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ABSTRACT: This study conducted saturated column experi-
ments to systematically investigate deposition of 1 μm positively
charged polystyrene latex micro-colloids (representing microplastic
particles) on negatively charged rough sand, glass beads, and soil
with pore water velocities (PWV) from 4.9 × 10−5 to 8.8 × 10−4

m/s. A critical value of PWV was found below which colloidal
attachment efficiency (AE) increased with increasing PWV. The
increase in AE with PWV was attributed to enhanced delivery of
the colloids and subsequent attachment at concave locations of
rough collector surfaces. The AE decreased with further increasing
PWV beyond the threshold because the convex sites became
unavailable for colloid attachment. By simulating the rough
surfaces using the Weierstrass−Mandelbrot equation, the extended
Derjaguin−Landau−Verwey−Overbeek (XDLVO) interaction energy calculations and torque analysis revealed that the adhesive
torques could be reduced to be comparable or smaller than hydrodynamic torques even under the favorable conditions. Interestingly,
scanning electron microscopic experiments showed that blocking occurred at convex sites at all ionic strengths (ISs) (e.g., even when
the colloid−colloid interaction was attractive), whereas at concave sites, blocking and ripening (i.e., attached colloids favor
subsequent attachment) occurred at low and high ISs, respectively. To our knowledge, our work was the first to show coexistence of
blocking and ripening at high ISs due to variation of the collector surface morphology.
KEYWORDS: colloids, porous media, deposition, transport, XDLVO interaction

■ INTRODUCTION

Investigation of transport of colloids including nanoparticles in
porous media has received much attention for several decades
due to a variety of environmental concerns.1−4 For example,
microplastic particles have been found to be widely present in
subsurface environments such as soil porous media.5,6 The
potential risks of microplastics and microplastic-associated
pollutants to groundwater are highly related to their fate and
transport behavior in soil. In addition, nanomaterials such as
nanoscale zerovalent iron (nZVI) have been shown to have the
advantage for wastewater treatment due to their high efficiency
for contaminant removal.7−10 Understanding the transport of
nZVI in soil is important for extending the application of nZVI
to in situ soil remediation because the efficiency of remediation
highly depends on the mobility of the nanomaterials to the
contaminant sites.11,12

Deposition is one of the primary processes that control
transport of colloids in porous media.13 Colloid deposition is
regulated by extended Derjaguin−Landau−Verwey−Overbeek
(XDLVO) interaction energies between a colloid and a
collector surface, including van der Waals attraction (VDW),
electrical double layer (DL) energy, and short-range forces

(e.g., hydration and steric repulsion).14 When the colloid and
collector surfaces are oppositely charged, no repulsive
interaction energy exists beyond the primary minimum of an
interaction energy profile, constructed by a sum of the
aforementioned interaction energies as a function of separation
distance. Consequently, colloids are favorable to be deposited
at the primary minimum due to attractive interaction
energies.15,16

Existing theoretical calculations can correctly predict the
variation of colloid deposition in porous media under the
favorable conditions.4,17,18 For instance, various correlation
equations were developed based on well-known colloid
filtration theory (CFT), which successfully predicted the
variation of the deposition rate with colloid size (e.g., the rate
reaches the minimum for colloid sizes around 1 μm).13,19−21
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These correlation equations considered three individual
deposition mechanisms (i.e., Brownian diffusion, interception,
and gravitational sedimentation) and VDW energy and
hydrodynamics. Elimelech,22 through further including DL
energy, theoretically examined the influence of solution ionic
strength (IS) on deposition of colloids in porous media under
favorable conditions. The deposition was found to increase
modestly with decreasing IS due to increase in the range and
magnitude of the attractive DL interactions.
The above-mentioned theoretical predictions on the

variation of colloid deposition with colloid size and IS have
been confirmed by numerous experimental studies.4,13

However, existing theoretical calculations still cannot exactly
estimate the colloid deposition rate under favorable conditions,
although the discrepancies are not so significant as those
observed under unfavorable conditions.17 Surface roughness
has been identified as a critical factor influencing colloid
deposition under unfavorable conditions.23−25 Recent stud-
ies26−30 showed that surface roughness also played a critical
role in regulating colloid deposition under favorable con-
ditions. However, the mechanisms controlling the colloid
deposition in the presence of surface roughness under the
favorable conditions remain to be elucidated to date. For
example, while Chen et al.31 showed an increased deposition
rate with increasing surface roughness, the decrease in or non-
monotonic variation of the deposition rate as a result of
increased roughness was also reported.26−30

