This article was downloaded by: [128.59.65.164] On: 11 August 2022, At: 14:30
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Stochastic Systems

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Theory of Auto-Scaling for Resource Reservation in
Cloud Services

Konstantinos Psychas, Javad Ghaderi

To cite this article:
Konstantinos Psychas, Javad Ghaderi (2022) A Theory of Auto-Scaling for Resource Reservation in Cloud Services. Stochastic
Systems

Published online in Articles in Advance 01 Feb 2022
. https://doi.org/10.1287/stsy.2021.0091

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022 The Author(s)

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

. STOCHASTIC SYSTEMS
Infcrms@ Articles in Advance, pp. 1-26

http://pubsonline.informs.org/journal/stsy ISSN 1946-5238 (online)

A Theory of Auto-Scaling for Resource Reservation in
Cloud Services

Konstantinos Psychas,? Javad Ghaderi®

@Department of Electrical Engineering, Columbia University, New York, New York 10027

Contact: kp2547@columbia.edu, () https: // orcid.org/0000-0002-5655-4868 (KP); jghaderi@columbia.edu,
https: // orcid.org/0000-0001-8038-550X (JG)

Received: January 5, 2021 Abstract. We consider a distributed server system consisting of a large number of servers,
Revised: August 25, 2021 each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different
Accepted: November 17, 2021 rewards arrive over time and require certain amounts of resources for the duration of their
Published Online in Articles in Advance: service. When a job arrives, the system must decide whether to admit it or reject it, and if
February 1, 2022 admitted, in which server to schedule it. The objective is to maximize the expected total
https:/doi.org/10.1287/stsy.2021.0091 reward received by the system. This problem is motivated by control of cloud computing

clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve
Copyright: © 2022 The Author(s) resources for various services, and rewards represent service priority of requests or

price paid per time unit of service. We study this problem in an asymptotic regime where
the number of servers and jobs” arrival rates scale by a factor L, as L becomes large. We
propose a resource reservation policy that asymptotically achieves at least 1/2, and under
certain monotone property on jobs’ rewards and resources, at least 1 —1/e of the optimal
expected reward. The policy automatically scales the number of VM slots for each job type
as the demand changes and decides in which servers the slots should be created in advance,
without the knowledge of traffic rates.

80pen Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International

License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this
work as “Stochastic Systems. Copyright © 2022 The Author(s). https://doi.org/10.1287/stsy.2021.
0091, used under a Creative Commons Attribution License: https:// creativecommons.org/licenses/
by/4.0/.

Funding: This research was supported by the National Science Foundation [Grants CNS-1717867 and
CNS-1652115].

Supplemental Material: The online appendices are available at https://doi.org/10.1287 /stsy.2021.0091.

Keywords: scheduling « loss systems « fluid limits « resource allocation « cloud computing

1. Introduction

There has been a rapid migration of computing, storage, applications, and other services to cloud. By using the
cloud (Amazon Web Services 2020c, Google Cloud 2020a, Microsoft Azure 2020), clients are no longer required
to install and maintain their own infrastructure. Instead, clients use the cloud resources on demand, by procuring
virtual machines (VMs) or containers (Amazon Web Services 2020a, Google Cloud 2020c) with specific configura-
tions of CPU, memory, disk, and networking in the cloud data center, depending on their needs.

A key challenge for the cloud service providers is to efficiently support a wide range of services on their physi-
cal platform. They usually offer quality of service (QoS) guarantees (in service level agreements) (Amazon Web
Services 2020d) for clients” applications and services and allow the number of VM instances to scale up or down
with demand to ensure QoS guarantees are met. For example, in Amazon EC2 auto-scaling (Amazon Web Serv-
ices 2020b), clients can define simple rules to launch or terminate VM instances as their application demand
increases or decreases. Various predictive and reactive schemes have been proposed for dynamically allocating
VMs to different services (Mao et al. 2010, Roy et al. 2011, Han et al. 2012, Jiang et al. 2013, Ghobaei-Arani et al.
2018, Qu et al. 2018); however, they mostly assume a dedicated hosting model where VMs of each application
run on a dedicated set of servers. Such models do not consider potential consolidation of VMs in servers that is
known to significantly improve efficiency and scalability (Song et al. 2013, Corradi et al. 2014). For instance, sup-
pose a CPU-intensive VM, a disk-intensive VM, and a memory-intensive VM are located on three individual
servers (for our purpose, we use the terms VM and container interchangeably). The cloud operator can pack
these VMs in a single server to fully use its resources along CPU, disk, and memory, and then the two unused
servers can be used to pack additional VMs and serve more requests. However, in the absence of an accurate

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
2 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

estimate of the workload, or when the workload varies over time and space, it is not clear how many VM instan-
ces an application launches and which VMs must be packed in which servers to ensure efficiency.

In this paper, we consider a cloud data center consisting of a large number of servers. As an abstraction in our
model, a VM is simply a multidimensional object (vector of resource requirements) that should be served by one
server and cannot be fragmented. Each server has a limited fixed capacity on its available resources (CPU, memory,
disk, networking). VM requests belong to a collection of VM types, each with a specific resource requirement
vector, and a specific reward that represents its service priority or the price that will be paid per time unit of ser-
vice by the client. When a VM request arrives, we must decide in an online manner whether to accept it, and, if
so, in which server to schedule it. The objective is to maximize the expected total reward received by the system.
Finding the right packing for a given workload is a hard combinatorial problem (related to multidimensional
knapsack; Kellerer et al. 2004). The absence of accurate estimate of workload (VM traffic rates and service dura-
tions) makes the problem even more challenging. For instance, consider a simple scenario with three types of
VMs with the following (CPU, memory) requirement and rewards: (0.6, 0.6) with reward 4, (0.7, 0.1) with reward
3, and (0.1, 0.7) with reward 3. Server’s capacity is normalized to (1,1). Hence, a server can accommodate a single
(0.6, 0.6) VM or pack one (0.7, 0.1) VM and one (0.1, 0.7) VM together. Suppose there is one empty server, and a
(0.6, 0.6) VM request arrives. Should we admit this request and receive a reward of 4, or reserve the server to
pack one (0.7, 0.1) VM and one (0.1, 0.7) VM in the future, which can potentially yield a maximum reward of 6?

This problem is related to the online multiple knapsack problem, in which there is a set of bins of finite capacity,
items with various sizes and profits arrive one by one, and the goal is to pack them in an online manner into the
bins so as to maximize their total profit. In general, this problem does not have any competitive (constant approx-
imation) algorithm (Marchetti-Spaccamela and Vercellis 1995), even when items are allowed to be removed from
any bin at any time. Hence, proposed competitive algorithms focus on more restricted cases of the problem
(Iwama and Taketomi 2002, Cygan et al. 2016).

In this paper, we study a stochastic version of the problem in an asymptotic regime, where the number of serv-
ers L is large, requests for VMs of type j arrive at rate A;L, j=1, -+,], and each requires service with mean dura-
tion 1/ ;- The (normalized) load of the system is defined as p := (A;/ 1, j=1, - ,]). This is the heavy-traffic regime
in loss networks (Whitt 1985, Kelly 1991, Hunt and Kurtz 1994, Hunt et al. 1997, Mukhopadhyay et al. 2015,
Xie et al. 2015, Karthik et al. 2017), and it has been shown that algorithms with good performance in such a
regime also show good performance in realistic systems and arrival rates. We do not make any assumption on the
value of p; however, notice that the interesting scenario occurs when not all VM requests can be scheduled (e.g., p >
p, for a critical load p,. on the boundary of system capacity; see Remark 3), in which case a fraction of the traffic has
to be rejected even by the optimal policy. We propose an adaptive reservation policy that makes admission and
packing decisions without the knowledge of p. Packing decisions include placement of admitted VM in one of the
feasible servers, and migration of at most one VM across servers when a VM finishes its service.

In this paper, we use the term migration in a generic way to describe the transfer of a VM from a server to
another without interrupting its processing. In practice, this can be a live migration (Jo et al. 2020, Le 2020), or in
the case of stateless services (Amazon 2021, RedHat 2021), it can translate to termination of the VM instance and
launching another one in a different server.

1.1. Related Work

There is classical work on large loss networks (Kelly 1991, Hunt and Kurtz 1994, Bean et al. 1995, Hunt et al.
1997), where calls with different bandwidth requirements and priorities arrive to a telecommunication network.
Trunk reservation has been shown to be a robust and effective call admission policy in this setting, in which each
call type is accepted if the residual link bandwidth is above a certain threshold for that type. The performance of
trunk reservation policies has been analyzed in the asymptotic regime where the call arrival rates and link’s
capacity scale up by a factor N, as N — oo. This is different from our large-scale server model, where the server’s
capacity is “fixed” and only the number of servers scales (a.k.a. system scale-out as opposed to scale-up). This
makes the problem significantly more difficult, because, due to resource fragmentation when packing VMs in
servers, the resources of servers cannot be viewed as one giant pool; hence, our policy not only needs to make
admission decisions, but also decide in which server to place the admitted VM. Moreover, VMs have multidi-
mensional resource as opposed to one-dimensional calls (bandwidth). If we restrict that every server can fit
exactly one VM, our policy reduces to classical trunk reservation.

There has been past work on resource allocation in the cloud (Maguluri et al. 2012, 2014; Stillwell et al. 2012;
Zhao et al. 2015; Psychas and Ghaderi 2017, 2018; Shi et al. 2018) and stochastic bin packing (Gupta and Radova-
novic 2012, Stolyar 2013, Stolyar and Zhong 2013, Ghaderi et al. 2014, Stolyar and Zhong 2015); however, their
models or objectives are different from ours. The works of Maguluri et al. (2012), Psychas and Ghaderi (2017),

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 3

Maguluri et al. (2014), and Psychas and Ghaderi (2018) consider a queueing model where VM requests are placed
in a queue and then served by the system. In this paper, we are considering a loss model without delay; that is,
each VM request upon arrival has to be served immediately, and otherwise it is lost. The recent works of Stolyar
and Zhong (2015), Stolyar (2013), Stolyar and Zhong (2013), and Ghaderi et al. (2014) study a system with an infi-
nite number of servers, and their objective is to minimize the number of occupied servers. The auto-scaling algo-
rithm proposed by Guo et al. (2018) also assumes such an infinite server model. These are different from our set-
ting where we consider a finite number of servers and study the total reward of served VMs by the system, in
the limit as the number of servers becomes large. In this regime, we have to address complex fluid limit behav-
iors, especially when the load is above the system capacity and VMs have different priorities.

The works of Xie et al. (2015), Karthik et al. (2017), Mukhopadhyay et al. (2015), and Stolyar (2017) study the
blocking probability in a large-scale server system where all VMs have the same reward. The work of Stolyar (2017)
assumes a subcritical system load and only shows local stability of fluid limits. The works of Xie et al. (2015), Kar-
thik et al. (2017), and Mukhopadhyay et al. (2015) show that, under a power-of-d choices routing, the blocking
probability drops much faster compared with the case of uniform random routing. However, there is no analysis
of optimality, especially in a supercritical regime where even the optimal policy has a nonzero blocking probabil-
ity. Moreover, such algorithms treat all VMs with the same priority (reward) when making decisions, thus a low
priority VM can potentially block multiple high priority ones.

We remark that in real clouds, servers are monitored periodically, for resource management, security, recov-
ery, billing, and so on (Aceto et al. 2013, Apache Software Foundation 2019); hence, scheduling decisions can be
made based on available information about the global system state.

