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Abstract

The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds,
and luminosities ranging from 1036–1043 erg s−1. Recently, an X-ray burst from the galactic magnetar SGR
1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source,
providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics
simulations, we show that such magnetar bursts may be produced by Alfvén waves launched from localized magnetar
quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere,
forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets
behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray
emission. The angular size of the ejecta can be compact, 1 sr if the quake launching region is small, 0.01 sr at the
stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154.

Unified Astronomy Thesaurus concepts: Magnetars (992); Neutron stars (1108); Radio bursts (1339); X-ray
bursts (1814)

1. Introduction

Magnetars are young, strongly magnetized neutron stars with
surface magnetic fields reaching B∼ 1014 G, beyond the quantum
critical field Bc= 4.4× 1013 G (Duncan & Thompson 1992, see
Kaspi & Beloborodov 2017, for a recent review). Their quiescent
X-ray luminosity is usually far larger than the spin-down
luminosity, so the emission is believed to be powered by
dissipation of the strong magnetic field instead of rotation. They
often display dramatic variability in the X-ray and soft γ-ray band.
This activity includes short (milliseconds to seconds duration)
bursts with peak X-ray luminosity ranging from
1036–1043 erg s−1, much longer (weeks to months) outbursts,
and sometimes giant flares with the sudden release of>1044 erg
of energy.

The short bursts are by far the most common type of magnetar
activities. Thompson & Duncan (1995) first proposed a picture for
magnetar bursts: the internal field evolution could build up stress
locally on the neutron star crust; the stress could become strong
enough to cause mechanical failure of the crust, which leads to a
sudden shift in the magnetospheric footpoints; this sends Alfvén
waves into the magnetosphere, and the subsequent dissipation of
the Alfvén waves in the magnetosphere could power the X-ray
emission. However, the dissipation mechanism and the accom-
panying radiative processes are not established. The radius of
burst emission is also unknown.

Magnetars have also been proposed as sources of mysterious
fast radio bursts (FRBs)—the bright, millisecond-long gigahertz
bursts detected from cosmological distances (e.g., Thornton et al.
2013). Recent detection of FRB-like bursts from a galactic
magnetar, SGR 1935+2154, provides evidence that magnetars are
indeed capable of producing at least some of the FRBs (Bochenek
et al. 2020; The Chime/FRBCollaboration et al. 2020). The radio
bursts were detected during an active period of the magnetar, and
were coincident with an X-ray burst of energy ∼1040 erg
(Mereghetti et al. 2020; Li et al. 2021; Ridnaia et al. 2021). This
detection provides a good opportunity to understand more about
magnetar activity and its relation to FRBs.
Our previous work (Yuan et al. 2020) proposed a possible

scenario for the simultaneous generation of the X-ray and radio
bursts from SGR 1935+2154. Using 2D axisymmetric simula-
tions, we showed that low-amplitude Alfvén waves from a
magnetar quake may propagate to the outer magnetosphere,
become nonlinear, and convert to plasmoids (closed magnetic
loops) that accelerate away from the star. An Alfvén wave packet
with an energy 10A

40~E erg, as required by the energetics of
the X-ray burst from SGR 1935+2154, forms freely expanding
ejecta at a radius R∼ 108 cm, where the wave energy exceeds
the local magnetospheric energy. The ejecta pushes out the
magnetospheric field lines, and a current sheet forms behind it,
leading to magnetic reconnection. Such reconnection events
must produce X-ray emission. The spectrum of the resulting
X-ray burst was calculated by Beloborodov (2021) and showed
good agreement with observations.
Magnetospheric ejecta play a significant role in FRB models.

They were proposed to launch blast waves in the magnetar
wind (Beloborodov 2017), which are capable of emitting
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coherent radio waves by the synchrotron maser process (e.g.,
Lyubarsky 2014; Beloborodov 2017, 2020; Plotnikov & Sironi
2019; Sironi et al. 2021). Gigahertz waves can also be seeded by
the process of magnetic reconnection triggered by magnetospheric
ejecta (Lyubarsky 2019; Philippov et al. 2019; Lyubarsky 2020;
Yuan et al. 2020; Mahlmann et al. 2022); these waves may be
released by the ejecta when it expands to a large radius.

In the present paper, we extend the axisymmetric simulations
of Yuan et al. (2020) to a full 3D model of a magnetospheric
explosion from a magnetar quake. We still use the framework
of force-free electrodynamics (FFE) designed for magnetically
dominated systems, such as magnetospheres of neutron stars.
FFE is essentially the infinite magnetization limit of magne-
tohydrodynamics; the plasma is treated as a massless conduct-
ing fluid, moving under the electromagnetic stress, while
providing the necessary charge and current densities. We
describe the problem setup and our numerical method in
Section 2, and present the results in Section 3. The results are
discussed and compared with the previous 2D simulations in
Section 4. Our main conclusions are summarized in Section 5.

