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ABSTRACT

Magnetars are the most promising progenitors of fast radio bursts (FRBs). Strong radio waves propagating through the magnetar
wind are subject to non-linear effects, including modulation/filamentation instabilities. We derive the dispersion relation for
modulations of strong waves propagating in magnetically dominated pair plasmas focusing on dimensionless strength parameters
ap < 1,and discuss implications for FRBs. As an effect of the instability, the FRB-radiation intensity develops sheets perpendicular
to the direction of the wind magnetic field. When the FRB front expands outside the radius where the instability ends, the radiation
sheets are scattered due to diffraction. The FRB-scattering time-scale depends on the properties of the magnetar wind. In a cold
wind, the typical scattering time-scale is T4 ~ ps—ms at the frequency v ~ 1 GHz. The scattering time-scale increases at low
frequencies, with the scaling 7, oc v™2. The frequency-dependent broadening of the brightest pulse of FRB 181112 is consistent
with this scaling. From the scattering time-scale of the pulse, one can estimate that the wind Lorentz factor is larger than a few
tens. In a warm wind, the scattering time-scale can approach t,. ~ ns. Then scattering produces a frequency modulation of

the observed intensity with a large bandwidth, Av ~ 1/ts. =

~

could be due to scattering in a warm magnetar wind.

100 MHz. Broad-band frequency modulations observed in FRBs
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1 INTRODUCTION

Fast radio bursts (FRBs) are bright flashes of millisecond duration
(e.g. Lorimer et al. 2007; Thornton et al. 2013; Spitler et al.
2014, 2016; Petroff et al. 2016; Shannon et al. 2018; CHIME/FRB
Collaboration et al. 2019a, b, c). Magnetars are promising progen-
itors of FRBs. The FRB—-magnetar connection, which was initially
proposed on statistical grounds (e.g. Popov & Postnov 2010, 2013), is
strongly supported by the discovery of weak FRBs from the Galactic
magnetar SGR 193542154 (e.g. Bochenek et al. 2020; CHIME/FRB
Collaboration et al. 2020).

Due to the huge luminosity of FRBs, the electromagnetic field of
the radio wave accelerates the electrons in the magnetar wind up to
a significant fraction of the speed of light (e.g. Luan & Goldreich
2014). Strong FRB waves can experience non-linear propagation
effects, including modulation/filamentation instabilities (Sobacchi
et al. 2021).! The instability produces a spatial modulation of the
intensity of the FRB wave. As the FRB front expands, the structures
generated by the instability are scattered due to diffraction, and may
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"Modulation/filamentation instabilities of strong electromagnetic waves
propagating in unmagnetized electron-ion plasmas are extensively studied
in the field of laser—plasma interaction (e.g. Kruer 2019). Filamentation has
been observed in numerical simulations of relativistic magnetized shocks,
in which case a strong electromagnetic precursor is emitted upstream (e.g.
Iwamoto et al. 2017, 2022; Babul & Sironi 2020; Sironi et al. 2021).

interfere with each other. This process leaves an imprint on the time—
frequency structure of FRBs.

In our previous work (Sobacchi et al. 2021), we studied the
modulation/filamentation instabilities of FRBs propagating in a
weakly magnetized electron-ion plasma. Such environment may be
found at large distances from the FRB progenitor. The instability
develops at nearly constant electron density since the effect of the
ponderomotive force is suppressed due to the large inertia of the ions.
Then the dominant non-linear effect is the modification of the plasma
frequency due to relativistic corrections to the effective electron mass.
In regions of enhanced radiation intensity, the plasma frequency
decreases because the electrons oscillate with a larger velocity in
the field of the wave, and therefore have a larger effective mass.
Modulations of the radiation intensity perpendicular to the direction
of propagation of the wave grow because the refractive index of
the plasma increases, which creates a converging lens that further
enhances the radiation intensity. Modulations along the direction of
propagation grow because the group velocity of the wave depends
on the local radiation intensity. It turns out that the spatial scale of
the modulations is shorter along the direction of propagation than in
the perpendicular direction.

In this paper, we study the modulation/filamentation of FRBs
propagating in a magnetar wind, which is modelled as a magnetically
dominated pair plasma. We find that the instability develops because
the ponderomotive force pushes particles out of regions of enhanced
radiation intensity. The refractive index of the plasma increases in the
regions where the particle number density is smaller, thus creating a
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Table 1. Wavenumber in the transverse direction (k) and in the longitudinal
direction (k;), and growth rate (I") of the unstable modes (the electromagnetic
pump wave is propagating along the z direction). Results are the same for a
weakly magnetized wind (oy < ag), and for a magnetically dominated wind
with the background magnetic field along ky. The growth rate remains same
order of the maximal one for k; <« apwp/c, while there is no instability
for k, > apwp/c. When ag > ,35260()/61)]), the growth rate remains same
order of the maximal one for /agwowp/c K ky < apBy la)p/c. Since ky
> k., the modulations are elongated in the direction of propagation of the
electromagnetic pump wave.

