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1 | INTRODUCTION

Conditional independence is fundamental to statistical inference (Dawid, 1979). Many tests for conditional independence have been proposed,
including tests based on partial correlation, conditional characteristic functions (Su & White, 2007), Hellinger distance (Su & White, 2008), maxi-
mal nonlinear conditional correlation (Huang, 2010), and projection-based distance covariance (Fan et al., 2020). These and other criteria are
developed from a hypothesis test framework, which has well-known limitations in multiple testing situations (Burnham & Anderson, 2002). An
alternative approach to deciding conditional independence is based on Kullback-Leibler (KL) criteria, such as Akaike's information criterion (AIC).
AIC is an attractive alternative because it can be applied to multiple testing problems, it does not require specifying an arbitrary significance level,
it accounts for out-of-sample variability, and it is derived from a proper score for selecting probability density functions (PDFs) (Akaike, 1973).
Nevertheless, applying AIC to decide conditional independence generally requires maximizing a likelihood function subject to the constraint indi-
cated by conditional independence. Such constrained optimization problems can be difficult to solve, which has hindered the application of AIC to
such problems.

A clue to a simpler approach comes from regression model selection. In regression model selection, AIC is relatively easy to apply because
one simply includes the variables that appear in the regression model and excludes the others. In particular, the relevant AIC does not require
solving a constrained optimization problem. For selection problems that cannot be reduced to regression model selection, the question arises

as to whether there exists a criterion similar to AIC that does not require solving constrained maximum likelihood problems, and yet can be
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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evaluated by excluding the variables that are conditionally independent of the retained variables. The purpose of this paper is to derive such
a criterion.

We begin by seeking a criterion whose differences equal the differences in KL divergences in the case of selecting explanatory variables of a
regression model. This ensures that the criterion recovers regression model selection. Then, we add one more condition, namely, that the criterion
should be symmetric, in the sense that the criterion does not depend on which variables are labelled response and explanatory. Remarkably, only
one quantity satisfies these conditions. This quantity reduces to mutual information when the model PDF equals the true PDF. Accordingly, we
call this quantity mutual information criterion (MIC). This paper demonstrates that MIC is our desired criterion.

Sample estimates of MIC can be derived based on AIC. Naturally, the resulting estimates share the same limitations as AIC. One well-known
limitation of AIC is that it tends to select overfitted models. A standard fix to this problem is to use a small-sample corrected version called AlCc
(Hurvich & Tsai, 1989). Unfortunately, AlCc implicitly assumes that the explanatory variables are the same between training and verification sam-
ples (DelSole & Tippett, 2021; Rosset & Tibshirani, 2020; Tian et al., 2020). We show that this assumption implies that AlCc is not guaranteed to
make consistent decisions about conditional independence. Therefore, AlCc is not appropriate for estimating MIC. The appropriate small-sample
correction to AIC that accounts for independent training and verification samples has been derived recently by DelSole and Tippett (2021) and
Tian et al. (2020) (here called AICr). This criterion is used to derive an estimate of MIC, called MIC. Because MIC is based on the newly derived
AICr rather than AIC or AlCc, it improves upon previous criteria even for the extensively studied case of regression model selection.

The problem of selecting both response and explanatory variables is more formidable. However, MIC provides a very reasonable small-sample
criterion for selecting explanatory and response variables and is well suited for selecting variables for canonical correlation analysis (CCA). Another
application of MIC is to select graphical models. Graphical models provide a visual summary of various conditional independencies among
variables. Conditional independence implies that an associated conditional mutual information vanishes. We derive an analogous criterion called
conditional MIC that provides a small-sample criterion for selecting graphical models.

In a series of papers, Yasunori Fujikoshi derived small-sample criteria for many of the above selection problems by explicitly maximizing the
likelihood function under the appropriate hypothesis of conditional independence (Fujikoshi, 1982, 1985; Fujikoshi et al., 2010). We show that dif-
ferences in MIC are equivalent to each of these criteria derived by Fujikoshi (after accounting for slight differences in formulation). Despite these
earlier derivations, the derivation presented here is of considerable value because of its greater simplicity compared to previous derivations. The
basis of this simplification is that KL divergences satisfy certain identities called chain rules. These chain rules can be used to convert certain con-
strained maximum likelihood problems into unconstrained problems. As a result, small-sample criteria for conditional independence can be derived

from these chain rules, thereby avoiding direct maximization of the likelihood function, which often requires intricate matrix manipulation.

2 | DERIVATION OF THE NEW CRITERION

Let x and y be random vectors with a joint PDF p(x, y). In practice, the true PDF is unknown. Our goal is to identify an approximate PDF by decid-
ing if the PDF has structure and then to estimate the PDF under this constraint. Let q(x, y) denote a candidate PDF without structure, and let
g1(%, ), g2(x, y), ... denote candidate PDFs with different structures. Our criterion for choosing a particular structure is that it minimizes the KL

divergence or equivalently minimizes

H;(XY) = —2Exy[log gi(x,y)], W

where Exy|[-] denotes the expectation with respect to p(x, y). H;(XY) is called the cross entropy between p and g; (ignoring an irrelevant factor of 2).
H(XY) (with no subscript) denotes the cross entropy between p and q. When p =g, cross entropy equals (twice) the entropy of p(x, y).

The criterion for selecting structure is well developed in the special case of selecting regression models. To be precise, the selection of regres-
sion models will be called X-selection and defined as follows.

