

1 Environmental persistence of the world's most burdensome infectious

- 2 and parasitic diseases
- 3 Skylar R. Hopkins^{1,2†*}, Isabel J. Jones^{3†}, Julia C. Buck⁴, Christopher LeBoa⁵, Laura H.
- 4 Kwong⁶, Kim Jacobsen⁷, Chloe Rickards⁸, Andrea J. Lund⁹, Nicole Nova¹⁰, Andrew J.
- 5 MacDonald^{10,11}, Miles Lambert-Peck¹², Giulio A. De Leo³, Susanne H. Sokolow^{3,13}
- 6 [†]First Author Skylar Hopkins and Isabel Jones share first authorship
- 8 ¹National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, USA
- 9 ²Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
- 10 ³Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- ⁴Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington,
- 12 NC, USA

7

- ⁵Department of Epidemiology, Stanford University, Stanford, CA 94305, USA
- ⁶Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
- ⁷School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- ⁸Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060,
- 17 USA
- 18 ⁹Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford,
- 19 CA 94305, USA
- 20 ¹⁰Department of Biology, Stanford University, Stanford, CA 94305, USA
- 21 ¹¹Earth Research Institute, University of California, Santa Barbara, CA, USA
- 22 ¹²United Nations University for the Advanced Study of Sustainability, Tokyo, Japan
- 23 ¹³Marine Science Institute, University of California, Santa Barbara, CA, USA
- 24 * Correspondence:
- 25 Corresponding Author
- 26 skylar_hopkins@ncsu.edu

- 27 Keywords: environmental control, DALY, disease dynamics, human health, human-
- 28 environment interaction.

Abstract

29

48

- Humans live in complex socio-ecological systems where we interact with parasites and pathogens
- 31 that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate
- 32 hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life
- cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health
- Organization's Global Burden of Disease study. We used those data to derive the time spent in each
- 35 component of a pathogen's life cycle, including total time spent in humans versus all environmental
- 36 stages. We found that nearly all infectious organisms were "environmentally mediated" to some
- degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to
- 38 human hosts. Correspondingly, many infectious diseases were primarily controlled through
- environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were
- 40 primarily controlled by integrated methods (i.e., combining medical and environmental
- 41 interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were
- 42 difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and
- 43 model interactions between life cycle time scales and infection control strategies. We hope that this
- synthetic review and associated database serve as a resource for understanding both common patterns
- 45 among parasites and pathogens and important variability and uncertainty regarding particular
- 46 infectious diseases. These insights can be used to improve systems-based approaches for controlling
- 47 environmentally mediated diseases of humans in an era where the environment is rapidly changing.

1 Introduction

- The global burden of human infectious diseases has declined by more than 40% since the turn of the
- 50 21st century (1), but long-term control efforts for some diseases have been stymied by agricultural
- 51 intensification, urbanization, and other drivers of global change (2,3). Changes to socio-ecological
- 52 systems affect human interactions with the abiotic and biotic environment, thereby modifying contact
- between susceptible humans and parasites and pathogens with environmentally mediated
- 54 transmission (3,4). Reservoirs for environmentally mediated parasites include domesticated and wild
- animal host species, vectors like mosquitos and ticks, and abiotic reservoirs like soil and water.
- Targeting environmental reservoirs could help avert billions of infections and millions of deaths
- 57 caused by infectious diseases. For example, the protozoan parasites that cause malaria are transmitted
- by infected mosquitoes, and thus vector management methods, such as insecticide-treated bednets or
- 59 source population reduction, are effective environmental interventions to reduce malaria (5).
- 60 Improving environmental disease control can also disrupt the vicious cycles of disease and poverty
- 61 that thwart progress towards sustainably advancing human and ecosystem health (6–9).
- However, environmental sources of infection are often overlooked because they are poorly
- understood, complex, or outside the purview of classic medical interventions, even when
- environmental transmission contributes substantially to global disease burdens (2,10,11). For
- example, hope for global dracunculiasis elimination has dimmed as recognition that domestic dogs
- serve as an alternative reservoir host for the adult worms has grown (12–14). With better information
- on the environmental components of the world's most burdensome infectious diseases what they
- are, where they are, how they're changing opportunities may arise to complement classical medical
- 69 prevention and treatment with sustainable environmental interventions that control parasites and
- 70 pathogens in more effective ways (2). And though we often study environmental reservoirs and