Range of ag cky ck r

<Lapwp apwp/N2
<agwp a2 p;wh /8wy

ap > Blwg/wp Jagwowp K cky K aoB; wp
ay K ,352600/60}) cky >~ apB wp/2

Table 2. Same as Table 1, but for a magnetically dominated wind with
the background magnetic field perpendicular to ky and k. The growth rate
remains same order of the maximal one for k; < wr/c, while there is no
instability for k; > wi /c.

cky ck, r

apwp/2 <Lor, a%wlz,/Swo

converging lens that further enhances the radiation intensity. Since
the ponderomotive force preferentially pushes particles along the
magnetic field lines, the instability produces sheets of radiation
intensity perpendicular to the direction of the wind magnetic field.
Consistent with previous studies focusing on unmagnetized plasmas
(e.g. Kates & Kaup 1989), we do not find significant modulations of
the radiation intensity along the direction of the wave propagation.?

As the FRB front expands outside the radius where the instability
ends, the radiation sheets are diffracted, effectively scattering the
arrival time of the FRB wave. In a cold magnetar wind, we find
that the scattering time-scale is T4 ~ ps—ms. The scattering time is
larger at low frequencies,® with the scaling 7. o< v=2. This scaling is
consistent with the frequency-dependent broadening of the brightest
pulse from FRB 181112 (Cho et al. 2020).

In a warm magnetar wind, the scattering time-scale is much
shorter, Ty ~ ns. Then scattering produces frequency modulations
with a large bandwidth, Av ~ 1/7, 2 100 MHz. Such broad-band
frequency modulations are often observed in FRBs (e.g. Shannon
et al. 2018; Hessels et al. 2019; Nimmo et al. 2021).

The paper is organized as follows. In Section 2, we briefly review
some relevant properties of magnetar winds and FRBs. In Section 3,
we study the filamentation instability of FRBs. We refer the reader
not interested in the technical details of the calculation to Tables 1
and 2, where we summarize our results. In Section 4, we discuss the
scattering of FRBs. In Section 5, we conclude.

2 FRBS IN MAGNETAR WINDS

The magnetar wind forms outside the light cylinder, at radii R =
Ric = cP/2m, where P is the magnetar rotational period and c is

2Chian & Kennel (1983) argued that strong electromagnetic waves in pair
plasmas are modulated along the direction of propagation. However, these
authors neglected the effect of the ponderomotive force, which is not justified
in pair plasmas.

3FRBs may also be scattered by some turbulent plasma screen along the line
of sight. In this case, one finds 74 o v™* with « ~ 4-4.4 (e.g. Luan &
Goldreich 2014).

Filamentation of FRBs in magnetar winds 4767

the speed of light. The magnetic field strength in the wind proper
frame is Byy = 11/ Vw Rfc R, where  is the magnetar magnetic dipole
moment, and y, is the wind Lorentz factor. The wind magnetic field
is nearly azimuthal.

The ratio of the Larmor frequency, wp. = eByg/mc, where e is the
electron charge, m is the electron mass, and the angular frequency
of the FRB wave in the wind frame, wy = wv/y, where v is the
observed frequency, is

25 % 10 s Py vy Ry (1
o

where, we have defined 33 = /103G cm’, Py = P/ls, vg=
v/1 GHz, and R;s = R/10" cm. At the radii where w; < wy, the
electron motion is weakly affected by By,. The electrons reach a
maximum velocity of agc, where ag = eE/womc. We consider radii
where ayp < 1, so that the electrons are subrelativistic. The peak
electric field of the wave in the wind frame, E, can be calculated
from the isotropic equivalent of the observed FRB luminosity,
L = 2cy2E*R?. One finds

ap =23 x 1072 L) v 'R, 2)

where, Ly, = L/ 10% erg s~!. The condition ay < 1 is satisfied at radii
R > 2.3 x 108L} vy em. Since o /wy < ap, the electric field of
the FRB wave is larger than the wind magnetic field.

It is useful to define the wind magnetization, o, as twice the ratio
of the magnetic and rest mass energy densities of the plasma. One
finds

2
o =L | 3)
@p
where, wp = /87w Noe?/m is the plasma frequency (the particle
number density is 2Ny). We consider a magnetically dominated wind
with oy, > 1.

3 FILAMENTATION INSTABILITY

3.1 Fundamental equations

We consider an electromagnetic wave propagating through a mag-
netized pair plasma, with mean particle number density 2N,, and
background magnetic field By,,. We study the stability of slow, long-
wavelength modulation of the initial wave.

