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Space plasma simulations have seen an increase in the use of magnetohydrodynamic 
(MHD) with embedded Particle-in-Cell (PIC) models. This combined MHD-EPIC algorithm 
simulates some regions of interest using the kinetic PIC method while employing the MHD 
description in the rest of the domain. The MHD models are highly efficient and their fluid 
descriptions are valid for most part of the computational domain, thus making large-scale 
global simulations feasible.
However, in practical applications, the regions where the kinetic effects are critical can be 
changing, appearing, disappearing and moving in the computational domain. If a static PIC 
region is used, this requires a much larger PIC domain than actually needed, which can 
increase the computational cost dramatically.
To address the problem, we have developed a new method that is able to dynamically 
change the region of the computational domain where a PIC model is applied. We 
have implemented this new MHD with Adaptively Embedded PIC (MHD-AEPIC) algorithm 
using the BATS-R-US Hall MHD and the Adaptive Mesh Particle Simulator (AMPS) as 
the semi-implicit PIC models. We describe the algorithm and present a test case of 
two merging flux ropes to demonstrate its accuracy. The implementation uses dynamic 
allocation/deallocation of memory and load balancing for efficient parallel execution. We 
evaluate the performance of MHD-AEPIC compared to MHD-EPIC and the scaling properties 
of the model to large number of computational cores.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Two-way coupled magnetohydrodynamic (MHD) with embedded Particle-in-Cell (PIC) models have been increasingly 
applied to space and planetary plasma simulations [1–4]. The MHD model can provide efficient solution based on the 
fluid description in a large scale global simulation, while the PIC model overcomes the limitations of the MHD model 
in regions where kinetic effects become critical and the fluid approximation no longer holds. Though the embedded PIC 
model is applied in a relatively small region inside the whole MHD computational domain, it can be critical to resolve the 
physical details on kinetic scales that go beyond the fluid approximation employed in MHD models. For example, Toth et 
al. [1] successfully applies a Hall MHD model with embedded PIC model to the magnetosphere of Ganymede. The model 
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successfully captures the formation and evolution of a flux transfer events with similar magnetic signatures as observed by 
the Galileo mission.

The idea of applying coupled models to resolve different physics and achieve better efficiency has been employed in 
various applications. Bourgat et al. [5] coupled a global Navier-Stokes solver in hypersonic rarefied flows with a local kinetic 
solver of the Boltzmann equations in the boundary layer. Tiwari [6] and Degond et al. [7] proposed adaptive domain de-
composition techniques for the coupling between the Boltzmann equation and the Euler equations. For plasma simulations, 
Sugiyama et al. [8], Daldorff et al. [9], and Makwana et al. [10] have successfully coupled MHD with PIC models, while Rieke 
at al. [11] solves the Vlasov-Maxwell equations discretized on a high-dimensional grid and embed it into a 5-moment fluid 
model. Markidis et al. [12] coupled the kinetic effects into the multi-fluid equations by calculating the stress tensor from 
the macro-particles. Holderied et al. [13] coupled linearized, ideal MHD equations in curved, three-dimensional space, to the 
full-orbit Vlasov equations via a current coupling scheme, and the method conserves mass, energy, and the divergence-free 
magnetic field, irrespective of metric (space curvature), mesh parameters and chosen order of the scheme. To get more 
physically accurate results, several new methods and algorithms have been developed to ensure Gauss’s law, divergence-
free magnetic field and conservation of energy are satsified in PIC models [14,3,15,16]. Many efforts have been devoted to 
improving the computational efficiency of these coupled models. One direction is to run the massively parallelized model 
on GPUs [11,17–19]. Another direction is to apply the kinetic region adaptively. Lautenbach and Grauer [20] adaptively ap-
ply the Vlasov, 5-moment or 10-moment models to different regions according to certain criteria. In this paper, we have 
applied a similar idea and present a new method with an adaptive PIC region embedded into the MHD model for plasma 
simulations.

The new feature of the algorithm described here is its capability of changing the location of the PIC regions embedded in 
the computational domain of an MHD model. In application to magnetic reconnection, for example, this is very useful, since 
the reconnection sites are likely to move. If the PIC model is only applied to a small region, the reconnection site will move 
out of the region after some time and interesting phenomena are no longer captured with the kinetic model. If the static 
PIC region is large enough to cover all potential reconnection sites, the computational cost may become unfeasible. In this 
work, we propose the MHD with Adaptively Embedded PIC (MHD-AEPIC) algorithm. The small PIC region adapts and moves 
with the reconnection sites, so that we can track the interesting phenomena with affordable computational resources.