- spillover (i.e., pathogen transmission across host species) in the context of emerging pathogens like
- 72 SARS-CoV-2 (15–17), the preceding examples illustrate that environmental transmission and
- 73 sustainable environmental control can also be important for established and neglected diseases
- 74 (18,19). Here, we present a database that synthesizes the environmental components of 150 human
- parasites and pathogens that cause a high burden of disability and loss of life as identified by the
- World Health Organization (WHO). These WHO-tracked parasites and pathogens include those that
- cause the big three diseases (tuberculosis, HIV/AIDs, malaria), sexually transmitted infections,
- diarrheal diseases, childhood-cluster diseases, meningitis, encephalitis, hepatitis, parasitic and
- vectorborne diseases, intestinal nematode infections, and leprosy.

2 Quantifying environmental persistence

- We used the World Health Organization's Global Health Estimates (GHE) for 2019 (1) to generate a
- 82 list of 150 parasites and pathogens (see full database in Supplementary Materials) that contribute to
- 83 significant disability and loss of life, measured in disability-adjusted life years (DALYs) (20). We
- 84 used a coded list of diseases associated with each "infectious and parasitic disease" category tracked
- in the GHE (20) to identify the specific species in our list, which included viruses, prions, bacteria,
- protozoans, and helminths (Fig. 1). We then performed a rapid review (21) for each parasite or
- pathogen, targeting information about (i) the dominant transmission mode, (ii) obligate and incidental
- 88 vertebrate reservoir hosts, (iii) duration of each life cycle stage in humans and in components of the
- 89 abiotic or biotic environment, (iv) current global case burdens in humans, and (v) the 'gold standard'
- 90 control strategy recommended by global health organizations for each disease (see detailed Methods
- 91 in Supplementary Materials). Recent global case estimates were surprisingly difficult to find and
- 92 sometimes varied by source, so we estimated cases using a categorical variable on a logarithmic scale
- 93 (i.e., 0–100 cases; 101–1,000 cases; 1,001–10,000 cases, etc.) to minimize misclassification. The data
- 94 presented here represents a living database that will need to be updated as our understanding of these
- 95 pathogens evolves.

80

108

- 96 This review adds to previous literature describing life history traits of human pathogens by providing
- a breakdown of how each parasite or pathogen spends time in humans, non-human vertebrate hosts,
- 98 vectors or invertebrate intermediate hosts, and abiotic reservoirs. Whereas many studies assess the
- 99 environmental persistence of single emerging and established diseases by describing pathogens'
- interactions in space—transmission pathways, abiotic environmental reservoirs, and host and vector
- ranges (e.g., (22,23,17,15))—we also include the time that infectious organisms spend, on average, in
- environmental stages of their life cycles. After compiling these data, we describe the relationships
- between environmental persistence and dominant transmission pathways, obligate and relevant
- vertebrate host ranges, contemporary estimates of the global cases of disease, and standard strategies
- for control and prevention. We explain emergent patterns in this review, and we provide the full
- database in the supplement as a resource for scientists and practitioners interested in integrated
- human–environment disease management.

3 Pathogen duration in the environment varies within and among transmission pathways

- Approximately 75% of the world's 150 most burdensome infectious diseases are environmentally
- mediated, while 10% (primarily STDs) have no potential to survive outside of a human or vertebrate
- host for more than one day. The remaining 15% are considered directly transmitted (human-to-
- human) diseases with only very brief persistence outside a human host. However, even among
- pathogens considered to be "directly transmitted" (i.e., acquired via direct human-to-human
- transmission), there is considerable variability in environmental persistence (Fig. 2a). For example,