The electromagnetic field of the wave can be expressed using
the vector potential A. We are interested in the regime where the
angular frequency of the wave, wy, is much larger than both the
Larmor frequency, wp = eBy,/mc, and the plasma frequency, wp =
\/ 87 Noe2/m. When wy > wy, wp, the non-linear wave equation is
(e.g. Montgomery & Tidman 1964; Sluijter & Montgomery 1965;
Ghosh et al. 2021)

3?4 (N) 1 ¢*(A?)
VAt (12— )A=0, 4
az € G No ( 2 m2c? ) @

where, (...) denotes the average on the spatial scale of many
wavelengths of the initial wave. We have defined (N) as half the
total particle number density, namely 2(N) = (N, +) + (N.-) where
(N.+) and (N,-) are the positron and electron densities. To avoid a
lengthy notation, below we write N,+ instead of (N,+).

Equation (4) contains two non-linear terms. The term proportional
to (A%) originates from the relativistic corrections to the effective
electron mass, and from the beating between the density oscillations
at the frequency 2w, and the velocity oscillations at the frequency
w (for a detailed discussion, see appendix A of Ghosh et al. 2021).
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The term (N) describes plasma-density modulations produced by the
ponderomotive force.

We use the same approach that is customarily adopted to study non-
linear propagation effects in unmagnetized electron-ion plasmas (e.g.
Kruer 2019). The plasma is described using a two-fluid model. The
evolution of the positron and electron number densities is described
by the continuity equation:

ON, =
ot

+ V- (NxV.)=0, ©)

where, V,+ and V,- are the positron and electron coordinate
velocities. The evolution of the velocities is described by the Euler’s
equation:

oV = VN, ,+

e .V — _2 ¢

o TV Ve =—c=mm o+
e + 1 €2
+— |E ¢ B+ B — ——V(A? 6
m+cx(+bg) 53 ViAY) (6)

where, ¢y is the thermal velocity. The last term of equation (6) is the
gradient of the ponderomotive potential.

The electric field E and the magnetic field B obey Maxwell’s
equations:

V-E =47e(N,» — N,-) @)
V-B=0 (8)
VxE=-1% )
VXxB=%2¢(N+Ves —No-Vo)+ L3 (10)

We remark that all the physical quantities in equations (5)—(10)
describe oscillations at frequencies much smaller than wy.

The remainder of this section is organized as follows. In Sec-
tion 3.2, we find a solution of equations (4)—(10) that is independent
of x and y (such solution is called ‘electromagnetic pump wave’). In
Sections 3.3 and 3.4, we study the stability of the initial pump wave.
We focus on the regime of subrelativistic electron motion, i.e. ay =
eAo/me S 1 and B = ¢/c K 1.

3.2 Electromagnetic pump wave

The electromagnetic pump wave is described by the vector potential:
1
A= EAOexp(ia)Ot—ik0~x)+c.c. R (11)

where, Ay is real, and c.c. indicates the complex conjugate [then
equation (11) gives A = Aycos (wot — ko - x)]. Since (A?) = A(z)/2,
the gradient of the ponderomotive potential vanishes. Then equa-
tions (5)—(10) have the straightforward solution N+ = Ny, V.= =0,
and E = B = 0. Substituting equation (11) into equation (4), one finds
the dispersion relation of the pump wave:

1
W = K+ w? (1 - Zaf)) , (12)
where,
A
a = 20 (13)
mc

Equation (12) is the classical result of Sluijter & Montgomery (1965).
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3.3 Small perturbations

Modulations with frequency w and wave vector k of intensity of the
pump wave are described by two beating wavebands with frequencies
wy = o + wy and wave vectors ky = k + ko, where 0*> < w} and
k? < k2. The perturbed vector potential is

1

A= EAO exp (iwpt — ikg - x)
+8A  exp (iwyt —iky - x) 4+ SA_exp (iw_t —ik_ - x)
+c.c., (14)

where, A and §A 1 are nearly aligned. Writing Ao = Apn and AL =
8A.n, where n is a unit vector, from equation (14) one finds

1
(A% — EA(Z) =Ag(BA,L +8A_)exp (iwt —ik -x)+c.c., (15)

where, we have neglected quadratic terms in the perturbed quantities.
The average is made on a spatial scale much longer than k; ! and
much shorter than k7!,

Below we use equations (5)—(10) to calculate the density per-
turbation 6N = § N+ + §N.- as a function of A, and SA_. Then
we substitute SN into equation (4) and derive two homogeneous
equations for A, and SA_. The condition that the determinant of
the coefficients vanishes gives the dispersion relation.

