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Abstract16

In this work, we develop gradient boosting machines (GBMs) for forecasting the SYM-17

H index multiple hours ahead using different combinations of solar wind and interplan-18

etary magnetic field (IMF) parameters, derived parameters, and past SYM-H values. Us-19

ing Shapley Additive Explanation (SHAP) values to quantify the contributions from each20

input to predictions of the SYM-H index from GBMs, we show that our predictions are21

consistent with physical understanding while also providing insight into the complex re-22

lationship between the solar wind and Earth’s ring current. In particular, we found that23

feature contributions vary depending on the storm phase. We also perform a direct com-24

parison between GBMs and neural networks presented in prior publications for forecast-25

ing the SYM-H index by training, validating, and testing them on the same data. We26

find that the GBMs yield a statistically significant improvement in root mean squared27

error over the best published black-box neural network schemes and the Burton equa-28

tion.29

Plain Language Summary30

Forecasting geomagnetic indices is crucial for mitigating potential effects of severe31

geomagnetic storms on critical infrastructures such as power grids. In this work, we adopt32

a machine learning method for SYM-H prediction hours ahead with various combina-33

tions of solar wind & interplanetary magnetic field parameters, past SYM-H values, and34

other derived parameters. The feature importance quantification that we derive provides35

important, new insight into the complex relationship between the solar wind and the Earth’s36

ring current.37

1 Introduction38

Geomagnetic storms are the largest geomagnetic disturbances, during which severe39

space weather threats can occur and disrupt our technological society. During geomag-40

netic storms, petajoules of energy enter the Earth’s magnetosphere from the solar wind,41

of which vast majority is stored in the ring current in the inner magnetosphere (Ganushkina42

et al., 2017). The ring current indices such as Dst and SYM-H provide essential infor-43

mation about the current strength and evolution as well as the energy budget, and thus44

are of crucial practical importance (Sugiura & Kamei, 1991). These ring current indices45

have been used in numerous space weather applications, such as in classification of storms,46

as inputs to empirical models of the magnetospheric magnetic topology (N. Tsyganenko,47

1989; N. A. Tsyganenko, 1995, 2002a, 2002b), as features representing the geomagnetic48

activity level for machine learning forecasting the ionospheric total electron content (Liu49

et al., 2020), as parameters used for forecasting of the radiation belt energetic particle50

fluxes (Sakaguchi et al., 2015) and other magnetospheric quantities (Bortnik et al., 2018).51

Therefore, the ability to predict the ring current indices is crucial for space weather fore-52

casts and end-users.53

Several attempts have been made to use machine learning methods to forecast the54

SYM-H index. Cai et al. (2010) and Bhaskar and Vichare (2019) used a Nonlinear Au-55

toRegressive with eXogeneous inputs (NARX) neural network to predict 5-minute av-56

erages of the SYM-H index one hour ahead using past SYM-H values, solar wind and57

IMF parameters as input. Cai et al. (2010) trained their neural networks with data from58

67 geomagnetic storms from 1998 to 2006, while Bhaskar and Vichare (2019) used data59

from 25 additional geomagnetic storms from 2006 to 2013. With the goal of developing60

operationally feasible models, Siciliano et al. (2021) trained long short-term memory (LSTM)61

and convolutional (CNN) neural networks to predict the SYM-H index one hour ahead62

using only IMF parameters and past SYM-H values as input. Collado-Villaverde et al.63

(2021) took a similar approach to predict the SYM-H index several hours ahead, while64

also considering the effects of omitting past SYM-H values as input on predictive per-65
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formance. Both Siciliano et al. (2021) and Collado-Villaverde et al. (2021) train and val-66

idate their networks on 25 strong geomagnetic storms (Dst < -100 nT) from 1998 to 201767

and evaluate their performance using 17 strong test storms. To conduct a direct com-68

parison of predictive performance, we use the same storms and features to train and test69

our proposed model. For the rest of this article, we will use the terms features and (model)70

inputs interchangeably. Comparison results are discussed in section 4.1.71

Many machine learning approaches have been taken to forecast the Dst index and72

other geomagnetic indices such as the Kp index. Attempts to apply machine learning73

methods to forecast the Dst index date back to the works of Lundstedt and Wintoft (1994),74

Gleisner et al. (1996), and Wu and Lundstedt (1997). These authors generally observed75

that the initial and main phases were more accurately predicted than the recovery phase76

when the Dst index is not used as an input due to the fact that the initial and main phases77

are more strongly correlated with solar wind properties. Pallocchia et al. (2006) advo-78

cated for using only IMF parameters as inputs for operational forecasting of the Dst in-79

dex because in situ solar wind plasma instruments tend to fail more often than space-80

based magnetometers. This was also the motivation for using only IMF parameters and81

past values to forecast the SYM-H index in Siciliano et al. (2021) and Collado-Villaverde82

et al. (2021).83

Although the majority of machine learning approaches to forecasting geomagnetic84

indices use neural networks, other techniques have also been proposed: Chandorkar et85

al. (2017) investigated the use of Gaussian Processes for forecasting the Dst index; Lu86

et al. (2016) compared the use of support vector machines (SVM) with neural networks;87

Boynton et al. (2011) employed the Nonlinear AutoRegressive Moving Average with eX-88

ogeneous inputs (NARMAX) model to derive an analytic expression to forecast 1-hour-89

ahead Dst as function of its past values and of the history of a solar wind-magnetoshpere90

coupling function. Xu et al. (2020) combined neural networks with SVM to construct91

an ensemble model using bagging to predict the Dst index up to six hours ahead. We92

also construct an ensemble model but use gradient boosting instead of bagging (see Bauer93

and Kohavi (1999) for a detailed comparison between boosting and bagging). Another94

difference is that we create an ensemble of many simple tree-based models as opposed95

to a few complex models. A comprehensive review of machine learning models for ge-96

omagnetic indexes can be found in Camporeale (2019).97

Despite the fact that data-driven machine learning methods have made a lot of progress98

in many scientific fields and have become popular tools, the lack of interpretability has99

been a major drawback. Even if machine learning methods have typically focused on pre-100

dictive performance, there has been a recent surge in interest in making these methods101

more interpretable (Molnar et al., 2020). The development of interpretable machine learn-102

ing algorithms is of key importance especially in scientific fields such as space weather.103

Inspite of the fact that machine learning methods have repeatedly been shown to out-104

perform operational models empirically, these methods have not been widely adopted105

in an operational setting due to a lack of trust and skepticism from the space weather106

community (Camporeale, 2019). Interpretability gives confidence to operational forecast-107

ers that relevant physical processes are captured to some degree and encoded in a black-108

box model, hence reassuring of its generalizability and robustness versus rare events, which109

are the main focus of space weather forecasting. Gray-box approaches, which combine110

physics-based models with black-box models, can also be used to make machine learn-111

ing methods for space weather forecasting more reliable (Camporeale et al., 2020).112

Explainability can be achieved by using either post-hoc explanation methods or113

intrinsically interpretable models. Examples of intrinsically interpretable models include114

linear regression, decision trees, and generalized additive models. Unfortunately, there115

is often a tradeoff between intrinsic model interpretability and predictive performance116

because interpretable models tend to make strong simplifying assumptions such as lin-117

earity or additivity. Recent efforts have been made to close this gap, starting with ad-118
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ditive models that incorporate two-way feature interactions (Lou et al., 2013). Post-hoc119

explanation methods, to some extent, can be used to explain the predictions made by120

more complex models, usually by constructing an approximate interpretable model af-121

ter training the original model. For an overview of interpretable machine learning meth-122

ods, see Molnar (2019). Several intrinsically interpretable models have previously been123

proposed for forecasting geomagnetic indices. Ayala Solares et al. (2016) proposed a Non-124

linear Autoregressive with Exogeneous Inputs (NARX) model to forecast the Kp index125

where the contribution of each model term to the output can be evaluated. Gu et al. (2019)126

proposed an interpretable NARX model the forecast the AE index that also includes un-127

certainty analysis.128

In this work, we not only aim to obtain accurate predictions of the SYM-H index,129

but more importantly, to learn if the data-driven approach can reveal insights on the phys-130

ical mechanisms. In turn, these insights could then be used to inform future physics-based131

or grey-box models. We achieve this by using a post-hoc explanation method known as132