1.2. Contributions

We propose a dynamic resource reservation policy that makes admission and packing decisions based on the
current system state and prove that it asymptotically achieves at least 1/2, and under certain monotone property
on VMs’ rewards and resources, at least 1 —e™! of the optimal expected reward, as the number of servers L — co.
Furthermore, simulations suggest that, for real cloud VM instances, the achieved ratio is in fact very close to one.

The main features of our policy and analysis technique can be summarized as follows.

e Dynamic Reservation. The policy reserves slots for VMs in advance. A slot for a VM type will reserve the
VM'’s required resources on a specific server. An incoming VM request then will be admitted if there is enough
reservation in the system, in which case it will fill an empty slot of that type. The policy effectively tracks a low-
complexity greedy packing of existing VM requests in the system while maintaining only a small number g(L) =
w(logL) of empty slots (e.g., (logL)'**), for VM types that have high priority at the current time. The reservation
policy is robust and can automatically adapt to changes in the workload based on requests in the system and new
arriving requests, without the knowledge of p.

e Analysis Technique. Our proofs rely on analysis of fluid limits under the proposed policy; however, a major
difficulty happens when the workload is above the critical load. In this regime the slot reservation process
evolves at a much faster time-scale compared with the fluid-limit processes of the VMs and of the servers in dif-
ferent packing configurations in the system. To describe the behavior of fluid limits, we devise a careful analysis
based on averaging the behavior of fluid-scale process over small intervals of length w(logL/L). We then introduce
a Lyapunov function based on a linear program. It is designed to have a unique maximizer at a global greedy solu-
tion and determines the convergence properties of our policy in steady state.

1.3. Basic Mathematical Notations

For two positive-valued functions x(n) and y(n), with n € IN, we write x(n) = o(y(n)) if lim, e x(1)/y(n) = 0, and
x(n) = w(y(n)) if y(n) = o(x(n)). 1(-) is the indicator function. The term e; denotes the jth basis vector. The terms
f(t7) and f(t*) are the limits of f(x) as x — t from left and right, respectively, R is the set of nonnegative real
numbers, and (-)* = max{-,0}.

2. Model and Definitions

2.1. Cloud Model

We consider a collection of L servers denoted by the set £. Each server £ € £ has a limited capacity on different
resource types (CPU, memory, disk, networking, etc.). We assume there are n > 1 types of resource.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
4 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

2.2. VM Model
There is a collection of VM types denoted by the set 7. The VM types are indexed in arbitrary order from one to
J. Each VM type j requires a vector of resources R; = (RE, -, R]’.’), where R}’ is its requirement for the dth resource,
d= 1/ e N

VMs are placed in servers and reserve the required resources. The sum of reserved resources by the VMs
placed in a server should not exceed the server’s capacity. A vector k = (k;, -+, kj) € 7/, is said to be a feasible
configuration if the server can simultaneously accommodate k; VMs of type 1, k, VMs of type 2, ---, kj VMs of
type J. We use K to denote the set of all feasible configurations (including the empty configuration 0y). The num-
ber of feasible configurations is denoted by C:= |K].

We define K7’ to be the set of feasible configurations that include only VMs from a subset of types J' C 7,
that is,

K7 ={keK:k=0, Vje T} 1)

We use K < oo to denote the maximum number of VMs that can fit in a server. We use k’(f) = k to denote that, at
time t, server £ € £ has configuration k.

We do not necessarily need the resource requirements to be additive; only the monotonicity of the feasible con-
figurations is sufficient, namely, if k € K, and k" < k (component-wise), then k” € K. This will allow subadditive
resources as well, when the cumulative resource used by the VMs in a configuration could be less than the sum
of the resources used individually (Rampersaud and Grosu 2014).

2.3. Job and Reward Model
Jobs for various VM types arrive to the system over time. We can consider two models for jobs:
i. Revenue interpretation: a job of type j is a request to create a new VM of type j.
ii. Service interpretation: a job of type j is a request that must be served by an existing VM of type j in the system.

To simplify the formulations and use one model to capture both interpretations, we assume that each VM can serve
at most one job at any time. As we will see, our algorithm works based on creating reserved VM slots in advance.
Hence, serving a newly arrived type j job can be interpreted as deploying a VM of type j in its reserved slot (revenue
interpretation), or assigning it to an already deployed VM of type j in the slot (service interpretation).

Each job type j is associated with a reward u; which represents its priority (service interpretation) or price paid
per time unit of service (revenue interpretation).

We define the feasi@le job placement k= (lAcl, ,IAq) to be the set of jobs that are simultaneously being served in a
single server, where k; corresponds to the number of type j jobs. By the definition of server conﬁguraﬁon it holds
that k < k, for some k € K. Hence, k k can be viewed as the reserved VM slots, where k; — k is the number of

reserved type j VM slots. We use k (t) k, when at time ¢, the job placement in server £ € L is k.

2.4. Traffic Model

Jobs of type j arrive according to a Poisson process of rate A;L, for a constant A; > 0. Once scheduled in a server
(more accurately, in a reserved slot of type j), a job of type j requires an exponentially distributed service time
with mean 1/ 1, and generates reward at rate 1; during its service. We define the normalized workload of type j

jobs as p; := /\-/y]. and the workload vector p = (pj,j eJ).

Definition 1 (Configuration Reward). The reward U(k) of a configuration k € K is defined as its total reward per
unit time when its slots are full, that is, U(k) := Z] 1uik;.

Definition 2 (Configuration Ordering). For two vectors k, k' € K, we say k > K/, if either U(k) > U(k"), or U(k) =
U(k) and considering the smallest j for which k; # ki, ki > ki.
Definition 3 (MaxReward). Given a subset K; C K, the maximum reward configuration of K; is defined as
MaxReward(Ks) := arg max u(k),
€K

where ties are broken based on the ordering in Definition 2.

Definition 4 (System State Variables). Consider the system with L servers. We use XL (t) to denote the number of
servers assigned to configuration k € I at time f. To distinguish between servers assigned to the same configura-
tion k, we index them from one to XL(t), starting from the most recent server assigned to k (without loss of
generality).

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 5

The system state at time ¢ can then be described as

SL(H) = (D), K (1), (1)), € € L), 2.2)

where for each server £ € £, k() € K is its configuration, ﬁ[(t), with 1A<[(t) <K'(p), is its job placement, and c‘(f) is
its index among the servers with configuration k'(#).
The number of jobs of type j in the system at time f is given by

YHD) = (ZE] k(). 2.3)

We also define the vectors Y(t) = (Y]L(t), j€J), and X (t) = (XL(t), k € K). Clearly ZkE,CXlL((t) =L because there
are L servers.

Table 1 summarizes the essential notations used in the model and rest of the paper.

2.5. Optimization Objective
Given a Markov policy 7, we define the expected reward of the policy per unit time as

F*(L) = lim I PRAGITE (2.4)
jeq
Our goal is to maximize the expected reward, that is,
maximize,F™(L), (2.5)

where the maximization is over all Markov scheduling policies 7. Hence, when jobs are requests for VMs, this
optimization is a revenue maximization, whereas when jobs are requests to be served by existing VMs, it is a
weighted QoS maximization where each service is weighted by its priority.

Without loss of generality, we can assume that under any Markov policy, the system state S™(t) is a
continuous-time irreducible Markov chain over a finite state space." It is also aperiodic. Hence, the stationary dis-
tributions of X(t) and YL (t) exist, as t — co.

We study the problem (2.5) in the asymptotic regime where the number of servers L — oo, whereas the job
arrival rates are AL j € J. We do not make any assumption on the values of p;. Let F°P'(L) be the optimal expected
reward in optlmlza’aon (2.5). Then policy 7t is asymptotically y-competitive if, for a positive constant y <1,

F*(L)
i Inf Fomi(ry = 7

As we will see, to show the asymptotic performance of our algorithm 7, we will find a lower bound on the scaled
expected reward £ F"(L) and an upper bound on { F°PY(L), as L — co.

Table 1. Notations

Notation Definition

J,] Set of all VM types, number of VM types

i, K7’ Set of feasible configurations, set of feasible configurations with VMs from subset .7’
C, C;f) Cardinality of feasible configuration set, cardinality of greedy configuration set
k, lf[(t) A feasible configuration, a feasible configuration assigned to server ¢ at time ¢
k, k () A job placement, jobs in server ¢ at time ¢

K Maximum number of jobs in any feasible configuration

L, L Set of servers, number of servers

cl(t) Index of server ¢ among the servers with configuration K (1)

sty System state at time #: ((k'(t), K (1), (), Ce L)

Xkt Number of servers with assigned configuration k in a system of L servers
YL(t) Number of VMs of type j in a system of L servers

pj Workload of type j VMs

ol Greedy configuration set

K ith global greedy conflguratlon defined in Proposition 1

K’ ith configuration in K%, based on their reward in descending order

Jli] Set of VM types in iteration i of GPA (J[1] =

k(1] Configuration found by GPA at iteration i

g(L) Reservation factor (ideal number of empty slots)

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
6 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

Let X*(c0) and Y'(c0) be random vectors with the stationary distributions of X"(t) and Y’(t), respectively, as
t — co. The following observations will be useful when working with X"(c0) and Y*(c0) and their scaled versions
1XL(oo) and 1YL(oo) If Y(t) is the number of jobs in an M/M/co system in which every job is admitted, then
YL(OO) is stochastically dominated by Y(c0) whose stationary distribution is Poisson with mean Lp (Bolch et al.
2006). Also, the scaled stationary random variables satisfy ; Ix(e0)<1and ! YL(oo) <1 Y(oo) This implies that the
sequence of scaled random variables is tight (Billingsley 2008); therefore, the (random) limits x(co0):=
limy e 1 X"(00), and y(oo) :=lim; 1 Y"(c0) exist along a subsequence of L. The limits satisfy xi(co)>
0, Zkelcxk(oo) =1, and y(oo) =p Y(OO) = Zkelcxk(oo)k'

To unify the algorithm descriptions for revenue maximization and QoS maximization, in the rest of the paper,
we use the term “slot” of type j to refer to the resource (equal to a VM of type j) reserved for one job of type jin a
server. Filled slots have jobs already in them, whereas empty slots could accept jobs. Therefore, the term configu-
ration applies to all the slots in a server, whereas placement applies to the filled slots in the server.

3. Static Optimization and Its Greedy Solutlon
Given a workload reference vector Y = (Y ,j€T), let F*(L, Y) be the optimal value of the following linear program:

max Z u;Y; (3.1a)
st Y <Y, VjeJg (3.1b)
Z ka] > Y]‘, vVieJ (3.10)
kelC
ST X =L (3.1d)
kel
X 0, Vkek, (3.1¢)

where Y is the vector of number of jobs of eaLch type in the system, and X is the vector of number of servers
assigned to each configuration. If we choose Y = pL, this optimization will provide an upper bound on Optimi-
zation (2.5), that is, F™(L) < F*(L, pL), for any Markov policy 7. The interpretation of the result is as follows. The
average number of type-j jobs in the system cannot be more than its workload (Constraint (3.1b) with f/]» =Lp,),
and furthermore, it cannot be more than the average number of slots of type j in the servers (Constraint (3.1c§).
The sum of number of servers in different configurations is L, so their average should also satisfy (3.1d).