Definition 1 X-selection. A regression model (also called a prediction model) is effectively a conditional PDF gi(y|x), where the first

and second variables are called response and explanatory, respectively. The prediction model is related to the joint PDF as
ai(x,y) =ai(y[x)qi(x). 2)

The X-selection problem is to select one prediction model from a set of candidate models g41(y|x1), ga(y|X2), .... The candidate
PDFs are restricted to ones in which the prediction models differ in their explanatory variables x4, X5, ..., each of which is a subset
of x, but have the same response variable y. It is assumed that each prediction model equals the unconstrained PDF conditioned on

the appropriate subset of explanatory variables:
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ai(yIx) = ai(y|x;) = a(y[x;). (3)

The first equality states that certain X variables may be omitted from gj(y|x) without changing the prediction, and the second
equality states that the resulting prediction model equals the unconstrained PDF q(y|x;). Aside from this, no further structure is
imposed. In particular, no structure is imposed on g;(x):

gi(x) =q(x) forall i. (4)

It follows from (2)-(4) that

ai(x,y) =a(x)a(y|x;). (5)

This identity shows that the joint PDF can be written as a product of PDFs where structure is imposed by omitting X variables in the condi-
tional PDF. Note that the joint PDF gj(x, y) depends on the full x even when the prediction model g(y|x;) depends only on a proper subset of x.
Variables that can be omitted from conditionals are said to be redundant.

Lemma 1 The chain rule lemma. It follows from (1) and (2) that cross entropy satisfies the chain rule

H;(XY) = H;(X) +H;(Y|X), (6)

where the cross entropy for prediction models is H;(Y|X) = —2Exy [logg;(y|x;)]. Under X-selection,
H;(XY) =H(X) + H(Y|X;), (7)

where H;(X) =H(X) follows from (4), and H;(Y|X) =H(Y|X;) follows from (3).

Lemma 1 implies that under X-selection,

H; (XY) — H(XY) = H(Y|X;) —H(Y|X;). (8

Because only differences in cross entropy affect selection, this identity shows that, under X-selection, selecting prediction models based on
H(Y|X;) is equivalent to selecting structured PDFs based on H;(XY). Importantly, the left-hand side of (8) involves structured PDFs while the right
hand side involves only unstructured PDFs. This fact will become important later when we derive estimates of cross entropy—the left-hand side
will require solving constrained maximum likelihood problems, whereas the right-hand side will not.

Not all selection problems can be reduced to X-selection. For instance, in CCA, both X and Y variables are selected. We call this simultaneous
selection. H(Y|X) is not a meaningful criterion for simultaneous selection because Y differs between models. For instance, H(Y|X) is a proxy for
prediction error, and comparing prediction errors of different quantities with different units is not meaningful. In such cases, the natural approach
is to define the structure in gj(x, y) associated with the selection problem and then compute the corresponding cross entropy H;(XY). However,
this approach inevitably leads to solving a constrained maximum likelihood problem, which can be difficult. We seek an alternative approach that
avoids solving a constrained maximum likelihood problem, similar to the way regression model selection avoids this problem. More precisely, we
seek a criterion that can be computed by omitting redundant X and Y variables from the calculation, just as H(Y|X) can be computed by omitting
redundant X variables from the prediction model. Let this new criterion be denoted MIC(X;Y), where explanatory and response variables are

separated by a semicolon. The first natural requirement is that it should be consistent with cross entropy for X-selection.

Definition 2. MIC(X;Y) is said to be consistent with cross entropy for X-selection if for all gy, x4, X2) and p(y, X1, X2),

MIC(X1; Y) — MIC(X5;Y) = H(Y|Xy) — H(Y|X2). 9)
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A second requirement is that it should be suitable for simultaneous selection, particularly for selecting variables in CCA. Importantly, CCA

does not distinguish response and explanatory variables. Therefore, we seek a criterion that satisfies the following property.

Definition 3 Symmetric. A selection criterion is said to be symmetric if it does not depend on which variables are labelled response

and explanatory.

Clearly, H(Y[X) is not symmetric, since H(Y|X) = —2Exy[log qyx (Y|x)] # — 2Exy[log qxy (x|y)] = H(X|Y). On the other hand, H(XY) is symmet-
ric, but it is not consistent with cross entropy since H(X1Y) —H(X2Y) =H(Y|X1) — H(Y|X2) + H(X1) —H(X2). In general, H(X1) —H(X2) # 0. The

criterion that is both symmetric and consistent with cross entropy is given in the following proposition.

Proposition 1. To within an additive constant, the only criterion that is both symmetric and consistent with cross entropy for
X-selection is

MIC(X; Y) = H(XY) — H(Y) — H(X)
— H(Y|X) — H(Y)

—H(X|Y) - H(X).

Proof. Let H(Y|X1X2) and H(Y|X1) denote cross entropies for q(y|x1,Xo) and q(y|x4), respectively. By assumption, MIC(X;Y) is con-
sistent with cross entropy for X-selection; hence,

MIC(X1X2;Y) — MIC(X1;Y) =H(Y|X1X2) — H(Y|X1).
Rearranging this equation gives

MHC(X1X2; Y) — H(Y‘Xj{Xz) = MHC(X:[; Y) — H(Y‘X]_)

The absence of X, on the right implies that the right-hand side is a functional of the distribution of x4 and y only. It follows that
the left-hand side has this same dependence. Repeating the above argument but with the roles of x; and x, swapped leads to
the conclusion that the left-hand side is a functional of the joint distribution only of x, and y. These two properties hold for arbitrary

p(x4, X2, y) only if the left-hand side is a functional of the distribution of y only. That is,

MIC(X; Y) — H(Y|X) = f(Y),

where f(Y) is some functional of g(y) and p(y). Similar arguments, but swapping the roles of X and Y, give

MIC(Y:X) — H(X|Y) =g(X),

where g(X) is some functional of q(X) and p(X). By assumption, MIC is symmetric; hence, MIC(X;Y) = MIC(Y;X). Therefore,
MIC may be eliminated from (15) and (16) to give

H(Y|X)+f(Y) =H(X]Y)+g(X).

Substituting the chain rule (6) into (17) and rearranging terms gives

H(X) +g(X) =H(Y)+f(Y).

The left-hand side does not depend on the distribution of Y, and the right-hand side does not depend on the distribution of X.

The only way that this identity can hold for arbitrary distributions is that the two sides must equal a constant. Therefore,

H(Y)+f(Y)=aqa,

(13)

(14)

(16)

(17)

(18)
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where a is a constant. Since only differences in MIC are important, the constant @ may be set to zero without loss of generality.
Solving for f(Y) and substituting into (15) determines MIC uniquely and yields (11). Equations (10) and (12) follow from (11) by the

chain rule (6).

