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Abstract—Recently, in-DRAM computing is becoming one
promising technique to address the notorious ‘memory-wall’
issue for big data processing. In this work, for the first time,
we propose a novel ‘Min/Max-in-memory’ algorithm based on
iterative XNOR bit-wise comparison, which supports parallel in-
memory searching for minimum and maximum of bulk data
stored in DRAM as unsigned & signed integers, fixed-point
and floating numbers. We then develop a new processing-in-
DRAM architecture, called Max-PIM, that supports complete
bit-wise Boolean logic and beyond. Differentiating from prior
works, Max-PIM is optimized with one-cycle fast XNOR logic-
in-DRAM operation and in-memory data transpose, which are
heavily used and keys to accelerate the proposed Min/Max-in-
memory algorithm efficiently. Extensive experiments of utilizing
Max-PIM in big data sorting and graph processing applications
show that it could speed up ˜50X and˜1000X than GPU and
CPU, while only consuming 10% and 1% energy, respectively.
Moreover, comparing with recent representative In-DRAM com-
puting platforms, i.e., Ambit [1], DRISA [2], our design could
speed up ˜3X - 10X.

Index Terms—In-DRAM Computing, IMC, PIM, Min/Max

I. INTRODUCTION

In the era of big data, min/max searching from bulk

data array is one of the most important and widely used

fundamental operation in many data-intensive applications,

including but not limited to sorting, ranking, bioinformatics,

data mining, graph processing, route planning, etc. [3]–[5].

For example, online social and news media need real-time

ranking to evaluate the hottest information to show on their

website, which requires fast min/max searching from massive

data. Another example: min/max searching is the most time-

consuming computation (over 40%) in many large scale graph

processing algorithms, such as popular Dijkstra’s algorithm to

find the shortest path, Prim’s algorithm to find the minimum

spanning tree, maximum flow, or to solve the famous traveling

salesman problem. In those widely used “best-first algorithm”,

min/max searching operation is called for every node to find

the minimum/maximum value in the large scale graph.

However, implementing fast and efficient min/max search-

ing for big data faces significant challenges in conventional

computer system from both memory architecture and comput-

ing algorithm. (1) From memory architecture, the well-known

This work is supported in part by the National Science Foundation under
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‘memory-wall’ challenge is causing issues, like long off-chip

memory access latency, data congestion due to limited memory

bandwidth, two orders higher energy consumption in data

movement than data processing, etc. [6]. (2) From computing

algorithm, the min/max searching is in general comparison-

based algorithm, where CPU needs to compare every element

serially for colossal raw data. Such computing property makes

it demand ultra-high computing resource and power.

Above challenges naturally motivate researchers to explore

implementing fast and efficient min/max searching operations

within memory where bulk data is stored, to greatly min-

imize power-hungry and low speed massive off-chip data

communication, aligning with the emerging ‘processing-in-

memory’(PIM) concept. Among various types of PIM plat-

forms, ‘in-DRAM computing’ platform is a natural choice

for this problem due to its large memory capacity to store

bulk data and off-chip data transfer reduction [1], [2], [7], [8].

However, if directly deploying min/max searching in the most

popular existing in-DRAM computing platforms, e.g. Ambit

[1] or DRISA [2], it faces two challenges. (1) First, unlike

general-purpose CPU/GPU providing complex and complete

computing instructions, those in-DRAM computing platform

only supports bulk bit-wise Boolean logic and very limited

instructions, which requires a new design of ‘min/max-in-

memory’ algorithm to make it compatible with and fully

leverage the in-DRAM computing hardware supported opera-

tions. (2) Second, from logic computing perspective, min/max

searching function naturally relies on X(N)OR-based com-

parison operations. Although existing in-DRAM computing

platforms could provide such function, their in-memory-logic

designs are mainly depending on charge sharing based major-

ity gate, which requires multiple cycles to implement X(N)OR

logic [1], [2]. For example, Ambit [1] requires seven cycles

to realize X(N)OR logic. It will take high cost in power and

time due to large intermediate data write back, which reduces

the benefits of in-memory computing.