It is worth mentioning that the aforementioned studies
commonly used a single roughness parameter such as average
roughness (Ra) and root-mean-square (rms) roughness (Rq,
the normalized roughness parameters using colloid/collector
diameter) to characterize the roughness degree. However,
these parameters only represent mean values, which do not
provide specific information on the local variation of surface
geometry.4 The influence of local variability of a rough surface
profile (e.g., concave and convex geometries) on the
deposition of colloids under favorable conditions has not
been examined to date. The response of the deposition at
different surface geometries to variation of system conditions
such as flow and pore water velocity (PWV) is still unclear,
which may be responsible for the inconsistent variation of the
deposition rate with surface roughness.
This study systematically examined influence of surface

roughness on deposition of positively charged polystyrene latex
particles (1 μm) in saturated columns packed with negatively
charged sand and glass beads. Special attention was paid on
direct observation of local deposition of the colloids on rough
collector surfaces using scanning electron microscopy (SEM)
at different ISs with different PWVs. To interpret the column
and SEM observations, rough surfaces were simulated using
Weierstrass−Mandelbrot (W-M) and cosinusoidal functions,
and the XDLVO interaction energies between the modeled
rough surfaces and microparticles were calculated. A
Lagrangian colloid trajectory model was adopted to determine
the single-collector contact efficiency η0 through assuming
smooth collector surfaces and a perfect sink (PS) boundary
condition. The attachment efficiencies were introduced to
quantify the influence of the surface roughness or curvature on
attachment. The trajectory model was also used to examine the
surface roughness effect on colloid deposition without
decoupling the attachment from the transport step. The
findings in this work have important implications for delivery
of positively charged particles (e.g., nZVI) for in situ soil

remediation and prediction of fate and transport of toxic
colloids (e.g., microplastics) and colloid-associated contami-
nants in subsurface environments.

■ MATERIALS AND METHODS
Colloids and Porous Media. White polystyrene latex

microspheres (1 μm in diameter) with amine functional groups
(Fisher Scientific Inc.) were adopted. The microparticles are
hydrophilic and positively charged. The density of the
microparticles is 1.055 g/cm3 according to the manufacturer.
The stock colloid suspensions were diluted in NaCl solutions
at different solution ISs (1, 10, 100, and 200 mM) to prepare
influent suspensions with a concentration of 10 mg/L for
column transport experiments. The pH of the influent
suspensions was maintained to be 7 using 1 mM NaHCO3.
Note that the addition of NaHCO3 was included in calculation
of the solution IS.
Both sand and glass beads with sizes ranging from 212 to

425 μm were employed as model collectors with different
degrees of surface roughness. The sand and glass beads were
purchased from Sinopharm Group Co., Ltd. (Beijing, China)
and Huayu Glass Beads Co., Ltd. (Gu’an, Hebei, China),
respectively. The method of Elimelech and O’Melia32 was
modified to clean the sand and glass beads. Briefly, the
collectors were soaked with 1 M HNO3 for 6 h and then
thoroughly rinsed with deionized (DI) water and dried in an
oven at 105 °C. Using Mastersizer 3000 (Malvern Instruments
Ltd., Southborough, Massachusetts), the average sizes of sand
and glass beads were measured to be 385 and 358 μm,
respectively.
Sizes of the colloids at different solution ISs were measured

based on the dynamic light scattering technique using Zetasizer
Nano ZS (Malvern Instruments Ltd., Southborough, Massa-
chusetts). Zeta potentials of the colloids and collectors were
obtained by determining the electrophoretic mobilities using
the zetasizer nano ZS (Malvern Instruments Ltd., South-
borough, Massachusetts). Similar to Tufenkji and Elimelech33

and Li et al.,34 the collectors were sonicated for 20 min in
NaCl at a desired IS, and the supernatant was sampled for
measurements of zeta potential. Both atomic force microscopy
(AFM) (Dimension Icon, Bruker Co., Karlsruhe, Germany)
and SEM (S4800, Hitachi Co., Tokyo, Japan) were used to
measure the surface roughness morphology of sand and glass
beads. Roughness parameters such as Ra and Rq were also
determined by AFM that are necessary for rough surface
simulations. Measured zeta potentials of colloids and collectors
and sizes of the colloids and determined values of Ra and Rq are
shown in Tables S1 and S2 of the Supporting Information. The
detailed procedure of roughness measurement via AFM can
also be referred to in the Supporting Information.