To our knowledge, MIC has not appeared in the literature. If p(x,y) = q(x,y), then MIC(X;Y) = —2M(X;Y), where

L p(x.y)
MUXY) = Bxr {Iogp(X)p(v)}

is the mutual information between x and y. Just as H is cross entropy (times 2), MIC may be called cross mutual information (times —2). Anticipating

its application to variable selection, we call MIC mutual information criterion. The explicit dependence of MIC(X;Y) on the model PDF is

VY axy) ] _ a(ylx)

Conditional MIC can be defined analogously to conditional mutual information:

MIC(X; Y|Z) =H(Y|X,Z) — H(Y|Z) = —2Exyz {log%} . (20)

MIC satisfies chain rules analogous to mutual information; for example,

MIC(XZ;Y) = MIC(X; Y) + MIC(Z; Y|X). (21)

3 | VARIABLE SELECTION AND CONDITIONAL INDEPENDENCE

Although MIC is consistent with cross entropy for X-selection, this does not guarantee that it is a sensible criterion for simultaneous selection. To

show the latter, we first clarify the structure associated with X-selection.

Definition 4. X variables will be partitioned as x = (XL XE)T, where xx denotes the M variables to keep and xz denotes My, variables

either to remove or retain. Similarly, Y variables will be partitioned as y = (yL,yE)T, where yk and yg have dimensions Pk and Pg.

Under X-selection, the decision to remove xi from the prediction model depends on the cross entropies of p(y|xx, Xg) and p(y|xx). The
structure relevant to this problem is (3), which is expressed below in the notation of Definition 4:

4o (YIXK,XR) = G,y (Y[X) = q(Y[XK), (22)
where o denotes the appropriate structural constraint on the PDF. Under (22), H,, (Y|XxXr) =H(Y|Xk), and therefore,

H(Y|XkXr) —H, (Y| Xk Xr) = H(Y | Xk Xr) —H(Y|Xk),

which shows that using cross entropy to decide to remove Xg is indistinguishable from deciding that the model PDF satisfies (22). The first

equality in (22) asserts that, under the model PDF, y and X are conditionally independent given xx. We denote this condition as

Y L X [Xk. (23)

Conditional independence defines a particular structure on a PDF. Importantly, conditional independence can be expressed through q(-) in

different ways. For instance, by repeated application of the probability law (2), the structure (22) can be expressed equivalently as

Ao (YIXR, XK) = (Y[Xk), (24)
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4o (XrlY,Xk) = a(Xr[Xx), (25)
40, (Y, Xr[XK) = a(y|xk)a(Xr Xk ), (26)
4o, (Y:XR, XK) = (Y, Xk )q(XR, X ) /G (XK ). (27)

These expressions are equivalent statements that the model PDF satisfies Y L Xr | Xk. This equivalence allows us to prove the following.

Proposition 2. Under conditional independence w : Y L Xg | Xk,

MH(C(XKXR; Y) - MH(C(XK; Y) = H(XKXRY) — H,,, (XKXRY). (28)

where H,, (XkXRrY) is the cross-entropy of q,,(Xx, Xz, ¥) defined in (27).
Proof. Computing the cross entropy of (27) yields H,, (YXgXk) = H(YXk) + H(XgXk) — H(X), and therefore,
H(XkXRY) — H, (XkXrY) = H(XxXrY)— (H(YXk) + H(XpXx) — H(Xk))

(H(XkXrY) — H(XpXx) —H(Y)) — (H(YXx) — H(Xk) —H(Y))
= MH(C(XKXR; Y) - M]I(C(XK; Y),

which proves the proposition.

Proposition 2 shows that MIC is consistent with cross entropy for deciding conditional independence (23). By analogy, we anticipate that
simultaneous selection corresponds to selecting some form of conditional independence. To define this form, note that simultaneous selection
asks whether (xg; yg) should be included with (xk; yk). By analogy with X-selection, the criterion for simultaneous selection should be based on
comparing MIC with and without the potentially redundant variables (xg; yg), that is, based on comparing MIC(XxXg;YkYgr) to MIC(Xk;Yk). The
structure required for this difference in MIC to equal the difference in cross entropies between unstructured and structured PDFs is

given next.
Proposition 3. The criterion
MIC(XkXg; Yk Yr) — MIC(Xk; Yk) =H(XkXrYkYr) — H,, (Xk XYk YR) (29)
holds if and only if the constraint y is

|7/ YKJ_XR‘XK and YRJ_XKXR‘YKA (30)

For clarity, we note that (30) can be expressed in other equivalent forms using logical equivalences (an example is 73 below;
see Dawid, 1979).

Proof. Expanding MIC using definition (10) and rearranging terms gives

MIC(XkXg; Yk Yr) — MIC(Xk; Yi) = (H(XkXrYkYr) —H(YkYr) — H(XxkXr)) — (H(Xk Yk) — H(Xx) — H(Yk)) (31)
= H(XKXRYKYR) — (H(YR|YK) -‘rH(YK‘XK) +H(XKXR))
Comparison with (29) implies
HV/ (XKXRYKYR) = H(YR‘YK) +H(YK‘XK) +H(XKXR), (32)

or equivalently
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0 = M, (XeXrYkYR) — (H(Yr|Yi) +H(Yi|Xk) +H(XxXr))
a4y, (XK, XR,YKk>YR) ﬂ
- E lo !
XKXRYKYR|: g<q(yR|yK)Q(YK|XK)Q(XK7XR)

o () () ()|

For the expectation to vanish for any true PDF p(xx, Xg, Yk, Yr), the argument of the log must equal one. The first parenthesis is

the only term that depends on yg. By familiar arguments in separation of variables, this term must equal a constant and that con-
stant must be one to ensure that the model PDFs integrate to one. Under this result, the second parenthesis is the only term that
depends on y; hence, by similar arguments, it too must equal one. Given these two results, the last term in parenthesis must equal
one, implying that y does not impose structure on g(x). It follows that

Ay (YRIYi:Xk:XR) = a(YrIYK) & YR L XkXg|Yk, (33)
a, (Y [Xk.Xr) = a(yk|xk) < Yk LXg[Xk, (34)

which are the constraints in (30). The corresponding constrained joint PDF is
a, (X XR, Yi: YR) = A(YRIYK ) (Yk [Xk)a (XK, XR) - (35)

This proves the “only if” part. To prove the “if” part, note that y in (30) implies (35), which implies (32), which if substituted
in (29) yields (31).