Shapley Additive Explanations (SHAP) to quantify the contributions from each input133

on the predictions made by gradient boosting machines (Lundberg & Lee, 2017). SHAP134

has been successfully used to explain predictions from tree-based models in other scien-135

tific fields such as medicine (Lundberg et al., 2018), solar power forecasting (Kuzlu et136

al., 2020; Mitrentsis & Lens, 2021), finance (Bluwstein et al., 2020; Mokhtari et al., 2019),137

and atmospheric science (Stirnberg et al., 2020). Section 3.2 continues this discussion138

on explainability and describes the SHAP method in detail.139

The remainder of the paper is organized as follows. In Section 2, we introduce the140

data sources and our data processing procedures. In Section 3, we describe the gradi-141

ent boosting machine, hyperparameter tuning, and quantification of feature importance.142

In Section 4, we provide results of our predictions, compare them with those published143

in the existing literature, and most importantly, the new insights that we learn from the144

prediction model results. We conclude in Section 5 with a summary on key findings and145

some discussions on future work.146

2 Data147

The Disturbance Storm Time (Dst) index is computed as the H (magnetic north)148

component perturbation on equatorial magnetometers (Mayaud, 1980) on an hourly ba-149

sis, and is a characterization of a magnetic storm that has been used historically. The150

Dst index represents the longitudinally averaged part of the external geomagnetic field151

measured at the equator (Sugiura, 1964). As the index includes only the field variation,152

during geomagnetically quiet times, it hovers around zero. The typical definition of a153

geomagnetic storm is that the Dst index reaches values below −50 nT.154

The SYM-H index is a high-time-resolution version of the original Dst index, and155

is given at 1-minute cadence (Iyemori, 1990; Wanliss & Showalter, 2006). The SYM-H156

index is compiled from 11 low- and mid-latitude magnetometer stations. Quiet time fields,157

including local time and seasonal quiet time Sq current effects, are removed, and the resid-158

uals are averaged together, divided by the cosine of the co-latitude of the station to yield159

the component parallel with the magnetic dipole. Geomagnetic storms can be classified160

based on the SYM-H values: moderate (−100 nT < SYM-H < −50 nT), intense (−250 nT161

< SYM-H < −100 nT), and superstorms (SYM-H < −250 nT).162

We extract the SYM-H index data from the OMNI dataset compiled at NSSDC163

(https://spdf.gsfc.nasa.gov) using the open-source Python library swmfpy (King,164

2005; Al Shidi, Qusai, 2020). We use the level-2 solar wind plasma and interplanetary165

magnetic field (IMF) parameters from the Advanced Composition Explorer (ACE) space-166

craft provided by the NASA Space Physics Data Facility (https://cdaweb.gsfc.nasa167

.gov/index.html/) as inputs in our models. The original dataset contains the IMF com-168
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ponents from the ACE Magnetic Field Experiment (MAG) instrument (Smith et al., 1998)169

at a 16-second cadence, as well as proton density, bulk speed, and ion temperature from170

the SWEPAM suite (McComas et al., 1998), at a 64-second cadence. In addition to so-171

lar wind plasma and IMF parameters, we also include derived quantities, in particular172

the solar wind dynamic pressure and electric field, as we expect them to be relevant in-173

put parameters for predicting geomagnetic storms (Newell et al., 2007).174

Explanation methods, such as SHAP, allow us to confirm or disprove these expec-175

tations. To remove some of the high frequency variation inherent in high time resolu-176

tion data and to eliminate minor data gaps, we average the SYM-H index, solar wind177

and IMF parameters to a 5-min time resolution. This was also done by Collado-Villaverde178

et al. (2021); Siciliano et al. (2021).179

For training and testing the GBMs discussed in section 3.1, we use 42 strong ge-180

omagnetic storms occurring between 1998 to 2018 which reached a minimum SYM-H in-181

dex value of less than −100 nT. Information about these storms are given in tables 1 and 2.182

We use 5-fold cross validation to optimize hyperparameters (see section 3.1) instead of183

using a separate set of storms for validation, which allows us to use more data for train-184

ing models. Descriptive statistics for the training and test storms are given in tables A1185

and A2.186

Table 1. Storms used to train GBMs. These storms are identical to the ones used to train and

validate models in Collado-Villaverde et al. (2021).

Storm # Start date End date Min. SYM-H (nT)

1 1998-02-14 1998-02-22 -119
2 1998-08-02 1998-08-08 -168
3 1998-09-19 1998-09-29 -213
4 1999-02-16 1999-02-24 -127
5 1999-10-15 1999-10-25 -218
6 2000-07-09 2000-07-19 -335
7 2000-08-06 2000-08-16 -235
8 2000-09-15 2000-09-25 -196
9 2000-11-01 2000-11-15 -174
10 2001-03-14 2001-03-24 -165
11 2001-04-06 2001-04-16 -275
12 2001-10-17 2001-10-22 -210
13 2001-10-31 2001-11-10 -313
14 2002-05-17 2002-05-27 -113
15 2003-11-15 2003-11-25 -488
16 2004-07-20 2004-07-30 -208
17 2005-05-10 2005-05-20 -302
18 2006-04-09 2006-04-19 -110
19 1998-12-09 1998-12-19 -206
20 2012-03-01 2012-03-11 -149
21 1998-04-28 1998-08-05 -268
22 1999-09-19 1999-09-26 -160
23 2003-10-25 2003-11-03 -427
24 2015-06-18 2015-06-28 -207
25 2017-09-01 2017-09-11 -144

To predict SYM-H ∆t hours ahead of time t, henceforth denoted as y(t+∆t), we187

will consider different combinations of the features listed in table 3. We also consider lead188

times ∆t of one and two hours. When the SYM-H index is included, the observations189
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Table 2. Storms used to test GBMs. These storms are identical to the ones used to test mod-

els in Collado-Villaverde et al. (2021).

Storm # Start time End time Min. SYM-H (nT)

26 1998-06-22 1998-06-30 -120
27 1998-11-02 1998-11-12 -179
28 1999-01-09 1999-01-18 -111
29 1999-04-13 1999-04-19 -122
30 2000-01-16 2000-01-26 -101
31 2000-04-02 2000-04-12 -315
32 2000-05-19 2000-05-28 -159
33 2001-03-26 2001-04-04 -434
34 2003-05-26 2003-06-06 -162
35 2003-07-08 2003-07-18 -125
36 2004-01-18 2004-01-27 -137
37 2004-11-04 2004-11-14 -393
38 2012-09-10 2012-10-05 -138
39 2013-05-28 2013-06-04 -134
40 2013-06-26 2013-07-04 -110
41 2015-03-11 2015-03-21 -233
42 2018-08-22 2018-09-03 -205

from the previous one hour are used as input. We set the history length for all other fea-190

tures to be either two hours, if the SYM-H index is included, or 30 hours, if the SYM-191

H index is excluded. The history length selections were motivated by Siciliano et al. (2021),192

who examined the coefficient of determination R2 that quantifies the amount of observed193

variance that is explained by the predictions as a function of the history length, when194

the SYM-H index was either included or excluded as an input. They found that R2 started195

to decrease when the history length was around 30 hours, if the SYM-H index was not196

included as input. When the SYM-H index was included as input, the R2 results for his-197

tory lengths of 90 to 180 minutes were similar, while R2 started to decrease for time in-198

tervals longer than 180 minutes.199

Table 3. Features used as input into our models.