2. Problem Setup and Numerical Method

We consider a localized star quake that exerts a twisting
Alfvénic perturbation on a small patch offset from the magnetic
pole on the neutron star surface. The neutron star is assumed to
have a simple dipole magnetic field. We consider the parameter
regime as suitable for SGR 1935+2154. The light cylinder of the
magnetar is located at rLC= cP/(2π)∼ 1.6× 1010 cm, where
P≈ 3.25 s is the spin period of the magnetar, and we expect the
Alfvén wave to propagate in the closed magnetosphere along a
flux tube that extends to a radius R∼ 100r*∼ 108 cm (Yuan et al.
2020), where r* is the radius of the neutron star. Since
R/rLC∼ 10−2, the rotation induced electric field at R is
E0∼ (R/rLC)B0(R)= B0(R), where B0 is the background magn-
etic field of the magnetar. On the other hand, an Alfvén wave that
becomes nonlinear at R will have a wave electric field
δEB0(R)?E0; therefore, we can neglect the rotation of the
neutron star to a good approximation in this study.

Furthermore, for the Alfvén wave to reach a radius of
R∼ 100r*, the launching region on the stellar surface should
be located at a polar angle θ∼ 0.1 with respect to the magnetic
pole. For our simulation, to cover as much dynamic range as
possible, we put our inner boundary at rin= 10r*. The
evolution of the Alfvén wave before reaching rin should be
purely linear and well described by WKB theory. The wave
packet will reach a polar angle θ∼ 0.32 at r= rin. Our
simulations will then self-consistently track the evolution of the
Alfvén wave beyond rin. Our detailed setup is as follows.

We introduce the Alfvén wave perturbation by twisting a
small, circular region on the r= rin surface, as shown in
Figure 1. The circular region is centered at a polar angle θ= 0.4
and azimuth angle f= 0, with a radius r1= 0.2rin. This motion
twists back and forth one foot point of a closed flux bundle, and
breaks the axial symmetry of the initial dipole configuration.
The twist angular velocity with respect to the twisting center
has the following profile:
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where δω0 is the amplitude, r¢ is the distance to the twisting
center, T is the duration of the twist, and n determines the
number of wave periods. The factor ( )r rcos 22

1p ¢ ensures that
the perturbation smoothly goes to zero at the boundary of the
circular region, while the factor ( )t Tsin2 p allows the
perturbation to gradually transition to zero at the beginning
and the end. We use these smooth profiles to avoid any
numerical pathology.
For our simulation domain, we employ a uniform, three-

dimensional Cartesian grid, with the neutron star located at the
origin. The inner boundary radius rin is typically resolved by 64
grid points (the highest resolution run uses 128 cells per rin
length). At the inner boundary, we enforce the perfectly
conducting boundary condition. To avoid the stair stepping at
rin, we force the fields to known values inside rin with a
smoothing kernel (Spitkovsky 2006). The grid covers the
region 0� x� 40, −20� y� 20, −20� z� 20 (hereafter
lengths are in units of rin and times are in units of rin/c). The
outer boundaries of the computational grid are covered by an
absorbing layer that damps the outgoing waves (e.g., Cerutti
et al. 2015; Yuan et al. 2019).
We use our code COFFEE (COmputational Force FreE

Electrodynamics; Chen et al. 2020)10 to numerically solve the
time-dependent force-free equations (e.g., Gruzinov 1999;
Blandford 2002)
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with the constraints E ·B= 0 and E< B (we use Heaviside–
Lorentz units and set c= 1). A brief summary of the basic
algorithms used by COFFEE and the results from convergence
tests can be found in Appendix A.

3. Results

Let us first show the results from an example run where the
initial Alfvén wave perturbation has δω0= 2.0, duration
T= 10, and n= 4 periods. For these parameters, the initial
maximum relative amplitude of the wave is δB/B∼ 0.05
at the inner boundary rin, and the total injected energy is

( )r3.4 10 43 2
in

3m p´ - - , where μ is the magnetic dipole
moment of the star. We choose this initial amplitude such that
the Alfvén wave packet successfully breaks out from the
magnetosphere at r∼ 10rin. We also ran a simulation with half
the initial amplitude; however, the wave packet was not able to
launch an ejecta in that case. We focus on the first case below.

3.1. Nonlinear Evolution of the Alfvén Wave

The perturbation at the inner boundary launches a torsional
Alfvén wave (and a small amount of fast magnetosonic wave,
see Appendix B). For each half wavelength, the current
structure consists of a core, aligned, or anti-aligned with the
background magnetic field, surrounded by a return current
sheath of finite thickness. The field lines within the flux tube

10 https://github.com/fizban007/CoffeeGPU
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perturbed by the Alfvén wave experience an alternation
between clockwise and counterclockwise twisting.