Column Transport Experiments. Transport experiments
were conducted using acrylic columns (1.8 cm inner diameter
and 9 cm long) with a top and bottom plate. The cleaned sand
particles or glass beads were wet-packed to ensure saturation
without any layering. The porosities ( f) of all packed sand and
glass bead beds were consistently maintained to be 0.41 and
0.36, respectively. The porosities of the packed beds were
calculated using the expression f = 1 − m/ρV, where ρ is
collector density (2.65 and 2.5 g/cm3 for sand and glass beads,
respectively), m is dry mass of a packed bed, and V is column
volume.
Column experiments were performed at approach velocities

of 2 × 10−5, 4 × 10−5, 8 × 10−5, 1.6 × 10−4, and 3.2 × 10−4 m/
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s. The corresponding PWVs in sand columns were 4.9 × 10−5,
9.8 × 10−5, 1.9 × 10−4, 3.9 × 10−4, and 7.8 × 10−4 m/s. The
corresponding PWVs in glass bead columns were 5.6 × 10−5,
1.1 × 10−4, 2.2 × 10−4, 4.4 × 10−4, and 8.8 × 10−4 m/s. For
each experiment, background electrolyte solution was first
delivered into the vertical column upward for at least 20 pore
volumes (PVs) to standardize chemical conditions of the
column system. Then, 5 PVs of the aforementioned colloid
suspension at a concentration of 10 mg/L were delivered into
the column (phase 1). The unattached colloids in pore water
were flushed out of the column by 5 PVs of colloid-free
electrolyte solution (phase 2). Finally, 5 PVs of DI water were
introduced into the column to examine whether colloids
deposited under favorable conditions could be released (phase
3). Note that the colloid suspensions were sonicated for 30
min before introduction into the columns to ensure that the
colloids were monodispersed. To avoid sedimentation, the
colloid suspensions were stirred during the pumping.

Concentrations of colloids in the influent and effluent
suspensions were determined via UV−vis spectrophotometry
(DU Series 800, Beckman Instruments, Inc., Fullerton,
California) at a wavelength of 430 nm (calibration curve
shown in Figure S1 of the Supporting Information). After
phase 2 or phase 3, the sand and glass beads with attached
colloids were sampled and imaged using SEM (S4800, Hitachi
Co., Tokyo, Japan) to directly observe the colloidal attachment
morphology using the method of Li et al.35 Note that we have
also used the aforementioned procedure to conduct column
experiments using real soil. Details about the soil column
experiments are shown in the Supporting Information.
The experimental single-collector removal efficiency ηexp can

be determined using the following expression.33,36

η = −
−
d
f L
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Figure 1. Generated fractal surfaces using the (a) W-M function with G = 0.136 nm and different values of D and φm,n (1, D = 2.268, φm,n is listed
in Table S4; 2, D = 2.328, φm,n is listed in Table S5) to simulate the representative surfaces of quartz sand and (b) cosinusoidal function with p = 85
nm and w = 35 nm to simulate the glass bead surface. (c,d) are the real surfaces of quartz sand and glass beads measured by AFM, respectively.
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where dc is collector diameter, L is column length, and C and
C0 are effluent and influent colloid concentrations, respectively.
Similar to previous studies,33−35 the value of C/C0 was
obtained by averaging those obtained between 1.8 and 2.0 PV
of the breakthrough curves (BTCs) from above-mentioned
column experiments. The theoretical single-collector contact
efficiency η0 was calculated using a Lagrangian colloid
trajectory model developed by Rasmuson et al.29,40 by
assuming the PS boundary condition and smooth collector
surfaces. The Lagrangian colloid trajectory model considers the
forces acting on the colloid (including DLVO forces, diffusion,
gravity, fluid drag, hydrodynamic retardation, and virtual mass)
and predicts the trajectory via Newton’s second law of motion.
However, as will be shown later in the paper, discrepancies
exist between the values of ηexp and η or η0, as have been
frequently observed under unfavorable conditions.4,13,37−39