As L — oo, the normalized objective value { F*(L, pL) — U*[p], which is the optimal value of the linear program:

max > ujy; (3.2a)

X,y]
st yi<pj, vieJ (3.2b)
Dkxczy, Vjied (3.20)

ke
Sae=1 (3.2d)

ke
x>0, VkeK, (3.2¢)

where xi can be interpreted as the ideal fraction of servers that should be in configuration k when L is large.
Hence, one can consider a static reservation policy where the cloud cluster is partitioned and [xiL| servers are
assigned to each nonzero configuration k € K (and the rest of servers can be empty to save resource or used to
serve more jobs). Then once a type j job arrives, it will be routed to an empty slot of type j in one of the servers, if
any; otherwise, it is rejected. This will provide an asymptotic optimal policy because it achieves the normalized
reward U*[p], as L — oo.

However, there are several issues with this approach: (i) solving Optimization (3.1) or its relaxation (3.2) has a
very high complexity, as the number of configurations is exponential in the number of job types J, and (ii) it
requires knowing an accurate estimate of the workload p that might not be available. Inaccurate estimates of
workload can lead to poor performance for such policies; Key (1990) illustrates that static reservation policies in
classical loss networks can give very poor performance. Even if we have an estimate of the workload and
approximate the solution to (3.2), to handle time-varying workloads, the new solution may require rearranging a
large number of VMs and jobs to make their placements match the new solution. This is costly and also causes
interruption of many jobs in service.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 7

We first address the complexity issue, by presenting a greedy solution for the optimization, and analyze its
asymptotic performance.

3.1. Greedy Solution
We describe a greedy algorithm, called the greedy plucement algorithm (GPA), for solving Optimization (3.1).

GPA takes as input the workload reference vector Y , and returns an assignment vector X" that indicates
which configurations should be used and in how many servers. The assignment consists of at most] configura-
tions, which are found in | iterations. In each iteration 7, GPA maintains a set of candidate job types J[i] and
finds a configuration k[{]. Initially J[1] = J. In iteration i:

1. It finds k[i] = MaxReward(K’1), which is the configuration of highest reward among the configurations that
have jobs from the set 7[i], according to Deﬁmtlon 3.

2. It computes the number of servers Xk that should be assigned to k[i], until at least one of the job types j, for
which k;[i] > 0, has no more jobs left, or there are no more unused servers left. We refer to this job type as j*.

3.1t then creates J|[i + 1] by removing job type j* from J[i].

Algorithm 1 (Greedy Placement Algorithm (GPA))
1: function GPA(Y)

r—Y > tracks the vector of number of jobs left
N«L > tracks the number of servers left
i—1,J1]=J

while 7[i] # o do 4
K[i] « MaxReward(K7)
J* e argming [ﬁ] > break ties arbitrarily

Xk[i] — mln(l'%],N)

9: I« r—f(k[,-]k[i]

10: N« N - Xy

1. Jli+1] < Jll-{}

12: ie—i+1

13: return ka,j: 1, -,]

A pseudocode for GPA is given by Algorithm 1. We use the vector X" = (Xi,k € K) to denote the output of
GPA, which has at most] nonzero elements corresponding to k[i],i=1,...,].

Remark 1. The expression MaxReward finds the maximum reward configuration of a subset of job types, which is
equivalent with unbounded Knapsack problem (unbounded number of items for each type). This problem is tractable with
Pseudopolynomial algorithms to solve it exactly (Martello and Toth 1990, Andonov et al. 2000) or fully polynomial
approximation algorithms (Ibarra and Kim 1975). GPA needs to solve at most | instances of this problem. Note that the
number of different instances of the problem is bounded, and we can compute MAXREWARD for all of them offline as they are
not workload dependent. This is in contrast to Optimization (3.1), which is equivalent to the multi knapsack problem that is
strongly NP-hard (Kellerer et al. 2004) and requires resolving when workload reference Y changes.

We next define the limit of X" /L for input v = Lp, as L — oo, which we refer to as the global greedy assignment.
To describe this assignment, we first define a unique ordering of the job types through the following proposition.

Proposition 1. For any permutation o= (01,02,...,0)) of job types in J, let Jj:={oj,...,05}, and K =
MaxReward(K77). Given a workload p, there is a unique permutation ¢ = (01,02, ...,07) of]ob types, such that the follow-
ing holds: .

1.Foranyje J, kg].) > 0, and there are constants z0)[p] > 0, such that

J
b, = KO, 63)
aE
2. For any two indexes j,j’ € J, withj <, if
b,y = SHO0p), (34)
T|A

then we should have o; < 0.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
8 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

Proof. See Online Appendix A. O
The global greedy assignment is defined as follows.
Definition 5 (Global Greedy Assignment). Define the index I, < | for which

-1 L
Z Z[pl <1, Zz(’)[p] >1
with the convention that I, =] + 1 if Z z9[p] < 1. The global greedy assignment x&[p] is defined as

z20[p], fori<lI,
l(f(l)) [p] = 0, fori>1I, (3.5)
1- Z; %xi(gw))[p fori=1I,,

where k" and z9[p],i=1,...,], were defined in Proposition 1, and kY=o (empty configuration). We call the
ordered configurations k U z' =1,...,]+1 the ”global greedy configurations” of workload p. For any configura-
tion k € K not in global greedy conflguratlons, xl(f [p] = 0. When it is clear from the context, the dependency [p]
will be omitted.

Because global greedy configurations k', i = .,J+1 depend on p, the following configurations will come
in handy when the analysis needs to be agnostic to p.
Definition 6 (Greedy Configurations). The greedy configuration set K¢ includes all configurations that are output
of MaxRewarp(k7") for any J’ C J. That is the set of all possible configurations that may be assigned by GPA

and the empty configuration. We define C® .= |IC(3)|. We enumerate configurations of K8 as 1_<(i), fori=1,...,C®,

such that k(ll) > k(b)

Notice that {k(i), j=1,...,J+1} ¢ {1_<(i),z' =1,..., C@}, and their order is consistent with Definition 2, as defined
later.

—(C®
if iy < iy (according to Definition 2), and k(c) = 0.

Definition 7 (Mapping Global Greedy to Greedy). For any j,j’ €{1,...,]+1}, with j<j/, there are indexes

i, 8 € {1 .,C®}, such that k¥ = P), k) = R(gf'), and g; < g;. We also define C(,;g) := g1, to be the index for which
K@ = k(C*)

Example 1. We pause to illustrate the model and definitions thus far through an example. Consider a server with
two resources. The size of the first resource is five, and the size of the second one is four, so its resource vector is
R = (5,4). We consider two job types, one with resource requirement R; = (2,1) and reward u; = 10, and the other
one with resource requirement R, = (1,2) and reward u, = 1. In this case, the feasible configurations given in
descending order of their rewards are K ={(2,1),(2,0),(1,1),(1,0),(0,2),(0,1),(0,0)} and C:=|K|=7. Further-
more, K = 3 because the maximum number of jobs in any feasible configuration is three. If we consider the subset
of VM types J’ = {1}, then K7 = {(0,0),(1,0),(2,0)}, which by definition has all the configurations of K with
ky = 0. The greedy configuration set is K® ={(2,1),(2,0),(0,2),(0,0)}, because by Definition 6:

MaxReward(K?) = (2,1) = i
MaxReward(K™) = (2,0) = i
MaxReward(K*?) = (0,2) = i
MaxReward(KY) = (0,0) = i

We can also enumerate the global greedy configurations k" defined in Definition 5. Depending on p, = 2p, or
py <2p,, we have one of the following cases, respectively:

o Case 1: k" =K = (2,1), k? =&? = 2,0), k® =K* = (0,0),

o Case2: kM = K" = (2,1), k? =&¥ = (0,2), K® = K* = (0,0).

Possible configurations k[i] returned by GPA are the same as the cases shown above, dependmg on Yy >2Y,
or Yy < 2Y5, with the difference that they are not defined for i = 3 and they depend on GPA’s input Y, as opposed
to k' which depends on p.

The following proposition states the connection between the GPA and global greedy assignment x(g)[.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 9

Proposition 2. Let X' = GPA(Lp). Then
oL

X
Jim Tk =x¥[p], VkeKk, (3.6)

where xs) [p] is the global greedy assignment of Definition 5.
Proof. See Online Appendix B. O

Clearly, xX®)[p] is a feasible solution for Optimization (3.2), and it is easy to see that its corresponding objective
value is

))i
u®p] := > u; > KOxS)[p 3.7)
j=1 =1

It is also easy to see that in Optimization (3.2), we can replace the inequality in (3.2c) with equality, and the
optimal value will not change. Let x*[p] be one such optimal solution to Optimization (3.2) for workload p. Then
the optimal objective value is

U[pl == D> u; > kixi[pl. (3.8)

j€J keK
The following corollary is immediate from Proposition 2.

Corollary 1. Let FSPA(L, pL) be the total reward of GPA in the system with L servers given reference workload V"= pL.
Then

i FPAL, pL) _ U9p]
L—w F5(L,pL) U*[p]

This theorem bounds the previous ratio.

Tpeorem 1. The global greedy assignment x®[p] provides at least 1 of the optimal normalized reward, that is,
li;[”]ZE, Vp>0.

Proof. Consider the permutation of job types according to Proposition 1. By the global greedy definition and the
feasibility of x*[p], for any job type o;,j=1,...,I,—1, we have

PIRATES Z xS =p,, (3.9)

ke

from which it follows that

I,-1 -1
D0 D Hiekoyto, < Z S kD, = Z Po, i, < U [p]. (3.10)
j=1 kek j=1 =1

Also for the job types o;, forj=1,,...,], we have

J
ZZ xikc’}u‘f’/ Z xl(ZkC’/uCr < @

j=I, ke kek j=I,

b
argmaka U, (—)Zkg") U,
ke 7=l 7=l

(3.11)
<u%pl.

where (a) is because of the fact that >3, _-xi =1, (b) is by the definition of k", and (c) is because U®[p] is a con-
vex combination of rewards of k(l),. . .,k(l"), which all have a reward no less than that of k"). Then adding (3.10)
and (3.11), we get

]
= Z Xipkoy o, < 2U9[p]. [
j=1 keK

Theorem 1 can be improved when job types and rewards satisfy a monotone greedy property described next.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
10 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

Definition 8. We say the job types and the rewards have monotone greedy property if for any two instances of
Optimization (3.2) with p, > p,, U®[p,;] > U®)[p,].

It is easy to verify that any system with two job types always has the property in Definition 8. However, in
general, the property depends on the profile of jobs types and their rewards and might not hold for adversarial
profiles. The next theorem describes the improved bound when the monotone greedy property holds.

Theorem 2. If job types and rewards satisfy the monotone greedy property, then, for any p, u* 1>1-1/e.

Proof. Define a workload p* := >, . kxi[p]. We notice that U*[p] = U*[p*] in LP (3.2). Also by the monotone
greedy property, U®[p] > U(3 [p*], because p > p*. Hence, it suffices to prove the theorem for instances where
p = p* or in other words, instances for which, in the optimal solution, workload fits exactly in servers.