In Section 2, we describe the MHD-AEPIC algorithm and its implementation using the Block-Adaptive-Tree-Solar wind-
Roe-Upwind-Scheme (BATS-R-US) MHD model and the Adaptive Mesh Particle Simulator (AMPS) implicit PIC model coupled 
through the Space Weather Modeling Framwork (SWMF). In Section 3, we present a test case of two merging flux ropes in 
a plasma moving at a constant velocity relative to the computational grid. It is shown that the new method allows the PIC 
region to follow the flux ropes and the results are similar (within the discretization errors) to the solution obtained with a 
static PIC region. The performance analysis of the new algorithm is also presented. We conclude with Section 4.

2. Algorithm

This paper presents a new algorithm: magnetohydrodynamics with adaptively embedded particle-in-cell (MHD-AEPIC), 
which is an improved version of the MHD-EPIC model by Daldorff et al. [9]. Here we use the BATS-R-US code [21,22] as the 
global MHD model in the whole computational domain, and the AMPS code [23] to solve the Vlasov-Maxwell equations in 
the embedded PIC region. The two models are two-way coupled through the Space Weather Modeling Framework (SWMF) 
[24].

Different from the iPIC3D code [25] used by Daldorff et al. [9], the AMPS grid is block-based. It divides the AMPS 
computational domain into multiple blocks and the same calculation or procedure is performed for each individual block. 
This feature allows AMPS to dynamically include and exclude blocks during the simulation. Therefore, an adaptive PIC region 
can be achieved by switching on and off the blocks in the PIC grid. In this section, the AMPS code and the BATS-R-US code, 
which provide the foundation to the MHD-AEPIC model, are described first. The new MHD-AEPIC algorithm is presented in 
detail in Section 2.3.

2.1. AMPS PIC model

The Adaptive Mesh Particle Simulator (AMPS) is a fully kinetic code developed at the University of Michigan. Originally, 
it was designed to use the Direct Simulation Monte Carlo (DSMC) method for various comet and planetary applications. The 
DSMC method is one of the most frequently used approaches for solving the Boltzmann equation numerically. The simulated 
gas is represented by a large but finite set of macro-particles governed by the same physics laws that affect real molecules 
in the simulated environment. Macroscopic properties (density, velocity and temperatures) are computed by appropriately 
taking statistics of particle masses, locations, and velocities. The code has been successfully applied to rarefied atmospheres 
of many planetary objects, such as comet 67P/Churyumov-Gerasimenko, plumes of Enceladus and Mars’ exosphere as well 
[26–30].

Recently, the PIC method has been implemented into AMPS to enable it to calculate the electric and magnetic fields self-
consistently. Ions and electrons are treated as particles, while electric and magnetic fields are solved on the computational 
grid from the Maxwell equations. In particular, we have implemented the energy conserving semi-implicit method (ECSIM) 
first developed by Lapenta [14] and later improved to the Gauss-Law satisfying GL-ECSIM algorithm by Chen and Tóth [3]. 
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Its semi-implicit nature allows the PIC model to run on a coarser grid with a larger time step than explicit PIC methods. If 
periodic boundary conditions are used, the integral of the total energy, i.e. the sum of the electromagnetic field energy and 
particle kinetic energy, over the computational domain is conserved to the round-off error. The energy conserving property 
helps eliminating numerical instabilities and spurious waves that would change the total energy. The improvements by [3]
ensure/improve charge conserving and further reduce the development of spurious oscillations.

ECSIM uses a staggered grid, where the electric field is defined at cell nodes, and the magnetic field is defined at cell 
centers. The Maxwell’s equations are solved implicitly:

Bn+1 − Bn

�t
= −c∇ × En+θ (1)

En+1 − En

�t
= c∇ × Bn+θ − 4π J̄ (2)

where θ ∈ [0.5, 1] is the time centering parameter. J̄ is the predicted current density at n + 1
2 time stage, and it can be 

expressed as a linear function of the unknown electric field En+θ (see equation 6, 15 in [14]). The variables at the time 
stage n + θ can be written as linear combinations of values at the time steps n and n + 1:

En+θ = (1 − θ)En + θEn+1 (3)

Bn+θ = (1 − θ)Bn + θBn+1 (4)

After rearranging the equations above and using the identity ∇ × ∇ × E = ∇(∇ · E) − ∇2E, we can derive an equation with 
En+θ as the unknown variables:

En+θ + δ2
[
∇ (∇ · En+θ

) − ∇2En+θ
]

= En + δ

(
∇ × Bn − 4π

c
J̄
)

(5)

where δ = cθ�t . After applying finite difference discretizations to the gradient and divergence operators, we obtain a linear 
system of equations for the discrete values of En+θ at the cell nodes. The iterative generalized minimal residual method 
(GMRES) is used to solve the equations to obtain En+θ . Using equations (1) and (3), the magnetic field Bn+1 and electric 
field En+1 at the next time step can be obtained, respectively.