The discrepancies are mainly because of assuming the PS
boundary condition and smooth collector surface. Therefore,
the attachment efficiency α was introduced to estimate the
surface roughness effect on attachment (α = η/η0), as
frequently done under unfavorable conditions.
In addition to assuming the perfect boundary condition and

smooth collector surfaces to decouple attachment from
transport, we have also used the Lagrangian colloid trajectory
model to simulate the trajectories of colloids from bulk
solution to the collector surfaces (without decoupling
attachment from transport) to account for the influence of
surface roughness and hydrodynamics on colloid deposition.
Details about the model have been shown in the Supporting
Information, and the model simulations were implemented
using the Lagrangian colloid trajectory freeware (Parti-Suite,
https://wpjohnsongroup.utah.edu/trajectoryCodes.html) in-
corporating the hydrodynamic and colloid surface interaction
impacts of nanoscale roughness and steric interactions on the
surface torque balance (TB).29,40

Calculation of XDLVO Interaction Energies and
Torque Analysis. The XDLVO interaction energies were
determined to interpret the influence of surface roughness on
colloid attachment using the surface element integration (SEI)
technique.41,42 The SEM images in Figure S2 of the
Supporting Information show that the glass bead surface was
smooth, and the sand surface was rough. However, the AFM
images (Figure 1) show that the glass bead surfaces exhibited
considerable sharp protrusions at the nanoscale (Ra = 69.6
nm). Similar to Li et al.,34 the cosinusoidal function was used
to simulate the glass bead surfaces. The sand surfaces were
fractal, which were simulated using the W-M function, as
adopted in previous studies.43−45 Detailed simulation of the
fractal surfaces is given in the Supporting Information, and the
parameter values used for the simulations are given in Tables
S3−S5. Notably, a rough surface contains both convex
asperities and concave valleys. As will be shown later in the
paper, attachment mechanisms at the two roughness features
are different. Therefore, we simulated both convex and
concave rough surfaces to separately examine their interactions
with colloids.
The SEI technique was adopted to calculate XDLVO

interaction energy between a colloid and simulated rough
surface (Figure S3). The total XDLVO interaction energy was
considered to be a sum of VDW attraction, DL energy, and
Born (BR) repulsion (representing short-range repul-
sion).34,35,45,46 Both colloid and rough surfaces were
discretized into small area elements. The total energy (U)

was determined by summing the differential interaction energy
between each area element dS on the colloid surface and the
corresponding area element dS′ on the simulated rough
surface. The expressions for quantification of the differential
interaction energies are shown in Table S6.
The PS model has been frequently used as the boundary

condition for colloid deposition under favorable conditions13,47

The PS model assumes that colloids near a collector surface
experience a very strong attraction that dominates all other
applied forces/torques. Therefore, all these colloids will be
firmly drawn onto the surface. However, various studies37,48−52

have indicated that whether a colloid can be deposited under
favorable conditions is dependent on the balance between
adhesive and hydrodynamic torques (denoted as TA and TH,
respectively). Therefore, the adhesive and hydrodynamic
torques were determined to evaluate the influence of PWV
on colloid deposition. The adhesive force was taken as the
maximum XDLVO attractive force, and the hydrodynamic
force was obtained based on Happel’s sphere-in-cell model to
describe the flow field. The level arms of adhesive and
hydrodynamic torques were dependent on the point of a rough
surface around which rolling occurs. Detailed procedures for
simulation of sand and glass bead surfaces, TB, and interaction
energy calculations are shown in the Supporting Information.

■ RESULTS AND DISCUSSION
Properties of Colloids and Collectors and Simulation

of Rough Surfaces. Table S1 shows measured zeta potentials
of the colloids and collectors including sand and glass beads.
The values of zeta potentials were negative for sand and glass
beads and positive for the colloids under the chemical
conditions employed in this study. Therefore, the DL
interactions between the colloid and collector surface were
attractive, and colloid attachment was considered to be
favorable due to absence of repulsive energy barriers. The
zeta potential of glass beads was less negative than that of sand.
The magnitude of zeta potentials for soil grains was further
reduced likely due to the positive-charge heterogeneities. As
expected, the magnitude of zeta potential decreased with
increasing IS for the colloids and collectors due to DL
compression at high ISs. Table S1 also presents the measured
sizes of the latex colloids at different solution ISs. The colloid
sizes were comparable at ISs of 1, 10, and 100 mM (1270.67,
1304.33, and 1351 nm, respectively) whereas evidently
increased at 200 mM (1598.33 nm) due to colloidal
aggregation.
Based on the measured surface roughness by AFM