To clarify the reasonableness of (23) and (30), the following proposition describes their consequences in terms of CCA.

Proposition 4 Adding redundant variables to xx and yk does not alter the canonical correlations.. Consider CCA of x and y, which
yields a projection vector pair u and v such that the correlation between u"x and v’y equals the canonical correlation. Following
Tyl

Definition 4, partition u= (uLuE)T and v= (vaR)T. If (23) is true, then ug = 0 for all canonical correlations. If (30) is true, then ug =0

and vg = 0 for all canonical correlations. In either case, the canonical correlations for (x; yk) are identical to those of (x;y).
Proof. The constraint y in (30) can be written in terms of g,,(-) as in (33) and (34), which in turn can be written, respectively, as
a, (Y. XlYk) =4, (YrlYk)a, (Xlyk) and a,, (Yi,Xr[Xk) = a,, (Yk |[X«)ay (%r[Xk)- (36)

Let cov, [yg,X|yk] denote the conditional covariance matrix between yg and x given yx under model PDF q,,(xx, Xr, Yk Yr)-
Then (36) implies

covy, [Yr,X|yk] =0 and cov,, [yk,Xr|xx] =0. (37)

Under covariance constraints (37), Fujikoshi (1982) showed that uz =0 and vg = 0. Under the second identity in (37), Fujikoshi
et al. (2010) showed that ug = 0. In both cases, the canonical correlations for (xk; yk) are identical to those of (x;y). This completes
the proof.

4 | SAMPLE CRITERION FOR NORMAL DISTRIBUTIONS

The above considerations have ignored the fact that model PDFs generally involve parameters that are unknown and must be estimated from
finite samples. This estimation can lead to overfitting and must be taken into account. Let q(Y|X;fyx) denote the PDF model for predicting
Y given X with parameters 6yx. We follow Akaike (1973) by using maximum likelihood estimates (MLEs) for the parameters. Accordingly, let éy‘x
denote the MLE of @y derived from the sample (X,\?). A fundamental principle in model selection is to judge model performance based on how
well the model predicts an independent sample (Xo, Yo). Following Akaike (1973), we average the cross entropy for q(Yo|X0;éy‘X) over (f(,?) and

(Xo, Yo), which have identical distributions but are independent of each other. The result is IC:
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IC(Y|X) =~ 2Byy [Bxoy, |loga(YolXov)| | (38)

Under normality, the PDF model satisfies q(X,Y;(;’xy) :q(X;éx)q(Y\X;éy‘X), where é)(y,éx,éy‘x are MLEs of the parameters in the respective
PDF models (this identity does not hold in general; Barndorff-Nielsen, 1976). As a result of this identity, IC satisfies the chain rule

IC(XY) =IC(X) +IC(Y|X), (39)
where IC(XY) = — 2y, [Ex,y, [log a(Xo,Yo;0xy)]] and IC(X) = —2E [Ex, [log a(Xo;0x)]). By analogy, we define the following:

Proposition 5. The Akaike-type extension of MIC is defined as

M]I(CB(X, Y) = H(C(Y|X) — ]I(C(Y) = _2EXV ]EXOYD

a(Yo[Xo;8vjx)
log—————1|. 40
o8 a(Yo;6y) H 1o

To within an additive constant, the only criterion that is both symmetric and whose differences equal the corresponding
differences in IC is MICa.

Proof. In the proof for Proposition 1, replace H everywhere by IC. Then, the proof follows the same steps. In particular, the analo-
gous expression for (14) has the right-hand side MICa(Xx;Y) — IC(Y|Xk), which still is a functional of the distribution of xx and
y only, because q(y\xK;éyp(K) does not depend on xg. Also, IC satisfies the chain rule (39), so the step from (17) to (18) is essentially

the same as for H.

Proposition 5 implies that estimates of MICa follow from estimates of IC, and so we consider in some detail unbiased and consistent
estimation of IC. For normal distributions, such estimates can be derived from the model,

Y =XB+jul +Ey, (41)

where Y and X are identified as response and explanatory variables, respectively, B and gy contain regression coefficients, j is a vector of ones to
account for the intercept, and Ey is a random matrix. Each row of Ey is independently distributed as a multivariate normal with zero mean and
covariance matrix Zy|x. The dimensions are

Y e RNP, X e RN M, Be RMP je RN, uy € BF, Ey € RN*P.

The total number of predictors including the intercept is M = Mg + 1. Sugiura (1978) and Hurvich and Tsai (1989) showed that if the candidate
model (41) includes the true model (and if other restrictions discussed below hold), then an unbiased estimate of (38) is

2MP+P(P+1)

AICc(Y|X) = N log|Zy|x| + NP log(2z) + NP+ NNMP T (42)
where Sy is the MLE of Zyx derived from (X,Y). Estimates of IC(Y), IC(X), IC(XY) may be derived by applying (42) to the models
Y =juy +Ey, X=jux+Ex, [XY]=jfuipy]+Exy. (43)

Let fyy,fxx,f(xy) be the MLEs of the covariance matrices of Ey, Ex, Exy, respectively. These matrices are related through standard identities
~ ~ A a-1a
Zyx =Zyy — ZyxZyx Xxy, (44)

[Zon) | = Exx||Zvix]. (45)

Evaluating AlICc for each model in (43), noting that each model has only M = 1 explanatory variable (i.e., the intercept), and using the identity
NP+N(2MP+P(P+1))/(N—M—P—1)=PN(N+M)/(N—M —P — 1), we obtain the criteria
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AICc(Y) =N log|Zyy|+NPlog(27) + N(N+1) (ﬁ), (46)
AICc(X) =N log|Exx| + NMglog(27z) + N(N+ 1) (L> , (47)
N—M—2
o - Mg +P
AICC(XY) = N log|Zxy)| + N(P+Mg)log(27) + N(N+1) N—M—P=3)" (48)

Conditional independence can be expressed in many different ways. A criterion for conditional independence should make consistent
decisions for equivalent formulations. While such consistency is guaranteed for population quantities like cross entropy, it is not guaranteed for
sample criteria. The following proposition gives the necessary condition for a sample criterion to give consistent decisions about conditional
independence.