- most tuberculosis transmission occurs via respiratory droplets that spend seconds to minutes in the air
- during close contacts between infectious and susceptible individuals. But in ideal conditions,
- 117 Mycobacterium tuberculosis can survive and remain virulent for weeks to months outside of a human
- host. Overall, environmental persistence times for pathogens with potential to survive outside a host
- vary from just a few minutes to many years.
- On average, the duration spent in the environment varied with transmission mode. Parasites and
- pathogens with primarily direct transmission human-to-human transmission pathways (i.e., via
- fomites or respiratory droplets, or sexual transmission) have the lowest average persistence in the
- environment outside human or obligate vertebrate hosts (mean = 4.7 days, 95% CI = 1.5–12.0) (Fig.
- 2a). Vector-borne diseases also tend to have relatively short environmental persistence (mean = 6.2
- days, 95% CI = 1.5–19.7) due to the shorter lifespans of invertebrate vectors like mosquitoes and
- flies. For example, adult female *Anopheles* mosquitoes, which transmit malaria, rarely live longer
- than one to two weeks in nature, and will be infectious for only a few days after the parasite's
- extrinsic incubation period is complete (24). Similarly, parasites and pathogens spread through
- 129 consumption of contaminated food or water have short environmental persistence (mean = 7.2 days,
- 130 95% CI = 2.3–23.4), because the free-living environmental stages are usually short lived (e.g.,
- bacteria like Salmonella). In contrast, infections resulting from direct consumption of animals (i.e.,
- trophic transmission) have the longest potential duration in the environment (mean = 171.5 days,
- 133 95% CI = 61.8–473.0), because vertebrate hosts and the helminths that are passed from animals to
- people via trophic transmission are relatively long lived (Fig. 2a). While there are individual parasites
- and pathogens that deviate from these averages, the general trends suggest that the effectiveness of
- interventions that target infectious stages within humans versus infectious stages within the
- environment will depend on transmission modes.

4 Standard control and prevention strategies vary by pathogen duration in the environment

- For environmentally mediated diseases, the most common strategies for prevention and control are,
- in descending order: clean water, sanitation, and hygiene (WASH); vector control; and integrated
- human–environment control (Fig. 1b). In addition to those common control strategies, vaccination or
- pre-exposure prophylaxis is used for six viruses, including rabies and vector borne encephalitis.
- 143 Furthermore, direct treatment of reservoir vertebrate hosts is used for three infectious diseases found
- in long-lived mammals and for which humans play no major role in maintaining the pathogen's life
- cycle: Louping ill virus, Echinococcus granulosus, and Echinococcus multilocularis. The only
- 146 control strategy encountered in the database that was not applied as a typical method to control
- environmentally mediated diseases was behavioral or lifestyle changes (e.g., safe sex or exposure
- 148 avoidance).

138

- 149 For directly transmitted infectious diseases, WASH (e.g., hand-washing) and behavior or lifestyle
- change are the key strategies for prevention and control; the latter strategy largely addresses STDs,
- while the former addresses directly transmitted diseases with relatively longer environmental
- persistence (estimated marginal mean = 16.1 days; 95% CI = 5.7–42.4), including Human adenovirus
- 153 A through G, Bordetella parapertussis, Streptococcus pyogenes and S. agalactiae, and
- 154 Staphylococcus aureus. Vaccination or pre-exposure prophylaxis are also common control and
- prevention strategies for many directly transmitted diseases, including HIV/AIDS, childhood cluster
- diseases, Hepatitis B virus, and several bacterial species causing meningitis. As expected, most of
- these "gold standard" control strategies do not target environmental reservoirs, but environmental
- control is still useful for some directly transmitted infectious diseases.

- 159 Though most parasites and pathogens spend some time in the environment, only 14% (21/150) of the
- parasites and pathogens considered here had integrated human and environmental control as the gold
- standard (i.e., combination of medical intervention and environmental control). This included some
- infectious agents that cause malaria, yellow fever, schistosomiasis, and soil-transmitted helminths
- 163 (STH), for which medical intervention (prophylaxis, MDA, or vaccine) and environmental control
- 164 (vector control or WASH) are simultaneously pursued. However, even within these pathogen groups,
- there was variability; for the malaria, schistosome, and STH parasites that circulate primarily in non-
- human vertebrates and cause incidental or dead-end infections in humans, medical interventions
- would cure individual humans but not affect pathogen transmission. Therefore, rather than integrated
- approaches, environmental control (vector control or WASH) alone was considered the gold standard
- 169 for those pathogens.

