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Abstract 29 

Humans live in complex socio-ecological systems where we interact with parasites and pathogens 30 
that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate 31 
hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life 32 
cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health 33 
Organization’s Global Burden of Disease study. We used those data to derive the time spent in each 34 
component of a pathogen’s life cycle, including total time spent in humans versus all environmental 35 
stages. We found that nearly all infectious organisms were “environmentally mediated” to some 36 
degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to 37 
human hosts. Correspondingly, many infectious diseases were primarily controlled through 38 
environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were 39 
primarily controlled by integrated methods (i.e., combining medical and environmental 40 
interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were 41 
difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and 42 
model interactions between life cycle time scales and infection control strategies. We hope that this 43 
synthetic review and associated database serve as a resource for understanding both common patterns 44 
among parasites and pathogens and important variability and uncertainty regarding particular 45 
infectious diseases. These insights can be used to improve systems-based approaches for controlling 46 
environmentally mediated diseases of humans in an era where the environment is rapidly changing. 47 

1 Introduction 48 

The global burden of human infectious diseases has declined by more than 40% since the turn of the 49 
21st century (1), but long-term control efforts for some diseases have been stymied by agricultural 50 
intensification, urbanization, and other drivers of global change (2,3). Changes to socio-ecological 51 
systems affect human interactions with the abiotic and biotic environment, thereby modifying contact 52 
between susceptible humans and parasites and pathogens with environmentally mediated 53 
transmission (3,4). Reservoirs for environmentally mediated parasites include domesticated and wild 54 
animal host species, vectors like mosquitos and ticks, and abiotic reservoirs like soil and water. 55 
Targeting environmental reservoirs could help avert billions of infections and millions of deaths 56 
caused by infectious diseases. For example, the protozoan parasites that cause malaria are transmitted 57 
by infected mosquitoes, and thus vector management methods, such as insecticide-treated bednets or 58 
source population reduction, are effective environmental interventions to reduce malaria (5). 59 
Improving environmental disease control can also disrupt the vicious cycles of disease and poverty 60 
that thwart progress towards sustainably advancing human and ecosystem health (6–9).  61 

However, environmental sources of infection are often overlooked because they are poorly 62 
understood, complex, or outside the purview of classic medical interventions, even when 63 
environmental transmission contributes substantially to global disease burdens (2,10,11). For 64 
example, hope for global dracunculiasis elimination has dimmed as recognition that domestic dogs 65 
serve as an alternative reservoir host for the adult worms has grown (12–14).With better information 66 
on the environmental components of the world’s most burdensome infectious diseases – what they 67 
are, where they are, how they’re changing – opportunities may arise to complement classical medical 68 
prevention and treatment with sustainable environmental interventions that control parasites and 69 
pathogens in more effective ways (2). And though we often study environmental reservoirs and 70 
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spillover (i.e., pathogen transmission across host species) in the context of emerging pathogens like 71 
SARS-CoV-2 (15–17), the preceding examples illustrate that environmental transmission and 72 
sustainable environmental control can also be important for established and neglected diseases 73 
(18,19). Here, we present a database that synthesizes the environmental components of 150 human 74 
parasites and pathogens that cause a high burden of disability and loss of life as identified by the 75 
World Health Organization (WHO). These WHO-tracked parasites and pathogens include those that 76 
cause the big three diseases (tuberculosis, HIV/AIDs, malaria), sexually transmitted infections, 77 
diarrheal diseases, childhood-cluster diseases, meningitis, encephalitis, hepatitis, parasitic and 78 
vectorborne diseases, intestinal nematode infections, and leprosy. 79 

