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A B S T R A C T 

Magnetars are the most promising progenitors of fast radio bursts (FRBs). Strong radio waves propagating through the magnetar 
wind are subject to non-linear effects, including modulation/filamentation instabilities. We derive the dispersion relation for 
modulations of strong waves propagating in magnetically dominated pair plasmas focusing on dimensionless strength parameters 
a 0 � 1, and discuss implications for FRBs. As an effect of the instability, the FRB-radiation intensity develops sheets perpendicular 
to the direction of the wind magnetic field. When the FRB front expands outside the radius where the instability ends, the radiation 

sheets are scattered due to diffraction. The FRB-scattering time-scale depends on the properties of the magnetar wind. In a cold 

wind, the typical scattering time-scale is τ sc ∼ μs–ms at the frequency ν ∼ 1 GHz . The scattering time-scale increases at low 

frequencies, with the scaling τ sc ∝ ν−2 . The frequency-dependent broadening of the brightest pulse of FRB 181112 is consistent 
with this scaling. From the scattering time-scale of the pulse, one can estimate that the wind Lorentz factor is larger than a few 

tens. In a warm wind, the scattering time-scale can approach τsc ∼ ns . Then scattering produces a frequency modulation of 
the observed intensity with a large bandwidth, �ν ∼ 1 /τsc � 100 MHz . Broad-band frequency modulations observed in FRBs 
could be due to scattering in a warm magnetar wind. 

Key words: instabilities – plasmas – relativistic processes – radio continuum: transients – fast radio bursts. 
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 I N T RO D U C T I O N  

ast radio bursts (FRBs) are bright flashes of millisecond duration
e.g. Lorimer et al. 2007 ; Thornton et al. 2013 ; Spitler et al.
014 , 2016 ; Petroff et al. 2016 ; Shannon et al. 2018 ; CHIME/FRB
ollaboration et al. 2019a , b , c ). Magnetars are promising progen-

tors of FRBs. The FRB–magnetar connection, which was initially
roposed on statistical grounds (e.g. Popov & Postnov 2010 , 2013 ), is
trongly supported by the disco v ery of weak FRBs from the Galactic
agnetar SGR 1935 + 2154 (e.g. Bochenek et al. 2020 ; CHIME/FRB
ollaboration et al. 2020 ). 
Due to the huge luminosity of FRBs, the electromagnetic field of

he radio wave accelerates the electrons in the magnetar wind up to
 significant fraction of the speed of light (e.g. Luan & Goldreich
014 ). Strong FRB waves can experience non-linear propagation
ffects, including modulation/filamentation instabilities (Sobacchi
t al. 2021 ). 1 The instability produces a spatial modulation of the
ntensity of the FRB wave. As the FRB front expands, the structures
enerated by the instability are scattered due to diffraction, and may
 E-mail: es3808@columbia.edu 
 Modulation/filamentation instabilities of strong electromagnetic waves 
ropagating in unmagnetized electron-ion plasmas are e xtensiv ely studied 
n the field of laser–plasma interaction (e.g. Kruer 2019 ). Filamentation has 
een observed in numerical simulations of relativistic magnetized shocks, 
n which case a strong electromagnetic precursor is emitted upstream (e.g. 
wamoto et al. 2017 , 2022 ; Babul & Sironi 2020 ; Sironi et al. 2021 ). 
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nterfere with each other. This process leaves an imprint on the time–
requency structure of FRBs. 

In our previous work (Sobacchi et al. 2021 ), we studied the
odulation/filamentation instabilities of FRBs propagating in a
eakly magnetized electron-ion plasma. Such environment may be

ound at large distances from the FRB progenitor. The instability
evelops at nearly constant electron density since the effect of the
onderomotive force is suppressed due to the large inertia of the ions.
hen the dominant non-linear effect is the modification of the plasma

requency due to relativistic corrections to the effective electron mass.
n regions of enhanced radiation intensity, the plasma frequency
ecreases because the electrons oscillate with a larger velocity in
he field of the wave, and therefore have a larger ef fecti ve mass.

odulations of the radiation intensity perpendicular to the direction
f propagation of the wave grow because the refractiv e inde x of
he plasma increases, which creates a converging lens that further
nhances the radiation intensity. Modulations along the direction of
ropagation grow because the group velocity of the wave depends
n the local radiation intensity. It turns out that the spatial scale of
he modulations is shorter along the direction of propagation than in
he perpendicular direction. 

In this paper, we study the modulation/filamentation of FRBs
ropagating in a magnetar wind, which is modelled as a magnetically
ominated pair plasma. We find that the instability develops because
he ponderomotive force pushes particles out of regions of enhanced
adiation intensity. The refractive index of the plasma increases in the
egions where the particle number density is smaller, thus creating a
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Table 1. Wavenumber in the transverse direction ( k y ) and in the longitudinal 
direction ( k z ), and growth rate ( �) of the unstable modes (the electromagnetic 
pump wave is propagating along the z direction). Results are the same for a 
weakly magnetized wind ( σw � a 2 0 ), and for a magnetically dominated wind 
with the background magnetic field along k y . The growth rate remains same 
order of the maximal one for k z � a 0 ω P / c , while there is no instability 
for k z � a 0 ω P / c . When a 0 � β2 

s ω 0 /ω P , the growth rate remains same 
order of the maximal one for 

√ 

a 0 ω 0 ω P /c � k y � a 0 β
−1 
s ω P /c. Since k y 

� k z , the modulations are elongated in the direction of propagation of the 
electromagnetic pump wave. 