170

5 Environmentally mediated infections cause a substantial burden of disease

- Directly transmitted diseases (human–human) and environmentally mediated pathogens that use
- humans as the main reservoir hosts (human–environment–human) cause the same average minimum
- number of infections worldwide (Fig. 2c). In contrast, pathogens that predominantly circulate in the
- abiotic or biotic environment (environment–human) cause lower minimum global cases, on average
- 175 (Fig. 2c). Overall, the logarithm of the estimated minimum number of global cases is positively
- 176 correlated with the duration of infection in humans (linear mixed effects model, estimate for
- logarithm of duration in humans: 1.11, SE=0.18, df=140, p<0.001), rather than total duration in the
- environment (estimate for logarithm of duration of pathogens outside a vertebrate host in the
- environment: = -0.16, SE=0.30, df=138 p=0.6). However, despite causing fewer minimum global
- cases per pathogen, the 113 out of 150 infectious diseases that are environmentally mediated cause an
- average of more than 16.8 million minimum global cases—a substantial burden of disease.
- We can further divide the environmentally mediated diseases into those that are (1) maintained
- exclusively in human hosts (including pathogens with complex life cycles that require human
- infection to be maintained); (2) maintained in companion animals (i.e., dogs and cats), livestock, or
- wild animals; or (3) some combination of 1 and 2 ("mixed categories" in Fig. 2d). In doing so, it
- again becomes clear that directly transmitted and environmentally mediated pathogens maintained
- exclusively in humans cause, on average, a higher burden of disease than pathogens maintained in
- animal populations. However, many 'mixed' host pathogens also cause a substantial number of
- infections worldwide. These include several diarrheal diseases caused by bacterial, viral, and
- 190 protozoan pathogens (e.g., Salmonella enterica, E. coli, Campylobacter spp., Giardia lamblia,
- Rotavirus spp.), as well as mixed-host complex life cycle parasites like Japanese encephalitis virus,
- 192 Leishmania donovani, Echinococcus granulosus, and Schistosoma mansoni.
- Among parasites and pathogens that use non-human animals as their main reservoir hosts, pathogens
- that are primarily maintained in companion animals (n = 5) cause, on average, the highest number of
- infections. However, there are relatively few diseases caused by those types of pathogens: hookworm
- diseases, caused by *Ancylostoma braziliense* and *A. caninum*, and diarrheal diseases, caused by
- 197 Cryptosporidium canis and C. felis, each cause 100,000 to 1 million or more cases annually, while
- Rotavirus I is reported to cause diarrhea in less than 100 people annually. Pathogens that are
- primarily maintained in wild animals (n = 27) or livestock (n = 11) are more common, but these
- 200 cause a lower number of human infections, on average, with substantial variation among infectious
- diseases (wild animal estimated marginal mean = 449 minimum cases, 95% CI = 3–7212; livestock
- estimated marginal mean = 2.30 minimum cases, 95% CI = 1-62). The exception to this trend among

pathogens transmitted via livestock is bovine tuberculosis, which caused an estimated 140,000 cases globally in 2019 (25).

6 Discussion

205

206

207 synthesis reveals important patterns among 150 burdensome human parasites and pathogens, as well 208 as surprising insights for particular infectious agents. We found that parasites and pathogens with 209 similar transmission pathways (e.g., sexual transmission versus food-borne transmission) have 210 similar environmental durations (e.g., short versus long) and similar control methods (e.g., behavioral 211 interventions versus sanitation and hygiene). At the same time, environmental duration can vary substantially for individual pathogens. For example, some directly transmitted pathogens that usually 212 213 spend almost no time in the environment are capable of acting as environmentally mediated 214 pathogens (e.g., Trachoma caused by direct contact Chlamydia trachomatis transmission versus fly 215 vector borne transmission), a potentially underappreciated phenomenon in many epidemiological 216 studies (26). These environmental persistence data can be especially important when predicting 217 infectious disease dynamics; for example, model-based predictions are often highly sensitive to 218 environmental traits like mosquito life spans, so parameterizing these models with accurate estimates