Features History length (in hours)

Past SYM-H index (nT) 1
IMF : Bx, By, Bz (nT) 2 or 30

Solar wind : Vx (km/s), ρ (amu/cm
3
), T (K) 2 or 30

Derived quantities : ρV 2
x (nPa), Es = max(0,−|Vx|Bz)(mV/m) 2 or 30

The different sets of features used as inputs are listed in table 4. Using different200

sets of features to train our models allows us to investigate how the inclusion of certain201

features affects predictive performance and feature contributions. The choice to train our202

models using only IMF parameters and past SYM-H (input set I1, table 4) was moti-203

vated by the high percentage of missing observations for solar wind plasma parameters.204

For IMF parameters and solar wind velocity, there is less than 2% of observations miss-205

ing within our sample. However, this percentage is substantially higher (roughly 9%) for206

solar wind density and temperature. Although our proposed model handles missing data207
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internally, we choose to impute missing observations using linear interpolation (see sec-208

tion 3.4 in Chen and Guestrin (2016) for details).209

Including solar wind plasma and derived parameters in input sets I3 and I4 allows210

us to investigate how these contribute to predictions. In particular, a sudden increase211

of dynamic pressure ρV 2
x can compress the magnetosphere and cause a positive jump in212

SYM-H, which typically happens at the beginning of the geomagnetic storms (sudden213

storm commencement). Another physically important parameter is the y component of214

the interplanetary electric field Ey = VxBz that characterizes the amount of north-south215

magnetic flux carried by the solar wind. Note that Vx < 0 in the geocentric-solar-magnetic216

(GSM) coordinate system used here. The rectified electric field Es = max(0, Ey) is the217

same as Ey when the IMF has a southward component (Bz < 0), which facilitates the218

onset of dayside reconnection, and zero for northward IMF when dayside reconnection219

is limited to high latitudes beyond the polar cusps (Burton et al., 1975). Including Es220

would allow us to compare and contrast its contribution to predictions using the Bur-221

ton equation (T. P. O’Brien & McPherron, 2000; T. P. O’Brien, 2002).222

To examine how solar wind and IMF parameters influence predictions without knowl-223

edge of past SYM-H values, we train models with input sets I2 and I4 which exclude past224

SYM-H values (see Table 4).225

Table 4. Various sets of features used as inputs to train our models.

Input set Features included

I1 IMF, past SYM-H
I2 IMF
I3 IMF/solar wind/derived quantities, past SYM-H
I4 IMF/solar wind/derived quantities

3 Methods226

3.1 Gradient Boosting Machines227

Gradient boosting machines (GBMs), also known as gradient boosted trees, have228

had considerable success in prediction tasks across a wide range of domains (Natekin &229

Knoll, 2013). Shwartz-Ziv and Armon (2021) recently performed a rigorous study show-230

ing GBMs outperformed several neural network models in terms of accuracy in classi-231

fication and regresssion problems with tabular data. GBMs are consistently used in the232

winning solutions of various machine learning prediction competitions like Kaggle, show-233

ing its effectiveness in a wide range of problems (Chen & Guestrin, 2016). In the space234

sciences, GBMs and other ensemble methods have recently been used to predict ambi-235

ent solar wind flow (Bailey et al., 2021) and the Dst index (Xu et al., 2020).236

In contrast to algorithms that construct one complex model, gradient boosting se-237

quentially constructs simple prediction models called base learners that improve upon238

previously constructed base learners and sums them together to obtain an ensemble model.239

This process is analogous to how gradient descent optimizes weights in a neural network.240

Seen as a form of “functional gradient descent”, gradient boosting minimizes an objec-241

tive function by iteratively adding a new base learner, usually a decision tree, that leads242

to the largest decrease in the loss function (Friedman, 2001). In the case of GBMs, the243

base learners are regression trees, which are a highly interpretable class of machine learn-244

ing models that mimic human decision-making but are often too simplistic for most pre-245

diction problems when used alone. Fortunately, ensembles of regression trees, like GBMs,246

are capable of producing highly accurate predictions while still taking advantage of the247
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interpretability of regression trees. In addition to gradient boosting, bagging is another248

widely used ensemble method that constructs multiple base learners in parallel and ag-249

gregates them by averaging (Breiman, 1996).250

The gradient boosting machines that we use to forecast SYM-H have the form

y(t+ ∆t) = α+
M∑

m=1

Tm(I(t)) + ε(t), t = 1, . . . , N, (1)

where I(t) is a vector of inputs used at time t; ε(t) is an error term at time t; Tm’s are
regression trees; M is the number of iterations (trees) in the training algorithm; N is the
number of timepoints; and α is a constant intercept term. I(t) depends on which input
set from table 4 is used. For instance, if input set I2 is used, I(t) =

(
Bx(t), . . . , Bx(t−

115), By(t), . . . , By(t−115), Bz(t), . . . , Bz(t−115)
)
, where, for example, Bz(t−60) de-

notes the value of Bz 60 minutes prior. The regression trees can be written mathemat-
ically as

T (x) = wq(x), (2)

where w are the leaf weights of the tree; and q represents the tree structure by mapping251

an input to its corresponding leaf node index. Figure 1 shows the tree structure of one252

of the trees in a GBM that we trained.253

SYM-H(t)<-68.5

SYM-H(t)<-169.9

True

SYM-H(t)<-21.1

False

SYM-H(t)<-263.8 SYM-H(t)<-112.1 SYM-H(t)<-41.1 SYM-H(t)<-4.1

-312.1 -194.9 -135.89 -86.0 -52.1 -29.7 -13.3 3.7

Figure 1. Structure of the first tree T1 learned in a GBM trained with input set I3 to predict

the SYM-H index one hour ahead. The leaf nodes of the tree are shaded gray. The value in each

leaf node is its corresponding leaf weight. Left splits correspond to the inequality in the previous

node being true, and vice versa.

To train our GBMs, we use the open-source framework XGBoost that constructs
the regression trees using gradient boosting and penalizes trees that are overly complex
to avoid overfitting (Chen & Guestrin, 2016). More specifically, at each iteration m, we
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will construct a new regression tree Tm by minimizing the following objective function.

L(m)(Tm) =
N∑
t=1

{
y(t+ ∆t)−

[
ŷ(m−1)(t+ ∆t) + Tm(I(t))

]}2

+
m∑
j=1

Ω(Tj), (3)

where ŷ(m−1)(t+ ∆t) =
m−1∑
k=1

Tk(I(t)) and Ω(Tj) = γKj +
1

2
λ

Kj∑
k=1

w2
j,k. (4)

In eq. (4), Kj is the number of leaf nodes in Tj ; wj,k’s are the leaf node weights in Tj ;254

and γ and λ are regularization hyperparameters. Ω is a regularization term that penal-255

izes the complexity of the regression trees by limiting the number of leaf nodes and shrink-256

ing the leaf weights. Increasing γ results in shallower trees while increasing λ leads to257

smaller leaf weights. An alternative method for controlling tree size is to explicitly set258

the maximum tree depth. Besides increasing λ, we can also reduce the influence of in-259

dividual trees by scaling their leaf weights by a learning rate. It is typically impossible260

to enumerate over all tree structures when constructing each regression tree. XGBoost261

takes a greedy approach that starts from a single leaf and iteratively adds branches to262

the tree that results in the largest loss reduction. This step involves finding the optimal263

feature and value to split the tree. Algorithms for splitting the tree are described in more264

detail in section 3 of Chen and Guestrin (2016).265

To reduce the risk of overfitting, we control model complexity by optimizing sev-266

eral hyperparameters: learning rate, maximum tree depth, feature subsampling percent-267

age, minimum child weight, and number of boosting iterations (trees). We optimize these268

hyperparameters, except the number of iterations, using cross validation and a gradient-269

free optimization platform called Nevergrad (Rapin & Teytaud, 2018). To set the num-270

ber of iterations (trees), we monitor performance using cross validation at each iteration271

and terminate the algorithm when the performance stops improving. This technique is272

commonly referred to as early stopping in the machine learning literature (Zhang & Yu,273

2005). Cross validation is performed by first splitting the training storms in table 1 into274

5 sets. After that, we use each set for evaluation while training the model using the other275

4 sets. We repeat this procedure four times until all sets have been used for evaluation.276

Using cross validation, as opposed to a separate validation set, allows us to use more data277

when training the final model. The specific hyperparameter values we set are given in278

table 5.279

Table 5. Hyperparameter values for training GBMs using the different input sets in table 4.