Range of a 0 ck y ck z � 

a 0 � β2 
s ω 0 /ω P 

√ 

a 0 ω 0 ω P � ck y � a 0 β
−1 
s ω P �a 0 ω P a 0 ω P / 

√ 

2 
a 0 � β2 

s ω 0 /ω P ck y � a 0 β
−1 
s ω P / 2 �a 0 ω P a 2 0 β

−2 
s ω 

2 
P / 8 ω 0 

Table 2. Same as Table 1 , but for a magnetically dominated wind with 
the background magnetic field perpendicular to k y and k z . The growth rate 
remains same order of the maximal one for k z � ω L / c , while there is no 
instability for k z � ω L / c . 

ck y ck z � 

a 0 ω P /2 �ω L a 2 0 ω 

2 
P / 8 ω 0 
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onverging lens that further enhances the radiation intensity. Since 
he ponderomotive force preferentially pushes particles along the 

agnetic field lines, the instability produces sheets of radiation 
ntensity perpendicular to the direction of the wind magnetic field. 
onsistent with previous studies focusing on unmagnetized plasmas 

e.g. Kates & Kaup 1989 ), we do not find significant modulations of
he radiation intensity along the direction of the wave propagation. 2 

As the FRB front expands outside the radius where the instability 
nds, the radiation sheets are dif fracted, ef fecti vely scattering the
rri v al time of the FRB wave. In a cold magnetar wind, we find
hat the scattering time-scale is τ sc ∼ μs–ms. The scattering time is 
arger at low frequencies, 3 with the scaling τ sc ∝ ν−2 . This scaling is
onsistent with the frequency-dependent broadening of the brightest 
ulse from FRB 181112 (Cho et al. 2020 ). 
In a warm magnetar wind, the scattering time-scale is much 

horter, τ sc ∼ ns. Then scattering produces frequency modulations 
ith a large bandwidth, �ν ∼ 1 /τsc � 100 MHz . Such broad-band 

requency modulations are often observed in FRBs (e.g. Shannon 
t al. 2018 ; Hessels et al. 2019 ; Nimmo et al. 2021 ). 

The paper is organized as follows. In Section 2, we briefly review
ome rele v ant properties of magnetar winds and FRBs. In Section 3,
e study the filamentation instability of FRBs. We refer the reader 
ot interested in the technical details of the calculation to Tables 1
nd 2 , where we summarize our results. In Section 4, we discuss the
cattering of FRBs. In Section 5, we conclude. 

 FRBS  IN  M AG N E TA R  W I N D S  

he magnetar wind forms outside the light cylinder, at radii R �
 LC = cP /2 π , where P is the magnetar rotational period and c is
 Chian & Kennel ( 1983 ) argued that strong electromagnetic waves in pair 
lasmas are modulated along the direction of propagation. Ho we ver, these 
uthors neglected the effect of the ponderomotive force, which is not justified 
n pair plasmas. 
 FRBs may also be scattered by some turbulent plasma screen along the line 
f sight. In this case, one finds τ sc ∝ ν−α with α ∼ 4–4.4 (e.g. Luan & 

oldreich 2014 ). 

w  

t  

〈  

l

t  

e
a  

ω  
he speed of light. The magnetic field strength in the wind proper
rame is B bg = μ/γw R 

2 
LC R, where μ is the magnetar magnetic dipole

oment, and γ w is the wind Lorentz factor. The wind magnetic field
s nearly azimuthal. 

The ratio of the Larmor frequency, ω L = eB bg / mc , where e is the
lectron charge, m is the electron mass, and the angular frequency
f the FRB wave in the wind frame, ω 0 = πν/ γ w , where ν is the
bserv ed frequenc y, is 

ω L 

ω 0 
= 2 . 5 × 10 −4 μ33 P 

−2 
0 ν−1 

9 R 

−1 
15 , (1) 

here, we have defined μ33 ≡ μ/ 10 33 G cm 

3 , P 0 ≡ P / 1 s, ν9 ≡
/ 1 GHz , and R 15 ≡ R/ 10 15 cm . At the radii where ω L � ω 0 , the
lectron motion is weakly affected by B bg . The electrons reach a
aximum velocity of a 0 c , where a 0 = eE / ω 0 mc . We consider radii
here a 0 � 1, so that the electrons are subrelativistic. The peak

lectric field of the wave in the wind frame, E , can be calculated
rom the isotropic equi v alent of the observed FRB luminosity,
 = 2 cγ 2 

w E 

2 R 

2 . One finds 

 0 = 2 . 3 × 10 −2 L 

1 / 2 
42 ν

−1 
9 R 

−1 
15 , (2) 

here, L 42 ≡ L/ 10 42 erg s −1 . The condition a 0 � 1 is satisfied at radii
 � 2 . 3 × 10 13 L 

1 / 2 
42 ν

−1 
9 cm . Since ω L / ω 0 � a 0 , the electric field of

he FRB wave is larger than the wind magnetic field. 
It is useful to define the wind magnetization, σ w , as twice the ratio

f the magnetic and rest mass energy densities of the plasma. One
nds 

w = 

ω 

2 
L 

ω 

2 
P 

, (3) 

here, ω P = 

√ 

8 πN 0 e 2 /m is the plasma frequency (the particle 
umber density is 2 N 0 ). We consider a magnetically dominated wind
ith σ w � 1. 

 FI LAMENT  AT I O N  INST  ABI LI TY  

.1 Fundamental equations 

e consider an electromagnetic wave propagating through a mag- 
etized pair plasma, with mean particle number density 2 N 0 , and
ackground magnetic field B bg . We study the stability of slow, long-
avelength modulation of the initial wave. 
The electromagnetic field of the wave can be expressed using 

he vector potential A . We are interested in the regime where the
ngular frequency of the wave, ω 0 , is much larger than both the
armor frequency, ω L = eB bg / mc , and the plasma frequency, ω P =
 

8 πN 0 e 2 /m . When ω 0 � ω L , ω P , the non-linear wave equation is
e.g. Montgomery & Tidman 1964 ; Sluijter & Montgomery 1965 ;
hosh et al. 2021 ) 

∂ 2 A 

∂t 2 
− c 2 ∇ 

2 A + ω 

2 
P 

〈 N〉 
N 0 

(
1 − 1 

2 

e 2 〈 A 

2 〉 
m 

2 c 2 

)
A = 0 , (4) 

here, 〈 . . . 〉 denotes the average on the spatial scale of many
avelengths of the initial wa ve. We ha ve defined 〈 N 〉 as half the

otal particle number density, namely 2 〈 N〉 = 〈 N e + 〉 + 〈 N e −〉 where
 N e + 〉 and 〈 N e −〉 are the positron and electron densities. To a v oid a
engthy notation, below we write N e ± instead of 〈 N e ±〉 . 