By tabulating how long pathogens spend in the environment and where they spend that time, this

- 219 is critical for improving quantitative predictions (27–31). Therefore, we hope that this synthetic
- review and the associated database serve as a resource for understanding both common patterns among pathogens and important variability and uncertainty in environmental persistence, thereby
- 222 improving systems-based approaches for understanding and controlling environmentally mediated
- diseases that infect humans.
- We found that most of the 150 most burdensome human pathogens spend some time in the
- environment outside of the human host. This was not the case for a few diseases that cause the
- highest human burdens (e.g., HIV/AIDS). But some other diseases that cause more than 1 million
- 227 DALYs globally do have important abiotic or biotic reservoirs, such as schistosomiasis, Chagas
- disease, and other neglected tropical diseases. Furthermore, although the most burdensome pathogens
- primarily use humans now, many originated from spillover events from non-human animals; in other words, although pathogens that are primarily maintained in non-human hosts cause relatively low
- human disease burdens now, spillover into human hosts can lead to sustained human-to-human
- transmission and subsequent mass mortality or disability (32), as the HIV/AIDs and COVID-19
- pandemics have illustrated. Therefore, by increasing awareness of environmental reservoirs and
- focusing on reducing environmental transmission, we might simultaneously control the most
- burdensome endemic/neglected infectious diseases (2,11) and reduce the risk of emergence of new
- infectious diseases in human populations (33,34).
- The environmental persistence data synthesized here were often difficult to find, even though we
- 238 were reviewing the most burdensome and thus often best studied infectious diseases that infect
- 239 humans. In some cases, the data simply did not exist and needed to be inferred from closely related
- species. In other cases, the data were spread across multiple sources with variation in their estimates.
- 241 This emphasizes how many research gaps likely exist for lesser-known diseases, including those that
- are currently emerging or re-emerging. These data gaps can be a major barrier to successful control;
- 243 for example, uncertainty about the life cycle and transmission of Mycobacterium ulcerans has
- hampered efforts to control the debilitating Buruli ulcer disease (35–37). Therefore, there is still high
- value in detailed life cycle research that determines where and how parasites and pathogens spend
- their time, even though such life cycle studies are becoming less common in the parasitological
- 247 literature (38,39).

- 248 Planetary Health research increasingly documents how human health is strongly tied to the
- environment via infectious diseases. Since most of the 150 most burdensome human infectious
- diseases reviewed here spend time in the environment outside of the human host, it is clear that
- environmental change might affect many diseases in many places (e.g., 3,34). For example,
- environmental changes could exacerbate vicious cycles of endemic disease, poverty, and
- 253 environmental degradation (6–9). Environmental changes could also lead to new interactions
- between humans and environments or shifting host, vector, or pathogen distributions that lead to the
- emergence or re-emergence of novel pathogens in human populations (e.g., 3,34,40). To understand,
- 256 predict, and control these current and future risks to human health, we must continue working
- 257 towards understanding how and where infectious agents spend their time outside of human hosts.

Figure Captions 258

- Figure 1. An overview of the 150 most burdensome parasites and pathogens that infect humans.
- Figure 2. (A) Duration of infectious stages outside primary vertebrate hosts (but including
- vertebrates as obligate intermediate hosts) according to primary transmission strategy, excluding
- 262 normal flora/opportunistic pathogens and directly zoonotic pathogens, which were data-limited, and
- sapronoses, which persist indefinitely in abiotic reservoirs. (B) Duration of infectious stages outside
- 264 primary vertebrate hosts according to standard strategies for disease prevention and control,
- 265 excluding sapronoses. (C) The minimum estimated global cases according to obligate transmission
- pathways, categorized as direct human-to-human transmission (e.g., STDs), human-to-human
- transmission with obligate vertebrate stages (e.g., soil-transmitted helminths), and environment-to-
- 268 human transmission (e.g., rabies virus). (D) The minimum estimated global cases by obligate
- vertebrate host ranges; mixed category includes some combination of livestock, poultry, domestic
- animals, wild animals (including birds), or humans.