3.3.1 Two-fluid equations

Substituting N+ = Ng + SN+, V. =6V, .+, into equations (5)—
(6), and neglecting quadratic terms in the perturbed quantities, one
finds

I8N+

5T NV 8Ver =0 (16)
28V
ate* = @Y= £ £ BB+ 2 < By - 15V (D)

It is convenient to introduce new variables defined as 26 N = SN+ +
8N,~, 26N, =8N,+ —8N,~, 28V =6V o+ +6V,~, and 28V, =
8V ,+ — 6V,-. From equation (16), one finds

dSN
— +NoV -8V =0 (18)
dSN,

S ENoV 8V, =0. (19)
From equation (17), one finds
a8V 2
DY _ ot scp, 12y (A 0)
a8V, VSN, sV
= :_C§W+5 [E + ¥ x By, . 21

Substituting E = §E, B = §B into equations (7)—(10), one finds

V-8E = 8mesN, (22)
V-§B=0 (23)
VX SE = —; 57 (24)
V x 8B = 3eNysV, + LBE | (25)

It is convenient to introduce a system of coordinates (x,y,and 7)) so
that k = ke, and By, = By sinfe, + By, cosfe, . Since V(A?) is
directed along k, the solution has the form §V = 6V, e + Ve +
cc., 8V,=6V,ves+cc., SN, = 0, E =58E, e, +c.c,, and
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8B = §Bye, + c.c. Since V(A?) is proportional to exp (iwt — ik
- x), all the variables depend on the coordinates as exp (iwt — ik - x).

Equation (24) gives 8By = (ck/w)SE, . Substituting §B, =
(ck/w)$ E,/ into equation (25), one finds

2

wwp
=8V (26)

SE, =i
CSE, = PP
m w? — %k

The y component of equation (20) gives
5Vy =ik cos 05V, . 27)
w

Using equations (26)—(27), from equation (21) one finds

sinB8V. +i— (1 o
z oL, (1)2 _ C2k2

wz
- —= c0s20) 8V =0. (28)
w

Since 6N /Ny = (k/w)§ V., which follows from equation (18), the Z
component of equation (20) gives

c2k?
iw (1 - 3 ) 8V, — . sinf8V, v
w

L0
— L8 kA (BA, + 5A_Yexp (it — ik - x) ,(29)
2 m?
where, we have used equation (15) to calculate V(A?). Obtaining
8V, from equations (28)—(29), and using the fact that (N) /Ny — 1 =
(k/w)§V, + c.c., one eventually finds

N 2
% —1= %mezcon (8A4 +8A)exp (iwr — ik - x) + c.c., (30)
where,

2,2 2 2
ck “p L 2
or (1 — i — 5 COS 6)
Q - K2 wlz, wf 2 (u% P : (31)
1—2)2 l—m—ﬁcose —;Sln@

Note that the density perturbation is independent of w; when the
ponderomotive force is aligned with the magnetic field. Indeed, for
6 = 0 one finds Q = ®k*/(w* — c2k?).

3.3.2 Dispersion relation

Substituting equations (14), (15), and (30) into equation (4), and
neglecting quadratic terms in the perturbed quantities, one finds

Siexp (ot —iky -x)+ S_exp(iw_t —ik_ -x)+c.c.=0, (32)

where,
1
S;t = [wi - Czki — a)]z) (1 — Za§>:| 5Aj:
|
+ - Q)ajwp (8A, +8A_) . (33)
Equation (32) requires S. = S_ = 0, which is a homogeneous

system of two equations for A, and SA_. The condition that the
determinant of the coefficients vanishes gives the dispersion relation.
Since a)2i — czkft — a)]%(l — a§/4) = (0? — *k?) £ 2wow — kg -
k), which follows from equation (12), the dispersion relation can
be presented as

4 (a)oa) — Pk - k)2 = (a)z — czkz)2
+% (1 - Q) agowp (0 — 7k?) (34)

where, ap and Q are given by equations (13) and (31).
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3.4 Evolution of the wavebands

Below we solve the dispersion relation, equation (34), and show that
the wavebands grow exponentially. We are interested in a magnet-
ically dominated magnetar wind with oy, = w? /w} > 1. We focus
on a pump wave that propagates in the direction perpendicular to
the background magnetic field, as expected since the wind magnetic
field is nearly azimuthal. We introduce a system of coordinates (x,
v, and z) so that kg = kee., k = kye, + k.e., and By, = Byg.ex +
By yey. The cosine of the angle between the ponderomotive force
(which is directed along k) and the background magnetic field is

cos*0 = k; By, | /(kj + k2) (B,  + By, ).

3.4.1 Case w* > w}

It is convenient to start with the case w® 3> w?, since the background
magnetic field does not affect the development of the instability.
Indeed, one can approximate Q =~ ¢?k?/(w* — c2k*), which is inde-
pendent of wr .* Since the dispersion relation depends only on &, and
k2, when w? > a)f there is a rotational symmetry about the direction
of propagation of the pump wave.

One can find approximate analytical solutions of equation (34) as
follows. Far from the resonances, the right-hand side of equation (34)
is small. Then the solution can be presented as = c*kok./wy + Aw,
with a small Aw. Substituting @ = czkokz/wo + Aw, the left-hand
side of equation (34) becomes (wow — ckok,)> = a)g(Aw)z.