2 Quantifying environmental persistence 80 

We used the World Health Organization’s Global Health Estimates (GHE) for 2019 (1) to generate a 81 
list of 150 parasites and pathogens (see full database in Supplementary Materials) that contribute to 82 
significant disability and loss of life, measured in disability-adjusted life years (DALYs) (20). We 83 
used a coded list of diseases associated with each “infectious and parasitic disease” category tracked 84 
in the GHE (20) to identify the specific species in our list, which included viruses, prions, bacteria, 85 
protozoans, and helminths (Fig. 1). We then performed a rapid review (21) for each parasite or 86 
pathogen, targeting information about (i) the dominant transmission mode, (ii) obligate and incidental 87 
vertebrate reservoir hosts, (iii) duration of each life cycle stage in humans and in components of the 88 
abiotic or biotic environment, (iv) current global case burdens in humans, and (v) the ‘gold standard’ 89 
control strategy recommended by global health organizations for each disease (see detailed Methods 90 
in Supplementary Materials). Recent global case estimates were surprisingly difficult to find and 91 
sometimes varied by source, so we estimated cases using a categorical variable on a logarithmic scale 92 
(i.e., 0–100 cases; 101–1,000 cases; 1,001–10,000 cases, etc.) to minimize misclassification. The data 93 
presented here represents a living database that will need to be updated as our understanding of these 94 
pathogens evolves.  95 

This review adds to previous literature describing life history traits of human pathogens by providing 96 
a breakdown of how each parasite or pathogen spends time in humans, non-human vertebrate hosts, 97 
vectors or invertebrate intermediate hosts, and abiotic reservoirs. Whereas many studies assess the 98 
environmental persistence of single emerging and established diseases by describing pathogens’ 99 
interactions in space—transmission pathways, abiotic environmental reservoirs, and host and vector 100 
ranges (e.g., (22,23,17,15))—we also include the time that infectious organisms spend, on average, in 101 
environmental stages of their life cycles. After compiling these data, we describe the relationships 102 
between environmental persistence and dominant transmission pathways, obligate and relevant 103 
vertebrate host ranges, contemporary estimates of the global cases of disease, and standard strategies 104 
for control and prevention. We explain emergent patterns in this review, and we provide the full 105 
database in the supplement as a resource for scientists and practitioners interested in integrated 106 
human–environment disease management. 107 

3 Pathogen duration in the environment varies within and among transmission pathways 108 

Approximately 75% of the world’s 150 most burdensome infectious diseases are environmentally 109 
mediated, while 10% (primarily STDs) have no potential to survive outside of a human or vertebrate 110 
host for more than one day. The remaining 15% are considered directly transmitted (human-to-111 
human) diseases with only very brief persistence outside a human host. However, even among 112 
pathogens considered to be “directly transmitted” (i.e., acquired via direct human-to-human 113 
transmission), there is considerable variability in environmental persistence (Fig. 2a). For example, 114 
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most tuberculosis transmission occurs via respiratory droplets that spend seconds to minutes in the air 115 
during close contacts between infectious and susceptible individuals. But in ideal conditions, 116 
Mycobacterium tuberculosis can survive and remain virulent for weeks to months outside of a human 117 
host. Overall, environmental persistence times for pathogens with potential to survive outside a host 118 
vary from just a few minutes to many years. 119 

On average, the duration spent in the environment varied with transmission mode. Parasites and 120 
pathogens with primarily direct transmission human-to-human transmission pathways (i.e., via 121 
fomites or respiratory droplets, or sexual transmission) have the lowest average persistence in the 122 
environment outside human or obligate vertebrate hosts (mean = 4.7 days, 95% CI = 1.5–12.0) (Fig. 123 
2a). Vector-borne diseases also tend to have relatively short environmental persistence (mean = 6.2 124 
days, 95% CI = 1.5–19.7) due to the shorter lifespans of invertebrate vectors like mosquitoes and 125 
flies. For example, adult female Anopheles mosquitoes, which transmit malaria, rarely live longer 126 
than one to two weeks in nature, and will be infectious for only a few days after the parasite’s 127 
extrinsic incubation period is complete (24). Similarly, parasites and pathogens spread through 128 
consumption of contaminated food or water have short environmental persistence (mean = 7.2 days, 129 
95% CI = 2.3–23.4), because the free-living environmental stages are usually short lived (e.g., 130 
bacteria like Salmonella). In contrast, infections resulting from direct consumption of animals (i.e., 131 
trophic transmission) have the longest potential duration in the environment (mean = 171.5 days, 132 
95% CI = 61.8–473.0), because vertebrate hosts and the helminths that are passed from animals to 133 
people via trophic transmission are relatively long lived (Fig. 2a). While there are individual parasites 134 
and pathogens that deviate from these averages, the general trends suggest that the effectiveness of 135 
interventions that target infectious stages within humans versus infectious stages within the 136 
environment will depend on transmission modes.  137 

