
PIM could achieve ~50 -~1000x speed improvement, and at
least one order smaller energy consumption than GPU&CPU.

D. Applications in Sorting and Graph Processing

In this section, we utilize our Max-PIM in real-word ap-
plications of data sorting and Dijkstra’s algorithm in graph
processing to further evaluate the performance.

For the sorting evaluation, the dataset is the same as the
one used in section IV-C. Leveraging the parallel min/max
searching provided by Max-PIM, we adopt the min/max sort-
ing algorithm, where each round will find the min or max to
iteratively sort the data. We report the performance of different
in-DRAM computing platforms and software implementation
in CPU in table I. It can be seen that all in-DRAM computing
platforms outperform software implementation in CPU by
three orders mainly due to save of large amount of off-
chip data movement and ultra-parallel processing capability.
Aligning with prior experiments in single min/max searching,
our Max-PIM achieves the best performance compared with
other in-DRAM computing platforms due to its optimized
XNOR and peripheral circuits.

Dijkstra’s algorithm [16] is a popular and widely used
algorithm in graph processing to find the shortest path in
large graph, where min/max searching dominates overall com-
putation. Three different dataset are used here: geom has
7343 nodes, foldoc has 13356 nodes and EAT SR has 23219
nodes [17]. Table II reports the Min/Max searching speed
improvement over CPU for different in-DRAM computing
platforms. Similar performance improvement trend could be

TABLE I
SORTING PERFORMANCE
. DRISA | DRISA
Name Max-PIM | Ambit (TIC) | (BTIC) CPU
Time(sec) 6.49 55.6 16.83 47.86 9888.05
TABLE II

MIN/MAX SEARCHING SPEEDUP OVER CPU IN DIJKSTRA’S ALGORITHM

Name geom(7343 nodes) | foldoc(13356) | EAT_SR(23219)
Max-PIM 91X 167.74X 466.29X
Ambit 9.78X 18.68X 53.49X
DRISA(ITIC) 34.62X 64.03X 179.07X
DRISA(3TIC) 11.53X 21.84X 62.32X

again memory-wall becomes the bottleneck when dealing with

larger dataset.
V. CONCLUSION

In this work, we first propose a min/max-in-memory algo-
rithm to find the minimum/maximum of an array stored in
main memory. A DRAM based in-memory computing design,
named Max-PIM, is presented to support this algorithm with
massive parallelism and minimized data movement. Compar-
ing to other DRAM based in-memory computing designs,
CPU, and GPU platforms, Max-PIM’s software&hardware co-
design requires the shortest time and smallest energy for
an identical task. We have demonstrated that such proposed
Min/Max searching algorithm and hardware have great po-
tential to be applied in many applications, such as sorting,
ranking, graph processing, etc.

REFERENCES

[1] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in 2017 MICRO, 2017,
pp. 273-287.

[2] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in
2017 MICRO, 2017, pp. 288-301.

[3] R. V. Lebo, “Chromosome sorting and dna sequence localization,”
Cytometry: The Journal of the International Society for Analytical
Cytology, vol. 3, pp. 145-154, 1982.

[4] M. A. Ismail et al., “Multidimensional data clustering utilizing hybrid
search strategies,” Pattern recognition, vol. 22, pp. 75-89, 1989.

[5] L. Page et al., “The pagerank citation ranking: Bringing order to the
web.” Stanford InfoLab, Tech. Rep., 1999.

[6] A. Boroumand et al., “Google workloads for consumer devices: Miti-
gating data movement bottlenecks,” SIGPLAN Not., vol. 53, no. 2, p.
316-331, Mar. 2018.

[7] S. Angizi et al., “Redram: A reconfigurable processing-in-dram platform
for accelerating bulk bit-wise operations,” in 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2019.

[8] Q. Deng et al., “Dracc: a dram based accelerator for accurate cnn
inference,” in 2018 DAC, 2018, pp. 1-6.

[9] V. Seshadri et al., “Rowclone: fast and energy-efficient in-dram bulk
data copy and initialization,” in Micro, 2013, pp. 185-197.

observed. In general’ in-DRAM computing platforrn could [10] P-E. Danielssqn, “Getting the median faster,” Computer Graphics and
. Image Processing, vol. 17, no. 1, pp. 71 — 78, 1981.
all achieve one to two orders speed up than CPU and our [11] M. Vacca et al., “Logic-in-memory architecture for min/max search,” in
Max-PIM still outperforms all other in-DRAM computing 2018 ICECS, 2018, pp. 853-856.
platforms significantly. Meanwhile, it is also observed that [12] Wikipedia contributors, “leee 754 — Wikipedia, the free ency-
larger speed up is achieved for larger dataset, clearly proving clopedia, https://en‘w1l§1ped1a.org/w/mdex.php?tltle:IEEE_754&old1d=
’ 976446634, 2020, [Online; accessed 5-September-2020].
— - [13] S. Angizi and D. Fan, “Accelerating bulk bit-wise X(N)OR operation in
‘DExecutl"n time (y:s) Il Energy consumption (mj)‘ processing-in-dram platform,” CoRR, vol. abs/1904.05782, 2019.
GPU(1080Ti) ‘ ‘ ‘ ‘ [14] R. Balasubramonian et al., “Cacti 7: New tools for interconnect ex-
CPU(i7-8700) ploration in innovative off-chip memories,” ACM Trans. Archit. Code
DRISAGTIC) Optim., vol. 14, no. 2, Jun,_ 2017. _ _ o
DRISA(ITIC) [15] T10I4D100K dataset. [Onhncﬂ. Available: http://ﬁml.cs.helsmkl.ﬁ
Ambit [16] D. B. Johnson, “A note on dijkstra’s shortest path algorithm,” J. ACM,
Max-PIM vol. 20, no. 3, p. 385-388, Jul. 1973.
[17] T. A. Davis and Y. Hu, “The university of florida sparse matrix
107! 10° 10! 102 10° 104 collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.
Fig. 7. Min/Max searching performance of real dataset
216

Authorized licensed use limited to: ASU Library. Downloaded on August 11,2022 at 20:00:16 UTC from IEEE Xplore. Restrictions apply.