Input set Hyperparameter Value

I1, I2 Learning rate 0.072
Max. tree depth 4
Min. child weight 4
Column subsampling % 0.78
# of trees 84

I3, I4 Learning rate 0.147
Max. tree depth 3
Min. child weight 2
Column subsampling % 0.894
# of trees 291

GBMs have several advantages over competing machine learning methods. GBMs,280

and tree-based methods in general, are invariant to monotonic transformations of the281

features so it is better equipped to handle inputs on different scales. A practical conse-282
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quence of this property is that the features don’t have to be standardized before train-283

ing. GBMs are robust against issues arising from correlated features due to the greedy284

nature of gradient boosting and how regression trees are constructed. A downside of tree-285

based models for time series forecasting is that they produce predictions that are not smooth286

due to the tree structure of the model (Hastie et al., 2001). This can be seen in fig. 2,287

where the predictions from our GBM looks noisier than the ones from LSTM. Despite288

this property, GBMs are still able to produce highly accurate predictions. Another dis-289

advantage is that regression trees do not extrapolate well so they may exhibit sporadic290

behavior when predicting with inputs that have values outside of the bounds of the in-291

puts used for training. Fortunately, as seen in tables A1 and A2, the features in our test292

set are mostly within the bounds of the features in the training set.293

GBMs can also suffer from over-specialization, wherein trees added in later iter-294

ations tend to only impact the predictions of a few instances (Korlakai Vinayak & Gilad-295

Bachrach, 2015). This may make the model highly sensitive to the contributions of the296

initially added trees. This issue is combated, to some extent, by selecting a small learn-297

ing rate. To further alleviate this issue, we use a technique for employing dropouts in298

GBMs introduced by Korlakai Vinayak and Gilad-Bachrach (2015). Dropouts have been299

used successfully in neural networks, where a random subset of connections in the net-300

work is dropped during training (Srivastava et al., 2014). In the context of GBMs, at301

each training iteration, we replace ŷ(m−1) in eq. (3) with the sum of a random subset,302

instead of all, of the previously constructed trees and then normalize the newly constructed303

tree and dropped trees. Further details of this procedure can be found at (Korlakai Vinayak304

& Gilad-Bachrach, 2015).305

3.2 Feature Importance306

Methods for computing feature contribution, or feature importance, can be cate-307

gorized as global versus local and model-specific versus model-agnostic. Global feature308

importance scores are used to explain a model’s overall behavior across the entire train-309

ing dataset, while local feature importance scores tells you how individual features con-310

tributed to a single prediction. Model-specific feature importance is provided directly311

by the model, while model-agnostic methods, such as SHAP, typically construct an ap-312

proximate interpretable model to explain predictions from the original model. For tree-313

based models, global feature importance can be calculated using information gain (Breiman314

et al., 1984), permutation (Breiman, 2001), or split count (Chen & Guestrin, 2016). In315

this paper, we will focus primarily on local feature importance as the contribution from316

each feature is likely to vary over time depending on the storm phase.317

While there are several methods for computing local feature contribution in tree-
based models (Molnar, 2019), we chose to use Shapley additive explanation (SHAP) be-
cause of its desirable theoretical properties (Lundberg & Lee, 2017). SHAP is based on
Shapley values in cooperative game theory (Shapley, 1953), where they are used to fairly
distribute payoffs in a game among a coalition of players with unequal contributions. In
the case of SHAP, the payoff is the prediction and the players are the features. SHAP
belongs to the class of additive feature attribution methods which assumes the follow-
ing linear explanation model for an individual prediction.

g(z) = φ0 +

p∑
i=1

φizi, (5)

where φ0 is a reference value (e.g. mean); p is the number of input features; z =
(
z1 . . . zp

)′
,318

where zi is a binary variable indicating whether feature i is present; and φi is the con-319

tribution from feature i. SHAP yields the unique solution to eq. (5) that satisfies three320

desirable theoretical properties: local accuracy, missingness, consistency. The local ac-321

curacy property ensures that the sum of feature contributions for given inputs sum up322

to the prediction. The consistency property ensures that the SHAP value for a feature323
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increases if the marginal contribution from that feature increases. Missingness is mainly324

a theoretical property that says a missing feature has zero contribution. The only alter-325

native tree-specific local explanation method that we are aware of is Saabas (2014), which326

doesn’t have the consistency property. SHAP values describe a particular model’s decision-327

making process based on the data. Therefore, they can only be used to gain insight into328

the data-generating process when the model approximates the underlying process well329

enough. Furthermore, the effect that multicollinearity has on SHAP values depends on330

the particular model used (in our case, GBMs).331

Although SHAP values can, in theory, be computed for any black box model, they332

are more computationally efficient for tree-based models like GBMs due to a model-specific333

algorithm for computing exact SHAP values known as TreeSHAP (Lundberg et al., 2019),334

which reduces the computational complexity from exponential to polynomial. For other335

complex models like neural networks, computing SHAP values would require refitting336

the model with many subsets of features, which is impractical if training is expensive and337

more than a few features are used. Unfortunately, a downside of using TreeSHAP is that338

non-contributing features can potentially have a non-zero contribution if they are cor-339

related with a contributing feature (Molnar, 2019).340

4 Results341

In this section, we will compare the predictive performance of GBMs with neural
networks developed by Siciliano et al. (2021) and Collado-Villaverde et al. (2021), ex-
plain model predictions using the methods discussed in section 3.2, and discuss how pre-
dictions vary when the different set of features listed in table 4 are used as inputs. To
evaluate the predictive accuracy of GBMs for forecasting the SYM-H index, we use the
root mean squared error (RMSE) defined in eq. (6).

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

The RMSE metric provides insight into how well predictions match observations on av-342

erage so a lower value is better.343

To supplement the RMSE metric, we also use the forecast skill score (FSS) based
on mean squared error (Murphy, 1988) using the Burton equation described in T. O’Brien
and McPherron (2000) as a baseline defined as

FSS(y, ŷ, yburton) = 1− MSE(y, ŷ)

MSE(y, yburton)
, (7)

where yburton denotes the predictions from the Burton equation and MSE(y, ŷ) = (1/n)
∑n

i=1(yi−344

ŷi)
2. The Burton equation, which predicts the evolution of pressure-corrected Dst from345

the half-wave rectified solar wind motional electric field, is an appropriate baseline as it346

is derived from physical understanding and is thus also an interpretable method for pre-347

dicting the SYM-H index. The metric in eq. (7) evaluates the performance of model pre-348

dictions relative to the baseline predictions. If FSS is between 0 and 1 (inclusive), that349

means the considered model outperforms the baseline. However, if FSS is negative, that350

means the considered model performs worse than the baseline.351

4.1 Comparison to existing methods352

In this section, we compare the predictions obtained using our model with the neu-353

ral networks developed in Siciliano et al. (2021) (LSTM1/CNN1) and Collado-Villaverde354

et al. (2021) (LSTM2) on the 17 test storms in table 2 using the RMSE metric. Collado-355

Villaverde et al. (2021) considers 1-2 hours ahead prediction, whereas Siciliano et al. (2021)356
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only considers 1-hour. On the other hand, Siciliano et al. (2021) trains models with and357

without the SYM-H index as an input, whereas Collado-Villaverde et al. (2021) only trains358

models with SYM-H. We train GBM models to predict 1-2 hours ahead with and with-359

out the SYM-H index as an input and compare them to the corresponding neural net-360

work models. All models were trained using data from the same storms in table 1. The361

RMSE values and forecast skill scores for each test storm and all considered models are362

shown in tables 6 to 9. Similar to Collado-Villaverde et al. (2021), we also compute the363

mean RMSE over all storms.364

For each prediction scenario, we perform a paired t-test to determine if the mean365

difference in RMSEs across storms is statistically significant at a 5% significance level.366

A paired t-test can be used to compare two population means where there are two sam-367

ples with observations that can be paired with one another. It amounts to performing368

a one-sample t-test on the differences of the paired observations. In our case, we can match369

the RMSEs of different methods for the same storm together.370

4.1.1 1-hour ahead predictions371

Tables 6 and 7 show the RMSE values and forecast skill scores for 1 hr ahead pre-372

dictions with SYM-H included as an input using our GBM, LSTM1, LSTM2, and the373

simple persistence model. In this case, our GBM achieves the lowest mean and median374

RMSE among the considered models. Our GBM model has a 0.448 nT (5.7%) lower RMSE375

than LSTM2, a 1.138 nT (13.3%) lower RMSE than LSTM1, and a 1.942 nT (20.8%)376

lower RMSE than the persistence model. Furthermore, our GBM has the lowest RMSE377

and highest skill score for 14 out of 17 test storms (26-32, 35-38, 41, 42). Figure 2 shows378

the 1 hour ahead predictions from our GBM and LSTM2 during the main and recovery379

phases of the three strongest test storms with SYM-H < −300 nT (31, 33, 37) along with380

the corresponding prediction errors. The distribution of the prediction errors are roughly381

similiar for these three test storms. For the March 2001 storm (second row; fig. 2), our382