The position and velocity of the macro-particle are staggered in time, i.e., the particle velocity vp is at the integer time 
stage and the location xp is at the half time stage. First the velocity is pushed to time level n + 1 by solving

vn+1
p = vnp + qp�t

mp

(
En+θ (xn+1/2

p ) + vnp + vn+1
p

2
× Bn(xn+1/2

p )

)
(6)

for vn+1
p (see [14] for detail). The fields En+θ (xn+1/2

p ) and Bn(xn+1/2
p ) are interpolated to the particle locations xn+1/2

p . qp

and mp are charge and mass of the particle. Finally, the particle position is updated to a preliminary new position:

x̃n+3/2
p = xn+1/2

p + �tvn+1
p (7)

Because Gauss’s law is not automatically satisfied or controlled in the original ECSIM algorithm, artificial effects can develop 
in long simulations. Chen and Tóth [3] proposed several methods to reduce the error and eliminate the artificial effects. 
In this paper, we used the “approximate global correction” method to reduce the error of ∇ · E − 4πρc deviating from 
zero, where E is the electric field and ρc is the net charge density in CGS units. The correction method solves the Poisson 
equation for the potential φ after the electric field and the particle positions are updated:

∇2φ = ∇ · En+1 − 4πρ̃n+1
c , (8)

where ρ̃n+1
c is the uncorrected net charge density interpolated in time between the net charges obtained from the particles 

at xn+1/2
p and from the preliminary positions x̃n+3/2

p . The potential φ and net charge density ρc are both defined at the cell 
center. The electrons, in general the light particles, are displaced to drive the right hand side of equation (8) closer to zero. 
The displacement is

�xp = − ε

4πγcρe,g
∇φ, (9)

where ρe,g is the electron charge density at the closest cell center to the particle. The interpolation coefficient γc = 0.51. ε
can take value from 0 to 1 to avoid overshoot. It is set to 0.9 in this work. The final particle location xn+3/2

p is

xn+3/2
p = x̃n+3/2

p + �xp (10)

Detailed proof and reasoning can be found in [3]. After the particles are pushed to next time step, particle moments will be 
calculated and stored on each cell node, which update the value of J̄ in equation (5).
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The energy and charge conserving semi-implicit PIC method facilitates the coupling between the MHD and the PIC 
models, since the time step in AMPS can be comparable to the time step in BATS-R-US, unlike the time step in an explicit PIC 
code that is limited by the stability conditions [14] to �t < �x/c and the grid resolution �x < ζλD , where c is the speed of 
light, λD is the Debye length, and ζ is of order one and depends on the numerical details of the method [31]. In the coupled 
codes, the BATS-R-US MHD model provides initial and boundary conditions for AMPS, while AMPS calculates macroscopic 
quantities (densities, velocities, pressures and magnetic field) on the active grid blocks of the AMPS computational domain 
and feeds them back to BATS-R-US. The coupling process is described in detail in Section 2.3.

2.2. BATS-R-US MHD model

Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) is a flexible and highly efficient global MHD code that 
has been successfully applied to study plasma interactions with a wide range of planetary objects including planets, plan-
etary moons, and comets. BATS-R-US also allows adaptive mesh refinement in combination with curvilinear coordinates. 
In the applications discussed in this paper, the code is configured to solve the two-fluid MHD equations with a separate 
electron pressure equation:

∂ρ

∂t
+ ∇ · (ρu) = 0 (11)

∂ρu

∂t
+ ∇ ·

[
ρuu+ I

(
p + pe + B2

2μ0

)
− BB

μ0

]
= 0 (12)

∂B

∂t
+ ∇ × E = 0 (13)

∂e

∂t
+ ∇ ·

[
u

(
1

2
ρu2 + γ p

γ − 1

)
+ uepe + E× B

μ0

]
= pe∇ · ue (14)

∂pe
∂t

+ ∇ · (peue) = −(γe − 1)pe∇ · ue (15)

ρ , u and p are mass density, velocity and pressure of the ion species, while pe and ue are the electron pressure and electron 
velocity, respectively. γ and γe are the adiabatic indexes for ions and electrons, which are set to 5/3 here. I is the identity 
matrix and μ0 is vacuum permeability. The electron velocity ue is

ue = u− J

|qe|ne (16)

where ne and qe are the electron number density and the electron charge, respectively, and the current density J is obtained 
from

J = 1

μ0
∇ × B. (17)

The electric field E is computed from the generalized Ohm’s law:

E = −ue × B− ∇pe
|qe|ne (18)

The total energy density e includes the total ion energy density and magnetic energy density:

e = p

γ − 1
+ ρu2

2
+ B2

2μ0
(19)

Note that the electron thermal energy pe/(γe − 1) is not included in e, which results in the source term on the right-hand 
side of equation (14). This does not violate the conservation of total energy e + pe/(γe − 1) as it cancels out with the right 
hand side source term of the electron pressure equation (15).