Now, we discuss the approximation of w?> — ¢?k* on the right-
hand side of equation (34). Substituting @ = c?kok./wy + Aw, one
finds w? — ¢*k? ~ —c2k§ — k2(1 — c*k/w]). We have neglected
the terms (Aw)? and ck,(Aw), which are much smaller than czk%
(this can be verified a posteriori from equations (37)—(41)). Since
1 — ?kg/wh = wp/wj, one finds w? — k% = —c*k; — Pkl wp /w5

Finally, we need to approximate Q. We discuss the two cases
@ > 2k* and w® < c2k* below.” When w? > c¢2k?, one finds
Q =~ *kPlw?. When c*k? <« (Aw)*, one can approximate Q =
c2k§ /(Aw)? and w? — k> ~ —czk%. Then the dispersion relation
can be approximated as

Ao\* Ao\® 1
4} “) - c*k? 220 - —aiwi=0. (35)
cky Y\ cky 2

The wavenumber of the most unstable modes is cky, > \/aowowp,
and the corresponding growth rate is determined by (Aw)? =
—adwi /2. Since Aw is purely imaginary, the perturbation moves
along z with the group velocity of the pump wave, c*ko/wy. The
conditions csz < w* and c2k§ < (Aw)? give ¢k, < apwp and
ck, < apwp. Following the procedure that we used to derive
equation (35), one sees that the instability does not develop for
c%k? > (Aw)?, which gives Q ~ k? /kZ.

When w? < c2k?, one finds Q >~ —c?/c2. Then the dispersion
relation can be approximated as

1 2
4of (Aw)’ = k; <c2k§ - Eaé%wﬁ) : (36)
CS

4Since Q > 1, in equation (4) one has 8 (N)/Ny > (e>/m*>c?)8(A?). Then the
density modulations produced by the ponderomotive force are the dominant
non-linear effect leading to the exponential growth of the instability.

3 As discussed by Ghosh et al. (2021), when w? > ¢2k? the ponderomotive
force is balanced by the electron inertia. The reason is that one may neglect
c2VSN /Ny with respect to d8V/dt in equation (20). When w? < c2k?, the
thermal pressure and the ponderomotive force balance each other since one
may neglect 38 V/dz with respect to c2VSN /Ny in equation (20).
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The maximum growth rate of the instability is found when ¢*k; =
aéczw}% /4c2, which gives (Aw)* = —agc*wi/64wic?. The condition
w* L 7k requires (Aw)® < cik; and ¢’k < cfkﬁ, which give
ay K cS wo/wpc? and ck, < agwp, respectlvely

The instability is robust since it can be excited over a broad range
of wavenumbers. As we show in Appendix A, the instability develops
for all wavenumbers k, > 0 in a cold plasma where the dispersion
relation is given by equation (35). The instability develops for 0 <
ky, < apwp/ V2¢, in a warm plasma where the dispersion relation is
given by equation (36).

We summarize our results in equation (37)—(41) below. The growth
rate can be estimated as

[~ %aowp (ag > Blwo/wp) 37)

wZ
r 2 103822 (a0 < Blanor) oY

where, 85 = cs/c. The most unstable transverse wavenumber can be
estimated as

A/ Aowowp
c

L ky K apBM 2 (ag > Blwo/wp) 39)

ky >~ %aoﬂfl% (ao < 13520-’0/601?) . (40)

When ay > Bszwo /wp, the growth rate remains same order of the
maximal one for \/apwowp K ck, K apfy 'wp. The most unstable
longitudinal wavenumber can be estimated as

wp
k, < . 41)

The growth rate remains same order of the maximal one for k, <
apwp/c, while there is no instability for k, >> agwp/c. Since k, > k.,
the modulations are elongated in the direction of propagation of the
electromagnetic pump wave (the instability breaks a wave packet
into longitudinal filaments). Since w® ~ c?k? +I'? ~ ajwp, the
condition @? > a)f could be satisfied only for a weak magnetization
w K al <1

The modes described by equations (37)—(41) also exist in un-
magnetized electron-ion plasmas (e.g. Drake et al. 1974; Sobacchi
et al. 2021), with the only difference that the ion plasma frequency
replaces the electron plasma frequency. Our results are consistent
with those of Ghosh et al. (2021), who studied the filamentation of
electromagnetic waves in unmagnetized pair plasmas.

34.2 Case v* < a)ﬁ, with Bpg =0

Since a) > f could be satisfied only for a weak magnetization
oy K aO < 1, one should study the case @ < ®f

When By, , = 0, the ponderomotive force is nearly parallel to the
background magnetic field. Indeed, one finds cos® 0 = k7 /(k; 4 k2),
which gives 8 ~ 0 for k, < k,. Then one can approximate Q >~
?k?/(w® — c2k?), which is the same as in the weakly magnetized
case discussed in the previous section. The most unstable wavenum-
ber and the growth rate are given by equations (37)—(41). These
results are summarized in Table 1. Since w* ~ ¢*k? + I'? ~ adw},
the condition @® < @ is satisfied in a magnetically dominated
plasma.