GBM was able to accurately predict the minimum SYM-H of around -400 nT that was383

reached around 06:00 to 12:00 UT Mar 31 even though the timing is slightly off. A sim-384

ilar plot and analysis for the persistence model is given in appendix A1.385

4.1.2 2-hour ahead predictions386

Tables 8 and 9 show the RMSE values and forecast skill scores for 2-hour ahead387

predictions from GBM and LSTM2 with past SYM-H included as an input. Our GBM388

model has a mean RMSE that is 3.585 nT (24.8%) lower than the mean RMSE for the389

simple persistence model. However, the mean RMSE for our GBM model is .328 nT (3.1%)390

greater than the one for LSTM2. Moreover, LSTM2 has a lower RMSE and higher skill391

score for 8 out of the 17 test storms (31-33, 36, 37, 39-41).392

4.1.3 Predictions without past SYM-H393

When we omit the SYM-H index as an input to predict 1-hour ahead, our GBM394

outperforms LSTM1 and has simliar performance as CNN1. Table 10 shows the RMSE395

for 1-hour ahead predictions from GBM, LSTM1, and CNN1 and 2-hour ahead predic-396

tions from GBM. Our GBM model has a 3.5 nT (15.4%) lower mean RMSE than LSTM1397

and a 1.6 nT (7.7%) lower mean RMSE than CNN1. Furthermore, the GBM model has398

the lowest RMSE for 11 out of 17 test storms. However, CNN1 achieves a lower RMSE399

for the 3 strongest test storms (33, 37, 40).400

4.1.4 Statistical significance401

Table 11 shows the p-values for the paired t-tests described in the second paragraph402

of section 4.1. From this table, we can see that the mean differences in RMSE across storms403
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Table 6. RMSEs for 1-hour ahead prediction over the test storm set with our GBM model,

LSTM1 (Siciliano et al., 2021) and LSTM2 (Collado-Villaverde et al., 2021) neural networks,

Burton equation (T. O’Brien & McPherron, 2000) and simple persistence. Here, the GBM,

LSTM1, and LSTM2 were trained with past SYM-H and IMF parameters as inputs. The lowest

RMSE for each row is shown in bold.

Storm # GBM LSTM2 LSTM1 Burton Persistence

26 5.863 6.630 6.700 6.839 7.631
27 7.729 8.913 8.900 7.954 9.623
28 4.281 5.858 5.400 5.697 5.814
29 5.833 6.683 7.200 6.511 7.174
30 4.927 5.200 5.600 4.614 4.810
31 8.277 8.584 10.700 8.838 10.429
32 6.841 7.259 8.300 9.487 10.528
33 14.492 13.340 16.300 16.630 21.167
34 10.190 10.034 11.300 10.888 10.913
35 7.154 7.693 8.500 7.918 8.011
36 8.512 9.525 8.700 9.082 9.708
37 14.548 15.184 17.500 15.713 19.698
38 3.886 4.080 4.200 4.572 4.842
39 5.901 6.431 5.600 6.663 7.597
40 4.976 4.673 5.500 5.371 5.057
41 7.558 7.882 9.000 8.358 9.984
42 5.030 5.669 5.900 5.549 6.036

Mean 7.412 7.860 8.550 8.276 9.354
Median 6.841 7.259 8.300 7.918 8.011
Min. 3.886 4.080 4.200 4.572 4.810
Max. 14.548 15.184 17.500 16.630 21.167
Std. error 0.763 0.713 0.901 0.840 1.131

between GBM and competing methods for all prediction scenarios are statistically sig-404

nificant at a 5% significance level (p-value ≤ 0.05) except for 2 hr ahead prediction with405

LSTM2.406

4.2 Explaining predictions407

In this section, we explain how the input features we use contributed to our model’s408

predictions using the methods discussed in section 3.2. To obtain the contributions from409

each feature in table 3, we sum up the contributions from the history of that feature.410

Figure 3 shows the contributions to the 1-hour prediction from various features as411

a function of the SYM-H. Overall, the past SYM-H value dominates, which means that412

SYM-H varies smoothly at a 1-hour time scale. This also means that beating the per-413

sistence model is not easy. The second most important contribution comes from Bz, which414

is expected based on its importance in driving magnetic reconnection that allows energy415

entry into the magnetosphere. What is less expected is that the velocity Vx and the rec-416

tified electric field Es are much less important for the storm peak values (SYM-H be-417

low −100 nT). In fact, the third most important feature is the dynamic pressure ρV 2
x .418

One would expect the dynamic pressure to be most important during the sudden storm419

commencement that produces a positive jump in SYM-H. Interestingly, the contributions420

of ρV 2
x and Bz are comparable even for predicting positive SYM-H, except for the most421

positive values. Overall, we find that past SYM-H and Bz are the most important fea-422
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Table 7. Forecast skill scores (using the Burton equation (T. O’Brien & McPherron, 2000) as

the baseline) for 1-hour ahead prediction over the test storm set with our GBM model, LSTM1

(Siciliano et al., 2021) and LSTM2 (Collado-Villaverde et al., 2021) neural networks. Here, the

GBM, LSTM1, and LSTM2 were trained with past SYM-H and IMF parameters as inputs. The

highest skill score for each row is shown in bold.

Storm # GBM LSTM2 LSTM1

26 0.143 0.031 0.020
27 0.028 -0.120 -0.119
28 0.249 -0.028 0.052
29 0.104 -0.026 -0.106
30 -0.068 -0.127 -0.214
31 0.063 0.029 -0.211
32 0.279 0.235 0.125
33 0.129 0.198 0.020
34 0.064 0.078 -0.038
35 0.096 0.028 -0.074
36 0.063 -0.049 0.042
37 0.074 0.034 -0.114
38 0.150 0.108 0.081
39 0.114 0.035 0.160
40 0.074 0.130 -0.024
41 0.096 0.057 -0.077
42 0.094 -0.022 -0.063

tures. Density, velocity, the derived dynamic pressure and rectified electric field are com-423

parable. The rest of the features, such as Bx, By and temperature provide quite small424

contributions. Note that the rectified Es is a less important contributor than Bz and the425

dynamic pressure, despite its physical significance of carrying the magnetic flux that in-426

duces dayside reconnection.427

Figure 4 shows the contribution of various features of the model that is not using428

past SYM-H. As expected, Bz becomes the most important feature. Now velocity and429

density are the next most important features, especially for moderate values of SYM-430

H, and the dynamic pressure by itself does not have enough information (unlike in the431

previous case that used past SYM-H). The rectified Es is still a rather small contribu-432

tor compared to Bz. This can be explained by jointly examining the contributions of Bz433

and Vx: Bz becomes more and more dominant for larger negative SYM-H values. On434

the other hand, the contribution of Vx peaks at moderate storm with SYM-H above −100435

nT, and its contribution tapers off for the very strong storms. While the electric field436

Es combines these two terms, one can see that their contributions are most effective in437

different severity of storms or different phases of the storm, suggesting that considering438

them as independent variables rather than as a single parameter provides more insight439

into the underlying physics. The strong contribution of density for small and positive440

SYM-H values speaks to the importance of density pulses that often are found at the lead-441

ing edges of solar wind structures impacting the Earth (Kilpua et al., 2017).442

4.2.1 November 2004 Storm443

We now look into how the prediction is obtained during the strongest test storm.444

Figure 5 shows the absolute and relative contributions of various features to the 1-hour445

and 2-hour ahead predictions of SYM-H during the November 2004 geomagnetic storm.446

–14–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

Table 8. RMSEs for 2-hour ahead prediction over the test storm set with our GBM model,

the LSTM2 neural network (Collado-Villaverde et al., 2021), Burton equation (T. O’Brien &

McPherron, 2000) and persistence. Here, the GBM and LSTM2 model were trained with past

SYM-H and IMF parameters as inputs. The lowest RMSE for each row is shown in bold.