Equation (4) contains two non-linear terms. The term proportional 
o 〈 A 

2 〉 originates from the relativistic corrections to the ef fecti ve
lectron mass, and from the beating between the density oscillations 
t the frequency 2 ω 0 and the velocity oscillations at the frequency
 0 (for a detailed discussion, see appendix A of Ghosh et al. 2021 ).
MNRAS 511, 4766–4773 (2022) 
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he term 〈 N 〉 describes plasma-density modulations produced by the
onderomotive force. 
We use the same approach that is customarily adopted to study non-

inear propagation effects in unmagnetized electron-ion plasmas (e.g.
ruer 2019 ). The plasma is described using a two-fluid model. The

volution of the positron and electron number densities is described
y the continuity equation: 

∂N e ±

∂t 
+ ∇ · ( N e ± V e ± ) = 0 , (5) 

here, V e + and V e − are the positron and electron coordinate
elocities. The evolution of the velocities is described by the Euler’s
quation: 

∂ V e ±

∂t 
+ ( V e ± · ∇ ) V e ± = −c 2 s 

∇N e ±

N e ±
+ 

± e 

m 

[
E + 

V e ±

c 
× (

B + B bg 

)] − 1 

2 

e 2 

m 

2 
∇〈 A 

2 〉 (6) 

here, c s is the thermal velocity. The last term of equation (6) is the
radient of the ponderomotive potential. 
The electric field E and the magnetic field B obey Maxwell’s

quations: 

 · E = 4 πe ( N e + − N e − ) (7) 

 · B = 0 (8) 

 × E = − 1 
c 

∂ B 
∂t 

(9) 

 × B = 

4 π
c 

e ( N e + V e + − N e − V e − ) + 

1 
c 

∂ E 
∂t 

. (10) 

e remark that all the physical quantities in equations (5)–(10)
escribe oscillations at frequencies much smaller than ω 0 . 
The remainder of this section is organized as follows. In Sec-

ion 3.2, we find a solution of equations (4)–(10) that is independent
f x and y (such solution is called ‘electromagnetic pump wave’). In
ections 3.3 and 3.4, we study the stability of the initial pump wave.
e focus on the regime of subrelativistic electron motion, i.e. a 0 =

A 0 / mc � 1 and βs = c s / c � 1. 

.2 Electromagnetic pump wave 

he electromagnetic pump wave is described by the vector potential:

A = 

1 

2 
A 0 exp ( i ω 0 t − i k 0 · x ) + c . c . , (11) 

here, A 0 is real, and c.c. indicates the complex conjugate [then
quation (11) gives A = A 0 cos ( ω 0 t − k 0 · x )]. Since 〈 A 

2 〉 = A 

2 
0 / 2,

he gradient of the ponderomotive potential vanishes. Then equa-
ions (5)–(10) have the straightforward solution N e ± = N 0 , V e ± = 0,
nd E = B = 0. Substituting equation (11) into equation (4), one finds
he dispersion relation of the pump wave: 

 

2 
0 = c 2 k 2 0 + ω 

2 
P 

(
1 − 1 

4 
a 2 0 

)
, (12) 

here, 

 0 = 

eA 0 

mc 
. (13) 

quation (12) is the classical result of Sluijter & Montgomery ( 1965 ).
NRAS 511, 4766–4773 (2022) 
.3 Small perturbations 

odulations with frequency ω and wave vector k of intensity of the
ump wave are described by two beating wavebands with frequencies
 ± = ω ± ω 0 and wav e v ectors k ± = k ± k 0 , where ω 

2 � ω 

2 
0 and

 

2 � k 2 0 . The perturbed vector potential is 

A = 

1 

2 
A 0 exp ( i ω 0 t − i k 0 · x ) 

+ δ A + 

exp ( i ω + 

t − i k + 

· x ) + δ A − exp ( i ω −t − i k − · x ) 

+ c . c . , (14) 

here, A 0 and δA ± are nearly aligned. Writing A 0 = A 0 n and δA ± =
A ±n , where n is a unit vector, from equation (14) one finds 

 A 

2 〉 − 1 

2 
A 

2 
0 = A 0 ( δA + 

+ δA −) exp ( i ωt − i k · x ) + c . c . , (15) 

here, we have neglected quadratic terms in the perturbed quantities.
he average is made on a spatial scale much longer than k −1 

0 , and
uch shorter than k −1 . 
Below we use equations (5)–(10) to calculate the density per-

urbation δN = δN e + + δN e − as a function of δA + 

and δA −. Then
e substitute δN into equation (4) and derive two homogeneous

quations for δA + 

and δA −. The condition that the determinant of
he coefficients vanishes gives the dispersion relation. 

.3.1 Two-fluid equations 

ubstituting N e ± = N 0 + δN e ± , V e ± = δV e ± , into equations (5)–
6), and neglecting quadratic terms in the perturbed quantities, one
nds 

∂δN e ±

∂t 
+ N 0 ∇ · δV e ± = 0 (16) 

∂δV e ±

∂t 
= −c 2 s 

∇δN e ±
N 0 

± e 
m 

[ 
δE + 

δV e ±
c 

× B bg 

] 
− 1 

2 
e 2 

m 

2 ∇〈 A 

2 〉 . (17) 

t is convenient to introduce new variables defined as 2 δN = δN e + +
N e − , 2 δN a = δN e + − δN e − , 2 δV = δV e + + δV e − , and 2 δV a =
V e + − δV e − . From equation (16), one finds 

∂δN 

∂t 
+ N 0 ∇ · δV = 0 (18) 

∂δN a 

∂t 
+ N 0 ∇ · δV a = 0 . (19) 

rom equation (17), one finds 

∂δV 

∂t 
= −c 2 s 

∇δN 
N 0 

+ 

e 
m 

δV a 
c 

× B bg − 1 
2 

e 2 

m 

2 ∇〈 A 

2 〉 (20) 

∂δV a 

∂t 
= −c 2 s 

∇δN a 
N 0 

+ 

e 
m 

[
δE + 

δV 
c 

× B bg 

]
. (21) 

ubstituting E = δE , B = δB into equations (7)–(10), one finds 

 · δE = 8 πeδN a (22) 

 · δB = 0 (23) 

 × δE = − 1 
c 

∂δB 
∂t 

(24) 

 × δB = 

8 π
c 

eN 0 δV a + 

1 
c 

∂δE 
∂t 

. (25) 

t is convenient to introduce a system of coordinates ( x 
′ 
, y 

′ 
, and z 

′ 
) so

hat k = k e z ′ and B bg = B bg sin θe y ′ + B bg cos θe z ′ . Since ∇〈 A 

2 〉 is
irected along k , the solution has the form δV = δV y ′ e y ′ + δV z ′ e z ′ +
 . c . , δV a = δV a , x ′ e x ′ + c . c . , δN a = 0, δE = δE x ′ e x ′ + c . c . , and
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4 Since Q � 1, in equation (4) one has δ〈 N 〉 / N 0 � ( e 2 / m 