We remark that the wavenumber and the growth rate of the most
unstable modes are the same as in the weakly magnetized case. The
reason is that the particles can move freely along the background
magnetic field under the effect of the ponderomotive force when 6
~ 0.

MNRAS 511, 4766-4773 (2022)

3.4.3 Case * K o}, withBjgy =0

When Byg, = 0, the ponderomotive force is perpendicular to the
background magnetic field. For cos @ = 0, one finds Q <« 1 because
w? appears only in the denominator of Q, and @?, ¢*k*, and w} are
much smaller than w? in magnetically dominated plasmas. For Q <
1 the dispersion relation can be approximated as

2 2 1
4} (Aw)* = < ’k; + wz 2k2> ( ’k; + wg kKl — 5ao P) (42)
The condition w? < of gives ¢’k? K w}. Since (wf/wi)c?k? K
Wit o} K aiw}, the terms proportlonal to ¢’k2 can be neglected
in equation (42). The wavenumber of the most unstable modes is
¢’k; = agwp/4, and the corresponding growth rate is determined
by (Aw)’ =
estimated as

—agwp /64w}. We conclude that the growth rate can be

1, w3
M~ -a;—2> 43
8 0 wo ( )
and the most unstable wavenumber can be estimated as
ky = 5a0%® (44)
k, < % . 45)

These results are summarized in Table 2. Comparing equations (37)—
(38) and (43), one sees that the growth rate is faster when the
ponderomotive force is nearly parallel to the direction of the
background magnetic field. This may explain the formation of density
sheets nearly perpendicular to the pre-shock magnetic field in three-
dimensional simulations of the relativistic magnetized shocks (Sironi
etal. 2021).

In the modes described by equations (43)—(45), the dominant non-
linear effect is the relativistic correction to the electron motion. The
effect of the ponderomotive force is suppressed since the particles
cannot move in the direction perpendicular to the magnetic field,
and the instability develops at nearly constant electron density. The
same modes also exist in unmagnetized electron-ion plasmas (e.g.
Max, Arons & Langdon 1974; Sobacchi et al. 2021), where the
ponderomotive force can be suppressed due to the inertia of the ions.

In magnetically dominated plasmas the particle distribution could
be anisotropic. Then the thermal velocity ¢, may be different along
the magnetic field lines and in the perpendicular direction. Since
the unstable wavenumbers and the growth rate are independent of ¢
when the ponderomotive force is perpendicular to the background
magnetic field, our results depend only on the value of the thermal
velocity along the field lines.

4 SCATTERING OF FRBS

We apply these results to the propagation of a FRB through the
magnetically dominated magnetar wind. The observed duration of the
FRBis T ~ 1 ms. Since the FRB light curve is typically variable, we
consider the possibility that the burst is made of pulses with duration
T < T, during which the radiation intensity remains constant. We do
not assume any specific emission mechanism.

The wind may be thought of as a sequence of plasma slabs of
thickness AR ~ R with a decreasing plasma density n(R). The
instability develops when:

(1) The longitudinal wavelength of the unstable modes, A, >~ 2n/k,,
is shorter than the length of the pulse in the wind frame, £ >~ 2y yct.
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Figure 1. Sketch of the effect of the filamentation instability on the FRB. The magnetar wind (grey region) is pictured as a plasma slab of radius Ry, and
thickness AR ~ Ry (see equations 46, 48, and 49). The FRB electromagnetic wave (black lines) is broken into sheets of transverse size Ay, perpendicular to the
direction of the wind magnetic field, Byg. As the FRB front expands, the radiation sheets are scattered due to diffraction by an angle 6. ~ A/Ay, where A is the
FRB wavelength in the observer’s frame. The corresponding scattering time is 7y ~ RSCQSZC /2c.

(ii) The time-scale on which the instability grows, o, >~ 10/T", is
shorter than the expansion time of the wave front in the wind frame,
fexp = Ry yc.

The conditions (i) and (ii) are satisfied for R S R and R < R»,
respectively. The values of R, and R, depend on the thermal velocity,
and we calculate them below in the relevant cases.

The instability breaks the wave packet into sheets of radiation
perpendicular to the direction of the wind magnetic field. We
estimate the transverse size of the radiation sheets as A, >~ 2m/k,,
where ky(R) is the wavenumber of the most unstable modes.® At
radii R <« min[R;, R;], the most unstable transverse wavelength
slowly increases with the radius, namely dA,/dR < 6 (R), where
O (R) ~ A/M, is the scattering angle at the radius R (O is
measured in the observer’s frame), and A = wc/ywwy is the FRB
wavelength in the observer’s frame.” Then the transverse scale of
the sheets is gradually adjusted to A,. Scattering occurs at a large
radius

Ry = fmin[Ry, R,] , (46)

where, f ~ 1 is a numerical factor, since the instability no longer
develops for R 2 Ry. The corresponding scattering time is 7y ~
R62./2c. The outhned scenario is sketched in Fig. 1.