Hyperbolic/parabolic cleaning method by Dedner et al. [32] is used in combination with the eight-wave scheme [21] to 
control the numerical divergence of the magnetic field. For pure MHD and Hall-MHD simulations, the hyperbolic/parabolic 
cleaning is not necessary, but for MHD-EPIC the divergence error cannot propagate through the PIC region and can accumu-
late at the boundary of the PIC region, since AMPS does not use the eight-wave scheme. The hyperbolic/parabolic cleaning 
solves the issue, because it can dissipate the divergence error in all directions as found by [33].
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Fig. 1. Schematics of the MHD-AEPIC algorithm. Panels (a) and (b) show a PIC domain consisting of 4 × 3 grid blocks before and after adaptation with 
the underlying MHD grid represented by the gray lines. The inactive PIC blocks are empty, while the active blocks contain a mesh of 3 × 3 grid cells. The 
boundary cell nodes of the active PIC regions, indicated by solid red circles, are interpolated from the MHD solution. Panel (a) contains two discontinuous 
active PIC regions. In this example, the region on the left moves to the right due to adaptation. Panel (b) shows the newly allocated grid blocks with red 
cells initialized from the MHD solution, while the deallocated blocks are covered by blue horizontal stripes. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

2.3. Adaptively embedded PIC region

AMPS uses a block-based grid to discretize the computational domain. Fig. 1 shows an example how the dynamic allo-
cation and deallocation of PIC blocks allow adapting the embedded PIC region. The AMPS code first creates a box-shaped 
PIC grid divided into grid blocks. In the example, the PIC grid has 4 by 3 blocks, which are denoted by squares with blue 
edges. White squares with blue edges represent inactive and unallocated blocks, while active blocks are shown with a black 
grid representing the cell edges. The active blocks allocate memory for cell nodes and cell centers, which store variables 
such as electric and magnetic fields needed for PIC calculations. There can be several disconnected active PIC regions in the 
PIC grid at the same time. Panel (b) shows two PIC regions, one consisting of 6 blocks and the other one a single block. 
The red solid circles in the figure show the boundary cell nodes of the adaptive PIC regions. The cells containing any of 
the boundary cell nodes are boundary cells. The electric field E at the boundary cell nodes is fixed to values interpolated 
from the MHD grid, which is denoted by gray color. Similarly, at the boundary cell centers, the mass density ρs , the bulk 
velocities us , the pressure ps for species s and magnetic field B are also set to interpolated MHD values. The particles in 
boundary cells will first be removed and generated based on the acquired MHD values. The thermal velocity of particles 
of the species s follows the Maxwellian distribution, i.e. the probability distribution function of the thermal velocity as,i in 

the i = x, y, z direction is f (as,i) ∼ exp(− a2s,i
kTs/ms

), where k is the Boltzmann constant and Ts is the temperature for species 
s. The thermal velocity for one macro-particle in three directions can be generated by random variables R1, R2, R3 and R4

with uniform distributions in (0, 1],

as,x =
√

ps

ρs

√
−2 ln R1 cos(2π R2), (20)

as,y =
√

ps

ρs

√
−2 ln R1 sin(2π R2), (21)

as,z =
√

ps

ρs

√
−2 ln R3 cos(2π R4). (22)

The velocity vs of a macro-particle is the sum of the bulk velocity us and the thermal velocity: vs = us + as . Next, the 
macro-particle is created at a random location xs in the cell with a uniform distribution. Finally, the weight of the macro-
particle ws is obtained by ws = ρs(xs)V /(msNs), where ρs(xs) is the density linearly interpolated to the particle location, 
V is the cell volume and Ns is the number of macro-particles in the cell. The weight ws equals to the number of protons or 
electrons represented by one macro-particle. Since the number of macro-particles for a certain species in a grid cell is given 
by Ns , the macro-particle weights can be computed from the total mass in the cell volume ρsV divided by msNs , where ms
is the mass of a real particle, for example a proton.