2 c 2 ) δ〈 A 

2 〉 . Then the 
density modulations produced by the ponderomotive force are the dominant 
non-linear effect leading to the exponential growth of the instability. 
5 As discussed by Ghosh et al. ( 2021 ), when ω 

2 � c 2 s k 
2 the ponderomotive 

force is balanced by the electron inertia. The reason is that one may neglect 
c 2 s ∇δN/N 0 with respect to ∂ δV / ∂ t in equation (20). When ω 

2 � c 2 s k 
2 , the 

thermal pressure and the ponderomotive force balance each other since one 
may neglect ∂ δV / ∂ t with respect to c 2 s ∇δN/N 0 in equation (20). 
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B = δB y ′ e y ′ + c . c . Since ∇〈 A 

2 〉 is proportional to exp (i ωt − i k
x ), all the variables depend on the coordinates as exp (i ωt − i k · x ).
Equation (24) gives δB y ′ = ( ck /ω) δE x ′ . Substituting δB y ′ =

 c k/ω ) δE x ′ into equation (25), one finds 

e 

m 

δE x ′ = i 
ω ω 

2 
P 

ω 

2 − c 2 k 2 
δV a , x ′ . (26) 

he y 
′ 
component of equation (20) gives 

V y ′ = i 
ω L 

ω 

cos θδV a ,x ′ . (27) 

sing equations (26)–(27), from equation (21) one finds 

sin θδV z ′ + i 
ω 

ω L 

(
1 − ω 

2 
P 

ω 

2 − c 2 k 2 
− ω 

2 
L 

ω 

2 
cos 2 θ

)
δV a , x ′ = 0 . (28) 

ince δN/N 0 = ( k /ω) δV z ′ , which follows from equation (18), the z 
′ 

omponent of equation (20) gives 

 ω 

(
1 − c 2 s k 

2 

ω 

2 

)
δV z ′ − ω L sin θδV a , x ′ 

= 

i 

2 

e 2 

m 

2 
k A 0 ( δA + 

+ δA −) exp ( i ωt − i k · x ) , (29) 

here, we have used equation (15) to calculate ∇〈 A 

2 〉 . Obtaining
V z ′ from equations (28)–(29), and using the fact that 〈 N〉 /N 0 − 1 =
 k /ω) δV z ′ + c . c . , one eventually finds 

〈 N〉 
N 0 

− 1 = 

Q 

2 

e 2 

m 

2 c 2 
A 0 ( δA + 

+ δA −) exp ( i ωt − i k · x ) + c . c . , (30) 

here, 

 = 

c 2 k 2 

ω 2 

(
1 − ω 2 P 

ω 2 −c 2 k 2 
− ω 2 L 

ω 2 
cos 2 θ

)
(

1 − c 2 s k 
2 

ω 2 

)(
1 − ω 2 P 

ω 2 −c 2 k 2 
− ω 2 L 

ω 2 
cos 2 θ

)
− ω 2 L 

ω 2 
sin 2 θ

. (31) 

ote that the density perturbation is independent of ω L when the 
onderomotive force is aligned with the magnetic field. Indeed, for 
= 0 one finds Q = c 2 k 2 / ( ω 

2 − c 2 s k 
2 ). 

.3.2 Dispersion relation 

ubstituting equations (14), (15), and (30) into equation (4), and 
eglecting quadratic terms in the perturbed quantities, one finds 

 + 

exp ( i ω + 

t − i k + 

· x ) + S − exp ( i ω −t − i k − · x ) + c . c . = 0 , (32) 

here, 

 ± = 

[
ω 

2 
± − c 2 k 2 ± − ω 

2 
P 

(
1 − 1 

4 
a 2 0 

)]
δA ±

+ 

1 

4 
( 1 − Q ) a 2 0 ω 

2 
P ( δA + 

+ δA −) . (33) 

quation (32) requires S + 

= S − = 0, which is a homogeneous
ystem of two equations for δA + 

and δA −. The condition that the
eterminant of the coefficients vanishes gives the dispersion relation. 
ince ω 

2 
± − c 2 k 2 ± − ω 

2 
P (1 − a 2 0 / 4) = ( ω 

2 − c 2 k 2 ) ± 2( ω 0 ω − c 2 k 0 ·
 ), which follows from equation (12), the dispersion relation can 
e presented as 

 

(
ω 0 ω − c 2 k 0 · k 

)2 = 

(
ω 

2 − c 2 k 2 
)2 

+ 

1 

2 
( 1 − Q ) a 2 0 ω 

2 
P 

(
ω 

2 − c 2 k 2 
)

, (34) 

here, a 0 and Q are given by equations (13) and (31). 
.4 Evolution of the wavebands 

elow we solve the dispersion relation, equation (34), and show that
he wavebands grow exponentially. We are interested in a magnet- 
cally dominated magnetar wind with σw = ω 

2 
L /ω 

2 
P � 1. We focus

n a pump wave that propagates in the direction perpendicular to
he background magnetic field, as expected since the wind magnetic 
eld is nearly azimuthal. We introduce a system of coordinates ( x ,
 , and z) so that k 0 = k 0 e z , k = k y e y + k z e z , and B bg = B bg, x e x +
 bg, y e y . The cosine of the angle between the ponderomotive force

which is directed along k ) and the background magnetic field is
os 2 θ = k 2 y B 

2 
bg , y / ( k 

2 
y + k 2 z )( B 

2 
bg , x + B 

2 
bg , y ). 

.4.1 Case ω 

2 � ω 

2 
L 

t is convenient to start with the case ω 

2 � ω 

2 
L , since the background

agnetic field does not affect the development of the instability. 
ndeed, one can approximate Q � c 2 k 2 / ( ω 

2 − c 2 s k 
2 ), which is inde-

endent of ω L . 4 Since the dispersion relation depends only on k z and
 

2 , when ω 

2 � ω 

2 
L there is a rotational symmetry about the direction

f propagation of the pump wave. 
One can find approximate analytical solutions of equation (34) as 

ollows. Far from the resonances, the right-hand side of equation (34)
s small. Then the solution can be presented as ω = c 2 k 0 k z / ω 0 + �ω,
ith a small �ω. Substituting ω = c 2 k 0 k z / ω 0 + �ω, the left-hand

ide of equation (34) becomes ( ω 0 ω − c 2 k 0 k z ) 2 = ω 

2 
0 ( �ω) 2 . 