To address above two challenges, in this work, we follow a

principle of software & hardware co-design to develop a par-

allel and efficient in-DRAM computing platform, called Max-
PIM, where the main technical contributions are summarized

below:

(1) We first propose a novel Min/Max-in-memory searching

algorithm based on iterative XNOR bit-wise parallel compar-

ison, which supports in-memory searching for minimum and

maximum of bulk data stored in DRAM as unsigned & signed
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integers, fixed-point and floating numbers.

(2) A new in-DRAM computing circuit and architecture,

termed as Max-PIM, is then proposed to support complete

bulk bit-wise Boolean logic and optimized for our pro-

posed min/max-in-memory algorithm. Differentiating from

prior works, the novelty comes from a new micro-architecture

enabling an efficient in-memory data-transposing as well as

a new in-DRAM-logic circuit to perform computationally-

intensive XNOR logic operation in only one cycle.

(3) Detailed cross-layer experiments in a real-world dataset

are conducted to demonstrate the efficiency of our design

comparing with other state-of-the-art in-DRAM computing

platforms (e.g. Ambit [1], DRISA [2]), CPU and GPU.

(4) Sorting and Dijkstra’s algorithm in graph processing are

used as study cases to demonstrate the improvement of Max-

PIM.

II. PRELIMINARY

The Rowclone [9], Ambit [1] and DRISA [2] are among the

most recognized in-DRAM computing designs with bulk bit-

wise in-DRAM-logic operations. We will discuss their design

and compare them with ours in later experiments.

Rowclone [9] presents a high-speed (< 100ns) in-memory

copy operation within DRAM sub-arrays as opposed to ∼ 1μs
traditional operation in Von-Neumann computing architecture.

RowClone-Fast Parallel Mode (FPM) [9] essentially indicates

an in-memory copying technique that does not require to

transmit data back and forth to the processing units. In this

technique, a multi-kilo byte in-memory copy operation can

be implemented by issuing two back-to-back ACTIVATE
commands to the source and destination DRAM rows without

PRECHARGE command in between [9].

Ambit [1] focuses on performing bit-wise logic operations

in DRAM with minor modification. The basic AND, OR

functions are implemented through a 3-input charge sharing

based majority gates, called Triple Row Activation (TRA) in

memory, by simultaneously sending the ACTIVATE command

to three rows and then a PRECHARGE command. NOT func-

tion is also implemented considering two rows of Dual-Contact

Cells (DCC). Ambit incurs 1% area over commodity DRAM

chip [1]. But, it suffers from high-latency multi-cycle logic

operations to realize XOR2/XNOR2 on top of TRA.

DRISA [2] is a re-configurable in-DRAM computing plat-

form with different variations. DRISA not only has the ability

to perform bit-wise logic operation, but also shows the ability

to do arithmetical operations, such as ADD, MUL, and vector-

wise inner-product. DRISA-3T1C triples the DRAM cell area

to enable functionally complete NOR2 function on read bit-

line. However, it also requires multi-cycle operations to im-

plement XOR2/XNOR2 operation. DRISA-1T1C is designed

to execute one particular logic function via upgrading the

sense amplifier (SA) unit by adding a CMOS logic gate in

conjunction with a latch. Therefore, a single function (here,

XNOR) could be implemented in two consecutive cycles with

add-on CMOS circuitry. So, to support such a great variety

of operations, DRISA requires much more modifications on

standard DRAM architecture than Ambit.