If the adaptive PIC region does not change for a period of time, the physical quantities in the boundary cells in AMPS code 
are only updated when coupling or communication between AMPS and BATS-R-US happens. During the two-way coupling 
process, AMPS also provides feedback to BATS-R-US. The MHD values on the MHD grid covered by the active PIC region 
are overwritten by values from the AMPS code. AMPS first computes integrations of particle mass density, momentum and 
velocity tensor in each cell and stores them on cell nodes. The density at a cell node at xn is obtained as
5
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ρs(xn) =
∑
p

b1(xn − xp)
wpms

V
, (23)

where the sum is over the particles in surrounding cells. xp and wp are the location and weight of the particle. b1(xn − xp)

is the first order spline function to account for the contribution of the particle to the node. The MHD mass density is 
obtained by summing over species: ρ = ∑

s ρs .
Similarly, the momentum ρsus and the kinetic energy tensor Ks are computed as follows:

ρsus(xn) =
∑
p

b1(xn − xp)
wpmsvs

V
, (24)

Ks(xn) =
∑
p

b1(xn − xp)
wpmsvpvp

V
. (25)

The MHD momentum is ρu = ∑
s ρsus . The pressure tensor elements can be computed by subtracting the kinetic energy 

density tensor of the bulk flow:

Ps,i j = Ks,i j − (ρsus,i)(ρsus, j)

ρs
. (26)

Since the pressure is isotropic in the MHD model used here, the scalar ion and electron pressures are obtained from the 
trace of the corresponding kinetic energy tensors as ps(xn) = ∑

i P s,ii/3. Then the same quantities of the MHD model (i.e. 
mass density, momentum, ion pressure, electron pressure and magnetic field) at the MHD cell centers that are covered by 
the active PIC regions are replaced with the values linearly interpolated from the cell nodes in AMPS.

Panels (a) and (b) in Fig. 1 show the change of the adaptive PIC region. Three active blocks in (a) are deallocated in (b), 
which are denoted by blue squares with horizontal stripes. The particles in these blocks are deleted and the memory that 
is used to store particle and field data is released. The blocks with red cells inside in panel (b) are newly allocated active 
blocks. The electric and magnetic fields in the new blocks are initialized from interpolated MHD values on the gray MHD 
grid, while particles in the cells of the new blocks are created with particle weights and velocities based on the MHD model 
as described earlier in this section. After each adaptation, load re-balancing is performed in AMPS to ensure that every MPI 
process has equal or similar number of active PIC blocks.

In summary the MHD-AEPIC algorithm consists of the following steps:

1. The MHD model is solved globally on the grey grid and the PIC model is solved in the active blocks denoted by the 
black grid in Fig.1.

2. When the coupling time is reached, the PIC region is adapted based on the current solution.
3. The mass densities, velocities, pressures and field values are updated in boundary cells of the active PIC blocks and 

inside the newly activated PIC blocks.
4. Old particles in the boundary cells are removed and new particles are generated based on the latest MHD values 

interpolated to the PIC cells.
5. The MHD variables are replaced with the magnetic field and the interpolated moments of the PIC solution in the grid 

cells that are covered by the active PIC blocks at step 1. Note this step is executed in the MHD model and can run in 
parallel with step 2 to 4.

6. A new cycle is started from step 1.

3. Numerical tests

3.1. Merging flux ropes test

We use the test case of two merging flux ropes to demonstrate how the new method works. The units are normalized 
so that the speed of light c = 1, the magnetic permeability μ0 = 1, the elementary charge |qe| = 1 and the proton mass 
mp = 1. The computational domain of the MHD code is x ∈ [−16, 16], y ∈ [−16, 16] and z ∈ [−0.125, 0.125] with floating 
boundary conditions. The initial mass density is ρ = 100, the ion pressure is p = 2.5 × 10−3 and the electron pressure is 
pe = 5 × 10−4 uniformly over the whole domain. The initial velocity is set to u = (0.01, 0.005, 0), so that the magnetic 
structures move across the domain and the adaptivity of the embedded PIC regions can be properly tested. This bulk speed 
is less than the maximum Alfvén speed 0.02 and the speed of light c = 1.

Initially, two force-free identical flux ropes are placed next to each other parallel with the z axis. The current density 
profile used in Stanier et al. [34] can be written in the cylindrical coordinates (r, φ, z) centered around the axis of the flux 
rope: Jr = 0 and

J z(r) =
{
jm

[
1− (r/w)2

]2
, if r ≤ w

0, if r > w
(27)
6
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Fig. 2. The initial condition of the magnetic field for the two flux ropes. The magnetic field lines are shown in white in the fourth panel.

where jm is the maximum current density in the center of the flux rope and w is the radius of the flux rope. Jφ is much 
more complicated and is not displayed here. As the flux rope is force-free, the current density is parallel to the magnetic 
field. As magnetic fields are the fundamental variables in BATS-R-US and needed to set up the initial condition of the 
simulation, they are obtained from the current density and the force-free condition as Br = 0 and

Bφ(r) =
{
jm

(
r
2 + r5

6w4 − r3

2w2

)
, if r ≤ w

w
r Bφ(w), if r > w

(28)