Now, we discuss the approximation of ω 

2 − c 2 k 2 on the right-
and side of equation (34). Substituting ω = c 2 k 0 k z / ω 0 + �ω, one
nds ω 

2 − c 2 k 2 � −c 2 k 2 y − c 2 k 2 z (1 − c 2 k 2 0 /ω 

2 
0 ). We have neglected

he terms ( �ω) 2 and ck z ( �ω), which are much smaller than c 2 k 2 y 

this can be verified a posteriori from equations (37)–(41)). Since 
 − c 2 k 2 0 /ω 

2 
0 � ω 

2 
P /ω 

2 
0 , one finds ω 

2 − c 2 k 2 � −c 2 k 2 y − c 2 k 2 z ω 

2 
P /ω 

2 
0 .

Finally, we need to approximate Q . We discuss the two cases
 

2 � c 2 s k 
2 and ω 

2 � c 2 s k 
2 below. 5 When ω 

2 � c 2 s k 
2 , one finds

 � c 2 k 2 / ω 

2 . When c 2 k 2 z � ( �ω) 2 , one can approximate Q �
 

2 k 2 y / ( �ω ) 2 and ω 

2 − c 2 k 2 � −c 2 k 2 y . Then the dispersion relation
an be approximated as 

 ω 

2 
0 

(
�ω 

ck y 

)4 

− c 2 k 2 y 

(
�ω 

ck y 

)2 

− 1 

2 
a 2 0 ω 

2 
P = 0 . (35) 

he wavenumber of the most unstable modes is ck y � √ 

a 0 ω 0 ω P , 
nd the corresponding growth rate is determined by ( �ω) 2 =
a 2 0 ω 

2 
P / 2. Since �ω is purely imaginary, the perturbation mo v es

long z with the group velocity of the pump wave, c 2 k 0 / ω 0 . The
onditions c 2 s k 

2 � ω 

2 and c 2 k 2 z � ( �ω) 2 give c s k y � a 0 ω P and
k z � a 0 ω P . Following the procedure that we used to derive
quation (35), one sees that the instability does not develop for
 

2 k 2 z � ( �ω) 2 , which gives Q � k 2 /k 2 z . 
When ω 

2 � c 2 s k 
2 , one finds Q � −c 2 /c 2 s . Then the dispersion

elation can be approximated as 

 ω 

2 
0 ( �ω ) 2 = c 2 k 2 y 

(
c 2 k 2 y −

1 

2 
a 2 0 

c 2 

c 2 s 

ω 

2 
P 

)
. (36) 
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he maximum growth rate of the instability is found when c 2 k 2 y =
 

2 
0 c 

2 ω 

2 
P / 4 c 

2 
s , which gives ( �ω ) 2 = −a 4 0 c 

4 ω 

4 
P / 64 ω 

2 
0 c 

4 
s . The condition

 

2 � c 2 s k 
2 requires ( �ω) 2 � c 2 s k 

2 
y and c 2 k 2 z � c 2 s k 

2 
y , which give

 0 � c 2 s ω 0 /ω P c 
2 and ck z � a 0 ω P , respectively. 

The instability is robust since it can be excited over a broad range
f wavenumbers. As we show in Appendix A, the instability develops
or all wavenumbers k y > 0 in a cold plasma where the dispersion
elation is given by equation (35). The instability develops for 0 <
 y < a 0 ω P / 

√ 

2 c s in a warm plasma where the dispersion relation is
iven by equation (36). 
We summarize our results in equation (37)–(41) below. The growth

ate can be estimated as 

 � 

1 √ 

2 
a 0 ω P 

(
a 0 � β2 

s ω 0 /ω P 

)
(37) 

 � 

1 
8 a 

2 
0 β

−2 
s 

ω 2 P 
ω 0 

(
a 0 � β2 

s ω 0 /ω P 

)
(38) 

here, βs = c s / c . The most unstable transverse wavenumber can be
stimated as 
√ 

a 0 ω 0 ω P 

c 
� k y � a 0 β

−1 
s 

ω P 
c 

(
a 0 � β2 

s ω 0 /ω P 

)
(39) 

 y � 

1 
2 a 0 β

−1 
s 

ω P 
c 

(
a 0 � β2 

s ω 0 /ω P 

)
. (40) 

hen a 0 � β2 
s ω 0 /ω P , the growth rate remains same order of the

aximal one for 
√ 

a 0 ω 0 ω P � ck y � a 0 β
−1 
s ω P . The most unstable

ongitudinal wavenumber can be estimated as 

 z � a 0 
ω P 

c 
. (41) 

he growth rate remains same order of the maximal one for k z �
 0 ω P / c , while there is no instability for k z � a 0 ω P / c . Since k y � k z ,
he modulations are elongated in the direction of propagation of the
lectromagnetic pump wave (the instability breaks a wave packet
nto longitudinal filaments). Since ω 

2 ∼ c 2 k 2 z + � 

2 ∼ a 2 0 ω 

2 
P , the

ondition ω 

2 � ω 

2 
L could be satisfied only for a weak magnetization

w � a 2 0 � 1. 
The modes described by equations (37)–(41) also exist in un-
agnetized electron-ion plasmas (e.g. Drake et al. 1974 ; Sobacchi

t al. 2021 ), with the only difference that the ion plasma frequency
eplaces the electron plasma frequency. Our results are consistent
ith those of Ghosh et al. ( 2021 ), who studied the filamentation of

lectromagnetic waves in unmagnetized pair plasmas. 