Storm # GBM LSTM2 Burton Persistence

26 8.285 8.989 10.690 12.374
27 11.585 13.418 12.465 15.387
28 5.650 5.877 8.858 9.331
29 8.826 9.314 9.776 11.415
30 7.280 7.288 6.266 7.416
31 12.613 12.436 13.604 17.193
32 9.927 8.937 13.766 15.282
33 24.519 18.481 25.729 33.927
34 13.736 13.941 14.695 15.109
35 9.504 9.932 10.586 11.211
36 12.068 12.058 13.117 14.687
37 22.327 21.084 24.446 30.582
38 5.153 5.213 6.546 7.353
39 7.391 6.798 10.159 12.322
40 5.633 5.281 6.032 6.373
41 12.121 11.707 12.622 15.437
42 7.976 8.273 8.877 10.130

Mean 10.858 10.530 12.249 14.443
Median 9.504 9.314 10.690 12.374
Min. 5.153 5.213 6.032 6.373
Max. 24.519 21.0840 25.729 33.927
Std. error 1.310 1.077 1.338 1.808

The minimum SYM-H is close to −400 nT for this extreme event, so the RMSE of about447

30 nT for 1-hour and 39 nT for 2-hour forecast are quite accurate (top row). The abso-448

lute and relative contributions shown in the subsequent rows vary substantially during449

the storm. From 18:00 to 20:45 UT (following the Storm Sudden Commencement, SSC),450

the observed SYM-H is positive, and this is roughly captured by the model for 1-hour451

prediction, but is completely missed by the 2-hour forecast. This is not very surprising,452

since there is no information in the solar wind that would predict the sudden commence-453

ment prior to the arrival of the shock. The only reason the 1-hour prediction can get the454

SSC about half an hour rather than 1 hour late is the lead time provided by the time455

it takes the high speed solar wind to propagate from L1 to the Earth. The main con-456

tributors to the 1-hour prediction during this period are the density and dynamic pres-457

sure, and to some extent the IMF Bz. Based on our physical understanding, we would458

expect the dynamic pressure to be a more important predictor than the density, but that459

is clearly not the case, perhaps associated with the relatively constant value of the so-460

lar wind speed over that period.461

During the main phase (22:00 Nov 7 to 06:00 Nov 8) of the storm, the SYM-H grad-462

ually drops to its minimum value near −400 nT. Focusing on the two-hour prediction,463

the relative contribution of Bz peaks around 22:00 on November 7, and 01:00 and after464

04:00 UT. The first peak corresponds to the time when Bz decreases rapidly to nearly465

-50 nT value. The following period of very intense southward IMF shows initially low466

contribution from Bz, but then consistently high values with a peak at 04:00 close to the467

SYM-H minimum demarking the end of the storm main phase. The contribution from468
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Table 9. Forecast skill scores (using the Burton equation (T. O’Brien & McPherron, 2000) as

the baseline) for 2-hour ahead prediction over the test storm set with our GBM model and the

LSTM2 neural network (Collado-Villaverde et al., 2021). Here, the GBM and LSTM2 model were

trained with past SYM-H and IMF parameters as inputs. The highest skill score for each row is

shown in bold.

Storm # GBM LSTM2

26 0.225 0.159
27 0.071 -0.076
28 0.362 0.337
29 0.097 0.047
30 -0.162 -0.163
31 0.073 0.086
32 0.279 0.351
33 0.047 0.282
34 0.065 0.051
35 0.102 0.062
36 0.080 0.081
37 0.087 0.138
38 0.213 0.204
39 0.272 0.331
40 0.066 0.125
41 0.040 0.072
42 0.101 0.068

By, while generally low, has a broad peak between 20:00 and 00 UT on November 7. Dur-469

ing that period, By is first positive and then turns strongly negative. As the Bz is neg-470

ative during that time, the strong By component adds to the efficiency of the dayside471

reconnection process, which may account for its independent role as a predictor. Finally,472

during the recovery phase the prior SYM-H dominates (SYM-H evolution dominated by473

internal ring current loss processes), with Bz playing a secondary role.474

Figure 6 shows the contribution of features as a function of time when the prior475

SYM-H is not used. The RMSE values become 33 nT and 37 nT for the 1 and 2-hour pre-476

dictions, respectively. For the 1-hour prediction, RMSE slightly increases by about 3 nT,477

but for the 2-hour prediction, RMSE decreases by roughly 2 nT. This suggests that there478

is no additional information from the 2-hour old SYM-H compared to what the model479

can infer from a longer history of L1 observations, at least for this event. If this held in480

general, it would put a prediction window limit on using past SYM-H for data assim-481

ilation purposes. Another unexpected result is that the 1-hour prediction misses the pos-482

itive SYM-H period despite using the dynamic pressure. This is in contrast with the 1-483

hour prediction that includes past SYM-H, which produced a larger positive SYM-H, al-484

though still lower than observed.485

The relative contributions (bottom row) show a rather complicated and interest-486

ing pattern. In the initial storm period 18:00 to 21:00 UT, when the observed SYM-H487

is positive, the main contributors are density and velocity. Once SYM-H goes negative,488

Bz gradually becomes the main contributing feature with Es and, Bx (for 1-hour pre-489

diction) and By (for 2-hour prediction) being the second and third most important. Once490

SYM-H drops below −100 nT, the contribution from Bz becomes dominant and this re-491

mains true during the whole recovery phase. The other features start to contribute more492

after 12:00 UT Nov 8 when Bz turns positive. Even with positive Bz, however, the main493
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Table 10. RMSEs for 1- and 2-hour ahead predictions using only the IMF as input (I2) with

our GBM model and the LSTM1 and CNN1 models of Siciliano et al. (2021). For 1-hour ahead

predictions, the lowest RMSE in each row is shown in bold.

1-hour ahead 2-hour ahead

Storm # GBM LSTM1 CNN1 GBM

26 12.6 18.0 19.8 12.9
27 20.1 16.8 23.4 20.9
28 12.7 18.6 14.4 12.4
29 15.4 21.1 20.0 16.7
30 17.0 24.2 25.8 17.1
31 28.5 32.5 32.1 29.6
32 21.8 23.4 18.9 21.9
33 35.7 33.8 26.7 38.1
34 15.3 17.9 16.6 15.5
35 16.9 21.3 18.6 17.3
36 16.2 20.4 21.4 16.8
37 41.6 42.6 36.9 42.7
38 10.5 18.6 13.0 10.6
39 13.0 20.3 16.5 12.8
40 10.9 13.6 9.2 10.6
41 23.2 27.3 25.4 23.7
42 16.9 17.8 16.7 17.1

Mean 19.3 22.8 20.9 19.8
Median 16.9 20.8 19.9 17.1
Min. 10.5 13.6 9.2 10.6
Max. 41.6 42.6 36.9 42.7
Std. error 2.284 1.994 1.853 2.402
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Figure 2. 1-hour ahead predictions for the 3 strongest geomagnetic storms in the test set

during the main and recovery phases from our GBM (left column) and the LSTM2 developed

by Collado-Villaverde et al. (2021) (right column). The observed SYM-H (black), the predicted

SYM-H (blue) and the error (red) are shown for storms 31, 33, and 37 in the 3 rows, respectively.

contributor remains Bz. This shows that the rectified Es, which simply zeroes out the494

electric field for positive Bz, is throwing away potentially important information.495

4.2.2 January 2004 Storm496

Next, we study the storm of January 2004 that has a minimum SYM-H of about497

-140 nT, so it is an intense storm, but not as extreme as the November 2004 super storm.498

As shown in figure 7, this is a very complicated storm due to the highly variable Bz field499

in the CME sheath (00:00 UT to 11:00 UT Jan 22) preceding the magnetic cloud with500

consistently negative Bz. The model prediction has 14.22 nT and 19.96 nT RMSE for501

the 1- and 2-hour predictions, respectively, which is quite good for such a complicated502

event. In the ICME sheath, the main contributor is the previous SYM-H followed by the503

dynamic pressure.504

The 1-hour ahead model predicts the jump of SYM-H from 0 to about +30 nT at505

2:00UT, which is about half an hour late compared to observations. This cannot be based506

on prior SYM-H that is observed 1 hour earlier, and it is clearly obtained from the dy-507

namic pressure as expected from physical understanding. The 2-hour prediction, how-508

ever, completely misses predicting positive SYM-H values (except for following the in-509

crease of the observed SYM-H with a 2-hour delay), similarly to the extreme event case.510
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Table 11. P-values from paired t-tests for null hypothesis that the mean difference in RMSE

across storms for GBM vs. competing methods is zero.