Consider now the projection of the workload p*=p onto the global greedy configuration space

{k(’)[|,i=1,...,]}. Because these configurations are independent, we can write
p=p= Zz(’) 1k?, (3.12)
for z(’)[] introduced in Proposition 1. For notational compactness, define g;=z?[p], i=1,...,], and
pi=x ,))[p] i=1,...,1,,and let WO := U(k?) = Z] U Kl (1)
Then,

J

>gW = Zu quk(")< Zpg U,

= ’ P . (3.13)
< Zk(l) =W,

Inequality (a) is because Z lqgk(f) <P, and Inequality (b) is because we assumed there is an assignment that
can completely accommodate workload p, and hence, p, forj=i,...,J. If we remove all jobs with types 1,...,i—1
from assignment x*, the configurations used in the resultmg ass1gnment belong to the subset K%~} and K% is

the configuration with the highest reward from this set.
An equivalent representation of (3.13) is that, for some constants b;, 0 <b; <1,i=1,...],

bW = Z gW?, and (b; — g))W" = b WD, (3.14)
j=i

For completeness, we also define by,; = 1. Based on this representation, and using (3.12) and p = p* by assump-
tion, we get
. ' 1o by G
uslp] _ 2, pW" _ APl bjs1
Ulpl sl qWo by W(l) (3.15)
Ip i-1p. _ 4. Iy

pir1bi—aj pPi

— =1- 1--).
SR

i=1 Vi j=1

The right-hand side is minimized if b, = 1,i=1,...,1,, because p; > 0. Then given le."zlp,» =1, the expression is
minimized for p; =1/I,,i=1,...,1,, and its minimum value is 1 - (1 - i) S1-¢l. O

Proposition 3. The worst-case ratio of U®)[p]/U*[p] is not greater than 1 —1/e.

Proof. We construct an adversarial example that achieves this bound. See Online Appendix C. O

Hence, the global greedy assignment achieves a factor within 1/2 to 1 —1/e of the optimal normalized reward
in “all” cases. Furthermore, the bound 1-1/e is tight when monotone greedy property holds. The assignment
might actually achieve 1—-1/¢ in all the cases but requires a more careful analysis. In view of Corollary 1,
GPA(pL) asymptotically achieves the same factor of the optimal reward. In simulations in Section 7, based on
real cloud VM instances, we were not able to find any scenario where the ratio is below 1—1/e, and in fact the
ratio is much better (= 0.97 on average).

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 11

However, GPA(pL) requires the knowledge of p. In the next section, we propose a dynamic reservation algo-
rithm that is appropriate for use in online settings without the knowledge of p. Its achievable normalized reward
still converges to that of the global greedy assignment and it can also adapt to changes in the workload.

4. Dynamic Reservation Algorithm
We present a dynamic reservation algorithm (DRA), which makes admission decisions and configuration assign-
ments, without the knowledge p. We first introduce the following notations:

e Recall the indexing of servers in the same configuration as in Definition 4. We use {y; to refer to the server with
configuration k and index i.

e A key parameter of DRA is the reservation factor g(L). It is the number of empty slots (safety margin) that the
algorithm ideally wants to reserve for each job type if possible. For later analysis, we assume that g(L) = w(log (L)),
and is o(L). For example, g(L) = log1+b(L) for any constant b > 0 works.”

The configuration assignment occurs at update times. To simplify the analysis, we consider update times to be
times when a job is admitted to or departs from the system. To avoid preemptions, only servers that are empty
(have no jobs running) can be assigned to a new configuration.

At update time ¢, DRA updates the workload reference vector Y (t) as

\'a t) =Y () +g(L)1, (4.1)

where YE(t) in the vector of jobs in the system, after any job admission or job departure at time t. The parameter
g(L) is the reservation factor as defined earlier.

Then DRA classifies the servers into two groups: Accept Group (AG) and Reject Group (RG).

Servers in Accept Group keep their current configurations and DRA attempts to have all their slots filled by
scheduling new jobs in them, whereas servers in Reject Group do not have desirable configurations and DRA
attempts to make them empty, by not scheduling new jobs in them and possibly migrating their jobs to servers
in Accept Group, so they can be reassigned to other configurations.

A pseudocode for DRA is given in Algorithm 2. It has three main components that we describe in detail.

Classification and Reassignment Algorithm (CRA)
This is the subroutine used by DRA to classify servers and possibly reassign some of them. It attempts to greedily
reduce the dAiEparity between the configuration assignment in the system X"(t) and the output of GPA
X'(f) = GPA(Y (t)). To do so, it assigns ranks to servers in different configurations, which range from 1 to J + 1.
Ranks will later help us define which servers are in Accept Group and which ones are not. Initially, all servers
are assigned rank] + 1. Any empty server of rank] + 1 can be reassigned to reduce the disparity between X*(t)
AL . .

and X" (t). We use £, to denote one of empty rank | + 1 servers, and if no such server exists £, = .

Iterating over conflguratlons k[i] found by GPA, fori=1,...,J:

o If ka < Xk[l], it increases Xk[l by reassigning any ¢, to k[i], until either (i) it matches Xim, or (i) e = 0. In
either case, all servers of configuration k[{] get rank 7.

o If XL (6= Xk it assigns rank 7 to all servers of configuration k1] w1th indexes greater than X} i) — Xk[l](t)

We use I*(t) to denote the first i for which Xy, cannot be matched to Xk[l], that is, the first i at which £, = o. If
all configurations are matched, then I*(t) =J. At the end of CRA, servers with rank greater than I*(t) and index 1
in any configuration are classified as Reject Group, whereas the rest of the servers are classified as Accept Group.

See Figure 1 for an illustrative example for the state of CRA.

Scheduling Arriving Job

When DRA needs to schedule an arriving job of type j, it places the job in one of the servers of Accept Group
with empty type j slot. If no such server exists, the job is rejected. We use AG; to denote one of the servers of
Accept Group with empty type j slot. If no such server exists AG; = o.

Migrating Job After Departure
Let RG; denote the highest rank server among the Reject Group servers with type j jobs. If no such server exists,
RG]' =0a.

If a type j job departs from a server in Accept Group, DRA migrates one of the type j jobs from RG; to the slot
that emptied because of the departure, if RG; # o.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
12 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

Figure 1. State at the End of CRA

Ln i Servers of rank | + 1 :-J - g -
-

............

- . i
— i
= b

—

w= oW

—
=
—_—

w1
= ™ K[2] Serversof k[I* + 1]
rank 1 toJ

Notes. Servers in each configuration are stacked from largest to smallest index; k[1], ..., k[]] are the configurations returned by GPA. The dashed
boxes indicate how many more servers need to be reassigned to a respective configuration to match the solution of GPA (horizontal line). I* is
the first / for which Xﬁl 7 < Xk[i] at the end of the procedure. Orange servers belong to Reject Group.

Initialization

Initially servers have no indexes or classification (and might not even have configurations), so we need to specify
how the system state is initialized (say at time 0) under DRA. If servers do not have configurations, but have jobs
in them, we initialize k’(0) = k' (0), that is, the configuration of each server ¢ is set to its job placement. If servers
have configurations, we keep their existing configuration. Indexing among the servers of a configuration can be
arbitrary. We then run CRA that performs classification and reassigns any possibly empty servers.

Example 2. Consider the servers and jobs in Example 1. According to the initialization algorithm above, if a
server has one job of each type and no explicit configuration assigned, then the initial configuration of the server
will be (1, 1). Because (1, 1) is not in the greedy configuration set, it will never be one of configurations k[i]
returned by GPA, and hence its server will always have rank | + 1 = 3 until it empties and gets reassigned.

Algorithm 2 (DRA: Dynamic Reservation Algorithm)
1: function CRA(YL, Xty
2: X" < GprA (YL)

3 Set rank of all servers to | + 1.

4 IFe]

5: fori=1to/do > J configurations found in GPA
6: Z«—0,c« Xﬁ[ﬂ > ¢ is the index of server
7 while Z < XIL([Z.] do

8 Z—7Z+1,c—c-1

9 if c <0 then

10: if {, #+ o then > If empty rank | + 1 server exists.
11: Set rank of £, to i.

12: Reassign configuration of ¢, to k[i].

13: else

14: I* « min(I*,7)

15: else

16: Set rank of £y to i. > Server in configuration k[7] with rank c.
1: procedure ARRIVAL(j, t) > Type-j arrival at time ¢
2: if AG; # o then

3: Schedule job in AG;.

4: CRA (Y(t) + g(L)1, X5 (1))

5: else

6: Reject job.

1: procedure DEPARTURE(], t) > Type-j departure at time ¢
2: if RG; # o and the slot emptied is in Accept Group then

3: Migrate the job in RG; to the slot that emptied.

4: CRA (YE(t) + g(L)1, XE(H)

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 13

Remark 2. Notice the duality of actions performed on arrivals and departures for any job type: jobs are admitted/migrated
to empty slots in servers of Accept Group and depart/migrate from filled slots in servers of Reject Group. The number of
servers in Reject Group under our algorithm is at most one per configuration, that is, at most C) servers (constant indepen-
dent of L).> Furthermore, job admissions and migrations are performed to slots that are already deployed in advance. The res-
ervation factor g(L) is critical for maintaining enough deployed slots in the maximum reward configurations for future
demand.

In contrast, a naive static reservation algorithm that solves (3.1) by replacing Y with an estimate of workload might
require changing the configuration of a constant fraction of servers (the equivalent of Reject Group), as workload estimate
changes. This would result in preemptions (or migrations) in O(L) interrupted servers.

Last, more accurate estimates of workload, if available, can be simply used in the input Y to CRA, and CRA itself can be
executed less reqularly, depending on the complexity and convergence time tradeoff.

The following theorem states the main result regarding DRA.

Theorem 3. Let FPRA(L) be the expected reward under DRA and FOPY(L) be the optimal expected reward in Optimization
(2.5). Then

FPRA(L) 1
im——-—-—2x=.
L—oo Fopt(L) 2
Furthermore, under the monotone greedy property (Definition 8),

FORAL) 1

LS FoP(L) = e

Remark 3. We did not make any assumption on the value of p, and Theorem 3 holds for any p. Define the system’s (normal-
ized) capacity region as

A:{y:ysZxkk,forxkzo,kelC,Zxkzl}. (4.2)
ke kel

Theorem 3 holds even if p is outside A. In this scenario, a nonzero fraction of traffic must be rejected even by the optimal
policy.

Proof Outline of Theorem 3. The proof of Theorem 3 is based on analysis of fluid limits and a suitable Lyapunov
function to show convergence, as we do in Sections 5 and 6.

In Section 5, we describe the fluid limits. The job admission and configuration assignment under DRA crucially
depends on an effective slot deficit process q (Definition 11), which, for any job type, effectively measures the deficit
in the number of empty slots in the system compared with the required reservation of g(L) slots. A major diffi-
culty in describing the fluid limits is that the q process evolves at a much faster time-scale compared with the
fluid-limit processes of the jobs and of the servers in different configurations in the system. For this reason, we
divide the interval [t,t+ €) into smaller intervals of length w(logL/L), and describe the behavior of fluid limits
over these small time intervals (Proposition 5).

In Section 6, we use a Lyapunov analysis to show that the fluid limits under DRA “effectively” converge to the

global greedy assignment xl(f) [p] (Definition 5). We design an LP-based Lyapunov function V, which is zero at

states that are effectively xl(f) [p] and positive at any other state (Proposition 6). We then show that at any state
that V is positive, its derivative dV /dt < 0 (Proposition 7). To do this, we will use the local properties of fluid lim-
its from Section 5 to describe the change in V over the small intervals of length w(logL/L) (Lemma 2). We then
infer dV/dt by averaging the change of V over these small intervals in [t,t +€), as L — oo, and then letting € — 0

(Theorem 4). This along with Theorems 1 and 2 will complete the proof.