examinations in Table S2, the sand and glass bead surfaces
were simulated using the W-M and cosinusoidal functions,
respectively (see Figure 1). The fractal roughness (G) and
fractal dimension (D) of the W-M function are the primary
parameters that control the geometry of a fractal surface.
Details about the W-M function and the meanings of G and D
have been shown in the Supporting Information. In this work,
we fixed the value of G to be 0.136 nm, as adopted in previous
studies.45,53 The values of G were adjusted so that the
statistical roughness parameters of the simulated surface (Ra
and Rq) were exactly matched with those measured from AFM
examinations (Tables S2 and S3). For the cosinusoidal
surfaces, both the amplitudes (p) and frequencies (w) were
adjusted. The W-M function simulated typical concave and
convex locations of fractal rough sand surfaces, and the
cosinusoidal functions depicted the glass bead surfaces with
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sharp nanoscale protrusions. As shown in Figure 1, the
simulated fractal and cosinusoidal surfaces were visually similar
to those measured by AFM examinations. However, it should
be noted that the actual morphology of the rough surfaces
cannot exactly resemble due to randomness of the roughness.54

The simulated fractal and cosinusoidal surfaces are used for the
interaction energy and TB calculations later in the paper.
Attachment Efficiencies. Figures S4 and S5 show BTCs

(i.e., plotting the value of C/C0 as a function of PV) for the
positively charged colloids in sand and glass beads,
respectively. In phase 1, the colloids were attached at different
ISs with different PWVs. At a given solution IS, the deposition
or the calculated value of ηexp (Figure 2) decreased with
increasing PWV. Particularly, almost complete deposition (C/
C0 ≈ 0) occurred in sand at the lowest PWV (4.9 × 10−5 m/s).
This is because increase in PWV decreases single-collector
contact efficiency (i.e., the rate at which colloids strike a
collector divided by the rate at which colloids flow toward the
collector, see Figure S6) due to increase in colloid transport
with convective flow (see the calculated value of η0).
The deposition includes transport from bulk solution to the

vicinity of a collector surface and attachment.13 To exclusively
reveal the influence of PWV on the attachment, the values of
attachment efficiency αexp were calculated using the method
shown previously. A nonmonotonic variation of αexp with PWV
was observed (see Figure 2). Specifically, the value of αexp
increased with increasing PWV from 4.9 × 10−5 to 3.9 × 10−4

m/s for sand and then decreased with further increasing the
PWV in sand at IS ≤ 10 mM and in glass beads (see Figure 2).

Our results are in contrast to the theoretical predictions of
Elimelech and Song55 that the value of theoretical attachment
efficiency (α, = η/η0) monotonically increased with increase in
PWV. They attributed it to the reason that more colloids can
transport from bulk solution to the region where attractive
double-layer interactions are important at higher PWVs. In
addition, Elimelech and Song55 theoretically predicted that the
increase in attachment efficiency with PWV was more
significant at a lower IS because the thickness of attractive
DL increased with decreasing IS. Our work, however, showed
that the increase in αexp with PWV was similar at all ISs. These
discrepancies indicate that in addition to the transport to the
attractive DL region, additional mechanisms are involved
controlling the deposition of the colloids in the porous media
as elucidated in the following.
Figure 3 presents SEM images of deposited colloids on sand

surfaces at an IS of 1 and 200 mM with PWVs of 4.9 × 10−5

and 7.8 × 10−4 m/s, respectively. Although the attached
colloids were found at both protruding asperities and concave
surfaces, the colloids were mainly located at the concave
locations, particularly at the high PWVs. For example, by using
SEM and randomly selecting 10 locations of a sand surface, we
found that only 18 and 4% of attached colloids were located at
convex surfaces at 200 mM with PWVs of 4.9 × 10−5 and 7.8 ×
10−4 m/s, respectively. These results clearly indicate that the
surface roughness morphology plays a critical role in the
colloid attachment. Indeed, comparison of Figure S4 with
Figure S5 showed that the attachment was reduced in columns
packed with glass beads due to their smoother surfaces. In