1 hr ahead 2 hr ahead

LSTM2 0.008 0.419
LSTM1 0.000 N/A
Burton 0.000 0.000
Persistence 0.000 0.000
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Figure 3. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) for all the

geomagnetic storms. The panels show the contributions of all considered features to the 1-hour

ahead GBM prediction. Each prediction is represented as black dots. Kernel density estimates

using a Gaussian kernel are shown in color with the corresponding color legend on the right of

each scatter plot.

Between 01:00 and 11:00 UT the main contributors are the prior SYM-H and the511

dynamic pressure, with Bz playing a minor role only. After 11:00 UT, however, Bz turns512

consistently negative and it becomes the main contributor of predicting the main phase513

of the storm 1 hour or 2 hours later for the two models, respectively. The 2-hour pre-514

diction also relies heavily on By between 10 and 12:00 UT. A possible explanation is that515

the strong magnetic field in the magnetic cloud rotates, so a strong signal in Bx or By516

may be a predictor for a strong, possibly negative, Bz value that has strong geomagnetic517

impact.518

The model correctly predicts the minimum value of SYM-H, but it is late by an519

hour and two hours for the 1- and 2-hour predictions, respectively. This means that the520

prior SYM-H was the primary contributor to the prediction of the minimum SYM-H.521

We note that the last available Bz is negative, but has a small amplitude at this point522

(about −5 nT). Clearly the model is not capable of predicting the behavior of the storm523

very well during this time period for this particular event. The recovery phase is correctly524

captured with the prior SYM-H dominating, as expected. Bz becomes slightly more neg-525

ative from 19:00 to 23:00, and the importance of Bz and Es becomes significant during526
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Figure 4. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) from solar

wind and IMF parameters for 1-hour ahead prediction from GBM using only solar wind and IMF

parameters as input. Each prediction is represented as black dots. Kernel density estimates using

a Gaussian kernel are shown in color with the corresponding color legend on the right of each

scatter plot.

this time correctly predicting the slow down of the recovery, although with considerable527

delay.528

Figure 8 shows the model predictions for the January 2004 storm without relying529

on the prior SYM-H values. The RMSE is around 33 nT for both the 1-hour and 2-hour530

ahead forecast. The positive SYM-H values are missed by the model and in fact there531

is a considerable underprediction of SYM-H until 11:00 UT. The main phase of the storm532

corresponding the rapid decrease of SYM-H is quite well captured. It is slightly too early533

for the 1-hour prediction, and quite spot on for the 2-hour prediction. The minimum SYM-534

H is correctly predicted by both models with an hour delay, and it is actually somewhat535

better predicted by the 2-hour ahead model. The recovery phase is reasonably predicted,536

although the predicted recovery rate is somewhat slower than what is observed.537

The main contributors to the prediction before 11:00 UT are velocity,the rectified538

electric field and density. During the main phase and the recovery, Bz becomes an im-539

portant contributor, but the velocity and Es still play considerable roles. Bx becomes540

the most important contributor during the recovery phase. Figure 4 confirms that Bx541

and By become significant contributors when prior SYM-H is not used.542

One of the surprises mentioned above was that Bz is a better predictor than Es.543

However, these features are highly correlated so it is not clear if the GBM prefers Bz over544

Es by chance only. To investigate this question, we have performed experiments to see545

whether Bz or Ey, or the rectified Es is the best predictor out of the three for future SYM-546

H. To make Ey (or Es) and Bz fully independent of each other, we have removed the547

Vx and ρV 2
x features and used only one the three quantities (Bz, Ey, and rectified Es)548

together with density and temperature while training the GBM. The RMSE values are549

shown in Table 12 including both cases with and without prior SYM-H.550

Based on the RMSE values in the table, we conclude that Bz is the best predic-551

tor followed by Ey and the rectified Es. It is also interesting to see that past SYM-H and552

Bz together are pretty much all that the model needs. The velocity Vx, for example, plays553

no significant role in contributing to the quality of the prediction as it only improves the554

RMSE from 7.35 to 7.26 nT. When past SYM-H is not used, the velocity plays a more555

important role by improving the RMSE from 20.84 to 18.39, but still much less impor-556
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Table 12. RMSE from models with only one of Bz, Ey, and Es included as input calculated

using all test storms. The RMSE from a model trained with Bz, Es, and ρV 2
x is shown in the last

column as reference. For these experiments, density and temperature were also used as features.

Bz Ey Es Bz, Es, ρV
2
x

Including SYM-H 7.35 8.00 8.26 7.26
Excluding SYM-H 20.84 21.12 21.45 18.39

tant than Bz, Ey or Es. A possible reason may be that Vx varies only about a factor of557

2 between about −350 km/s and −700 km/s even during storm events.558

5 Discussion and conclusions559

We apply an explainable machine learning method to quantify the contribution of560

prior SYM-H values, solar wind, IMF, and derived parameters to predictions of the SYM-561

H index 1 to 2 hours ahead. In particular, gradient boosting machines (GBM) are used562

and the explanation is based on the TreeSHAP method. We showed that gradient boost-563

ing machines yield a statistically significant improvement in RMSE over most of the com-564

peting methods we compared it to.565

From the quantified feature contributions, we were able to show that our proposed566

model makes predictions in a physically consistent manner, while also challenging some567

of the commonly assumed relationships among the interplanetary magnetic field, the so-568

lar wind and the formation of Earth’s ring current. In particular, we found that past SYM-569

H and Bz are the most important features overall but feature contributions vary depend-570

ing on the storm phase and the storm itself. During the storm sudden commencement,571

past SYM-H, density, velocity, and to some extent, dynamic pressure and electric field,572

became the main contributors to predictions. As SYM-H decreases during the main phase,573

past SYM-H and Bz played an increasingly larger role.574

SHAP values revealed ways that our models made predictions during the two storms575

we investigated in detail: density and velocity had a larger independent contribution than576

dynamic pressure during the storm sudden commencement; By had a non-negligible con-577

tribution during the storm sudden commencement and main phase; and Bz was a bet-578

ter predictor than the rectified Es. However, strong correlation among solar wind vari-579

ables (Borovsky, 2018) may affect how SHAP values should be interpreted. A physically580

important feature may have a small contribution if a highly correlated feature is present581

and has a large contribution. For example, from figs. 3 and 4, we see that the contribu-582

tion from Vx increases drastically when past SYM-H is omitted as an input, which is likely583

due to the correlation between SYM-H and Vx. Therefore, a low feature contribution should584

not simply be interpreted to mean the corresponding feature is not physically important585

without investigating how different features are correlated. Further efforts will be made586

to investigate the robustness of these findings and to perform a comparison of feature587

contributions for many different storms.588

Along with gray-box approaches, this work takes the first steps in making machine589

learning methods more reliable and trustworthy for operational forecasting of geomag-590

netic activity. However, explanation methods like SHAP should be used with caution,591

especially in high-stakes decision making, as they do not always provide explanations that592

are faithful to the original model (Rudin, 2019). Thus, developing highly accurate but593

intrinsically interpretable models should be prioritized. In addition to interpretability,594

quantified uncertainty is also equally as important. Consequently, we will devote future595
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efforts to developing interpretable methods for forecasting other types of geomagnetic596

indices and geomagnetic activity that also estimate predictive uncertainty.597
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Appendix A598

A1 Graphical comparison with persistence model & Burton equation599

Figure A1 shows the 1 hour ahead predictions from our GBM (with past SYM-H600

and IMF parameters as input) and the persistence model during the main and recov-601

ery phases of the three strongest test storms with SYM-H < −300 nT (31, 33, 37) along602

with the corresponding prediction errors. The difference in prediction error between our603

GBM and the persistence model is most notable during the main phases of the three storms604

considered. For example, during the main phase of storm 37, the persistence model has605

prediction errors reaching > 100 nT which means it severely overpredicts SYM-H dur-606

ing the main phase. Meanwhile, our GBM has prediction errors between around -100 to607

40 nT, which means it tended to underpredict rather than overpredict SYM-H. Figure A2608

shows the 1 hour ahead predictions from our GBM and the Burton equation during the609

same time periods. In these plots, the GBM seems to capture the timing of the storms610

slightly better than the Burton equation. However, they have similar predictive perfor-611

mance during these three storms as shown by their RMSEs in table 6.612

A2 Descriptive statistics of solar wind & IMF parameters613

Table A1. Descriptive statistics for the solar wind and IMF parameters in the 25 storms used

for training listed in table 1. The minimum temperature (MK) is most likely a measurement

error.