5. Fluid Limits Under DRA
Before describing the fluid limits, we first define the variables and notations that will be used in our convergence
analysis in Sections 5.1 and 5.2.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
14 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

5.1. Effective Number of Assigned Servers

Definition 9. The effective number of servers in configuration k is defined as
XLO (1) = min(XE (1), X, (1)). (5.1)

Note that XL(C)(t) X k() =0ifke {k() i= ,C®}. With a minor abuse of terminology, we say the servers in
configuration k with indexes from Xk (t) — XL(")(t) +1 to Xk(t), have effective configuration k.

Remark 4. The value of XIL((E)(t) is independent of the indexing of servers in configuration k. Also note if k = k[], where
k[jl,j <], is the jth configuration returned by GPA at time t, then in DRA, servers with effective configuration k[j] get
rank j, and servers without effective configuration have rank | + 1.

Definition 10. Given an integer i < c®, Reject G(roup servers can be divided as RG = RG(i) | URG(i). The servers
with index 1 without effective configuration in k ', for £ =1,...,1, belong to RG(i), whereas the rest of servers of
Reject Group belong to RG(7).

5.2. Effective Slot Deficit: g Process
The job admission and configuration assignment under DRA crucially depends on the q process defined here.

Definition 11. Fori € {1, ---,C®)}, and j € 7, we define

(0

T (0):= Z X0k = Y] (1) - g(L). (52)

Note that, Vj € 7, qﬁ,,z) @) zqé(fl) () ifip > iy.
In words, g = (t) measures the difference between the total number of type j slots (filled or empty) in servers

that have effectlize configurations in the set {k(Vo< i} (see Definition 9) and the number of type j jobs in the sys-
tem YL(t) and g(L) type j reservation slots.

DRA (specifically GPA) will stop assigning conﬁguratlons that have type j slots once YL(t) +g(L) slots can be
accommodated in servers with effective configuration in {k & ,£ < i}. Because slots are created per server basis, by
assigning configurations that each has at most K slots, we have g o (t)<K.

To gain more insight, when g%, @ (t) >0 foranie{l, - C(g}} it means type j jobs have enough reservation.
When it is negative, it 1nd1cates the deficit of slots in servers with effective configuration { 5 <i}. When

1_((,‘)/j(i.‘) > —g(L) +JK, foranie {1, ---,C®}, a type j arrival at time t will certainly find a valid empty slot (AG; # 0)

and will be admitted. This is because the number of empty slots of type j in Reject Group servers with any effec-
tive configuration is less than JK.

The q process also determines the configuration assigned by CRA to an empty server £, chosen for reassign-
ment. The configuration would be k", D i< Cc®, if

max q 0 (t) >0, V{<i- (5.3a)
]k '>0 !
maxq 0 (t) <0. (5.3b)

]k()>0
This also implies that if only (5.3b) holds, the server would be assigned to one of the configurations
(5)
,0=1,.

5.3. Existence of Fluid Limits
We define the scaled (normalized with L) processes xHe)(t), y-(t), as follows. Forie {1,...,C®},andj€ 7,

e e 1
(6 = Xﬁﬁﬂ(t» v = Yr0),
and define zL(t) := (x2©)(¢), yL(t)) We also define the space
= {(x<e) y):yEA, x(e,)) >0, Zx(e) <1, Zx(g)k <y}

where A was defined in (4.2).

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 15

Proposition 4. Consider a sequence of systems with increasing L, and initializations z(0) = (x*©(0),y*(0)) € Z, as
L — co. Then there is a subsequence of L such that x"O(t) — x©(t), y*(t) — y(t), along the subsequence. Any limit
z(t) := (xXO(t),y(t)), t > 0, is called a fluid limit sample path. The convergence is almost surely u.o.c. (uniformly over com-
pact time intervals), and the fluid limit sample paths are Lipschitz continuous.

Proof. Proof is standard and can be found in Online Appendix D. O

5.4. Description of Fluid Limits
We provide an informal description of fluid limit equations here. The formal definitions and proofs can be found
in Online Appendix G.
The properties of the fluid limit processes crucially depend on the q process (Definition 11). First, from (5.2)
and because q%i) j(t) <K, it follows that
Cc®

Z s)x(%(t) <y (b, VjeJd. (5.4)

Let x,(t) be the fraction of servers that are empty and of rank | + 1 at the fluid limit. When x,(f) > 0, then CRA
always finds empty rank | + 1 servers available for reassignment. In this case, every job type will have enough
empty slots, and all the arrivals will be admitted; that is, we can find an € sufficiently small such that for every

job type j and every time 7 € [t,t +€), qi «, (1) 2 0. At the fluid limit, type j jobs arrive at rate A; and existing type
j jobs depart at rate y;(t)u ;- Hence, at ar{(y régular time ¢ that x,(t) > 0,

dyj(t)/dt =A; - yj(t)yj, vViedJd, (5.5a)
Z i)xfi)) (t) = ,(8), (5.5b)

where (5.5b) is based on (5.2) and because lim; _,, + Zq,(@) (t) = 0 in this case.
el
A major difficulty in describing fluid limits happens on the boundary x,(t) =0, that is, when there are not

always empty rank | + 1 servers available for reassignment when CRA runs. In this case, let i*(t) be the largest
index in {1, --,C%% — 1} such that for every i < i*(t),

Zk() (e) »(t) = y; (t), for some j; € 7, (5.6)

with the convention that i*(t) = 0 if (5.6) does not hold for i = 1. If i*(t) < C® — 1, then for L sufficiently large, and
every time 7 € [t,t + €) for € sufficiently small,

max q oy (T) <0. (5.7)

OEII

]
Based on Definition 10, servers in RG(i*(t) + 1) have higher ranks compared with those in RG(i*(t) + 1), so any
migrations by DRA will take place from RG(i*(t) + 1) first. We can then show that servers of RG(i*(¢) + 1) empty at
the fluid scale, at a rate of at least

lLlVUl‘}‘l 1
JKC2

*(H)+1 (e)
- —([) (t) (58)
=1

where i1, := minje 711, (see Lemma 5 in Online Appendix F).

The algorithm will reassign any such server that empties to one of configurations K" for £= 1.0+ 1. If
instead i*(t) = C®) — 1, then it is uncertain Whether servers that empty need to be reassigned to a new conﬁgura—
tion or not, depending on whether max. (e 70> Oq 0 (1) <0, for some i < C® at time 7 € [t,t +€).

Hence what we see is that, if x,(t) = 0 when 4 server gets empty, it can be assigned to one of the configura-
tions k =1,...,7*(t) + 1. Exact characterization of these assignment rates, however, is not easy as they depend
on Values of processes g&, (1),i€{1,...,i*(t)}, j € J, which evolve at a much faster time-scale than the scaled pro-
cesses x'© and yt. By t}}fe']continuity of the fluid limit sample paths, at any regular time ¢, we can choose € small
enough such that for all 7 € [t,t+€), y(t), and x¥(1) are approximately constant and equal to y(t) and x(t),
respectively (their actual change being of order €). However, over the same interval, the q* process makes O(L)

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
16 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

transitions, and its elements can change in the range [-LK, K]. This phenomenon is known as separation of time
scales and has been also observed in other systems (Hunt and Kurtz 1994, Hunt et al. 1997).

To further analyze fluid limits in our setting, we divide the interval [¢t,t + €) into smaller intervals of length
w(logL/L) and infer properties for the fluid limits over [¢t,t + €) based on averaging the behavior of scaled pro-
cesses over these smaller intervals, as L — oo, and then We let e — 0. To this end, we first make a few definitions.

Because the rate of change of any of the processes x,m (1) and yL(T) over a subinterval is of interest, we give it a
special name.

Definition 12 (Local Derivatives). Given an interval [7,, T;), we define the “local derivatives” of the scaled pro-
cesses as

xis (1) =i (20)

Vxﬁ(,))[n, 7,) = K i=1,...,C®, (5.9)
Tp — Ta

YH(T) ~ yH(T)

Tp — Tg

Vy]-L[Tg,Tb) = (5.10)

Definition 13. For any i < C,@ —1, we define a set

0= {je Tk >0, Zk“) © =p). (5.11)

Definition 14. For given posmve constants a;, i = C(g —1, we define C,(t) to be the largest index at time ¢
such that C,(t) < min(i*(¢), C —1)and

Vie[l,...,Ca(t)]: xﬁfj -2 (1) <a. (5.12)

5.4.1. Subinterval Construction. We first define a function (L), which will control the length of subintervals.

Definition 15. The function f(L) is defined as

ey = VOB 61

where g(L) is the reservation factor as defined in DRA.

We divide [t,t + €) into smaller intervals [7,, T,+1), such that
T0=1, TnZTn_1+DL,€,1/l=1,...,NL, (514)

where Np =[1/f(L)] is the number of such smaller intervals, and D =5~ is the length of each one. We then
further divide each [7,,7,41) into a bounded number M, of submtervals [T(m D LMy, m=1,.
M,, 0 =1, T = 1,,1. For every 1, the sequence of stopping times 7 is recursively generated as follows

Each time "[(m) is associated with a driving set of job indexes 7 [m], with the initialization [7[0] = @ and 70 =1,
Suppose J[m—1]:={ji:i=1,...,Gu1} at time 70"V, where j;€ 7% (Definition 13). Define hJ/Im-10(¢), £ =

1,..., Gy-1, to be the (unique) solut1on to the following system of equations

L O Fime ,
{Zk]x hj[m 1],(6)(t) = /\]1 - H],y]z(t)/ 1= 1/ .. '/GM71- (515)
=
The next 7" is the earliest time 7 € [tV""", 7,11) such that gt o) (1) 20 for some G,, <min(G,_1 +1,C,(t)) and

somej€ J Gn) Furthermore, if G, < Gy_1, We additionally requlre that

& 0
SR RIIO() > 2~y (h). (5.16)
=1

At such a time 7, we set TE,) = 7, and the driving index set is set to

Jml:={ji:i=1,...,Gu}, (5.17)

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 17

where ji =j; fori=1,...,G, —1, and j; =j. Also, RImAO(), €=1,...,G,y, is set to the solution of the system of

Equations (5.15) for the set J[m]. If no time 7€ [T,(I"_l),rnﬂ) satisfies the given conditions, then m =M, and

(MPZ)

Tn " = Tn+l- B

The importance of quantities IOt i=1,...,G,, will become evident later where we will show (see
Lemma 7 in the online appendix) that

o(f (L))
V.XL(E)[TELm)’ T+ = g O(f) + (m+(£ — (5.18)
n

Hence, roughly, (5.15) gives the values of local derivatives, whereas when (5.16) occurs, the values of local deriv-
atives change.

The nurnbe_r of stopping times M,, in any interval [1,, T,+1) is bounded. This is because the number of different
driving sets 7 [m] is finite and no set may appear twice in that sequence, because the comparison (5.16) induces a

total ordering between the sets. Considering all possible driving set of indexes that may appear in the sequence,
Ca(t) @
we have M, <1+ 34T 5o, 1T < oo

5.4.2. Properties of Fluid Limits Over Subintervals. Given an ¢, > 0, we first define the set of fluid limit states
Tle] :={(xX?,y):y<p+e,}n 2. (5.19)
The following lemma states the invariant property of I'[¢,].