4 Standard control and prevention strategies vary by pathogen duration in the environment  138 

For environmentally mediated diseases, the most common strategies for prevention and control are, 139 
in descending order: clean water, sanitation, and hygiene (WASH); vector control; and integrated 140 
human–environment control (Fig. 1b). In addition to those common control strategies, vaccination or 141 
pre-exposure prophylaxis is used for six viruses, including rabies and vector borne encephalitis. 142 
Furthermore, direct treatment of reservoir vertebrate hosts is used for three infectious diseases found 143 
in long-lived mammals and for which humans play no major role in maintaining the pathogen’s life 144 
cycle: Louping ill virus, Echinococcus granulosus, and Echinococcus multilocularis. The only 145 
control strategy encountered in the database that was not applied as a typical method to control 146 
environmentally mediated diseases was behavioral or lifestyle changes (e.g., safe sex or exposure 147 
avoidance). 148 

For directly transmitted infectious diseases, WASH (e.g., hand-washing) and behavior or lifestyle 149 
change are the key strategies for prevention and control; the latter strategy largely addresses STDs, 150 
while the former addresses directly transmitted diseases with relatively longer environmental 151 
persistence (estimated marginal mean = 16.1 days; 95% CI = 5.7–42.4), including Human adenovirus 152 
A through G, Bordetella parapertussis, Streptococcus pyogenes and S. agalactiae, and 153 
Staphylococcus aureus. Vaccination or pre-exposure prophylaxis are also common control and 154 
prevention strategies for many directly transmitted diseases, including HIV/AIDS, childhood cluster 155 
diseases, Hepatitis B virus, and several bacterial species causing meningitis. As expected, most of 156 
these “gold standard” control strategies do not target environmental reservoirs, but environmental 157 
control is still useful for some directly transmitted infectious diseases. 158 

https://www.zotero.org/google-docs/?Qfgy7U


  Running Title 

 
5 

Though most parasites and pathogens spend some time in the environment, only 14% (21/150) of the 159 
parasites and pathogens considered here had integrated human and environmental control as the gold 160 
standard (i.e., combination of medical intervention and environmental control). This included some 161 
infectious agents that cause malaria, yellow fever, schistosomiasis, and soil-transmitted helminths 162 
(STH), for which medical intervention (prophylaxis, MDA, or vaccine) and environmental control 163 
(vector control or WASH) are simultaneously pursued. However, even within these pathogen groups, 164 
there was variability; for the malaria, schistosome, and STH parasites that circulate primarily in non-165 
human vertebrates and cause incidental or dead-end infections in humans, medical interventions 166 
would cure individual humans but not affect pathogen transmission. Therefore, rather than integrated 167 
approaches, environmental control (vector control or WASH) alone was considered the gold standard 168 
for those pathogens.  169 

5 Environmentally mediated infections cause a substantial burden of disease 170 

Directly transmitted diseases (human–human) and environmentally mediated pathogens that use 171 
humans as the main reservoir hosts (human–environment–human) cause the same average minimum 172 
number of infections worldwide (Fig. 2c). In contrast, pathogens that predominantly circulate in the 173 
abiotic or biotic environment (environment–human) cause lower minimum global cases, on average 174 
(Fig. 2c). Overall, the logarithm of the estimated minimum number of global cases is positively 175 
correlated with the duration of infection in humans (linear mixed effects model, estimate for 176 
logarithm of duration in humans: 1.11, SE=0.18, df=140, p<0.001), rather than total duration in the 177 
environment (estimate for logarithm of duration of pathogens outside a vertebrate host in the 178 
environment: = –0.16, SE=0.30, df=138 p=0.6). However, despite causing fewer minimum global 179 
cases per pathogen, the 113 out of 150 infectious diseases that are environmentally mediated cause an 180 
average of more than 16.8 million minimum global cases—a substantial burden of disease. 181 