.4.2 Case ω 

2 � ω 

2 
L , with B bg, x = 0 

ince ω 

2 � ω 

2 
L could be satisfied only for a weak magnetization

w � a 2 0 � 1, one should study the case ω 

2 � ω 

2 
L . 

When B bg, x = 0, the ponderomotive force is nearly parallel to the
ackground magnetic field. Indeed, one finds cos 2 θ = k 2 y / ( k 

2 
y + k 2 z ),

hich gives θ ∼ 0 for k z � k y . Then one can approximate Q �
 

2 k 2 / ( ω 

2 − c 2 s k 
2 ), which is the same as in the weakly magnetized

ase discussed in the previous section. The most unstable wavenum-
er and the growth rate are given by equations (37)–(41). These
esults are summarized in Table 1 . Since ω 

2 ∼ c 2 k 2 z + � 

2 ∼ a 2 0 ω 

2 
P ,

he condition ω 

2 � ω 

2 
L is satisfied in a magnetically dominated

lasma. 
We remark that the wavenumber and the growth rate of the most

nstable modes are the same as in the weakly magnetized case. The
eason is that the particles can mo v e freely along the background
agnetic field under the effect of the ponderomotive force when θ
0. 
NRAS 511, 4766–4773 (2022) 
.4.3 Case ω 

2 � ω 

2 
L , with B bg, y = 0 

hen B bg, y = 0, the ponderomotive force is perpendicular to the
ackground magnetic field. For cos θ = 0, one finds Q � 1 because
 

2 
L appears only in the denominator of Q , and ω 

2 , c 2 k 2 , and ω 

2 
P are

uch smaller than ω 

2 
L in magnetically dominated plasmas. For Q �

 the dispersion relation can be approximated as 

 ω 

2 
0 ( �ω ) 2 = 

(
c 2 k 2 y + 

ω 

2 
P 

ω 

2 
0 

c 2 k 2 z 

)(
c 2 k 2 y + 

ω 

2 
P 

ω 

2 
0 

c 2 k 2 z −
1 

2 
a 2 0 ω 

2 
P 

)
. (42) 

he condition ω 

2 � ω 

2 
L gives c 2 k 2 z � ω 

2 
L . Since ( ω 

2 
P /ω 

2 
0 ) c 

2 k 2 z �
 

2 
P ω 

2 
L /ω 

2 
0 � a 2 0 ω 

2 
P , the terms proportional to c 2 k 2 z can be neglected

n equation (42). The wavenumber of the most unstable modes is
 

2 k 2 y = a 2 0 ω 

2 
P / 4, and the corresponding growth rate is determined

y ( �ω ) 2 = −a 4 0 ω 

4 
P / 64 ω 

2 
0 . We conclude that the growth rate can be

stimated as 

 � 

1 

8 
a 2 0 

ω 

2 
P 

ω 0 
(43) 

nd the most unstable wavenumber can be estimated as 

 y � 

1 
2 a 0 

ω P 
c 

(44) 

 z � ω L 
c 

. (45) 

hese results are summarized in Table 2 . Comparing equations (37)–
38) and (43), one sees that the growth rate is faster when the
onderomotive force is nearly parallel to the direction of the
ackground magnetic field. This may explain the formation of density
heets nearly perpendicular to the pre-shock magnetic field in three-
imensional simulations of the relativistic magnetized shocks (Sironi
t al. 2021 ). 

In the modes described by equations (43)–(45), the dominant non-
inear effect is the relativistic correction to the electron motion. The
ffect of the ponderomotive force is suppressed since the particles
annot mo v e in the direction perpendicular to the magnetic field,
nd the instability develops at nearly constant electron density. The
ame modes also exist in unmagnetized electron-ion plasmas (e.g.
ax, Arons & Langdon 1974 ; Sobacchi et al. 2021 ), where the

onderomotive force can be suppressed due to the inertia of the ions.
In magnetically dominated plasmas the particle distribution could

e anisotropic. Then the thermal velocity c s may be different along
he magnetic field lines and in the perpendicular direction. Since
he unstable wavenumbers and the growth rate are independent of c s 
hen the ponderomotive force is perpendicular to the background
agnetic field, our results depend only on the value of the thermal

elocity along the field lines. 

 SCATTERI NG  O F  FRBS  

e apply these results to the propagation of a FRB through the
agnetically dominated magnetar wind. The observed duration of the
RB is T ∼ 1 ms . Since the FRB light curve is typically variable, we
onsider the possibility that the burst is made of pulses with duration
< T , during which the radiation intensity remains constant. We do

ot assume any specific emission mechanism. 
The wind may be thought of as a sequence of plasma slabs of

hickness � R ∼ R with a decreasing plasma density n ( R ). The
nstability develops when: 

(i) The longitudinal wavelength of the unstable modes, λz � 2 π / k z ,
s shorter than the length of the pulse in the wind frame, � � 2 γ w c τ .
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Figure 1. Sketch of the effect of the filamentation instability on the FRB. The magnetar wind (grey region) is pictured as a plasma slab of radius R sc and 
thickness � R ∼ R sc (see equations 46, 48, and 49). The FRB electromagnetic wave (black lines) is broken into sheets of transverse size λy , perpendicular to the 
direction of the wind magnetic field, B bg . As the FRB front expands, the radiation sheets are scattered due to diffraction by an angle θ sc ∼ λ/ λy , where λ is the 
FRB wavelength in the observer’s frame. The corresponding scattering time is τsc ∼ R sc θ

2 
sc / 2 c. 
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(ii) The time-scale on which the instability grows, t gr � 10/ �, is
horter than the expansion time of the wave front in the wind frame,
 exp � R / γ w c . 

The conditions (i) and (ii) are satisfied for R � R 1 and R � R 2 ,
especti vely. The v alues of R 1 and R 2 depend on the thermal velocity,
nd we calculate them below in the relevant cases. 

The instability breaks the wave packet into sheets of radiation 
erpendicular to the direction of the wind magnetic field. We 
stimate the transverse size of the radiation sheets as λy � 2 π / k y ,
here k y ( R ) is the wavenumber of the most unstable modes. 6 At

adii R � min [ R 1 , R 2 ], the most unstable transverse wavelength
lowly increases with the radius, namely d λy /d R � θ sc ( R ), where
sc ( R ) ∼ λ/ λy is the scattering angle at the radius R ( θ sc is
easured in the observer’s frame), and λ = πc / γ w ω 0 is the FRB
avelength in the observer’s frame. 7 Then the transverse scale of 

he sheets is gradually adjusted to λy . Scattering occurs at a large 
adius 

 sc = f min [ R 1 , R 2 ] , (46) 

here, f ∼ 1 is a numerical factor, since the instability no longer
evelops for R � R sc . The corresponding scattering time is τsc ∼
 sc θ

2 
sc / 2 c. The outlined scenario is sketched in Fig. 1 . 