Lemma 1. If (x(0),y(0)) € Z, then for any €p >0, there is a time Te, > O such that for all t > T, (xO(t),y(t) € e,
Furthermore, convergence is uniform over all initial states in Z.

Proof. See Online Appendix E. O
The following proposition states the behavior of scaled processes over the subintervals.

Proposition 5. For every m € {0,...,M, — 1}, let J[m]={ji:i=1,...,Gy} be the index set corresponding to time m,
and €y, := Gy, + 1. Then we can choose a; in Definition 14 and €, in (5. 19) sufficiently small, such that, for any regular time
t > Te,, with probability at least 1 — o(L™2), all the following properties hold:

Property 1. For everyi € {1,...,€, —1},

L 0o L o(f(L))
Dk VI O = Ay = gy (0 + (5.20)
=1 Tn —Tn
Property 2. If £, < C(,;g)
; o(f(L))
Vx_([m) [T(m) (m+1)] > %0{{’", + M . (521)
n n

Property 3. If £, = C(pg),
L
\vi i(ce()g)[(m) (m+1)] > O(f())

nostn Tglm+1) (m)

-y
ot (1) L Zim+D) (5.22)
— py;t) - Z X [T]
[Jmmz (1- Zx(-f,))(t)) Z (VXL(e)[(m) (m+1)]) min J - (g) i .
]KC i=1 _(C(g)) (CP :
]k >0 k]

In words, Property 1 states that, roughly, for any i < £,,, there is a job type j; such that each of the effective num-
ber of servers with configurations {1_<(€) for £=1,...,i} changes at a rate that can accommodate exactly additional

type j; arrivals.

Property 2 states that effective number of servers with configuration K increases by an amount proportional
to ay,. This implies that the rate at which xi_jgm)(t) converges to the global greedy solution is lower bounded by a
constant independent of the system state.

Property 3 describes the change in the effective number of servers in K ¢’ which is the last configuration of
the global greedy solution. The change either satisfies the same condition as Property 1, or it is bounded by the
difference of how fast Reject Group servers empty (based on (5.8) for i*(f) = C(,;g)
c¥.

—1) and at what rate they are

assigned to configurations K fori<

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
18 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

Proof of Proposition 5. The proof, including all supporting lemmas, is provided in Online Appendix G. O

6. Convergence Analysis
We show that the fluid limit of the effective configuration process x“(t) (which is a lower bound on the number
of servers in each configuration) converges to the global greedy solution x%.

Theorem 4. Consider the fluid limits of the system under DRA, under any workload p, and any initial state z(0) € Z.
Then

RN PR) ©
}L%xk () =x2", kek¥. (6.1)

Proof. Recall that z(t) = (x'*)(t), y(t)). We want to show that z(t) converges to a point in the set I'"* defined as
I:={z:=(x¥,y) e I'e,p]: x{f) = xl(f), ke K9}, (6.2)

where I'[¢,] was defined in (5.19).
To show convergence, we use a Lyapunov function of the form

Via(t) = ZZ(- ﬁfz(t>)+zZ(y](t> o)’ (63)

where Zand Z;, i€ {1,..., C(,;g)}, are positive constants satisfying
Z>471, Z;>EZi,i=1,...,C¥) - (6.4)

foraZ. © > 0, and a sufficiently large constant & > 2K + 1.

By choosmg €, sufficiently small and ¢ sufficiently large, we can ensure the conditions of LaSalle’s invariance
principle (LaSalle 1960, Cohen and Rouhling 2017) hold for any z € I'[¢,]. The conditions of LaSalle’s invariance
principle are as follows:

i. Forany z € I'[¢,], we have V(z) > 0 and V(z) = 0 if and only if z € I', and

ii. For any z(t) € I'[e,] \ I'*, dV(z(t))/dt < 0, almost surely.

These conditions together with Lemma 1 will then imply that the limit points of trajectory z(t) are in I'".

The constant €, has to be chosen sufficiently small so we can apply Proposition 5. Moreover, & has to be chosen
sufficiently large so we can show the second condition of LaSalle’s invariance principle (Proposition 7). We pro-
vide the exact bounds on these values in the proofs.

We state each condition of LaSalle’s invariance principle as a proposition followed by its proof.

Proposition 6. Consider V(z) in (6.3), with coefficients in (6.4), for any & > (2K +1), and €, > 0. Then we have V(z) > 0
forany z €T[e,], and V(z) = 0 if and only if z € T™*.

Proof of PropOSItlon 6. Consider the followmg maximization problem over n € IRCP 0<c TR/, where 1, corre-
sponds to x_m(t) and 6; corresponds to (y;(t) — p;)" in (6.3),

C(X)
max Z Zm, - Z Z0; (6.5a)
C:)S’)
s.t Z n,<1, (6.5b)
Zk("n,- 6 < Py J=1...,] (6.5¢)
0i<e,, j=1,...,] (6.5d)
n,>0, 1:1...C(g) (6.5€)

6,20, j=1,...,]. (6.5f)

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 19

To prove the proposition, it is enough to show that the assignment (n®),8%€)) that corresponds to the global
greedy solution x®) is the unique maximizer of the previous LP. This assignment is
))
r]l l(f(,),zzl...C(f, 6.6)
© _ ’
07 =0, j=1...].

First, (6.6) is a basic feasible solution for LP (6.5); that is, it is a corner point of the LP’s polytope, because it is on
the boundary of C(,;g) +] independent inequalities (equal to the number of variables).

To show that (6.6) is the “unique maximizer,” we need to verify that every neighboring corner point has lower
objective value, and to do this, it suffices to verify that, by moving along any valid direction within the polytope,
starting from assignment (6.6), the objective value is reduced. This proves that Point (6.6) is locally optimal,
which implies it is also global optimal, because the optimization is LP (and convex) (Boyd and Vandenberghe
2004). In the rest of the proof, we use g; to be the mapping in Definition 7 for j=1,...,1,, and o; to be the permu-
tation of indexes {1, ...,]} as defined in Proposition 1.

We define An, :=1; - nf ® forie {1,.. C@)} and A6;:= 0; for je{1,...,]}, where n; and 0; are the values of a
feasible pomt We prove that the change in objective is negatlve cons1der1ng only one pos1t1ve An; for some
iedl,. C } \{gj:j=1,...,1p}, whereas the other An; s in this set are zero, and Constraints (6.5b)—(6.5f) are not
Violated Thls suffices because any feasible point can be constructed as a convex summation of the changes An,,
and if individual changes reduce objective, their convex sum will reduce the objective too.

Suppose i* € {1,.. C(g)} \{gj:j= ,Ip} is the index for which A7, > 0. A feasible point will necessarily sat-
isfy the followmg set of equatlons, whlch correspond to C(g +] constraints (specifically, (6.5b) and (6.5¢) for j €
{oj:j=1,...,1,} and (6.5f) for j = .,]), which held as equahtles at Point (6.6),

—A@,so, i=1,...],
~A, <0 An,=0,i#iie{l,...,C8N\{g:j=1,...,1,},

) U .

ks, Ani*+;kg]_ An,, =706, <0, j=1,...,I,~1, (6.7)

Iy
An, + ZA’?g, <0.
=1

Conditions (6.7) are not necessarily sufficient, so even if all of them are satisfied, the resulting point may be infea-
sible. Nevertheless, we prove that in any case, the objective function will be reduced. The change in value of
objective function is given by

Ip J
AF := ZZg[Ar]gf +Zp A, — ZZ AO;. (6.8)
=1 j=1
Given Conditions (6.7), we show (6.8) will be negative by finding constants >0, [3 >0,j=1,...,1p, and
7;>0,j=1,...,], such that .

AF = (- Anl*)+Zﬁ (K, A, +Zk(g‘)A17g[—A8g])
69)

+:81,, (An;. + ZAnge) + Zyj(_AQf)’
=1 j=1

It is not difficult to show by matching the coefficients of (6.8) and (6.9) that the values of g and g;, forj=1,...,I,
and y; for j=1,...,], are strictly positive for the choice of Z and Z; s in the proposition’s statement. The details
can be found in Online Appendix H. O

Proposition 7. For function V(z), as defined in (6.3) and (6.4), there is a constant &>2K+1, such that if z(t)
€ I[e,] \T*, then L V(z(t)) <O0.
To prove Proposition 7, we first prove the following lemma for the local derivatives over subintervals [T, Ty+1)

defined in Section 5.4.1.

Lemma 2. Consider the Lyapunov function V(z) defined in (6.3). We can choose the constant & > 2K + 1 sufficiently large
such that the following holds. If at a reqular time t, V(z(t)) > ey, for some ey > 0, then there is a 6(ey) > 0 such that for
anyne€{0,...,Np -1},

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
20 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

c®
Z Z; Vx,(,) [Tn, Tas1] > O(ey) + Z Z— (y](t) p]) +0(1), (6.10)

with probability greater than 1 — o(L™2).

Proof of Lemma 2. The proof of Lemma 2 is based on using (i) properties of fluid limits in Proposition 5, (ii) the
boundedness of local derivatives (Lemma 4 in Online Appendix F), and (iii) the fact that %(y]-(t) - pj)+ <
—u (1) = p)"

The detailed proof can be found in Online AppendixI. O

Finally, using Lemma 2, we can show that change of V(z(t)) is negative, almost surely, by averaging the
change of V(z(t)) over all the subintervals [y, T,+1) of [t,t +€), as we do here.

Proof of Proposition 7. At any regular time ¢,

(8)
d < ‘
Ve =-375 ;3<t>+zz Wi = py)", (611)
i=1
and
4290 = lim 1 Tt +e) - xL(e)(t)
ar @ T €

Hence, using the division of [t,t +€) into N, subintervals [t,, T4+1) of equal size, as defined in Section 5.4.1, we
can write

©
d L Co
V(z(t)) = —hm hm _LHZ;,ZlZ Vx [Tn,’cnﬂ + szt (y;(t) - p])

(a) Ni
—o(ev) - lim lim EEO(” Y _5(ey) <0,

where in (a), we used (6.10) of Lemma 2 in every subinterval [7,, T,+1], and in (b), we used the property that
N _
1e10(1)/Np = o(1).
Let E; be the event that

1 N, € p
LZZZVX_(,) [T, Tus1] +szt (yi(t) - P]) > 0.
n=1 i=1

The probability that (6.10) holds for all N; subintervals is at least 1 — Ny o(L™2) = 1 —o(L™!), which follows from
N = ©(1/f(L)) based on Definition 15. Hence, IP(E;) < o(L™!), and & $V(z(t)) <0 holds in probability. We can fur-
ther show that convergence is almost sure. This is because >, IP(EL) <> 0(L™') < oo, and by the Borel-
Cantelli Lemma (Billingsley 2008), < $iV(z(t)) <0, almost surely. [

Propositions 6 and 7 complete the proof of Theorem 4. O

Proof of Theorem 3. The proof follows from Theorem 4 and Theorems 1 and 2. The details are standard and can
be found in Online Appendix]. O

7. Simulation Results
7.1. Evaluation Using Synthetic Traffic
In this section, we evaluate the approximation ratio and convergence properties of DRA. We start by choosing
the VM types considering the VM instances offered by major cloud providers like Google Cloud are mainly opti-
mized for either memory, CPU, or regular use. Furthermore, instances are priced proportional to the resources
they request, with each resource having a base pricing rate. To simplify simulations, we considered instances
that only have memory and CPU requirements. In particular, we used representative VM instances, based on
combination of vCPU (virtual CPU) and memory in Table 2.