Figure 2. Calculated (1) experimental attachment efficiency αexp and (2) experimental single-collector removal efficiency ηexp of the colloids as a
function of PWV in (a) quartz sand or (b) glass beads at different ISs. Error bars represent standard deviation from triplicates.
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contrast, if real soil grains were used to pack the columns, the
attachment was significantly increased due to the very rough
soil grain surfaces (Figures S2 and S7).
One important reason for the observed unfavorable

attachment at convex sites is that the tangential components
of PWV are increased with increasing PWV. The hydro-
dynamic shear and drag torque could be increased to be
comparable to or even exceed the adhesive torque that acts on
a colloid at convex locations (Figure 4). This is because the
adhesive forces/torques were significantly reduced at the
convex locations compared to those at concave sites due to
reduction of the primary minimum depth and accordingly the
adhesive forces/torques by the nanoscale protruding hetero-
geneities (Figure S8 and Table S7). Increase in the PWV also
increases the hydrodynamic slip length above convex asperities,
resulting in less colloids delivered to these sites.27,29 Moreover,
the values of η0 were reduced due to the presence of
protruding asperities, meaning less colloids delivered to these
convex sites (Figure S9). Therefore, the value of αexp decreased
with increasing PWV from 3.9 × 10−4 to 7.8 × 10−4 m/s in
sand at IS ≤ 10 mM and in glass beads, and the attached
colloids were mainly distributed at concave locations at the
highest PWV. The unfavorable deposition at the convex
asperities was further confirmed by the simulations using the
Lagrangian colloid trajectory model as shown in Figure 5.
Specifically, the nanoscale protruding asperities on collector
surfaces can greatly reduce the value of η by reducing colloid−
collector attraction and increasing hydrodynamics slip length.
Increase in the PWV (and accordingly its radial

components) may increase delivery of the colloids into the
concave locations and subsequent attachment because of the
increased viscous resistance and stagnant fluid at the concave
sites.56 In addition, the colloids on protruding asperities may
roll into the concave regions by hydrodynamic shear. This
provides a plausible explanation for the observed increase in
αexp with increasing PWV from 4.9 × 10−5 to 3.9 × 10−4 m/s.
Note that a monotonic increase in αexp with PWV was
observed in sand and soil porous media at IS ≥ 100 mM (see
Figures 2 and S10). This is because attachment at concave
surfaces was the main retention mechanism at these rough
sand and soil grain surfaces where considerable large concave
locations were accessible to colloid attachment, as observed by
the SEM examinations in Figure 3. The dominance of
attachment by the concave surface morphology caused the

insensitive variation of αexp with solution IS or the DL
thickness.
It is worth mentioning that the primary minimum depth and

the adhesive force were shown to increase for a colloid
interacting with a concave surface compared to a flat surface in
previous studies.4,29,57 However, these studies modeled
concave surfaces consisting of multiple regular smooth surfaces
(e.g., two intercepting planar surfaces, between two surfaces of
spheres or hemispheres leaning on each other). Our results
showed that the primary minimum depth and the adhesive
force were significantly reduced at the concave surface when

Figure 3. SEM images of quartz sand surfaces taken after deposition
under a PWV of (a) 4.9 × 10−5 and (b) 7.8 × 10−4 m/s at different
ISs (1, 1 mM; 2, 200 mM).

Figure 4. Calculated hydrodynamic torques TH between a colloid and
(a) quartz sand or (b) glass beads as a function of PWV at different
ISs. (c) Calculated adhesive torques TA between a colloid and quartz
sand or glass beads as a function of IS.
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the fractal of roughness was considered (Table S7). This is
because nanoscale protruding asperities exist at the concave
locations for fractal surfaces which significantly decrease
interaction energies. Therefore, the stable attachment at
concave locations may be mainly due to the reduced
hydrodynamic shear and drag torque at these regions.
It should be noted that we used a nonretarded expression58

to calculate VDW energy and assumed a constant surface
potential boundary condition59 to determine DL interaction
energy. The primary minimum depth and adhesive force will
be decreased if the retarded expression and linear super-
position approximation approach are used to calculate the
VDW and DL energies, respectively, as adopted in the
literature.60−63 In addition, we adopted a value of 0.158 nm
as the minimum separation distance to determine the BR
repulsion. The primary minimum depth and adhesive force will
be further reduced if a larger value of the shortest separation
distance is used (e.g., 1 nm in Li et al.60−63). Therefore, the
reduction of hydrodynamic shear and drag torque at concave
regions may play a more significant role in the stable
attachment of colloids at these locations. Although the zeta
potentials of sand grains were slightly more negative compared
to glass beads which caused deeper primary minima, the
insensitive variation of αexp with IS (or zeta potential change)
illustrates the relative insignificant contribution of zeta
potential to colloid attachment, similar to the observation of
Elimelech et al.64 Note that our work and Elimelech et al’s.64

were conducted under favorable conditions or when the
surface heterogeneity was significant. The zeta potential could
play a significant role in colloid deposition under unfavorable

conditions or when the surface heterogeneity was insignificant
as revealed by machine learning examinations.65−67