Bz(r) =
{
jm

√
47
360w

2 − 1
2 r

2 + 3
4

r4

w2 − 5
9

r6

w4 + 5
24

r8

w6 − 1
30

r10

w8 , if r ≤ w

0, if r > w
(29)

jm = 0.5 is used in this work so that the plasma-beta is the order of one near the flux ropes. The axes of the two flux ropes 
are at x = −1.28, y = −1.64 and at x = −1.28, y = 0.36, respectively. Both flux ropes have radii w = 1. The initial magnetic 
fields are shown in Fig. 2. Because of the parallel currents along their central axes, the two flux ropes will attract and 
move towards each other. In the merging process, magnetic reconnection takes place, when two flux ropes are compressed 
together with anti-parallel magnetic fields. The process simulated in this work is a fully kinetic collisionless reconnection. 
Introductions on the subject of magnetic reconnection can be found in plasma textbooks, such as [35].

The MHD grid is refined near the center of the domain at x ∈ [−3, 1.5], y ∈ [−2, 1] and z ∈ [−0.1, 0.1]. The cell size in 
this central region is �xMHD = �yMHD = �zMHD = 1/64. The cell resolution of the one layer transition region around the 
refined central region is 1/32 in each direction. The rest of the domain has a cell resolution of 1/16. A Courant-Friedrichs-
Lewy (CFL) number of 0.6 is used in the MHD model to set the time step. The MHD-EPIC model has a static PIC region 
with x ∈ [−2.56, 1.28], y ∈ [−1.28, 0.64], z ∈ [−0.08, 0.08]. The adaptive MHD-AEPIC simulation has a smaller moving PIC 
region initially at x ∈ [−2.56, 0], y ∈ [−1.28, 0], z ∈ [−0.08, 0.08]. This region is moved with the initial background velocity 
of u = (0.01, 0.005, 0) so that the merging part of the two flux ropes remains near the center of the active PIC region.

The cell size in the PIC model is �xP IC = �yP IC = �zP IC = 0.01. Given the normalization of proton mass per charge 
and the speed of light to unity, the ion inertial length is ρ−0.5 = 0.1 that is well resolved. We set the ion-electron mass 
ratio mi/me = 100, so the electron skin depth is (ρmi/me)

−0.5 = 0.01 that is marginally resolved. To ensure that the CFL 
number u�tP IC/�xP IC is about 0.2 with u as the maximum characteristic electron velocity, we set the PIC time step as 
�tP IC = 0.005. The species used in the PIC model are protons and electrons. Ns = 100 particles are created for each species 
when generating particles in a grid cell. Each block in the PIC model has 8 × 8 × 4 cells for the flux rope test. There are 
2048 blocks in the MHD-AEPIC simulation and 4608 blocks in the MHD-EPIC simulation. The coupling time between the 
MHD and PIC model is enforced to be the same as �tP IC . The resulting time steps of the MHD and PIC model for the runs 
in this paper are the same, but this is not required in general.

Fig. 3 shows the results from the MHD model. Plasma density shown in the upper two rows and the x component of the 
plasma velocity in the lower two rows at simulation times t = 56, 96 and 128. For each time the upper row gives the static 
MHD-EPIC simulation results and the lower row shows the MHD-AEPIC simulation results. The PIC regions are denoted 
by red boxes. It can be seen from the figure that the static PIC simulation has a larger PIC region, while in the adaptive 
simulation the red box is moving in the direction from lower left to upper right. Fig. 4 compares the results from the PIC 
model for the static MHD-EPIC and adaptive MHD-AEPIC simulations at the same times. The figure displays the electron 
density, x component of the electron velocity and magnetic field magnitude at the location of the adaptively embedded PIC 
region at the given time. Both the MHD and PIC model output show the process of the two flux ropes merging. The plasma 
7
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Fig. 3. The plasma density, the x component of the plasma velocity from the MHD model output at t = 56, 96 and 128 from the left to the right column. 
The upper two rows show the plasma density and the bottom ones show the x component of the plasma velocity. In each pair of rows, the upper one 
shows the static reference results and the lower one shows the adaptive simulation result. The PIC region in each plot is denoted by a red box.

from the top part flows in negative y-direction, colliding with the upward flowing plasma from the bottom part carrying 
oppositely oriented magnetic fields. Around simulation time t = 56, the X-line starts forming and electrons get accelerated 
in the x-direction. After the onset, the reconnection process continues. At t = 96 and t = 128, the two flux ropes are getting 
closer and the magnetic field magnitude diminishes as a result of magnetic reconnection transforming magnetic energy into 
kinetic energy.

Comparing the static and adaptively embedded simulations, the results look almost identical to each other, except for 
the regions that are solved by PIC in the static simulation but are computed by the MHD model in the adaptive simulation. 
For example, the arc below the reconnection site in the center of the mass density plots at time T = 128 in Fig. 3 is 
more enhanced in the adaptive case than in the static case. Nevertheless, the similar results prove that the new adaptive 
embedded PIC region method has the capability of preserving all signatures and physical processes happening in a static 
PIC region.