Different frequency components of the same burst have different
scattering times. Since filamentation is a non-linear process, the
transverse scale of the sheets, A, depends on the power-weighted
frequency of the burst. On the other hand, low-frequency components
are more diffracted. The scattering angle is 6. ~ A/A, & v~! and
the corresponding scattering time is 7 ~ Ry02/2¢ oc v72.

We consider the case when the transverse component of the
perturbation wave vector is parallel to the wind magnetic field (see
Section 3.4.2 and Table 1), which gives the largest growth rate of the

OWe remark that our estimate relies on an extrapolation of the results of the
linear stability analysis, and further investigation is required to understand
how the instability saturates.

"n a linear wave, transverse modulations of the wave intensity with a scale A,
result in the deflection of the wave through an angle 0. ~ A/Ay, which may
be thought of as diffraction scattering. Non-linear effects prevent diffraction
from occurring at radii R < max [Ry, R2].

instability. First, we discuss the case of a warm plasma, and then the
case of a cold plasma.?

4.1 Warm magnetar wind

We start considering the case of a warm plasma with ay < B2wo/wp,
which is satisfied for

B > 2 x 10_3L%4/¢§§2P0"v9’1R"a‘l/“
~8x 107 LY N v ' Ry (47)

We have expressed S as a function of the rate of particle outflow
in the wind, N ~ Lw/ywawmcz, where Ly, ~ p?Qm/P)*/c3 is the
luminosity of the wind (u and P are the magnetic dipole moment
and the rotational period of the magnetar, y, and o, are the Lorentz
factor and the magnetization of the wind). For our fiducial param-
eters, we find N ~ 7 x 10° 3, Py 'y o' s=!. We have defined
N4, = N/10**s~!, which is the appropriate normalization for values
of y oy of the order of a few tens, as we find below.

The wavenumbers and the growth rate of the most unstable mode
are ck, ~ apf wp/2, ck, S aywp, and T =~ a3 B 2w} /8wy. Then
one finds

~ 2 X 105 LY 2Py g e o e

~ 8 x 1014LI/4 1/4 —1/2 I/2y (48)

~ 4 % 1015L1/3 2/?P74/3 —118—2/3)/\;2/30\;1/3 cm
~ 9 x 10" LN vy By em (49)

where, we have defined 7_3 = /1 ms. The conditions A, < £ and 7y,
S fexp are satisfied at radii R < Ry and R < Ry, respectively.
The value of the scattering time depends on the Lorentz factor of
the wind. The critical wind Lorentz factor that gives R; = R; is
*3/4 -1_—1/8
ploy !

1/8 1/4 12 7/4T

Vo ~ 2 L5 sy Py
L1/7N1/7 —6/7 76/7[3 8/7 (50)

8The magnetar wind cools down radiatively and adiabatically. On the other
hand, the wind could be heated by magnetic reconnection (e.g. Lyubarsky &
Kirk 2001), and by internal shocks (e.g. Beloborodov 2020). We consider the
possibility that these processes keep the plasma warm.

MNRAS 511, 4766-4773 (2022)
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Note that y, > 1 for §; < 1. When y, < y, one finds R = fR;,
and the scattering time is

~3 L1/4 1/2P— ?/2ﬁ— -2 71/4f73 ns
~ 0.9 LY'NY *5/2 3/2;6’ v ns . (51
When y 2 Yo, one finds Ry, = fR,, and the scattering time is

«~08vy' f3ns. (52)

Scattering in a warm wind produces a frequency modulation with
a large bandwidth, Av ~ 1/t 2 100 MHz (see equations 51 and
52). Such broad-band frequency modulations are observed in FRBs
(e.g. Shannon et al. 2018; Hessels et al. 2019; Nimmo et al. 2021).
The bandwidth increases with the burst frequency (equations 51 and
52 give Av « v# with B ~ 1-2.5), consistent with observations of
FRB 121102 (Hessels et al. 2019).

When the transverse component of the perturbation wave vector
is perpendicular to the wind magnetic field (see Section 3.4.3 and
Table 2) the unstable modes have ck, >~ agwp/2, ck, < wr, and
I' >~ a3w}/8wy. Since the condition A, < £ is easily satisfied, one
finds Ry. = fR,. The scattering time is the same as in equation (52),
regardless of .