Last, each vCPU use generates eight rewards per unit time, whereas each gigabyte of memory generates one.
This choice was made based on the relative pricing of CPU and memory of VMs offered by Google Cloud,

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.

This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud

Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 21
Table 2. Representative VM Instances from Google Cloud Based on Combination of vCPU and Memory

vCPU Memory: Gigabyte per vCPU
Small Large High Low Regular
24, or 8 32 or 64 8 or 16 lor2 4

according to which 8 GB of memory is approximately priced as much as 1 vCPU (Google Cloud 2020b). We gen-
erated random collections of VM types, each with three small and three large VMs, with vCPU and memory cho-
sen randomly from Table 2. Servers always have capacity of 80 vCPUs and 640 GB of memory. The normalized
workload p; for each VM type j is selected uniformly at random between 0.2 to 2. The statistics we obtained based
on 50 randomly generated VM collections and workloads was that, in 23 of them, reward of global greedy was
identical to the optimal; on average, its ratio compared with the optimal was 0.972, and in the worst case, it was
no less than 0.86. Recall that the optimal can be found by solving Optimization (3.2). For the rest of simulations,
we considered a subset of the worst-case VM collection and its corresponding workload, namely, VM types are
(1,1), (4, 16), (2, 32), (32, 256), and p rounded to (2,1/2,4/3,1).

To better understand how workload may affect the approximation ratio, we study this worst-case example
and scale its workload p by a factor « that ranges from 0 to 10. Figure 2 shows the reward for the global greedy
U®[ap] and the optimal reward U*[ap]. We notice there are two critical a points. Before the first point, the work-
load is low enough such that the global greedy assignment can fully accommodate it; hence, its reward is the
same as the optimal that should also be able to accommodate the full workload. The second point is a point
above; the workload is high such that it is possible to assign the configuration of maximum reward to all servers
without leaving any slots empty. In this case, both the rewards will coincide again and take the maximum possi-
ble value. In Figure 2, the two critical points are « = 6/7 and a = 6. The worst ratio between the reward of global
greedy and the optimal occurs at @ = 1, which is ~ 0.862. In general, U®[ap] and U*[ap] might coincide even
between the critical points, although this is not the case for this example.

To study the impact of the number of servers L, we run DRA in systems with various number of servers and
compare the obtained average normalized reward (normalized with L) with the global greedy reward U®[p]
and the optimal reward U*[p]. The arrivals are generated at rate p,L, and service times are exponentially distrib-
uted with mean 1. The result is depicted in Figure 3, which clearly shows that as the number of servers L
becomes large, DRA approaches the global greedy reward and 86% of the optimal reward. Furthermore, Figure
4 shows how the reward of DRA evolves over time and converges to the global greedy reward when L = 180.

7.2. Evaluation Using Real Traffic Trace

We evaluate our algorithm using a more realistic setting with arrival and service times extracted from a Google
cluster data set (Wilkes 2011). In particular, we extracted tasks that were completed within the time window of
the trace and used the first one million in all simulations. Tasks were mapped to types by setting their resource

Figure 2. Global Greedy vs. Optimal as Workload ap Increases

= ————
600+ [e
X
/
= /
] 400' !
= /
g .1
/
2001 j, —— Global Greedy
| - Optimal
0 2 4 6 8 10

Traffic Intensity a

Note. The rewards coincide outside the marked points.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
22 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

Figure 3. Reward of DRA as a Fraction of the Optimal Reward (Left y Axis) and That of the Global Greedy (Right y Axis)

2
—}1.008
£ 0.8501 :
: >
£ 0251 0959
- 2
£ 0.800 .
g s
] @
0 0.7751 0.90 2
Y —
. G]
§ 0750 2
el o 0.85 5
e || O Limit=0.862 3

g

(VIS

0.700 +— " T : . . r
25 50 75 100 125 150 175
Number of servers

requirements to be the largest of the requested resources and rounding it up to the closest power of 1/2. Their
reward was set to be equal to their rounded size multiplied by a factor that depends on their priority. The factor
is 1,3, and 9 for priorities 0, 1, and 2, respectively. Tasks have the same type if both their priority and normalized
size are equal. The size of servers is normalized to one.

We compare the performance of DRA and three other algorithms:

e Upper Bound. It solves Optimization (3.1) with Y(t) being the number of jobs in an infinite server system
that rejects no jobs. This gives an upper bound on the performance of any algorithm.

e Power-of-d-Choices. Upon an arrival, it picks d servers and attempts to schedule the job arrived in the least
loaded server if it fits (Xie et al. 2015). We picked d = 5, but behavior of the algorithm is not expected to change
significantly for larger d.

e DRA +Preemption. This is simply an extension of DRA that preempts some of the jobs of priority 0, when a
job of type j with priority 1 or 2 gets rejected. Preemption of low-priority jobs is already considered in similar sce-
narios in Google cluster setting (Verma et al. 2015). Specifically, our algorithm attempts to preempt jobs of
priority 0 starting from those of smallest size. Considering reservation factor is ¢(L) and size of type j job is s;, pre-
emptions will stop if the total size of preempted jobs is g(L)s; or no more priority 0 jobs are available. The algo-
rithm finds which jobs to preempt, if any, the same way it finds jobs to migrate so this addition needs minimal
changes in implementation.

Figure 5 shows the performance results (the time-average of rewards) with varying number of servers, espe-
cially considering preemptions in DRA make a great difference. The upper bound may be impossible to achieve
by any algorithm.

Figure 4. Convergence of the Reward of DRA to That of the Global Greedy Assignment Over Time When L = 180 Servers

600
°
5 bt g
=
[]
o 400
©
[]
N
©
€ 200 — DRA
= —— Optimal

—— Global Greedy

o 2 4 6 8 10 12
Time

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 23

Figure 5. Comparison of Rewards for Different Numbers of Servers Based on Google Trace

T 2000

©

2

L1750

g

4; 1500 1 —»— DRA+Preempt

g ~@- DRA

s 12501 —&— Power-of-d-choices(d = 5)

—¥— Upper Bound on Optimal

1000

800 900 1000 1100 1200
Number of servers

To give more insight, in Figure 6, we plot the total reward over time for all algorithms for a part of the simula-
tion of 1,000 servers, including the corresponding total size of arrivals of all job types of each priority. We notice
that the power-of-d-choices algorithm can be better than DRA in parts of trace in which a spike in demand of pri-
ority 0 jobs is followed by a spike in demand of priority 1 jobs. This is because reservation of DRA is not suffi-
cient to account for spikes in demand, whereas power-of-d-choices does not efficiently use the resources of all
servers and may have more free capacity when a spike occurs. DRA with preemptions is particularly effective in
such scenarios because it does not need to reserve resources in advance. In addition, it makes efficient use of the
resources of all the servers the same way DRA does and thus is strictly better than both of the other algorithms
in almost all parts of the trace.

8. Discussion on Migrations

We used the term migration in a generic way to describe the transfer of a job from a server to another. Such trans-
fers were needed in the proofs to establish the convergence properties of DRA. Specifically, when the system is
overloaded and its state is not close to the global greedy assignment, migrations ensure that the Reject Group
servers empty at a proper rate and can be reassigned to required configurations. However, in practice, live
migrations could be costly operations. One might suggest to completely eliminate the migration step of our algo-
rithm by stopping scheduling jobs in Reject Group servers that need to empty. Unfortunately, because we do not

Figure 6. Comparison of Reward Over Time of Different Algorithms for a Part of Google Trace

3000 A e '
—E :.‘\Ilr\/%ﬂi/“--”‘xj{\r
© | i S
% 2000 1 / i
o T —— DRA+Preempt
© | DRA
E 1000 ----- Power-of-d-choices(d=5)
Upper Bound on Optimal
0
» 8001 —— Priority 0
o Priority 1
Z 600 - —— Priority 2
M© | ‘ | |
the 400 \ /
[0} |
% 200 (\ i ‘ |
01 A Ml o a i L ad Jllt Lo At A J

120 125 13.0 135 14.0 145 15.0
Time(h)

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
24 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

have control over job departures and they happen from different servers independently, the rate at which Reject
Group servers empty at the fluid limit will be zero, unless we extend the Reject Group to include a constant frac-
tion of servers (i.e., O(L) servers instead of constant < C® servers). For example, we can extend Reject Group to
be all servers of rank | + 1 (refer to Figure 1). Such an approach, apart from being wasteful, will make the conver-
gence oscillatory and slow, if not impossible. Analysis of such an approach and its potential convergence proper-
ties is nontrivial and could be a topic of future research.

An alternative way to avoid migrations in DRA is as follows. A migration can be replaced with two
operations: termination of the VM that needs to be transferred and restarting the job or rerouting the
future request to a deployed VM in a different server. In Section 7.2, we actually presented and evaluated
such an algorithm. This is indeed justified for stateless applications (Amazon 2021, RedHat 2021) as any
VM instance of the application can serve a request if one or more go down. Moreover, cloud providers
usually offer two pricing structures for VMs that are compatible with the revenue interpretation of our
reward model: on-demand instances (Amazon On-Demand Instances 2021) and spot instances (Amazon
Spot Instances 2021). The on-demand instances are more expensive and can only be terminated by the
user. The spot instances are cheaper but can be terminated by the cloud provider. To make an application
highly available and cost efficient, developers typically choose on-demand instances to satisfy critical
availability of a service and then setup some auto-scaling rule to increase the number of spot instances
when service demand is higher than usual (Amazon 2021). Notice that when servers are fully occupied,
the configurations of Reject Group servers in our model are the ones with the lowest reward, so they will
include spot instances, and hence they will not need migrations and can be terminated. On-demand
instances may still need migration according to our algorithm; however, the provider can simply choose
not to perform it if any benefit in the reward will not outweigh the cost of migration.

9. Conclusions

We proposed a VM reservation and admission policy that operates in an online manner and can guarantee
at least 1/2 (and under certain monotone property, 1 —1/e) of the optimal expected reward. Assumptions
such as Poisson arrivals and exponential service times are made to simplify the analysis, and the policy
itself does not rely on this assumption. The policy strikes a balance between good VM packing and serving
high priority VM requests by maintaining only a small number g(L) = w(logL) of reserved VM slots at any
time. Our techniques for analysis of fluid-scale processes on the boundary in our problem and the design of
LP-based Lyapunov functions with a unique maximizer at the given desired equilibrium can be of interest
on their own.

Although we considered that the policy classifies and reassigns servers at arrival and departure events, this
was only to simplify the analysis, and in practice CRA can make such updates periodically by factoring all arrival
or departures in the past period in its input for the current period. Furthermore, if a more accurate estimate of
the workload is available, we can incorporate that estimate in the vector Y used by DRA to improve the conver-
gence time. Moreover, the policy can be extended to a multipool server system, where constant fractions of serv-
ers belong to different server types. We postpone the details to a future work. Formalizing the ideas of Section
8 and eliminating the need for migrations can also be an interesting future work.

Acknowledgments
The authors thank the editor-in-chief Shane Henderson, anonymous associate editor, and anonymous reviewers for their
comments and suggestions.

Endnotes

1 If the chain is not irreducible, because it is finite state, there is at least one recurrent class. Starting from any state, the chain eventually enters
a recurrent class and remains there forever, so we can simply truncate the Markov to the recurrent class.