III. PROPOSED MAX-PIM

A. Min/Max-in-Memory Algorithm
As discussed in [10], [11], finding the minimum/maximum

(Min/Max) number equals to finding the last/first ranked num-

ber in a given list. To fully leverage the parallel bit-wise in-

DRAM computing capability due to parallel sensing of multi-

ple bit-lines [1], [2], [7], our core idea of developing min/max-

in-memory algorithm is to convert traditional software-based

sequential comparison operations to XNOR based bit-wise

parallel comparison for all the data stored in the same memory

array. Note that, the algorithm we discuss in this section

refers to min/max function within one memory array. A large

dataset will be first partitioned into multiple memory arrays

to get memory-array level min/max in parallel, then an overall

min/max will be identified similarly. Algorithm-1 shows the

pseudo code of our proposed bit-wise parallel Min/Max-in-
memory algorithm. It mainly leverages the property that each

bit in the binary format has different significance, and parallel

in-DRAM-XNOR logic based comparison operation could

gradually exclude smaller (or larger) data from MSB (Most

Significant Bit) to LSB (Least Significant Bit). Note that, our

algorithm has a constant searching time determined by the bit

length of numbers. It is compatible with unsigned and signed

integers, fixed-point numbers and floating numbers, which will

be discussed in separate sub-sections below.

Algorithm 1: Parallel Bit-wise Min/Max-in-Memory
Input : Array X has M elements, where each element contains N bits.
Result: Returning the Min/Max value in given array.

1 Storing the input array into 2D bit-array(NxM size) where each element in X
occupies one column;

2 Matching Vector = ones(1,M);
3 if find min then
4 Matching Sign Bit=1 ; � For signed number, the sign bit

and the rest have different XNOR operands
5 Matching Bit = 0;
6 else
7 Matching Sign Bit=0;
8 Matching Bit = 1;
9 end

10 if unsigned number then
11 Matching Sign Bit = Matching bit; ; � For unsigned bit, we

do not need to distinguish sign bit and others.
12 end
13 while current bit position < N do

� Go through every bit from MSB to LSB.;
14 if current bit position == 0 then
15 Matching Result = XNOR(current bit,Matching Sign Bit);
16 else
17 Matching Result = XNOR(current bit,Matching Bit);
18 end
19 if Matching Result == All Zeros then
20 Continue;
21 else
22 Matching Vector = Matching Result;
23 end
24 end

1) Unsigned Integer: Fig.1 gives an example to find the

minimum value in a 4-bit unsigned int array. Since 4 bits are

used to represent unsigned value, 4 iterations are required to

compute the index of minimum value(s). First, it initializes

a matching vector with all ‘1’s, whose length equals to the

number of data in the array, and this matching vector will

be updated with the outputs of parallel XNOR logic in every
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Fig. 1. Illustration of parallel bit-wise operations to find the minimum value
of a unsigned integer array.

iteration except when the parallel XNOR outputs are all ‘0’s

(line 18 to 22 in algorithm-1). Each element in the matching

vector corresponds to one number in the array, where ‘1’

indicates this number will be compared in the following

iteration, while ‘0’ indicates the corresponding number will be

excluded. Starting from MSB, it applies parallel XNOR logic

to MSB of every number with constant ‘0’ for min function

(XNOR with constant ‘1’ for max function), corresponding

to line 3 to 11 in algorithm-1. Next, the matching vector value

of ‘1111’ is updated with current iteration parallel XNOR

output-‘1011’, since XNOR outputs are not all ‘0’s (line

18 to 22). As shown in Fig.1, in the second iteration, the

new matching vector value-‘1011’ indicates that the second

row (marked as ‘0’) should be excluded from XNOR based

comparison operation, and this position will remain as ‘0’

in all following iterations. The next iteration will compute

parallel XNOR between the second MSBs of non-excluded

numbers and constant ‘0’ (line 16). In this example, in the

second iteration, after computing XNOR between the rest bits-

‘111’ with constant ‘0’, the outputs are all ‘0’. Based on

our algorithm-1 line-18, it will skip the update of matching

vector of this iteration and continue to next iteration. Similar

process will continue based on the same rule until LSB. As

our example shown in Fig.1, when the comparison in LSBs is

finished, the position(s) remained as ‘1’ in the matching vector

is(are) the identified minimum number(s).