We can further divide the environmentally mediated diseases into those that are (1) maintained 182 
exclusively in human hosts (including pathogens with complex life cycles that require human 183 
infection to be maintained); (2) maintained in companion animals (i.e., dogs and cats), livestock, or 184 
wild animals; or (3) some combination of 1 and 2 (“mixed categories” in Fig. 2d). In doing so, it 185 
again becomes clear that directly transmitted and environmentally mediated pathogens maintained 186 
exclusively in humans cause, on average, a higher burden of disease than pathogens maintained in 187 
animal populations. However, many ‘mixed’ host pathogens also cause a substantial number of 188 
infections worldwide. These include several diarrheal diseases caused by bacterial, viral, and 189 
protozoan pathogens (e.g., Salmonella enterica, E. coli, Campylobacter spp., Giardia lamblia, 190 
Rotavirus spp.), as well as mixed-host complex life cycle parasites like Japanese encephalitis virus, 191 
Leishmania donovani, Echinococcus granulosus, and Schistosoma mansoni.  192 

Among parasites and pathogens that use non-human animals as their main reservoir hosts, pathogens 193 
that are primarily maintained in companion animals (n = 5) cause, on average, the highest number of 194 
infections. However, there are relatively few diseases caused by those types of pathogens: hookworm 195 
diseases, caused by Ancylostoma braziliense and A. caninum, and diarrheal diseases, caused by 196 
Cryptosporidium canis and C. felis, each cause 100,000 to 1 million or more cases annually, while 197 
Rotavirus I is reported to cause diarrhea in less than 100 people annually. Pathogens that are 198 
primarily maintained in wild animals (n = 27) or livestock (n = 11) are more common, but these 199 
cause a lower number of human infections, on average, with substantial variation among infectious 200 
diseases (wild animal estimated marginal mean = 449 minimum cases, 95% CI = 3–7212; livestock 201 
estimated marginal mean = 2.30 minimum cases, 95% CI = 1–62). The exception to this trend among 202 
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pathogens transmitted via livestock is bovine tuberculosis, which caused an estimated 140,000 cases 203 
globally in 2019 (25). 204 

6 Discussion  205 

By tabulating how long pathogens spend in the environment and where they spend that time, this 206 
synthesis reveals important patterns among 150 burdensome human parasites and pathogens, as well 207 
as surprising insights for particular infectious agents. We found that parasites and pathogens with 208 
similar transmission pathways (e.g., sexual transmission versus food-borne transmission) have 209 
similar environmental durations (e.g., short versus long) and similar control methods (e.g., behavioral 210 
interventions versus sanitation and hygiene). At the same time, environmental duration can vary 211 
substantially for individual pathogens. For example, some directly transmitted pathogens that usually 212 
spend almost no time in the environment are capable of acting as environmentally mediated 213 
pathogens (e.g., Trachoma caused by direct contact Chlamydia trachomatis transmission versus fly 214 
vector borne transmission), a potentially underappreciated phenomenon in many epidemiological 215 
studies (26). These environmental persistence data can be especially important when predicting 216 
infectious disease dynamics; for example, model-based predictions are often highly sensitive to 217 
environmental traits like mosquito life spans, so parameterizing these models with accurate estimates 218 
is critical for improving quantitative predictions (27–31). Therefore, we hope that this synthetic 219 
review and the associated database serve as a resource for understanding both common patterns 220 
among pathogens and important variability and uncertainty in environmental persistence, thereby 221 
improving systems-based approaches for understanding and controlling environmentally mediated 222 
diseases that infect humans. 223 