Proposition 6. Let AZC(Y|X)=N |Og|iy‘xl + P be a sample criterion (note that AICc is of this form). Define the associated chain rule
to be AZC(XY)=AZC(X)+ AZC(Y|X). If AZC(Y|X) satisfies the chain rule, then it makes consistent decisions about Y 1L Xg | Xk. If it
violates the chain rule, then there exists a sample for which it makes contradictory decisions about Y L Xg | Xk.

Proof. Let @ denote the constraint Y L Xg | Xk. Therefore, the associated candidate PDF q,(-) satisfies (24)-(27). Based on these

identities, the positivity of the following quantities are equally valid criteria for deciding w:

81 = ATC(Y|XkXr) — AZC, (Y |XiXr) = AZC(Y|XkXr) — ATC(Y|Xk), (49)
87 = ATC(Xg|XkY) — AZC,,(Xr|XkY) = AZC(Xr|XkY) — ATC(Xr|Xx), (50)
83 = ATC(YXr|Xk) — AZC,,(YXr|Xk) = ATC(YXr|Xk) — (AZC(Y|Xk) + ATC(Xg X)), (51)
84 = ATC(YXkXg) — AZC,(YXiXr) = ATC(YXiXr) — (ATC(YXk) + ATC(XkXr) — AZC(X)). (52)

If AZC satisfies the chain rule, then a little algebra shows &1 =5, =53 =44; hence, AZC gives consistent decisions about
Y L Xg | Xk. Note that &; is of the form

5 =N logAk + 6P,

where §P; is a positive, deterministic term that depends only on (N, My, Mg, P) and Ak is independent of i because by (45)

_ Evioxel  Exaer| _ Eovxonxe £l Exx] (53)
‘EY‘XK | ‘EXR [Xk I |2Y|X;< ‘ ‘EXR‘XK | ‘Z(YXK) ‘ ‘EXXI

In fact, A is a likelihood ratio because 31,32,33,54 are nested comparisons. Therefore, Ak is a random variable on (0, 1]. Suppose
ATC violates the chain rule; hence, for some sample, & # 5,-. Then because Ax does not depend on i, §P; # 6P; for the parameters
(N, Mk, Mg, P) of that sample. Because —logAk is a continuous random variable with positive support on [0, o), there is nonzero
probability that it lies between 6P; and §P;. When this occurs, & and 5j have opposite signs and therefore AZC gives contradictory
decisions about Y L Xg | Xk-

Unfortunately, AlCc does not satisfy the chain rule; that is, AICc(XY) 7 AICc(X) + AlICc(Y|X). The reason AlCc violates the chain rule is
because its derivation implicitly assumes Xo = X (DelSole & Tippett, 2021; Tian et al., 2020), which contradicts the assumption in (38) that (f(,\?)
and (Xo, Yo) are independent. Following Rosset and Tibshirani (2020), we define the following.

Definition 5. Xy and X are said to be Same-X if Xo = X.

Definition 6. Xo and X are said to be Random-X if the rows of Xy and X are independently and identically distributed as a joint

normal distribution.
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AICc is an unbiased estimate of IC for Same-X. An important special case of Same-X is the intercept-only models (43). In this
case, AlCc(Y),AlCc(X),AlCc(XY) still are the correct unbiased estimates of IC(Y),IC(X),IC(XY), because the only explanatory variable in
each model is the intercept, which is Same-X, and therefore consistent with the derivation of Hurvich and Tsai (1989). However, under
Random-X, AlCc(Y|X) violates the chain rule, and therefore, by Proposition 6, AICc can make contradictory decisions about Y L Xg | Xk. For these
reasons, AlCc is unsuitable for selecting models under Random-X. The appropriate sample criterion for Random-X is given in the next
proposition.

Proposition 7. Assuming the candidate model (41) includes the true model, an unbiased estimate of IC(Y|X) under Random-X is

(54)

AICK(Y|X) =N log|y x| + NP log(2z) + N(N + 1)( My +P My )

N—Mx—P—2 N—Myx-2

Proof. Under Random-X, IC satisfies the chain rule (39); therefore, IC(Y|X) can be estimated as IC(XY)—IC(X). Unbiased
estimates of the latter two matrices are (48) and (47), respectively. Taking the difference AlCc(XY)—AICc(X) vyields (54).
Alternatively, AICr(Y|X) can be derived by exact integration, as shown in DelSole and Tippett (2021) (see also Fujikoshi, 1985;
Tian et al., 2020). AICr is written in the form (54), rather than in other forms in DelSole and Tippett (2021), to facilitate comparisons
discussed below.

AlCr satisfies the chain rule AICr(XY) = AICr(X) 4+ AICr(Y|X), and hence by Proposition 6, it gives consistent decisions for equivalent selection

problems. Since AICr also is an unbiased estimate of IC for Random-X; it is the natural basis for estimating Akaike's extension of MIC.