Blocking and Ripening. Figure S4 shows rise and decline
of C/C0 at the plateau of BTCs for sand columns at IS ≤ 10
mM and IS ≥ 100 mM at high PWVs, respectively. The rise
and decline of C/C0 were interpreted as blocking and ripening,
respectively, in the literature.68−70 Specifically, the colloids
attached on collector surfaces influence attachment of
subsequently approaching colloids in their vicinity due to
geometrical volume excluding the effect and interactions
between the attached and approaching colloids.71 The blocking
and ripening mean that attached colloids inhibit and facilitate
attachment of the approaching colloids when the colloid−
colloid interactions are repulsive and attractive, respectively.
The blocking causes attached colloids to be singly and sparsely
distributed on collector surfaces (due to side and vertical
repulsions between colloids), whereas dense and multilayer
deposition can occur due to ripening.
Figure S11 and Table S8 show that repulsive energy barriers

exist between colloids at IS ≤ 10 mM, whereas the colloid−
colloid interaction became attractive at IS ≥ 100 mM. The
repulsive energies around the attached colloids excluded
subsequent attachment around these colloids at the low ISs.
Indeed, the SEM images in Figure 3 show that the attached
colloids were singly and sparsely distributed at convex sites of
rough sand surfaces at 1 mM. Although the attached colloids
were more densely distributed at concave locations, significant
separation distances (at microscale) still existed between
attached colloids. The interaction energy between colloids
became insignificant when their separation distances were at

Figure 5. Simulated single-collector efficiency η of the colloids in quartz sand using a Lagrangian colloid trajectory model. (a) Simulated η under a
TB boundary condition of 1 μm colloids as a function of PWV (IS = 1, 10, 100, and 200 mM). The collector rms roughness Rq and slip length b
were set to 102 and 700 nm, respectively. (b) Simulated η under a PS boundary condition of 1 μm colloids as a function of PWV (IS = 1 mM). The
collector Rq and b were set to 102 and 700 nm, respectively. (c) Simulated η under a TB boundary condition of 2 μm colloids as a function of PWV
(IS = 200 mM). The collector Rq and b were set to 102 and 700 nm, respectively. (d) Simulated η under a TB boundary condition of 1 μm colloids
as a function of b (Rq = 102 nm) or Rq (b = 700 nm) under a PWV of 4.9 × 10−5 m/s and IS of the 1 mM condition.
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micrometer (Figure S11). In contrast, the attached colloids
leaned on each other at concave surfaces at 200 mM when
repulsive energy barriers between the colloids disappeared (see
Figures 3 and S12).
It is interesting to note that all attached colloids were still

singly distributed at convex sites at the highest IS (i.e.,
individual and sparse deposition, see Figure 3), demonstrating
that blocking occurred at these locations even if the colloid−
colloid interaction was attractive. It is even more difficult for
colloids to be deposited atop the colloids attached at convex
locations than directly at the convex locations because the
hydrodynamic shear and drag force acting on a colloid are
larger in the former case. At the area downgradient of
protruding asperities and attached colloids on collector
surfaces, Ko and Elimelech72 demonstrated that a shadow
region is created, and this region is not accessible for colloid
attachment at high PWVs for large colloids. Colloids that were
intercepted with the protruding asperities could roll into the
concave regions along the down-gradient side of protrusions
due to the nested ring vortices at the concave region. Similarly,
at the region up gradient of protruding asperities and attached
colloids on collector surfaces (i.e., concave area), colloids can
also be driven by the fluid vortices into the vertex of the
concave location.73−77 These reasons may explain the
observation of colloids singly distributed at convex sites
whereas densely located at concave sites (e.g., nearly saturated
layer or multilayer deposition, see Figures 3, 6, and S12). Our