271 8 Conflict of Interest Statement

- 272 The authors declare that the research was conducted in the absence of any commercial or financial
- 273 relationships that could be construed as a potential conflict of interest.

274 9 Author Contributions

- GADL, SHS, SRH, and IJJ conceived of the database idea. IJJ, SRH, CL, NN, LHK, and JCB
- collected and analyzed the data. All authors contributed to drafting and editing the manuscript.

277 10 Funding

- 278 This research was conducted by the Ecological Levers for Health expert working group supported by
- 279 the Science for Nature and People Partnership (SNAPP), a collaboration of The Nature Conservancy,
- 280 the Wildlife Conservation Society, and the National Center for Ecological Analysis and Synthesis
- 281 (NCEAS) at the University of California, Santa Barbara. IJJ was supported by a National Science
- Foundation Graduate Research Fellowship (#1656518). NN was supported by the Stanford Data
- 283 Science Scholars program, the Stanford Center for Computational, Evolutionary and Human
- Genomics (CEHG) Predoctoral Fellowship, and the Philanthropic Educational Organization (P.E.O.)
- 285 Scholar Award, International Chapter of the P.E.O. Sisterhood. AJL was supported by a James and
- Nancy Kelso Fellowship through the Stanford Interdisciplinary Graduate Fellowship program. AJM
- 287 was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology

- 288 (#1611767), and by the National Science Foundation and Fogarty International Center (DEB-
- 289 2032276, DEB-2011147).
- 290 11 References
- WHO. Global Health Estimates 2019: Disease burden by Cause, Age, Sex, by Country and by Region, 2000-2019. Geneva: World Health Organization; 2020.
- 293 2. Garchitorena A, Sokolow SH, Roche B, Ngonghala CN, Jocque M, Lund A, et al. Disease
- ecology, health and the environment: a framework to account for ecological and socio-economic
- drivers in the control of neglected tropical diseases. Philos Trans R Soc Lond B Biol Sci
- 296 [Internet]. 2017 Jun 5 [cited 2019 Apr 19];372(1722). Available from:
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413876/
- 298 3. Patz JA, Daszak, Peter, Tabor, Gary M., Aguirre, A. Alonso, Pearl, Mary, Epstein, Jon, et al.
- 299 Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease
- Emergence. Environmental Health Perspectives. 2004 Jul 1;112(10):1092–8.
- 301 4. Gottdenker NL, Streicker DG, Faust CL, Carroll CR. Anthropogenic Land Use Change and
- Infectious Diseases: A Review of the Evidence. EcoHealth. 2014 Dec;11(4):619–32.
- 303 5. The malERA Consultative Group on Vector Control. A Research Agenda for Malaria
- Eradication: Vector Control. PLOS Medicine. 2011 Jan 25;8(1):e1000401.
- Bonds MH, Keenan DC, Rohani P, Sachs JD. Poverty trap formed by the ecology of infectious
- 306 diseases. Proc R Soc B. 2010 Apr 22;277(1685):1185–92.
- 7. Fullman N, Barber RM, Abajobir AA, Abate KH, Abbafati C, Abbas KM, et al. Measuring
- progress and projecting attainment on the basis of past trends of the health-related Sustainable
- Development Goals in 188 countries: an analysis from the Global Burden of Disease Study
- 310 2016. The Lancet. 2017 Sep 16;390(10100):1423–59.
- 8. Lang T, Rayner G. Ecological public health: the 21st century's big idea? An essay by Tim Lang
- and Geof Rayner. BMJ [Internet]. 2012 Aug 21 [cited 2020 Jul 1];345. Available from:
- 313 http://www.bmj.com/content/345/bmj.e5466
- Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF, et al. Safeguarding
- human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet
- 316 Commission on planetary health. The Lancet. 2015 Nov;386(10007):1973–2028.
- 317 10. Remais JV, Eisenberg JNS. Balancing Clinical and Environmental Responses to Infectious
- 318 Diseases. Lancet. 2012 Apr 14;379(9824):1457–9.
- 319 11. Sokolow SH, Wood CL, Jones IJ, Lafferty KD, Kuris AM, Hsieh MH, et al. To Reduce the
- 320 Global Burden of Human Schistosomiasis, Use 'Old Fashioned' Snail Control. Trends in
- 321 Parasitology. 2018 Jan 1;34(1):23–40.
- 322 12. Durrant C, Thiele EA, Holroyd N, Doyle SR, Sallé G, Tracey A, et al. Population genomic
- evidence that human and animal infections in Africa come from the same populations of
- 324 Dracunculus medinensis. Basáñez M-G, editor. PLoS Negl Trop Dis. 2020 Nov