The computational times are compared for runs on Frontera [36] on 1024 Intel Xeon Platinum 8280 CPU cores at a 
nominal clock rate of 2.7 GHz. The codes are compiled by Intel compilers with an optimization level of three. The BAT-S-
RUS code uses about 98 seconds of wall clock time in the MHD-AEPIC simulation and 112 seconds in MHD-EPIC simulation. 
The AMPS code uses about 775 seconds in the MHD-AEPIC simulation and 1549 seconds in the MHD-EPIC simulation, which 
indicates the new method is more efficient. Table 1 shows the comparison of the breakdown of CPU times used by the two 
models. The major algorithmic steps are the field solver, particle mover, Gauss’ law correction, and collecting moments as 
described in Section 2.1. The adaptation step is unique to the MHD-AEPIC model and is described in Section 2.3. The times 
shown in the table are the maximum times of all MPI processes. If the implementation of the algorithm was perfect and 
the test case was ideal, the ratio of the simulation times of the adaptive and static PIC models is expected to be the same 
as the ratio of the computational volumes, which is 4/9 in this test. However, the ratio of the simulation times is about 
1/2, indicating that the efficiency is not ideal. One reason that can be seen from Fig. 4 is that the particles are mostly 
8
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Table 1
Breakdown of CPU times (in seconds) for the flux rope test.

EPIC AEPIC

Field solver 460 229
Particle mover 192 77
Gauss’ law correction 564 235
Collecting moments 284 116
Adaptation N/A 57

Total 1500 714

Fig. 4. The electron density, the x component of the electron velocity, and the magnetic field magnitude from the PIC model output at t = 56, 96 and 128. 
In each pair of rows, the upper row shows the reference static simulation result and the lower row shows the adaptive simulation result.

concentrated in the adaptive region, and the ratio of particle numbers most of the time is higher than 4/9 ≈ 0.44. For 
instance, the ratio of particle numbers is about 0.52 at t = 128.

3.2. Weak scaling test

A weak scaling test is performed to evaluate the parallel performance of the implementation of the new MHD-AEPIC 
algorithm. The simulation used for the weak scaling test is a slightly modified version of the flux rope merging test pre-
9
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Fig. 5. The weak scaling curve of the algorithm. The x-axis shows the number of CPU cores or MPI processes, the y-axis shows the average time spent for 
one PIC iteration normalized by the time of the 2-process run. The red asterisks and blue circles represent the timings for the BATS-R-US and AMPS codes, 
respectively.

sented in the previous subsection. The following adjustments are made to accommodate the need of the weak scaling test. 
A smaller computational domain x ∈ [−4, 4], y ∈ [−4, 4], z ∈ [−4, 4] with a uniform mesh is applied to the MHD model. The 
box for the PIC model has lengths of 2.56, 1.28 and 0.64 in the x, y and z directions, respectively. A PIC block has 16×8×4
cells and an MHD block has 8×8×8 cells for the scaling test. A series of tests are run on 2, 16, 128, 1024 and 8192 CPU 
cores or MPI processes. The grid resolutions are chosen for each test so that there are 4 PIC blocks and 32 MHD blocks on 
each processor.

For the run with 2 processes, the cell resolution in each direction is 0.25 for the MHD model and is 0.08 for the PIC 
model. The cell resolution is halved for the run on 8 times as many processes, so that the cell numbers and computational 
load are roughly the same for each process for one iteration. The time step for the PIC model is fixed to 0.1 for the 2-process 
run and is reduced proportionally to the cell resolution to keep the CFL condition the same. For the MHD models, the CFL 
number is fixed to 0.6 for all the runs. The simulations are run to t = 36.

Fig. 5 shows the average wall clock time per time step normalized by the 2-processor runs as a function of the number 
of MPI processes. The red asterisks represent the BATS-R-US timings and the blue circles represent the AMPS timings. The 
average time for the 2-process run spent 0.12s on BATS-R-US and 0.47s on AMPS. It can be seen as the number of processes 
increases, more time is used for both the BATSRUS code and AMPS code. The average wall clock time on 8192 cores is about
2.2 and 1.8 times longer than the 2-core run for the BATSRUS and AMPS codes, respectively. We also want to point out that 
the time spent on the adaptation part is insignificant. The 8192-process run uses a smaller cell size and smaller time steps 
in the PIC region, so it involves more frequent dynamic allocation and deallocation of blocks in the same simulation time 
than other runs. The percentage of CPU time spent on adaptation increases as more processes are used. The 8192-process 
run uses about 5% of the AMPS computational time on adaptation.