Different frequency components of the same burst have different 
cattering times. Since filamentation is a non-linear process, the 
ransverse scale of the sheets, λy , depends on the power-weighted 
requency of the burst. On the other hand, low-frequency components 
re more diffracted. The scattering angle is θ sc ∼ λ/ λy ∝ ν−1 , and 
he corresponding scattering time is τsc ∼ R sc θ

2 
sc / 2 c ∝ ν−2 . 

We consider the case when the transverse component of the 
erturbation wave vector is parallel to the wind magnetic field (see 
ection 3.4.2 and Table 1 ), which gives the largest growth rate of the
 We remark that our estimate relies on an extrapolation of the results of the 
inear stability analysis, and further investigation is required to understand 
ow the instability saturates. 
 In a linear wav e, transv erse modulations of the wave intensity with a scale λy 

esult in the deflection of the wave through an angle θ sc ∼ λ/ λy , which may 
e thought of as diffraction scattering. Non-linear effects prevent diffraction 
rom occurring at radii R � max [ R 1 , R 2 ]. 

t

γ

8

h
K
p

nstability. First, we discuss the case of a warm plasma, and then the
ase of a cold plasma. 8 

.1 Warm magnetar wind 

e start considering the case of a warm plasma with a 0 � β2 
s ω 0 /ω P ,

hich is satisfied for 

s � 2 × 10 −3 L 

1 / 4 
42 μ

1 / 2 
33 P 

−1 
0 ν−1 

9 R 

−1 
15 σ

−1 / 4 
w 

∼ 8 × 10 −4 L 

1 / 4 
42 Ṅ 

1 / 4 
42 ν

−1 
9 R 

−1 
15 γ

1 / 4 
w . (47) 

e have expressed βs as a function of the rate of particle outflow
n the wind, Ṅ ∼ L w /γw σw mc 2 , where L w ∼ μ2 (2 π / P ) 4 / c 3 is the
uminosity of the wind ( μ and P are the magnetic dipole moment
nd the rotational period of the magnetar, γ w and σ w are the Lorentz
actor and the magnetization of the wind). For our fiducial param-
ters, we find Ṅ ∼ 7 × 10 43 μ2 

33 P 

−4 
0 γ −1 

w σ−1 
w s −1 . We have defined 

˙
 42 ≡ Ṅ / 10 42 s −1 , which is the appropriate normalization for values 

f γ w σ w of the order of a few tens, as we find below. 
The wavenumbers and the growth rate of the most unstable mode

re ck y � a 0 β
−1 
s ω P / 2, ck z � a 0 ω P , and � � a 2 0 β

−2 
s ω 

2 
P / 8 ω 0 . Then

ne finds 

 1 ∼ 2 × 10 15 L 

1 / 4 
42 μ

1 / 2 
33 P 

−1 
0 ν

−1 / 2 
9 τ

1 / 2 
−3 σ

−1 / 4 
w cm 

∼ 8 × 10 14 L 

1 / 4 
42 Ṅ 

1 / 4 
42 ν

−1 / 2 
9 τ

1 / 2 
−3 γ

1 / 4 
w cm (48) 

 2 ∼ 4 × 10 15 L 

1 / 3 
42 μ

2 / 3 
33 P 

−4 / 3 
0 ν−1 

9 β−2 / 3 
s γ −2 / 3 

w σ−1 / 3 
w cm 

∼ 9 × 10 14 L 

1 / 3 
42 Ṅ 

1 / 3 
42 ν

−1 
9 β−2 / 3 

s γ −1 / 3 
w cm , (49) 

here, we have defined τ−3 ≡ τ/ 1 ms . The conditions λz � � and t gr 

 t exp are satisfied at radii R � R 1 and R � R 2 , respectively. 
The value of the scattering time depends on the Lorentz factor of

he wind. The critical wind Lorentz factor that gives R 1 = R 2 is 

cr ∼ 2 L 

1 / 8 
42 μ

1 / 4 
33 P 

−1 / 2 
0 ν

−3 / 4 
9 τ

−3 / 4 
−3 β−1 

s σ−1 / 8 
w 

∼ L 

1 / 7 
42 Ṅ 

1 / 7 
42 ν

−6 / 7 
9 τ

−6 / 7 
−3 β−8 / 7 

s . (50) 
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 The magnetar wind cools down radiatively and adiabatically. On the other 
and, the wind could be heated by magnetic reconnection (e.g. Lyubarsky & 

irk 2001 ), and by internal shocks (e.g. Beloborodov 2020 ). We consider the 
ossibility that these processes keep the plasma warm. 
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ote that γ cr � 1 for βs � 1. When γ w � γ cr , one finds R sc = fR 1 ,
nd the scattering time is 

sc ∼ 3 L 

1 / 4 
42 μ

1 / 2 
33 P 

−1 
0 ν

−5 / 2 
9 τ

−3 / 2 
−3 β−2 

s γ −2 
w σ−1 / 4 

w f −3 ns 

∼ 0 . 9 L 

1 / 4 
42 Ṅ 

1 / 4 
42 ν

−5 / 2 
9 τ

−3 / 2 
−3 β−2 

s γ −7 / 4 
w f −3 ns . (51) 

hen γ w � γ cr , one finds R sc = fR 2 , and the scattering time is 

sc ∼ 0 . 8 ν−1 
9 f −3 ns . (52) 

Scattering in a warm wind produces a frequency modulation with
 large bandwidth, �ν ∼ 1 /τsc � 100 MHz (see equations 51 and
2). Such broad-band frequency modulations are observed in FRBs
e.g. Shannon et al. 2018 ; Hessels et al. 2019 ; Nimmo et al. 2021 ).
he bandwidth increases with the burst frequency (equations 51 and
2 give �ν ∝ νβ with β ∼ 1–2.5), consistent with observations of
RB 121102 (Hessels et al. 2019 ). 
When the transverse component of the perturbation wave vector

s perpendicular to the wind magnetic field (see Section 3.4.3 and
able 2 ), the unstable modes have ck y � a 0 ω P /2, ck z � ω L , and
 � a 2 0 ω 

2 
P / 8 ω 0 . Since the condition λz � � is easily satisfied, one

nds R sc = fR 2 . The scattering time is the same as in equation (52),
egardless of βs . 