21n practice, considering L is large yet bounded, one should choose (L) to be small compared with L, for example, < L/100, but sufficiently
large to accommodate spikes in traffic.

3 This is a loose upper bound that considers C® different configurations were assigned by our algorithm. Realistically the] configurations
considered for assignment in each step of DRA rarely change.

References

Aceto G, Botta A, De Donato W, Pescape A (2013) Cloud monitoring: A survey. Comput. Networking 57(9):2093-2115.

Amazon (2021) Amazon EC2 auto scaling with EC2 spot instances. Accessed January, 17, 2022, https://aws.amazon.com/getting-started /
hands-on/ec2-auto-scaling-spot-instances /.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s) 25

Amazon On-Demand Instances (2021) Amazon on-demand instances. Accessed January, 17, 2022, https://docs.aws.amazon.com/AWSEC2/
latest /UserGuide/ec2-on-demand-instances.html.

Amazon Spot Instances (2021) Amazon spot instances. Accessed January, 17, 2022, https://aws.amazon.com/ec2/spot/.

Amazon Web Services (2020a) Amazon AWS containers. Accessed January, 17, 2022, https://aws.amazon.com/containers/.

Amazon Web Services (2020b) Amazon EC2 auto-scaler. Accessed January, 17, 2022, https://docs.aws.amazon.com/autoscaling/.

Amazon Web Services (2020c) Amazon web Services (AWS). Accessed January, 17, 2022, https://aws.amazon.com/.

Amazon Web Services (2020d) AWS service level agreements (SLAs). Accessed January, 17, 2022, https://aws.amazon.com/legal/service-
level-agreements/ .

Andonov R, Poirriez V, Rajopadhye S (2000) Unbounded knapsack problem: Dynamic programming revisited. Eur. . Oper. Res. 123(2):
394-407.

Apache Software Foundation (2019) Apache hadoop yarn. Accessed January, 17, 2022, http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/ YARN html.

Bean NG, Gibbens R], Zachary S (1995) Asymptotic analysis of single resource loss systems in heavy traffic, with applications to integrated
networks. Adv. Appl. Probability 27(1):273-292.

Billingsley P (2008) Probability and Measure (John Wiley & Sons, Hoboken, NJ).

Bolch G, Greiner S, Meer H, Trivedi K (2006) Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science
Applications, 2nd ed., vol. 95 (John Wiley & Sons, Hoboken, NJ).

Boyd S, Vandenberghe L (2004) Convex Optimization (Cambridge University Press, New York).

Cohen C, Rouhling D (2017) A formal proof in Coq of LaSalle’s invariance principle. Ayala-Rincon M, Munoz CA, eds. Interactive Theorem
Proving (Springer International Publishing, Cham, Switzerland), 148-163.

Corradi A, Fanelli M, Foschini L (2014) VM consolidation: A real case based on openstack cloud. Future Generation Comput. Systems 32:
118-127.

Cygan M, Jez L, Sgall] (2016) Online knapsack revisited. Theory Comput. Systems 58(1):153-190.

Ghaderi], Zhong Y, Srikant R (2014) Asymptotic optimality of bestfit for stochastic bin packing. Performance Evaluation Rev. 42(2):64-66.

Ghobaei-Arani M, Jabbehdari S, Pourmina MA (2018) An autonomic resource provisioning approach for service-based cloud applications: A
hybrid approach. Future Generation Comput. Systems 78:191-210.

Google Cloud (2020a) Google Cloud. Accessed January, 17, 2022, https://cloud.google.com/.

Google Cloud (2020b) Google compute engine pricing. Accessed January, 17, 2022, https://cloud.google.com/compute/all-pricing.

Google Cloud (2020c) Google kubernetes. Accessed January, 17, 2022, https://cloud.google.com/kubernetes/.

Guo Y, Stolyar A, Walid A (2018) Online VM auto-scaling algorithms for application hosting in a cloud. IEEE Trans. Cloud Comput. 8(3):
889-898.

Gupta V, Radovanovic A (2012) Online stochastic bin packing. Preprint, submitted November 12, 2012. Accessed January, 17, 2022, https://
arxiv.org/abs/1211.2687.

Han R, Guo L, Ghanem MM, Guo Y (2012) Lightweight resource scaling for cloud applications. Proc. EEE/ACM Internat. Sympos. on Cluster,
Cloud and Grid Comput. (IEEE Computer Society, Los Alamitos, CA), 644-651.

Hunt P, Kurtz T (1994) Large loss networks. Stochastic Processing Appl. 53(2):363-378.

Hunt P, Laws C (1997) Optimization via trunk reservation in single resource loss systems under heavy traffic. Ann. Appl. Probability 7(4):
1058-1079.

Ibarra OH, Kim CE (1975) Fast approximation algorithms for the knapsack and sum of subset problems.]. ACM 22(4):463-468.

Iwama K, Taketomi S (2002) Removable online knapsack problems. Proc. Internat. Colloquium on Automata, Languages, and Programming
(Springer, Berlin), 293-305.

Jiang J, Lu J, Zhang G, Long G (2013) Optimal cloud resource auto-scaling for web applications. Proc. IEEE/ACM Internat. Sympos. on Cluster,
Cloud, and Grid Comput. (IEEE Press, Delft, Netherlands), 58-65.

Jo C, Kim H, Egger B (2020) Instant virtual machine live migration. Proc. Internat. Conf. on the Econom. of Grids, Clouds, Systems, and Services
(Springer, Berlin), 155-170.

Karthik A, Mukhopadhyay A, Mazumdar RR (2017) Choosing among heterogeneous server clouds. Queueing Systems 85(1-2):1-29.

Kellerer H, Pferschy U, Pisinger D (2004) Multidimensional knapsack problem. Knapsack Problems (Springer, Berlin), 235-283.

Kelly FP (1991) Loss networks. Ann. Appl. Probability 1(3):319-378.

Key PB (1990) Optimal control and trunk reservation in loss networks. Probability Engrg. Inform. Sci. 4(2):203-242.

LaSalle J (1960) Some extensions of Liapunov’s second method. IRE Trans. Circuit Theory 7(4):520-527.

Le T (2020) A survey of live virtual machine migration techniques. Comput. Sci. Rev. 38:100304.

Maguluri ST, Srikant R, Ying L (2012) Stochastic models of load balancing and scheduling in cloud computing clusters. Proc. IEEE INFOCOM
(IEEE, New York), 702-710.

Maguluri ST, Srikant R, Ying L (2014) Heavy traffic optimal resource allocation algorithms for cloud computing clusters. Performance Evalua-
tion 81:20-39.

Mao M, Li J, Humphrey M (2010) Cloud auto-scaling with deadline and budget constraints. Proc. IEEE/ACM Internat. Conf. on Grid Comput.
(IEEE Computer Society, Los Alamitos, CA), 41-48.

Marchetti-Spaccamela A, Vercellis C (1995) Stochastic on-line knapsack problems. Math. Programming 68(1-3):73-104.

Martello S, Toth P (1990) An exact algorithm for large unbounded knapsack problems. Oper. Res. Lett. 9(1):15-20.

Microsoft Azure (2020) Microsoft Azure. Accessed January, 17, 2022, https://azure.microsoft.com/.

Mukhopadhyay A, Karthik A, Mazumdar RR, Guillemin F (2015) Mean field and propagation of chaos in multi-class heterogeneous loss mod-
els. Performance Evaluation 91:117-131.

Psychas K, Ghaderi J (2017) On non-preemptive VM scheduling in the cloud. Proc. ACM on Measurement and Analysis of Comput. Systems, vol. 1
(ACM, New York), 1-29.

Psychas K, Ghaderi] (2018) Randomized algorithms for scheduling multi-resource jobs in the cloud. IEEE/ACM Trans. Networks 26(5):
2202-2215.

Qu C, Calheiros RN, Buyya R (2018) Auto-scaling web applications in clouds: A taxonomy and survey. ACM Comput. Survey 51(4):1-33.

Downloaded from informs.org by [128.59.65.164] on 11 August 2022, at 14:30 . For personal use only, all rights reserved.

Published in Stochastic Systems on February 01, 2022 as DOI: 10.1287/stsy.2021.0091.
This article has not been copyedited or formatted. The final version may differ from this version.

Psychas and Ghaderi: A Theory of Auto-Scaling for Resource Reservation in Cloud
26 Stochastic Systems, Articles in Advance, pp. 1-26, © 2022 The Author(s)

Rampersaud S, Grosu D (2014) A sharing-aware greedy algorithm for virtual machine maximization. Proc. IEEE 13th Internat. Sympos. on Net-
work Comput. and Applications (IEEE Computer Society, Los Alamitos, CA), 113-120.

RedHat (2021) Cloud native applications: Stateful vs stateless. Accessed January, 17, 2022, https://www.redhat.com/en/topics/cloud-native-
apps/stateful-vs-stateless.

Roy N, Dubey A, Gokhale A (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. Proc. IEEE 4th Internat.
Conf. on Cloud Comput., (IEEE Computer Society, Los Alamitos, CA), 500-507.

Shi J, Luo], Dong F, Jin], Shen J (2018) Fast multi-resource allocation with patterns in large scale cloud data center. J. Comput. Sci. 26:389-401.

Song W, Xiao Z, Chen Q, Luo H (2013) Adaptive resource provisioning for the cloud using online bin packing. IEEE Trans. Comput. 63(11):
2647-2660.

Stillwell M, Vivien F, Casanova H (2012) Virtual machine resource allocation for service hosting on heterogeneous distributed platforms. Proc.
IEEE Internat. Parallel Distributed Processing Sympos. (IPDPS) 2012, Shanghai, China, 786-797.

Stolyar AL (2013) An infinite server system with general packing constraints. Oper. Res. 61(5):1200-1217.

Stolyar AL (2017) Large-scale heterogeneous service systems with general packing constraints. Adv. Appl. Probability 49(1):61-83.

Stolyar AL, Zhong Y (2013) A large-scale service system with packing constraints: Minimizing the number of occupied servers. ACM SIG-
METRICS Performance Evaluation Rev. 41(1):41-52.

Stolyar AL, Zhong Y (2015) Asymptotic optimality of a greedy randomized algorithm in a large-scale service system with general packing
constraints. Queueing Systems 79(2):117-143.

Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes] (2015) Large-scale cluster management at Google with Borg. Proc. 10th
Eur. Conf. on Comput. Systems (Association for Computing Machinery, New York), 1-17.

Whitt W (1985) Blocking when service is required from several facilities simultaneously. ATT Tech.]. 64(8):1807-1856.

Wilkes J (2011) Google cluster data. Accessed January 17, 2022, https:// github.com/google/ cluster-data.

Xie Q, Dong X, Lu Y, Srikant R (2015) Power of d choices for large-scale bin packing: A loss model. Performance Evaluation Rev. 43(1):321-334.

Zhao Y, Huang Y, Chen K, Yu M, Wang S, Li D (2015) Joint VM placement and topology optimization for traffic scalability in dynamic data-
center networks. Comput. Networks 80:109-123.

	s1
	s1A
	s1B
	s1C
	s2
	s2A
	s2B
	s2C
	s2D
	s2E
	s3
	s3A
	s4
	s4A
	s4B
	s4C
	s4D
	s5
	s5A
	s5B
	s5C
	s5D
	s5D1
	s5D2
	s6
	s7
	s7A
	s7B
	s8
	s9