Theoretically, we could stop the process when there is

only one ‘1’ left in the matching vector (e.g. iteration-3 in

our example) to save searching time. However, our target

in this work is that all the operations in the algorithm-1

will be implemented by a corresponding circuit module in

our proposed Max-PIM platform. Designing such early stop

detection will incur extra overhead to the hardware. Thus, we

choose to simplify the hardware design with no early stop,

leading to a constant searching time determined by the bit

representation length.

2) Signed Integer: For signed numbers in the min/max-in-

memory algorithm, the basic procedure is the same as the

above discussed unsigned numbers except sign bit. In signed

number, the first bit represents the sign, where ‘1’ and ‘0’

indicate negative and positive, respectively. When for min (or

max) function, the algorithm will first check the sign bit. If

negative (or positive) values are found, it will exclude all

positive (or negative) numbers for the following computation.

To do so, as shown in line-3 to -8 in algorithm-1, a parallel
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Fig. 2. Finding the minimum value from a signed fixed point number array.

XNOR between sign bits with constant-‘0’ (or ‘1’) for max (or

min) function is needed. The rest procedure will be similar.

3) Fixed-Point Number: Fig. 2 provides an example to

implement min-in-memory function for a group of four 4-bit

fix numbers. To start, matching vector will be initialized with

all ‘1’s. Then, XNOR logic is applied to all sign bits with ‘1’,

where the matching vectors will be updated based on XNOR

outputs to exclude any positive number for next iterations. The

rest 3 iterations are similar to the above discussed unsigned

integer number process. In this specific example, it can be

seen that if there are multiple minimum values in the array,

our final matching vector will also indicate with multiple ‘1’s.

4) Floating Number: Our algorithm is also compatible with

floating numbers. For example, the IEEE754 [12] floating

number representation is a popular floating-point arithmetic

standard. It contains three parts: signed bit, exponent bits, and

significand precision. According to the IEEE754, the binary

floating number may take 16 bits to 256 bits to represent

one floating number. Taking the 64 bit floating number as an

example, the representation (−1)sign×(1+
∑52

i=1 b52−i2
−i)×

2e−1023 can be written as (−1)sign × 2e−1023 × 1.fraction.

That means the bits in the exponent parts have higher signifi-

cance than the bits in the fraction parts (significand precision).

And the bits within exponent parts and significand precision

obey the same rule as unsigned integer number, where the

bit significance decreases along bit position. Thanks to the bit

organization that exponent is on the left side of the fraction

part in the endianness(little-endian) sequencing, our proposed

Min/Max searching function can be directly applied to the

floating number without modification.

B. Max-PIM Logic Circuit and Architecture

It can be summarized that several important functions are re-

quired to be implemented efficiently for in-DRAM computing

platform to fully support above algorithm: 1) transpose data

copy; 2) fast and parallel in-DRAM XNOR logic; 3) matching

vector update; 4) identified min/max index decode.

The overall architecture diagram of our proposed Max-

PIM is given in Fig. 3. It keeps the original memory hier-

archy by dividing every DRAM chip into multiple banks that

share I/O and buffers. Each bank contains multiple normal

memory matrices (MATs) consisting of typical DRAM sub-

arrays and a single computational array shown in blue. The

computational array is developed similar as Ambit [1] [13],

with all Ambit supported logic and instructions, but enhanced

to support a new Dual Row Activation (DRA) mechanism to
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perform XNOR operation in addition to the typical Triple Row

Activation (TRA). Each computational array consists of: two

row decoders (one for data rows and one for all 1/0 rows),

one column decoder (to enable transpose copy), modified logic

sense-amplifier (to support XNOR logic) with Typical Sense

Amplifier (TSA, for memory sensing and charge sharing based

majority gate), one latch per bit-line (to store the matching

vector and control the logic-SA), pseudo-OR gate (to detect

all-zero XNOR outputs), one priority encoder (to return final

index of identified min/max locations).