4.2 Cold magnetar wind

In a cold plasma with ay > ,Bfa)o/a)p, we have ck, < apwp and
' ~ aywp/ /2. Since the condition Iy S leyp is easily satisfied, one
finds Ry = fR;. The growth rate remains same order of the maximal
one for the transverse wavenumbers ./dowowp < cky < aof; ! wp.
To determine the dominant transverse scale of the radlation sheets,
Ay, one should study how the instability saturates for various
wavenumbers, which is out of the scope of the paper. Nevertheless,
our results can be used to place a lower limit on the Lorentz factor
of the magnetar wind. Since A, < 2mc/ J/apwowp, one finds a lower
limit for the scattering time that is independent of S,

7 2 10 L}é‘tu;gzP_ . '/zy’za’l/“f ms
~4Ly 412/41);‘/%_}'/2 A ms (53)

We remark that vy corresponds to the power-weighted frequency of
the burst. As discussed above, the frequency components of one burst
have different scattering times, with T oc V2.

Interestingly, the frequency-dependent broadening of the brightest
pulse from FRB 181112 is consistent with . oc v=2 (Cho et al. 2020).
The rise time of the pulse is T ~ 15 us, and the scattering time is
T4 ~ 25 ps. The observed scattering can be an effect of propagation
through a cold magnetar wind. Substituting t ~ 15 us and g ~ 25
us into equation (53), one can estimate the wind Lorentz factor,

1/8 1/4 p—1 2 71 4 — —
Yw Z 60 L4é M}é PO / ! Oy l/8f i
~50 Ly Ny *2/7;‘ 47 (54)

This Lorentz factor is not far from y, ~ 10-30 estimated for
magnetar winds (Beloborodov 2020).

5 CONCLUSIONS

We have studied the modulation/filamentation instabilities of FRBs
propagating in a magnetar wind. We have modelled the wind as a
magnetically dominated pair plasma. We have focused on the regime
of subrelativistic electron motion, i.e. dimensionless-wave strength
parameter ap < 1.

The instability modulates the intensity of the radio wave, pro-
ducing radiation sheets perpendicular to the direction of the wind

MNRAS 511, 4766-4773 (2022)

magnetic field. As the FRB front expands outside the radius where
the instability ends, the radiation sheets are diffracted, effectively
spreading the arrival time of the FRB wave. The imprint of the
scattering on the time—frequency structure of FRBs depends on the
properties of the wind.

In a cold wind with By <« 1073 (B, = c,/c is the ratio of the
thermal velocity along the magnetic field lines and the speed of light),
the typical FRB scattering time is 4 ~ ps—ms at the frequency
v ~ 1GHz. Low frequencies have longer scattering times, with
T4 o< 2. Such frequency-dependent broadening has been observed
in the brightest pulse of FRB 181112 (Cho et al. 2020). From the rise
and scattering time-scales of the pulse, we estimate the wind Lorentz
factor, y,, = 50. Within the accuracy of this estimate (a factor of
a few), y is consistent with theoretical expectations for magnetar
winds (Beloborodov 2020).

In a warm wind with B, > 1073, the FRB scattering time can
approach 7. ~ ns. Then scattering produces a frequency modulation
of the observed intensity with a large bandwidth, Av ~ 1/t 2
100 MHz. The modulation bandwidth increases with the burst fre-
quency. Broad-band frequency modulations observed in FRBs (e.g.
Shannon et al. 2018; Hessels et al. 2019; Nimmo et al. 2021) could
be due to scattering in a warm magnetar wind.
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APPENDIX: SOLUTION OF EQUATIONS (35),
(36), AND (42)

We start with the case when the ponderomotive force is nearly
parallel to the background magnetic field. In a cold plasma, the
dispersion relation is given by equation (35). The growth rate of the
exponentially growing solution can be presented as

21_‘czold

e
L4y /14 o

where, Teoq = aowp/2 and ckegq = %W. The maximal
growth rate I'coq is achieved for ky, > keoa. In the top panel of
Fig. A1, we plot Im(Aw)/T ¢o1q as a function of ky/kco1q. The instability
develops for all k.

In a warm plasma, the dispersion relation is given by equation (36).
The solution can be presented as

(Aw) = — (A1)

warm

K2\’
(Aw)* = -T2 1—(1— - ) , (A2)
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where, Tyum = a2B2w}/8wy and  ckyam = aofy'wp/2. The
maximal growth rate I"y,m, is achieved for ky = kyam. In the bottom
panel of Fig. Al, we plot Im(A®)/T yum as a function of ky/kyam.
The instability develops for k, < \/Ekwa,m.

When the ponderomotive force is perpendicular to the background
magnetic field, the dispersion relation is given by equation (42). The
terms proportional to kz2 are negligibly small. Then equation (42)
is identical to equation (36) after the formal substitution ¢y — ¢ in
equation (36). The dependence of Im(Aw) on k, is analogous to the
bottom panel of Fig. Al.
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Figure Al. Imaginary part of Aw as a function of ky in a cold plasma (top
panel) and in a warm plasma (bottom panel). The ponderomotive force is
nearly parallel to the background magnetic field.
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