- 325 30;14(11):e0008623.
- 326 13. Eberhard ML, Ruiz-Tiben E, Hopkins DR, Farrell C, Toe F, Weiss A, et al. The Peculiar
- 327 Epidemiology of Dracunculiasis in Chad. The American Journal of Tropical Medicine and
- 328 Hygiene. 2014 Jan 8;90(1):61-70.
- 329 14. Thiele EA, Eberhard ML, Cotton JA, Durrant C, Berg J, Hamm K, et al. Population genetic
- 330 analysis of Chadian Guinea worms reveals that human and non-human hosts share common
- 331 parasite populations. Blair D, editor. PLoS Negl Trop Dis. 2018 Oct 4;12(10):e0006747.
- 332 15. Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their domestic mammals:
- 333 pathogen characteristics, host range and the risk of emergence. Woolhouse MEJ, Dye C, editors.
- 334 Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 2001
- 335 Jul 29;356(1411):991-9.
- 336 16. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. Pathways to
- 337 zoonotic spillover. Nature Reviews Microbiology. 2017 Aug;15(8):502-10.
- 338 Taylor LH, Latham SM, Woolhouse MEJ. Risk factors for human disease emergence.
- 339 Woolhouse MEJ, Dye C, editors. Phil Trans R Soc Lond B. 2001 Jul 29;356(1411):983-9.
- 18. Mackey TK, Liang BA, Cuomo R, Hafen R, Brouwer KC, Lee DE. Emerging and Reemerging 340
- 341 Neglected Tropical Diseases: a Review of Key Characteristics, Risk Factors, and the Policy and
- 342 Innovation Environment. Clin Microbiol Rev. 2014 Oct;27(4):949-79.
- 343 19. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in
- emerging infectious diseases. Nature. 2008 Feb;451(7181):990-3. 344
- 345 20. WHO. WHO methods and data sources for global burden of disease estimates 2000-2019.
- 346 Geneva: World Health Organization; 2020 Dec. Report No.: WHO/DDI/DNA/GHE/2020.3.
- 347 21. Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated
- 348 methodologies: A typology of reviews, Maria J. Grant & Andrew Booth. Health Information &
- 349 Libraries Journal. 2009 Jun;26(2):91-108.
- 22. Kuris AM, Lafferty KD, Sokolow SH. Sapronosis: a distinctive type of infectious agent. Trends 350
- 351 in Parasitology. 2014 Aug;30(8):386-93.
- 352 Kuris AM. The Global Burden of Human Parasites: Who and Where are They? How are They
- 353 Transmitted? Journal of Parasitology. 2012 Dec;98(6):1056-64.
- 354 24. Centers for Disease Control and Prevention. Malaria [Internet]. 2020 [cited 2020 Aug 24].
- 355 Available from: https://www.cdc.gov/parasites/malaria/index.html
- 356 World Health Organization. Global tuberculosis report 2020 [Internet]. Geneva: World Health
- 357 Organization; 2020 [cited 2022 Mar 5]. Available from:
- 358 https://apps.who.int/iris/handle/10665/336069
- 359 26. Kraay ANM, Hayashi MAL, Hernandez-Ceron N, Spicknall IH, Eisenberg MC, Meza R, et al.
- 360 Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral

- pathogens. BMC Infect Dis. 2018 Dec;18(1):540.
- 362 27. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E, et al. Optimal
- temperature for malaria transmission is dramatically lower than previously predicted. Thrall P,
- 364 editor. Ecol Lett. 2013 Jan;16(1):22–30.
- 365 28. Johnson LR, Ben-Horin T, Lafferty KD, McNally A, Mordecai E, Paaijmans KP, et al.
- 366 Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach.
- 367 Ecology. 2015 Jan;96(1):203–13.
- 368 29. Shocket MS, Ryan SJ, Mordecai EA. Temperature explains broad patterns of Ross River virus transmission. eLife. 2018 Aug 28;7:e37762.
- 370 30. Tesla B, Demakovsky LR, Mordecai EA, Ryan SJ, Bonds MH, Ngonghala CN, et al.
- 371 Temperature drives Zika virus transmission: evidence from empirical and mathematical models.
- 372 Proc R Soc B. 2018 Aug 15;285(1884):20180795.
- 373 31. Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, et al. Thermal
- biology of mosquito-borne disease. Byers J (Jeb), editor. Ecol Lett. 2019 Oct;22(10):1690–708.
- 375 32. Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP, et al. Epidemic
- Dynamics at the Human-Animal Interface. Science. 2009 Dec 4;326(5958):1362–7.
- 377 33. Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, et al. Human-
- mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Current
- 379 Biology. 2021 Oct;31(19):R1342-61.
- 380 34. McFarlane R, Sleigh A, McMichael A. Land-Use Change and Emerging Infectious Disease on
- an Island Continent. IJERPH. 2013 Jun 28;10(7):2699–719.
- 382 35. Garchitorena A, Ngonghala CN, Texier G, Landier J, Eyangoh S, Bonds MH, et al.
- Environmental transmission of Mycobacterium ulcerans drives dynamics of Buruli ulcer in
- endemic regions of Cameroon. Sci Rep. 2015 Dec;5(1):18055.
- 385 36. O'Brien DP, Athan E, Blasdell K, De Barro P. Tackling the worsening epidemic of Buruli ulcer
- in Australia in an information void: time for an urgent scientific response. Medical Journal of
- 387 Australia. 2018 Apr;208(7):287–9.
- 388 37. Muleta AJ, Lappan R, Stinear TP, Greening C. Understanding the transmission of
- Mycobacterium ulcerans: A step towards controlling Buruli ulcer. Simmonds RE, editor. PLoS
- 390 Negl Trop Dis. 2021 Aug 26;15(8):e0009678.
- 391 38. Blasco-Costa I, Poulin R. Parasite life-cycle studies: a plea to resurrect an old parasitological
- 392 tradition. J Helminthol. 2017 Nov;91(6):647–56.
- 393 39. Majewska AA, Huang T, Han B, Drake JM. Predictors of zoonotic potential in helminths. Phil
- 394 Trans R Soc B. 2021 Nov 8;376(1837):20200356.
- 395 40. Rulli MC, Santini M, Hayman DTS, D'Odorico P. The nexus between forest fragmentation in
- Africa and Ebola virus disease outbreaks. Sci Rep. 2017 Mar;7(1):41613.

- Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. The Lancet. 2017 Sep
 23;390(10101):1539–49.
- Meszaros VA, Miller-Dickson MD, Junior FB-A, Almagro-Moreno S, Ogbunugafor CB. Direct transmission via households informs models of disease and intervention dynamics in cholera.
 PLOS ONE. 2020 Mar 12;15(3):e0229837.
- 402 43. Spickler AR. Technical Factsheets [Internet]. The Center for Food Security and Public Health; 403 2020 [cited 2020 Jul 1]. Available from:
- http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php
- 405 44. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, 406 Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/
- 408 45. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using Ime4. J
 409 Stat Soft [Internet]. 2015 [cited 2020 Jun 16];67(1). Available from: http://www.jstatsoft.org/v67/i01/
- 411 46. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means [Internet]. 2020. Available from: https://CRAN.R-project.org/package=emmeans
- 413 **12** Supplementary Material
- 414 Please see the attached supplementary material, including supplementary methods and data.
- 415 13 Data Availability Statement
- The datasets generated and analyzed for this study can be found in the supplementary materials.