.2 Cold magnetar wind 

n a cold plasma with a 0 � β2 
s ω 0 /ω P , we have ck z � a 0 ω P and

 � a 0 ω P / 
√ 

2 . Since the condition t gr � t exp is easily satisfied, one
nds R sc = fR 1 . The growth rate remains same order of the maximal
ne for the transverse wavenumbers 

√ 

a 0 ω 0 ω P � ck y � a 0 β
−1 
s ω P .

o determine the dominant transverse scale of the radiation sheets,
y , one should study how the instability saturates for various
avenumbers, which is out of the scope of the paper. Nevertheless,
ur results can be used to place a lower limit on the Lorentz factor
f the magnetar wind. Since λy � 2 πc/ 

√ 

a 0 ω 0 ω P , one finds a lower
imit for the scattering time that is independent of βs , 

sc � 10 L 

1 / 4 
42 μ

1 / 2 
33 P 

−1 
0 ν

−1 / 2 
9 τ

−1 / 2 
−3 γ −2 

w σ−1 / 4 
w f −1 ms 

∼ 4 L 

1 / 4 
42 Ṅ 

1 / 4 
42 ν

−1 / 2 
9 τ

−1 / 2 
−3 γ −7 / 4 

w f −1 ms . (53) 

e remark that ν9 corresponds to the power-weighted frequency of
he burst. As discussed abo v e, the frequenc y components of one burst
ave different scattering times, with τ sc ∝ ν−2 . 
Interestingly, the frequency-dependent broadening of the brightest

ulse from FRB 181112 is consistent with τ sc ∝ ν−2 (Cho et al. 2020 ).
he rise time of the pulse is τ ∼ 15 μs, and the scattering time is
sc ∼ 25 μs. The observed scattering can be an effect of propagation

hrough a cold magnetar wind. Substituting τ ∼ 15 μs and τ sc ∼ 25
s into equation (53), one can estimate the wind Lorentz factor, 

w � 60 L 

1 / 8 
42 μ

1 / 4 
33 P 

−1 / 2 
0 ν

−1 / 4 
9 σ−1 / 8 

w f −1 / 2 

∼ 50 L 

1 / 7 
42 Ṅ 

1 / 7 
42 ν

−2 / 7 
9 f −4 / 7 . (54) 

his Lorentz factor is not far from γ w ∼ 10–30 estimated for
agnetar winds (Beloborodov 2020 ). 

 C O N C L U S I O N S  

e have studied the modulation/filamentation instabilities of FRBs
ropagating in a magnetar wind. We have modelled the wind as a
agnetically dominated pair plasma. We have focused on the regime

f subrelativistic electron motion, i.e. dimensionless-wave strength
arameter a 0 � 1. 
The instability modulates the intensity of the radio wave, pro-

ucing radiation sheets perpendicular to the direction of the wind
NRAS 511, 4766–4773 (2022) 
agnetic field. As the FRB front expands outside the radius where
he instability ends, the radiation sheets are dif fracted, ef fecti vely
preading the arri v al time of the FRB wave. The imprint of the
cattering on the time–frequency structure of FRBs depends on the
roperties of the wind. 
In a cold wind with βs � 10 −3 ( βs = c s / c is the ratio of the

hermal velocity along the magnetic field lines and the speed of light),
he typical FRB scattering time is τ sc ∼ μs–ms at the frequency
∼ 1 GHz . Low frequencies have longer scattering times, with

sc ∝ ν−2 . Such frequency-dependent broadening has been observed
n the brightest pulse of FRB 181112 (Cho et al. 2020 ). From the rise
nd scattering time-scales of the pulse, we estimate the wind Lorentz
actor , γ w � 50. W ithin the accuracy of this estimate (a factor of
 few), γ w is consistent with theoretical expectations for magnetar
inds (Beloborodov 2020 ). 
In a warm wind with βs � 10 −3 , the FRB scattering time can

pproach τ sc ∼ ns. Then scattering produces a frequency modulation
f the observed intensity with a large bandwidth, �ν ∼ 1 /τsc �
00 MHz . The modulation bandwidth increases with the burst fre-
uenc y. Broad-band frequenc y modulations observ ed in FRBs (e.g.
hannon et al. 2018 ; Hessels et al. 2019 ; Nimmo et al. 2021 ) could
e due to scattering in a warm magnetar wind. 
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PPEN D IX:  SOLUTION  O F  E QUAT I O N S  ( 35 ) ,  
36 ) ,  A N D  ( 4 2 )  

e start with the case when the ponderomotive force is nearly 
arallel to the background magnetic field. In a cold plasma, the 
ispersion relation is given by equation (35). The growth rate of the
xponentially growing solution can be presented as 

( �ω ) 2 = − 2 � 

2 
cold 

1 + 

√ 

1 + 

k 2 cold 
k 2 y 

, (A1) 

here, � cold = a 0 ω P /2 and ck cold = 

4 
√ 

8 
√ 

a 0 ω 0 ω P . The maximal
rowth rate � cold is achieved for k y � k cold . In the top panel of
ig. A1 , we plot Im( �ω)/ � cold as a function of k y / k cold . The instability
evelops for all k y . 
In a warm plasma, the dispersion relation is given by equation (36).

he solution can be presented as 

( �ω ) 2 = −� 

2 
warm 

⎡ 

⎣ 1 −
( 

1 − k 2 y 

k 2 warm 

) 2 
⎤ 

⎦ , (A2) 
here, � warm 

= a 0 βs ω P / 8 ω 0 and ck warm 

= a 0 βs ω P / 2. The 

aximal growth rate � warm 

is achieved for k y = k warm 

. In the bottom
anel of Fig. A1 , we plot Im( �ω)/ � warm 

as a function of k y / k warm 

.
he instability develops for k y < 

√ 

2 k warm 

. 
When the ponderomotive force is perpendicular to the background 
agnetic field, the dispersion relation is given by equation (42). The

erms proportional to k 2 z are negligibly small. Then equation (42) 
s identical to equation (36) after the formal substitution c s → c in
quation (36). The dependence of Im( �ω) on k y is analogous to the
ottom panel of Fig. A1 . 

igure A1. Imaginary part of �ω as a function of k y in a cold plasma (top
anel) and in a warm plasma (bottom panel). The ponderomotive force is
early parallel to the background magnetic field. 
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