Proposition 8. Assuming the candidate PDF (41) includes the true PDF, an unbiased estimate of MICa(X;Y) under Random-X is

MIC(X;Y) = AICr(Y|X) — AICr(Y) (55)
=AICr(X|Y) — AICr(X) (56)
= AICr(XY) — AICr(X) — AICK(Y). (57)
In terms of the regression model (41),
MIC(X;Y) =N log|Ey x| — N log|Eyy| + P(N,M,P), (58)

where

_ Mg +P Mk P
P(N’MK’P)7N(N+1)(N—MK—P—2_N—MK—2_N—P—2>' (59)
Proof. Equation (55) follows from Proposition 5 after replacing IC with the estimate AICr. Equations (56) and (57) follow from (55)
because AICr satisfies the chain rule. Equation (58) follows from (55) and (54).
Proposition 9 Sample criterion for X-selection. Under w : Y L Xg | Xk, (27) implies that
AlCr, (YXrXk) = AICr(YXk) + AICr(XgXk) — AICr(Xk), (60)

and therefore, a criterion for w is Ay < 0, where

Ax =MIC(XkXg; Y) — MIC(X; Y) = AICr(YXXg) — AICr,, (YXkXg). (61)
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Proposition 10 Sample criterion for simultaneous selection. Under y : Y L Xg|Xkand Yg L XxXg|Yk, (35) implies that

AICrl,, (XK,XR,YK,YR) :A|CF(YR|YK) +A|CI’(YK‘XK) +A|CF(XK,XR), (62)

and therefore, a criterion for y is Axy < O, where

Axy = MlC(XKXR; YKYR) — MlC(XK;YK) = A|CF(YRXRYKXK) —AlCFW(YRXRYKXK). (63)

Proposition 11. Partition the matrices in (41) as X = [XkXg] and Y = [Yk Yg], where Xy, Xg, Yi, Yr are each full column rank matrices
of rank My, Mg, Py, Pg, respectively, with M = Mg + Mg and P =Pk + Pm. Then Ax =N logAk + P(N,Mk + Mg,P) — P(N,Mx,P), or

AX:NlogAK+N(N+1)< My +Mg +P My +Mg My +P My )

NkafMR7P727N7MKfMR727N7MK7P72+N7MK72

Similarly, Axy = N10g|Z yaxq) (vixe) | = N 108|Exe x| — N 108[Ey, v, | + P(N, Mk + Mg, Pic -+ Pr) — P(N, Mg, Pk), or equivalently

Axy =N10g|Z(y,x0) (x| — N 10g|Exgx | — N 10g|Zyyy, |

M+P M P MK+PK MK PK (64)
N(N+1 - - - .
NN+ | =2 N=M—2 N-P—2 N-Mx—P—2 N-M—2 N_P_2

Remark 1. Many standard texts recommend using AICc for X-selection (e.g., Burnham & Anderson, 2002). We argue that AlCc is
not suitable for deciding conditional independence because it gives inconsistent decisions for equivalent formulations of conditional
independence. Another issue can be seen by comparing Ax to Ay = AICc(Y|XkXr) — AlCc(Y|Xk). The latter criterion imposes less
penalty per each extra predictor than does (61). The reason for this is that AICc assumes Same-X while AICr assumes Random-X
(as discussed earlier in this section). As a result, AICc neglects a source of uncertainty and therefore underestimates the cross

entropy.
Remark 2. Under normality, deciding Y L Xg | Xk is equivalent to deciding
Br =0 in Y=XgBx+XgBr +jﬂ1Y'+Ey. (65)
The likelihood ratio test (LRT Johnson & Wichern, 2002) for this hypothesis is to decide Bg =0 when A gt = logAk —logAc >0,
where A is defined in (53), and Ac is the critical value from Wilks' lambda distribution with parameters (P, Mg, N — M). Both Art to
Ax depend on sample values only through the likelihood ratio and therefore differ only by the critical value. However, the LRT is lim-
ited to nested models.
Remark 3. Conditional independence w : Y L Xg | Xk also can be expressed as (26), which under normal distributions is equivalent to

@ _ w —1
2V Xk =0 & ZVy, = ZyxeZx,x EXike -

This is precisely the covariance constraint used by Fujikoshi et al. (2010) to derive a criterion for selecting one set of variables in CCA (see their
sec. 11.5). The fact that this selection problem is equivalent to deciding w indicates that a separate derivation is unnecessary.

Remark 4. Conditional independence w : Y L X | Xk also can be expressed as (25), which under normal distributions is equivalent
to the hypothesis By =0 in the model

By =0inXg =YBy +XkBx +E.
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Because this hypothesis is equivalent to , the criterion also is the same, as also can be seen from the following identity:
MlC(XR;YXK) — MlC(XR;XK) :AICr(XR|YX,<) — A|CF(XR‘XK) :AICr(Y\XKXR) — A|CI’(Y|XK)
Remark 5. Turning to an apparently different selection problem, Fujikoshi (1989) proposed a criterion for selecting Y variables on

the basis that yg, after removing the effects of yx, does not depend on x. This criterion can be framed as the hypothesis

Bx=0 in Yg=YkBy+XyBx +juk+Ex. (66)
Under normality, the selection problem (66) is equivalent to deciding
Xk L Yr|Yk, (67)

which is merely (23), except with X and Y labels switched. We call this Y-selection. Thus, all of the above results for X-selection

can be applied immediately to Y -selection, after swapping variable labels. In particular, the criterion for Y -selection is

MIC(Xk; Yk Yr) — MIC(Xk; Yk) =N log <M> ~N |og<ZYKXK ) +P(N, My, P +Pg) — P(N,Mg, Py). (68)
1ZY,cvel 1Zv, |
This small-sample criterion is asymptotically equivalent to the criterion derived by Fujikoshi (1989). Because MIC is symmetric,
the criterion is identical to regression model selection but with the usual roles of X and Y swapped; namely, X is response and Y is
explanatory. In this sense, selecting response variables is fundamentally equivalent to selecting explanatory variables—once a crite-
rion for X-selection exists, one can swap X and Y labels and apply it to select response variables. In this sense, a separate derivation
of a criterion for Y -selection is unnecessary.