Parameter Min. 25% Quantile Median 75% Quantile Max.

Bx (nT) -43.700 -3.131 0.340 3.378 34.681
By (nT) -51.968 -2.901 0.221 3.289 46.862
Bz (nT) -77.258 -2.296 -0.092 2.179 38.717
Vx (km/s) -1233.693 -539.489 -445.287 -384.021 -264.722
Density (amu/cm2) 0.041 2.912 5.027 8.477 76.239
Temperature (MK) 0.0032 0.0385 0.0702 0.1262 1.0983

Table A2. Descriptive statistics for the solar wind and IMF parameters in the 25 test storms

listed in table 2. The minimum temperature (MK) is most likely a measurement error.

Parameter Min. 25% Quantile Median 75% Quantile Max.

Bx (nT) -48.717 -2.868 0.221 3.444 33.827
By (nT) -48.963 -2.816 -0.205 2.855 54.563
Bz (nT) -48.585 -2.357 -0.084 1.933 53.002
Vx (km/s) -887.784 -535.138 -424.304 -373.465 -251.481
Density (amu/cm3) 0.295 2.760 4.424 7.643 113.982
Temperature (MK) 0.0052 0.037 0.0658 0.122 0.9909
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Collado-Villaverde, A., Muñoz, P., & Cid, C. (2021). Deep Neural Networks With691

Convolutional and LSTM Layers for SYM-H and ASY-H Forecasting. Space692

Weather . doi: 10.1029/2021SW002748693

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting ma-694

chine. Ann. Statist., 29 (5), 1189–1232. doi: 10.1214/aos/1013203451695

Ganushkina, N., Jaynes, A., & Liemohn, M. (2017). Space Weather Effects Pro-696

duced by the Ring Current Particles. Space Science Reviews , 212 (3-4), 1315–697

1344. doi: 10.1007/s11214-017-0412-2698

Gleisner, H., Lundstedt, H., & Wintoft, P. (1996). Predicting geomagnetic storms699

from solar-wind data using time-delay neural networks. Ann. Geophys., 14 (7),700

679–686. doi: 10.1007/s00585-996-0679-1701

Gu, Y., Wei, H.-L., Boynton, R. J., Walker, S. N., & Balikhin, M. A. (2019). System702

Identification and Data-Driven Forecasting of AE Index and Prediction Un-703

certainty Analysis Using a New Cloud-NARX Model. Journal of Geophysical704

Research: Space Physics , 124 (1), 248–263. doi: 10.1029/2018JA025957705

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learn-706

ing. New York, NY, USA: Springer New York Inc.707

Iyemori, T. (1990). Storm-time magnetospheric currents inferred from mid-latitude708

geomagnetic field variations. Journal of geomagnetism and geoelectricity ,709

42 (11), 1249–1265.710

Kilpua, E. K. J., Balogh, A., von Steiger, R., & Liu, Y. D. (2017). Geoeffective711

Properties of Solar Transients and Stream Interaction Regions. Space Sci.712

Rev., 212 , 1271-1314. doi: 10.1007/s11214-017-0411-3713

King, J. H. (2005). Solar wind spatial scales in and comparisons of hourly Wind714

and ACE plasma and magnetic field data. Journal of Geophysical Research ,715

110 (A2), 2104. doi: 10.1029/2004JA010649716

Korlakai Vinayak, R., & Gilad-Bachrach, R. (2015). DART: Dropouts meet multiple717

additive regression trees. In G. Lebanon & S. V. N. Vishwanathan (Eds.),718

Proceedings of the eighteenth international conference on artificial intelligence719

and statistics (Vol. 38, pp. 489–497). San Diego, California, USA: PMLR.720

Kuzlu, M., Cali, U., Sharma, V., & Guler, O. (2020). Gaining Insight Into So-721

lar Photovoltaic Power Generation Forecasting Utilizing Explainable Arti-722

ficial Intelligence Tools. IEEE Access , 8 , 187814–187823. doi: 10.1109/723

ACCESS.2020.3031477724

Liu, L., Zou, S., Yao, Y., & Wang, Z. (2020). Forecasting Global Ionospheric725

TEC Using Deep Learning Approach. Space Weather , 18 (11). doi:726

10.1029/2020SW002501727

–25–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013). Accurate intelligible models728

with pairwise interactions. In Proceedings of the 19th ACM SIGKDD inter-729

national conference on Knowledge discovery and data mining (pp. 623–631).730

Chicago Illinois USA: ACM. doi: 10.1145/2487575.2487579731

Lu, J., Peng, Y., Wang, M., Gu, S., & Zhao, M. (2016). Support vector machine732

combined with distance correlation learning for dst forecasting during in-733

tense geomagnetic storms. Planetary and Space Science, 120 , 48–55. doi:734

10.1016/j.pss.2015.11.004735

Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2019). Consistent Individualized Fea-736

ture Attribution for Tree Ensembles. arXiv:1802.03888 [cs, stat] .737

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model738

Predictions. In Advances in Neural Information Processing Systems (Vol. 30).739

Curran Associates, Inc.740

Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T.,741

. . . Lee, S.-I. (2018). Explainable machine-learning predictions for the pre-742

vention of hypoxaemia during surgery. Nat Biomed Eng , 2 (10), 749–760. doi:743

10.1038/s41551-018-0304-0744

Lundstedt, H., & Wintoft, P. (1994). Prediction of geomagnetic storms from solar745

wind data with the use of a neural network. Ann. Geophys., 12 (1), 19–24. doi:746

10.1007/s00585-994-0019-2747

Mayaud, P. N. (1980). The dst index. In Derivation, meaning, and use of geomag-748

netic indices (p. 115-129). American Geophysical Union (AGU). doi: 10.1002/749

9781118663837.ch8750

McComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips, J. L., Riley,751

P., & Griffee, J. W. (1998). Solar Wind Electron Proton Alpha Monitor752

(SWEPAM) for the Advanced Composition Explorer. Space Science Reviews ,753

86 , 563-612. doi: 10.1023/A:1005040232597754

Mitrentsis, G., & Lens, H. (2021). An Interpretable Probabilistic Model for755

Short-Term Solar Power Forecasting Using Natural Gradient Boosting.756

arXiv:2108.04058 [cs, stat] .757
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Figure 5. 1-hour (left) and 2-hour (right) ahead predictions for the Nov. 2004 storm using

GBM trained on all considered features. The first row shows the observed (black) and predicted

(blue) SYM-H values. Rows 2-9 show the contributions from each feature (left axis, colored) and

its value (right axis, black). The percentage contributions are shown in the last row. The contri-

bution from past SYM-H on predictions is omitted, but its percentage contribution is implicitly

shown as the remaining white area in the last row.
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Figure 6. 1-hour (left) and 2-hour (right) ahead predictions for the Nov. 2004 storm using

GBM trained on only solar wind and IMF parameters (first row), corresponding feature contribu-

tions and values (rows 2-9), and percentage contributions (last row).
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Figure 7. 1-hour (left) and 2-hour (right) ahead predictions for the Jan. 2004 storm using

GBM trained on all considered features (first row), corresponding feature contributions and val-

ues (rows 2-9), and percentage contribution (last row). The contribution from past SYM-H on

predictions is omitted but the percentage contribution is implicitly shown as the remaining white

area in the last row.
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Figure 8. 1-hour (left) and 2-hour (right) ahead predictions for the Jan. 2004 storm using

GBM trained on all considered features (first row), corresponding feature contributions (rows

2-9), and percentage contribution (last row).
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Figure A1. 1-hour ahead predictions for the 3 strongest geomagnetic storms in the test set

during the main and recovery phases from our GBM with past SYM-H and IMF parameters as

input (left column) and the persistence model (right column). The observed SYM-H (black), the

predicted SYM-H (blue) and the error (red) are shown for storms 31, 33, and 37 in the 3 rows,

respectively.
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Figure A2. 1-hour ahead predictions for the 3 strongest geomagnetic storms in the test set

during the main and recovery phases from our GBM with past SYM-H and IMF parameters (left

column) and the Burton equation (right column). The observed SYM-H (black), the predicted

SYM-H (blue) and the error (red) are shown for storms 31, 33, and 37 in the 3 rows, respectively.
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