1) Transpose Copy: Due to DRAM’s destructive read prop-

erty, any in-DRAM computing needs to make a copy of

operand data to perform in-DRAM-logic [1], [2], [7]. More

importantly, based on our min/max-in-memory algorithm, one

important operation of each iteration is that we need to

implement parallel XNOR logic between the bits in the same

location of all numbers with constant-‘1’/‘0’, which brings two

requirements for in-DRAM computing hardware: 1) for single

XNOR logic, both operands (i.e. one specific bit from one

number and constant-‘1’/‘0’) need to be stored in the same

bit-line based on the circuit design of in-DRAM-logic that

will be explained in next paragraph; 2) to fully leverage the

parallelism of in-DRAM computing, similar as prior works,

multiple logic-SAs could be simultaneously activated, which

is determined by the size of memory array. Therefore, to

conclude, in the computational memory array, the binary data

of a number needs to be stored along the bit-line direction,

not along the traditional word-line direction, which requires a

transpose copy from data memory to computational memory.

To support the transpose copy operation, we adopt the

similar dual-contact cell (DCC) design (Fig.3) as [1]. In DCC,

one transistor shares the gate with other transistors on the same

row to form the normal row-wise word-line. Another transistor

shares the gate with other transistors on the same column to

form the column-wise write word-line, which is controlled

by the column decoder. The drain and source of the second

transistor connect to the cell capacitor and the other normal

DRAM array, respectively (the Data port in Fig. 3(c)). Copying

operand data from data storage array to computational array

requires two steps: (1) reading entire word-line from the data

storage array and (2) writing them to one bit-line (column)

of the computational array with the help of DCC and column

decoder. Fig. 4 gives a demonstration for this transpose copy.

2) Parallel XNOR logic in one cycle: Max-PIM supports

all traditional charge sharing based majority gate logic and

optimize heavily used XNOR logic with only one cycle.

In our min/max-in-memory algorithm, since one operand of

XNOR comes from one bit in specific location of one number

in the array, and the other one is constant-‘1’ or ‘0’ for

min or max function, respectively, we reserve several rows

in the computational array for storing such constant bits.

Traditionally, due to the destructive read in DRAM, we have

to wait for data refresh of all ones/zeros rows after every

computation. Thanks to the DCC cell design, which separates

write and read, we could only use 2 rows for all ‘1’s and

2 rows for all ‘0’s without introducing extra refresh time by

refreshing one row while using the other row for XNOR logic.

For the all ‘1/0’ rows, we connect the data port of DCC cells

to VDD/GND.

Regarding in-DRAM XNOR logic circuit, it is based on the

popular Dual-Row Activation scheme [7]. First, the bit-lines

will be pre-charged to V DD
2 . Then, two word-lines storing

the operand data are activated simultaneously, which leads

to charge sharing between the two cells in the same bit-

line and generates different sensing voltage at the associated

logic-sense-amplifier (logic-SA) circuit depending on different

values stored in these two cells. Then this sensed voltage will

be compared with different reference voltages to implement

different logic functions. In this work, we present a logic-SA

circuit design that could implement XNOR logic in only one

cycle as shown in Fig.3(c), where typically multiple cycles

are needed in most prior works [1], [2]. In the circuit, the
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plus sign marked inverter has higher threshold voltage, and

the minus sign marked inverter has lower threshold voltage

than normal inverter. It is designed as, for the high threshold

inverter, the output goes to zero only when both activated

cells have high voltage (storing ‘11’), implementing NAND

function. The low threshold inverter works on the opposite

situation that it only generates a high output when both cells

have low voltage (storing ‘00’), implementing NOR function.

Therefore, based on XNOR = NAND(OR, NAND), the XNOR

logic is implemented by adding an inverter and NAND logic

circuit following the two skewed inverter as shown in Fig.3(c).