3.3. Grid convergence study

A grid convergence study is presented in this section to show how the error decreases with grid refinement. 
We use a similar setup as in the weak scaling test and perform N = 5 simulations with grid resolutions �xP IC,i =
0.04, 0.02, 0.01, 0.005, and 0.0025 for i = 1 . . .N , respectively. The ratios �xMHD,i/�xP IC,i = 3.125 and �ti/�xP IC,i = 1.25
are kept constant. As mentioned before, the electron skin depth is about 0.01, so the finest grid with �xP IC,N = 0.0025 is 
expected to resolve the reconnection physics best and is used as the reference solution. To reduce the computational cost, 
a 2D version of the MHD-AEPIC model is utilized, where only one grid cell is used in the z direction both in the MHD and 
PIC models and a periodic boundary condition is imposed on the particles in the z-direction. In the convergence study, it 
is guaranteed that all simulations use the same adaptive PIC region at the same time. Other parameters are the same as in 
the weak scaling test.

The results of the 5 runs at time t = 36 are analyzed using two different approaches for the convergence study. In the 
first approach, the reference solution QN is averaged over the grid cells of size �xP IC,i for run i and compared to the 
solution Q i . A mean relative error Ei for each run i = 1 . . . (N −1) is obtained by averaging |Q i −〈QN 〉i |/|〈QN 〉i | over all the 
grid cells of run i. The left panel of Fig. 6 shows the mean relative errors obtained with this approach. The blue line shows 
the mean relative error for the mass density ρ and the red line represents the error for the magnetic field component Bx . 
The mean relative error for Bx has a steeper slope than the mass density error with increasing grid resolution. In fact, the 
density error stops decreasing at �xP IC = 0.01. This is due to the statistical noise caused by the finite number of macro-
10
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Fig. 6. Grid convergence test results obtained with two different approaches. The y-axis is the mean relative error compared to the reference solution and 
the x-axis is the grid cell size in the PIC model. The left panel shows the errors computed for the grid cells of the given simulation. The right panel, on 
the other hand, shows the errors calculated after the solutions of the given simulation as well as the reference solution are integrated over the grid cells 
of the coarsest grid with �x = 0.04. The red asterisks and blue circles represent the mean relative errors for the mass density ρ and the x component of 
magnetic field Bx , respectively.

particles Np , which is roughly constant per grid cell for each simulation. The error due to the statistical noise is proportional 
to 1/

√
Np , which is not decreasing with the grid refinement.

In the second approach, we average both the reference solution QN and the simulation result Q i over the coarsest 
grid cells with �xP IC,1 = 0.04 so we calculate the error of the quantity integrated over a fixed volume. The mean relative 
error for each simulation i = 1 . . . (N − 1) is obtained by averaging |〈Q i〉1 − 〈QN 〉1|/|〈QN 〉1| over all the grid cells of the 
coarsest grid. The right panel of Fig. 6 shows the mean relative errors obtained on the coarsest grid with this approach. The 
errors for both quantities drop approximately linearly as the resolution gets higher. The statistical noise for mass density 
in the coarsest cell is still proportional to 1/

√
Np,i , but here Np,i represents the number of particles of simulation i in the 

volume of the coarsest cell, and thus Np,i is inversely proportional to �x2P IC,i . As a result, the statistical noise in the second 
approach is O (�xP IC ). The other discretization errors are at least first order accurate, so the overall convergence rate is first 
order. In 3D, one may obtain a convergence rate of 1.5 using integrals over 3D volumes.

In general, calculating errors for integrated quantities over fixed size volumes seem to be the proper approach for doing 
grid convergence studies for PIC simulations.

4. Conclusion

In this paper, we have presented a new MHD-AEPIC algorithm that dynamically adapts the PIC region embedded into an 
MHD model. It can be used in the cases where the phenomena of interest that need to be resolved by kinetic models are 
not stationary and appear, disappear or simply move in the computational domain. If such dynamic phenomenon occurs in 
a large area, the MHD-EPIC model employing a static PIC region will be inefficient. The new adaptive MHD-AEPIC method 
can track the phenomenon with smaller PIC regions and requires less computational resources.

A numerical test of two merging flux ropes is used to demonstrate the capability of the new method to track the moving 
magnetic reconnection site and preserve its major features. MHD-AEPIC is also shown to be more efficient than the MHD-
EPIC model. A weak scaling test is performed to demonstrate the efficiency of the implementation on a large number of 
CPU cores. In the future, this method can be widely used in space plasma simulations. For example, Earth magnetosphere 
simulations have moving magnetic reconnection sites both at the dayside magnetopause and in the magnetotail. The moving 
PIC region can follow the reconnection sites without requiring very large PIC regions in the simulation and can provide a 
more efficient model of the evolving magnetosphere.
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