We found that most of the 150 most burdensome human pathogens spend some time in the 224 
environment outside of the human host. This was not the case for a few diseases that cause the 225 
highest human burdens (e.g., HIV/AIDS). But some other diseases that cause more than 1 million 226 
DALYs globally do have important abiotic or biotic reservoirs, such as schistosomiasis, Chagas 227 
disease, and other neglected tropical diseases. Furthermore, although the most burdensome pathogens 228 
primarily use humans now, many originated from spillover events from non-human animals; in other 229 
words, although pathogens that are primarily maintained in non-human hosts cause relatively low 230 
human disease burdens now, spillover into human hosts can lead to sustained human-to-human 231 
transmission and subsequent mass mortality or disability (32), as the HIV/AIDs and COVID-19 232 
pandemics have illustrated. Therefore, by increasing awareness of environmental reservoirs and 233 
focusing on reducing environmental transmission, we might simultaneously control the most 234 
burdensome endemic/neglected infectious diseases (2,11) and reduce the risk of emergence of new 235 
infectious diseases in human populations (33,34).  236 

The environmental persistence data synthesized here were often difficult to find, even though we 237 
were reviewing the most burdensome and thus often best studied infectious diseases that infect 238 
humans. In some cases, the data simply did not exist and needed to be inferred from closely related 239 
species. In other cases, the data were spread across multiple sources with variation in their estimates. 240 
This emphasizes how many research gaps likely exist for lesser-known diseases, including those that 241 
are currently emerging or re-emerging. These data gaps can be a major barrier to successful control; 242 
for example, uncertainty about the life cycle and transmission of Mycobacterium ulcerans has 243 
hampered efforts to control the debilitating Buruli ulcer disease (35–37). Therefore, there is still high 244 
value in detailed life cycle research that determines where and how parasites and pathogens spend 245 
their time, even though such life cycle studies are becoming less common in the parasitological 246 
literature (38,39).  247 
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Planetary Health research increasingly documents how human health is strongly tied to the 248 
environment via infectious diseases. Since most of the 150 most burdensome human infectious 249 
diseases reviewed here spend time in the environment outside of the human host, it is clear that 250 
environmental change might affect many diseases in many places (e.g., 3,34). For example, 251 
environmental changes could exacerbate vicious cycles of endemic disease, poverty, and 252 
environmental degradation (6–9). Environmental changes could also lead to new interactions 253 
between humans and environments or shifting host, vector, or pathogen distributions that lead to the 254 
emergence or re-emergence of novel pathogens in human populations (e.g., 3,34,40). To understand, 255 
predict, and control these current and future risks to human health, we must continue working 256 
towards understanding how and where infectious agents spend their time outside of human hosts. 257 

7 Figure Captions 258 

Figure 1. An overview of the 150 most burdensome parasites and pathogens that infect humans.  259 

Figure 2.  (A) Duration of infectious stages outside primary vertebrate hosts (but including 260 
vertebrates as obligate intermediate hosts) according to primary transmission strategy, excluding 261 
normal flora/opportunistic pathogens and directly zoonotic pathogens, which were data-limited, and 262 
sapronoses, which persist indefinitely in abiotic reservoirs. (B) Duration of infectious stages outside 263 
primary vertebrate hosts according to standard strategies for disease prevention and control, 264 
excluding sapronoses. (C) The minimum estimated global cases according to obligate transmission 265 
pathways, categorized as direct human-to-human transmission (e.g., STDs), human-to-human 266 
transmission with obligate vertebrate stages (e.g., soil-transmitted helminths), and environment-to-267 
human transmission (e.g., rabies virus). (D) The minimum estimated global cases by obligate 268 
vertebrate host ranges; mixed category includes some combination of livestock, poultry, domestic 269 
animals, wild animals (including birds), or humans.  270 
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Please see the attached supplementary material, including supplementary methods and data. 414 
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