3) Matching Vector Update: As described in our algorithm-

1, matching vector needs to be updated in every searching

iteration, except all-zero XNOR outputs. To avoid writing back

the XNOR outputs to memory for matching vector update,

we incorporate latches in the logic-SA circuits as shown in

Fig.3(c) to store and update matching vector. Moreover, to

exclude update in case of all-zero XNOR outputs, one all-

zero detection unit circuit is designed based on a pseudo OR

gate (dotted box of Fig.3(c)) to control the matching vector

latch update.

4) Identified Min/Max decode: When the iterative XNOR

comparison is done, the final matching vector indicates the

indices/ location(s) of found min/max values. Max-PIM is able

to return the identified min/max data address to user through

a priority encoder.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

In our experiments, we set each bank has 16 MATs and

each MAT consists of 2 sub-arrays with size of 1024×256.

Each bank contains one computational array shared by all

the sub-arrays within the same bank. The computational array

size is 260×1024, where 256 rows are used to store data

and 4 reserved rows store constant ‘0/1’. Thus, one bank

stores ∼1MB data. Considering 1GB DRAM capacity, there

are 1024 banks for the whole DRAM. As the competitors, we

built Ambit and DRISA platforms with the same organization

as Max-PIM, but with their own in-DRAM logic circuits.

For a fair comparison, all designs use DCC cells for entire

computational array to support transpose write.

To evaluate the performance, we use the similar cross-

layer evaluation framework in [7], starting from circuit-level

evaluation with TSMC 65nm technology. We use the same

process node to re-implement all counterpart designs. The

memory peripherals are simulated using the same technology

library in Synopsys Design Compiler. We then feed the cir-

cuit simulation results into architecture-level tools. We then

extensively modify CACTI7.0 [14] to extract the performance

results. An in-house mapping algorithm is then developed on

top of architecture level to parse the input vector coming from

various data-sets and evaluate the performance.

B. Comparing with other in-DRAM computing platforms

We compare Max-PIM with two start-of-the-art in-DRAM

computing platforms: Ambit [1] and DRISA [2]. To conduct

# cycles = 1

# cycles = 7

# cycles = 2

# cycles = 4

Fig. 5. (a) Area overhead. (b) Power consumption of a single computational
array and cycle numbers to perform XNOR.

8.5

2.41.3 s

427nJ
1980nJ

Fig. 6. (a) With the DCC and transpose write, data mapping is faster than the
computation. Max-PIM is much faster than other counterparts in computing
due to one-cycle XNOR design. (b) Max-PIM shows best energy efficiency
as well in min/max searching.

fair comparison in min/max searching, we re-implement those

designs with all required peripherals, including DCC array,

column decoder, multiple row decoder, pseudo OR gate, latch

(Matching vector), and priority encoder.

Fig. 5(a) shows the area overhead of a single computational

array. All the peripheral circuits required to support min/max-

in-memory algorithm is the same. The area difference comes

from different logic-SA circuit designs. It shows Max-PIM has

similar area overhead as Ambit and DRISA(1T1C) design, but

DRISA(3T1C) design has much larger area overhead. Fig.5(b)

provides the power comparison and cycles for XNOR logic.

The DRISA(1T1C) uses XNOR gate at the bottom of every

bit-line instead of leveraging the DRA to perform the XNOR,

requiring two cycles. Both Ambit and DRISA(3T1C) leverage

the multi-row activation to achieve the logic operations, such

as AND, OR, and NOT. Ambit needs up to 7 cycles for

XNOR. DRISA(3T1C) needs to do NOR 4 times and stores

back the intermediate data. The Max-PIM could implement

XNOR logic in only one cycle. It avoids intermediate data

write back compared with other designs, and thus greatly

reducing power and latency. Fig. 6 summarizes the distribution

and comparison of latency and energy for Min/Max searching

within one computational sub-array.