experimental observations are in contrast to the theoretical
prediction by Kemps and Bhattachharjee77 that colloids were
favorably deposited on protruding asperities in clusters under
favorable conditions. It should be mentioned that the densely
located colloids at concave locations were not aggregates which
showed different morphologies by the SEM examinations (data
not shown). In addition, the simulations using the Lagrangian
colloid trajectory model illustrated that larger microparticles or
colloidal aggregates had lower values of η (Figure 5, panel c).
Detachment. Previous studies4,29,78 showed that reduction

of solution IS can cause detachment of colloids deposited
under unfavorable conditions because colloids attached at
secondary minima or attached at nanoscale protruding
asperities via primary minimum association can be released
at low IS due to reduction of depths of primary and secondary
minima and expansion of the zone of colloid−surface

interaction. Figure S4 shows no detachment of colloids
deposited at IS ≤ 10 mM under favorable conditions with
introduction of DI water to reduce IS in phase 3. This is
expected because the attractive interaction between a colloid
and collector surface under favorable conditions is larger at a
lower IS (Table S7). However, a minor amount of colloids
were released in phase 3 when the colloids were initially
deposited at IS ≥ 100 mM. As mentioned previously, colloids
can be deposited at close separation distances at high solution
IS. Colloids may be detached when they experience repulsions
from nearby colloids exceeding the attractions from collector
surfaces at low ISs. Such detachments may become very
significant when the concentration of attached colloids is high.
Indeed, Figure S7 shows that considerable colloids were
released from soil porous media upon reduction of solution IS
by increasing injection of PVs of the colloid suspension and
colloid concentration. The SEM images of Figure 6 shows that
multilayer attachment was even formed, and the retained
colloids atop were readily detached at low ISs due to the
repulsion from the underlying colloids. Therefore, even
positively charged colloids can have great mobility through
continuous capture and release when they are at high
concentrations in the subsurface environments. Such con-
tinuous capture and release of positively charged colloids with
high mobility at high input colloid concentrations in porous
media of negatively charged collectors have been visually
observed.2 Note that the SEM images of Figure 6 also
confirmed that the attachment at concave locations was the
main retention mechanism that governed transport of the
colloids in the soil porous media, as mentioned previously. In
addition to using the high input colloid concentration, Figure
S13 shows that if the 50 nm positively charged hematite
nanoparticles were initially delivered into the sand columns to
mask the attachment sites, the subsequent attachment and
detachment of latex colloids were significantly inhibited and
enhanced, respectively. It is worthwhile mentioning that Figure
S4 shows small tails existing in phase 2 at IS ≤ 10 mM,
reflecting that a minor amount of colloids were associated with
attached colloids on collector surfaces at secondary minima in
phase 1 and spontaneously detached in phase 2.

Implications. Nanomaterials such as positively charged
nZVI have been shown to be very efficient for removal of a
variety of organic and inorganic pollutants from water and
wastewater. The application of nanomaterials for in situ
groundwater remediation, however, faces challenge because the
nanomaterials readily attach on soil and sediment grain
surfaces and thus hardly reach contaminated sites. Our work
has important implications for delivery of the positively
charged nanomaterials for in situ groundwater remediation.
For example, our results suggest that it is feasible to initially
deliver positively charged particles with low cost to mask the
attachment sites in soil, followed by injection of nanomaterial
suspensions with high concentrations at high solution ISs and
finally reduction of solution IS. Such a procedure could
significantly enhance the mobility of the nanomaterials in the
subsurface environments.
Our work also has implications for development of models

for accurate simulation of transport of colloidal particles such
as microplastics and colloid-associated contaminants in porous
media. We showed that colloids were singly attached at convex
sites at all ISs (even if the colloid−colloid interaction is
attractive), reflecting that blocking always occurred at these
locations. In contrast, blocking and ripening occurred at low

Figure 6. Typical SEM images for soil sand surfaces taken after (1)
phase 2 and (2) phase 3 under a PWV of (a) 4.9 × 10−5 and (b) 7.8 ×
10−4 m/s at 200 mM. 20 PVs of the colloid influent suspension (50
mg/L) were introduced in phase 1.
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and high ISs at the concave locations, respectively. Our work
for the first time visually showed that blocking and ripening
coexisted at high solution ISs. Therefore, it is necessary to
improve the existing models that only considered blocking or
ripening for accurate prediction of fate and transport of
colloids in subsurface environments.
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