5 | MAXIMIZING THE LIKELIHOOD UNDER CONDITIONAL INDEPENDENCE CONSTRAINTS

It should be recognized that the criteria stated in Propositions 9 and 10 were obtained merely by evaluating MIC. In particular, no constrained
maximum likelihood problem needed to be solved. Nevertheless, (61) and (63) assert that the criteria are equivalent to the AICr of the joint PDFs
constrained by the relevant form of conditional independence. These assertions can be verified because the associated constrained optimization
problems have in fact been solved in the literature, though this fact seems not to be widely recognized. First, Fujikoshi (1985) derived the
corrected AIC criterion for X-selection under Random-X. The result is his eq. 5.17, which is identical to our —Ay. This serves as a check on our der-
ivation of (61). Also, this equivalence implies that Fujikoshi (1985) derived the small-sample correction to AIC under Random-X nearly
40 years ago!

In regards to Proposition 10, the verification is somewhat more complicated because the small-sample corrected AIC for simultaneous selec-
tion does not appear in the literature. However, Fujikoshi et al. (2010) derived a criterion based on Distance Information Criterion, which is closely
related to AIC (see sec. 10.6.1 of Fujikoshi et al., 2010). The small-sample corrected version of this criterion is called CDIC and appears in sec.
11.5.2 of Fujikoshi et al. (2010). To remove the slight inconsistency with AIC, we adjust CDIC as follows: replace the overall factor of “n” by “N,”
and replace “n” in the numerator of each penalty term by “N + 1,” which yields the following modified criterion CDIC*:

CDIC" = —N108|Z(voxo)((Vioxi) | + N 108|Exg x| + N 10g[Eyy, |

N (N+1)(MK+PK)+(N+1)(MK+MR)+(N+1)(PK+PR)7(N+1)(MK)7(N+1)(PK)7
N—Mk—Px—2  N—Mx—Mg—2 N—Px—Pr—2 N-Mx—2 N-Px—2

(P+M71)).

Comparison with (64) shows that CDIC" and — Axy agree, except for additive terms that depend only on N and P+ M. It is not clear why
there exist differing terms, but Fujikoshi et al. (2010) applied their criterion to situations in which N and P + M were constant; hence, these terms
do not affect model selection. We interpret this agreement as confirming that both Ax and Axy are the correct small-sample criteria for condi-
tional independence.

Importantly, Fujikoshi (1985) and Fujikoshi et al. (2010) derived the above criteria by explicitly maximizing the likelihood function subject to a
constraint associated with conditional independence. The solution to such constrained optimization problems requires intricate matrix manipula-
tions. In contrast, the criteria in Proposition 11 were obtained simply by taking differences in MIC. The simplicity in the latter approach derives
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from the fact that certain forms of conditional independence allow structured PDFs to be expressed in terms of criteria for unstructured PDFs.
Specifically, the left-hand sides of (60) and (62) require solving a constrained ML problem whereas the right-hand side requires solving
unconstrained ML problems. A remarkable fact is that MIC gives this decomposition directly simply by computing differences in MIC of appropri-
ate variable subsets.

6 | CANONICAL CORRELATION ANALYSIS

MIC is a natural criterion for CCA because, in addition to the above reasons, it depends on sample values only through the canonical
correlations.

Proposition 12. Let the canonical correlations between X and Y in (41) be p4,p,,.... Then

MIC(Y;X) =N "log(1—p?) +P(N,My,P). (69)

Proof. Recall that canonical correlations are derived from the eigenvalues of

A oala e . O
SvxZxx ExyWy =p?Eyywy & Eywy = (1-5%)Zyywy,

where (44) has been used. Since the determinant of a matrix equals the product of eigenvalues,

£ S| = [T -52).

i
Taking the log of both sides and substituting the result into (58) yields (69).

For normal distributions, a sample estimate of mutual information is (Soofi et al., 2010),

1 .
I\/H(X;Y)Gaussian ~ 752 IOg(l 7pi2)' (70)
i

Thus, minimizing MIC strikes a balance between maximizing mutual information while minimizing the number of parameters being estimated.
To illustrate the application of MIC for selecting variables in CCA, consider data generated by the model

y=AX+¢e, (71)

where Mg =10, P=10, A=pw', v=(1 22100000 O)T/\/ﬁ, x~N(0,1), e~N(0,Q), Q=I—pw', p=0.7. When all 10 X and
Y variables are included, population CCA yields one nonzero canonical correlation, namely, p; =0.7. However, only the first four X and first four
Y variables are relevant; additional variables beyond this add no information about the X-Y relation and are therefore redundant. We consider a
selection problem in which the candidate variables are included in a sequentially nested fashion; that is, the candidate model with My X variables
consists of X1,X2,...,Xm,, and the candidate model with My Y variables consists of Y1,Y>,...,Yp, .

Figure 1 shows MIC for a particular realization of samples for N =50. The minimum MIC occurs when three X and three Y variables are used.
Repeating this procedure 100 times and counting the number of times a particular model is selected leads to the top left panel of Figure 2. For
reference, the population mutual information is indicated by the shading. The most common selection is for three X and three Y variables.
For comparison, we define an “uncorrected MIC” using (58) but with the uncorrected penalty limy_oP(N,Mk,P) =2MP. Selections based on
uncorrected MIC, shown in the bottom left panel, show much larger tendency to overfit, which illustrates the importance of using the corrected
criterion. For a larger sample size, N = 200 (right column), MIC overwhelmingly selects four X and four Y variables, the correct choice for large N.
The uncorrected MIC still shows a larger tendency to overfit. Even for N= 20,000 (not shown), MIC overwhelming selects four X and four

Y variables and shows little tendency to overfit.
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MIC For A Particular Realization
N= 50 MX=10 P=10 rho= 0.7

50

Number of Y Variables
N w BN [6)] [e)] ~ (o] (o] o
|

-
|

Number of X Variables

FIGURE 1 Contours of MIC for a particular realization from the model (71). The minimum MIC is indicated by a dot and is labelled