C. Min/Max searching in real word dataset

To evaluate the performance of our Max-PIM platform in

min/max searching in a real world dataset, we adopt a pop-

ular data-set T10I4D100K [15] containing 1010228 numbers,

where each number is represented as 256-bit unsigned integer

numbers stored in DRAM. We report the execution time and

energy consumption measurement in Fig.7 for different com-

puting platforms including Ambit, DRISA, CPU, GPU. For
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all in-DRAM computing platforms, including our Max-PIM,

Ambit and DRISA, such large array cannot fit into a single

computational array, requiring necessary data partitioning. The

total 1010228 numbers are partitioned into 987 computational

sub-arrays, where each sub-array will compute in parallel to

return a local minimal number. Then, such local minimal

numbers will be wrote into another computational array to get

the global minimal number. For CPU&GPU evaluation, the re-

ported time is total execution time, including data loading from

main memory and processing. For energy estimation, similar

as DRISA [2], we scale down 50% of CPU&GPU average

power to exclude the power cost by cooling, voltage regulators,

etc. Among in-DRAM computing platforms, our Max-PIM

achieves the minimal latency and energy consumption. Max-

PIM could achieve ∼50 -∼1000× speed improvement, and at

least one order smaller energy consumption than GPU&CPU.

D. Applications in Sorting and Graph Processing

In this section, we utilize our Max-PIM in real-word ap-

plications of data sorting and Dijkstra’s algorithm in graph

processing to further evaluate the performance.

For the sorting evaluation, the dataset is the same as the

one used in section IV-C. Leveraging the parallel min/max

searching provided by Max-PIM, we adopt the min/max sort-

ing algorithm, where each round will find the min or max to

iteratively sort the data. We report the performance of different

in-DRAM computing platforms and software implementation

in CPU in table I. It can be seen that all in-DRAM computing

platforms outperform software implementation in CPU by

three orders mainly due to save of large amount of off-

chip data movement and ultra-parallel processing capability.

Aligning with prior experiments in single min/max searching,

our Max-PIM achieves the best performance compared with

other in-DRAM computing platforms due to its optimized

XNOR and peripheral circuits.

Dijkstra’s algorithm [16] is a popular and widely used

algorithm in graph processing to find the shortest path in

large graph, where min/max searching dominates overall com-

putation. Three different dataset are used here: geom has

7343 nodes, foldoc has 13356 nodes and EAT SR has 23219

nodes [17]. Table II reports the Min/Max searching speed

improvement over CPU for different in-DRAM computing

platforms. Similar performance improvement trend could be

observed. In general, in-DRAM computing platform could

all achieve one to two orders speed up than CPU and our

Max-PIM still outperforms all other in-DRAM computing

platforms significantly. Meanwhile, it is also observed that

larger speed up is achieved for larger dataset, clearly proving

86mJ
18mJ 684 s

0.44mJ

8619 s

12.8 s

Fig. 7. Min/Max searching performance of real dataset

TABLE I
SORTING PERFORMANCE

Name Max-PIM Ambit
DRISA
(1T1C)

DRISA
(3T1C)

CPU

Time(sec) 6.49 55.6 16.83 47.86 9888.05

TABLE II
MIN/MAX SEARCHING SPEEDUP OVER CPU IN DIJKSTRA’S ALGORITHM

Name geom(7343 nodes) foldoc(13356) EAT SR(23219)
Max-PIM 91X 167.74X 466.29X

Ambit 9.78X 18.68X 53.49X
DRISA(1T1C) 34.62X 64.03X 179.07X
DRISA(3T1C) 11.53X 21.84X 62.32X

again memory-wall becomes the bottleneck when dealing with

larger dataset.
V. CONCLUSION

In this work, we first propose a min/max-in-memory algo-

rithm to find the minimum/maximum of an array stored in

main memory. A DRAM based in-memory computing design,

named Max-PIM, is presented to support this algorithm with

massive parallelism and minimized data movement. Compar-

ing to other DRAM based in-memory computing designs,

CPU, and GPU platforms, Max-PIM’s software&hardware co-

design requires the shortest time and smallest energy for

an identical task. We have demonstrated that such proposed

Min/Max searching algorithm and hardware have great po-

tential to be applied in many applications, such as sorting,

ranking, graph processing, etc.
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