7 | GRAPHICAL MODELS

We now consider using MIC to select graphical models. Graphical models express conditional dependencies by a graph comprising nodes and
edges, where the absence of an edge between two nodes indicates that those two variables are conditionally independent given all other

variables. More precisely, the two nodes Z; and Z, have no edge if

w12 : Z1 J_Zz|Z/12, (72)

where Z,1, means “all Z-variables except Z; and Z,.” Graphical models corresponding to X-selection, Y-selection, and simultaneous selection are

illustrated in Figure 3. The graph for simultaneous selection follows from the fact that

Yr L Xk|(YkXRr)

YR 1 XgXR| Yk = { ,
| Yr L Xr|(YkXk)

(73)

(which follows from the converse of Lemma 4.3 in Dawid, 1979). The associated structures have a simple expression in terms of the precision
matrix (i.e., the inverse of the covariance matrix). Specifically, (72) implies that the (Z4, Z,) element of the precision matrix vanishes. Accordingly,

the precision matrices corresponding to X-selection, Y-selection, and simultaneous selection have, respectively, the following forms

Yr Yk Xk X

Yk Xk Xr Yr Yk Xk Ye /o w0 0

Yo« [x x O YR /x x O v 0
Xae [ x x x| Yol x x x|’ XK 3 i i .

Xe \O0 x x Xk \0O x x XZ 0 0 x «x

A standard result in information theory is that if wi2 is true, then conditional mutual information vanishes; that is, M(Z1;Z5|Z/12) =0. As
remarked in (20), a conditional MIC may be defined that behaves analogously to conditional mutual information, except it varies in the opposite
way (i.e., large MIC corresponds to weak conditional independence). By suitable redefinition of variable labels in previous sections, conditional
MIC is

MHC(Zl;Zz‘Z/lz) :MHC(Zl;Z/l) —MHC(Z1;Z/12) :H(Zl‘Z/l) _H(21 ‘2/12) :H(Z) _ku (Z) (74)
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Selections With MIC (N= 50) Selections With MIC (N= 200)
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FIGURE 2 Number of times MIC selects the number of X and Y variables for CCA for 100 independent realizations from the model (71).
Results are shown for samples sizes N = 50 (left column) and N = 200 (right column), and using MIC (top row) and uncorrected MIC (bottom row).

The shading shows the population mutual information (it is the same in all panels)

The Akaike-based sample estimate of conditional MIC is

MlC(ZﬁZQ‘Z“z) = MlC(Z/i,Zi) — MlC(Z/lz,Z;[)

The decision rule is to accept wi2 if MIC(Z1;Z2|Z/12) > 0. This criterion can be evaluated for any Z; and Z», even if the graph is nondecomposable.
For completeness, we note that the analogous criterion for deciding Z, L Z; is MIC(Z4;Z,) =H(Z1|Z,) — H(Z1) > 0.

Proposition 13. For scalar Z; and Z,, conditional MIC is

MlC(Zi;ZQ|Z/12) = Iog<

|22122\Z/1z|
‘221 1212 | |222\Z/12 |

) +P(N,1,D—1)—P(N,1,D—2)

= |og(1 —ﬁfz‘zm> +P(N,1,D—1)~P(N,1,D-2),

where D is the total number of Z-variables and [’12\2/12 is the partial correlation between Z; and Z, after regressing out Z,5.
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One of the most popular algorithms for identifying graphical models is the PC Algorithm (Spirtes et al., 2001). This algorithm requires a crite-
rion for deciding conditional independence. A standard criterion is based on statistical significance of the partial correlation. However, significance
depends on the arbitrary significance level a and is not guaranteed to be a proper score. In contrast, the criterion MIC(Z1;Z5|Z/12) >0 does not

depend on the arbitrary « and is a proper score. To illustrate its application, we consider a simple four-variable model governed by

Yr=AYk+Eq, Yk =BXx +Eo, X =CXk +E3, Xk =Ea, (76)

which corresponds to the right-most graph in Figure 3 for simultaneous selection. Our goal here is not to derive a new algorithm for exploring the
space of all graphs but rather to illustrate the impact of using a different criterion for deciding conditional independence. Accordingly, we have
used the pcalg package in R to select the graph from samples generated by model (76). The values of A, B, C were generated randomly from
N (2,1). Then, for the selected A, B, C, we generated N samples from (76), where E,, Eo, E3, E4 are independently drawn from A(0,1). Then, this
whole procedure (including resampling A, B, C) was repeated 1000 times, and the number of times the PC algorithm identified the correct graph
was recorded. We have performed two different experiments: one that decides conditional independence based on significance of the partial cor-
relation using @ = 5%, and one based on MIC in (75). The results are shown in Figure 4. The figure shows that for this choice of @ and for a small

Simultaneous
selection

Xg L Yy | Xg
Yr L (XpXk) | Yk

X selection Y selection

Yk L Xz | Xk Ye L Xk | Yk

FIGURE 3 Graphical models associated with X-selection, Y-selection, and simultaneous selection

Fraction of Times Correct Graph is Selected

100

1 — MIC
—— partial correlation; alpha= 0.05

60
|

fraction correct
40

20

T T T
10 20 50 100 200 500
sample size N
FIGURE 4 Fraction of times the PC Algorithm selects the correct graph from model (76), whose graph is the right-most graph in Figure 3

corresponding to simultaneous selection, as a function of sample size N. The PC algorithm is run in two modes, one using M(Zy; Z5 | Z,15) > O from (75)
(black), and one using significance of the partial correlation at the 5% level (red). The error bars show 95% confidence intervals based on 1000 trials
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sample size (N < 100), the PC algorithm selects the correct graph more frequently using MIC than using the significance of the partial correlation.
This result should not be interpreted as general, since it depends on the choice of a, which is a tuning parameter in the PC algorithm. In contrast,
the criterion MIC(Z1;Z2|Z;12) >0 does not involve tunable parameters. The parameter a could be tuned to produce better results, but this tuning
is not generally possible when the true graph is unknown. We emphasize that the criterion for conditional independence (74) is not restricted for

univariate Z, and Z; hence, this criterion may open new approaches to graphical model selection.
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