The wave initially propagates along the dipole field lines and its
relative amplitude grows with radius as r3/2. The wave packet
becomes significantly nonlinear at r∼ 10. It is no longer confined
to dipole field lines, but instead moves radially outward. The wave
packet pushes the dipole field lines to open up, then the stretched
field lines start to reconnect near the equator, allowing the twisted
field lines in the wave packet to start detaching from the dipole
magnetosphere. The wave packet is therefore launched as an
ejecta. We take r= 10 as the ejection radius, Rej. Figure 2 shows a
few snapshots of the magnetic field and electric field on the f= 0
plane, which cuts through the azimuthal center of the wave
packet. Figure 3 shows the 3D structure of the perturbation
electromagnetic energy density δU and magnetic field lines within
the flux bundle perturbed by the Alfvén wave. δU is defined as
δU= (δB2+ δE2)/2, where δB=B−B0, B0 is the initial
background magnetic field, and δE=E−E0=E. From the Ey
plot in Figure 2, and the tenuous, spherical shell-like structure in
Figure 3, it can be seen that a low frequency fast magnetosonic
wave is generated at the leading edge of the ejecta; this is a
consequence of the nonlinear conversion of the Alfvén mode to
the fast mode when the Alfvén wave propagates along curved
background magnetic field lines.

As the ejecta moves out, its thickness Δr remains the same,
but it expands laterally, roughly following spherical expansion
from the star, so that the solid angle spanned by the ejecta
remains more or less the same. The constant thickness can be
understood from the conservation of magnetic energy and flux.
Energy conservation requires B r r const2 2D = . Since the field
in the ejecta is mostly transverse (in the θ, f directions), the
flux conservation can be written as Br r constD = . The two
conditions then suggest r constD = and B∝ r−1. We will
confirm this scaling relation in the following subsection. In

addition, within the ejecta, each half wavelength moves slightly
sideways following its twisting direction. The ejecta looks like
displaced, stacked pancakes, as shown in Figure 4, where we
plot the 3D structure of the Bf component at a particular time
step t= 20.
After the ejection, at t= 25 when the wave packet has reached

r≈ 2Rej, we find that about half of the initial Alfvén wave energy
resides in the ejecta. For the rest of the energy, a significant
fraction is used to push on the background field lines, stretching
them out radially. We can roughly estimate how much work is
done by the Alfvén wave packet on the background magneto-
sphere as follows. When the ejecta has moved to a radius r>Rej,
between Rej and r, the initial dipole field is stretched into a
monopole-like field. This takes energy per unit solid angle
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For our case, taking r= 2Rej, and the total solid angle within
which the field lines open up is Ωtotal∼ 2, we find that the work
done is
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This is a fixed amount regardless of the initial Alfvén wave
energy. It turns out to be about a quarter of the initial Alfvén
wave energy in our case. This energy is stored in the stretched
field lines, and some of it is dissipated in the formed current
sheet due to magnetic reconnection. Besides this, there is also
some energy that follows a portion of the Alfvén wave to go
back toward the southern pole of the star before the ejection
happens, which starts to bounce back and forth in the inner
magnetosphere and gradually gets dissipated.
Figure 5 shows the angular distribution of the electro-

magnetic energy in the ejecta. The 60% containment region has
a solid angle Ω∼ 0.5 sr and the 80% containment region has a
solid angle Ω∼ 1 sr. We note that at the inner boundary r= rin,
the Alfvén wave perturbation has an angular size Ω0∼ 0.12.
The wave first evolves linearly along the background dipole
magnetic field, so the angular size grows with radius:
Ω∼Ω0r/rin. Near the ejection radius Rej∼ 10rin, we should
have Ω∼ 1.2. After the ejection, the ejecta roughly follows
spherical expansion from the star, so the angular distribution
remains more or less the same. Our measured angular size is
indeed consistent with this picture.

3.2. Scaling of Quantities in the Ejecta

To better understand how the ejecta evolves, we measure
the scaling of a few quantities in the ejecta. First, we look at the
peak electromagnetic field in the ejecta. A convenient measure
to use is the peak perturbation energy density δU. We track
the location rm of the maximum δUr2 at each output time step;
we make sure that the maximum is located in the main ejecta
instead of the current sheet by choosing the maximum location
on a data set smoothed using a Gaussian kernel with a standard
deviation of 24Δx, where Δx= 1/128 is the grid resolution.

Figure 1. The region on the inner boundary of the simulation domain, r = rin,
where a twisting perturbation is applied. μ indicates the magnetic moment of
the neutron star.
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Figure 6 shows the result. In the left panel, we show the
distance rm as a function of time. This shows that the peak
point is indeed consistently located on one peak/trough of
the Alfvén wave packet. In fact, the velocity of the pattern
deviates slightly from a purely radial direction, and the
speed is indistinguishable from c. The middle panel shows
δUm≡ δU(rm) as a function of rm. We can see that δUm is

consistent with decreasing as rm
2- besides some additional

dissipation. This confirms that the magnetic field in the ejecta
scales approximately as r−1, instead of r−2 as suggested by
Lyutikov (2021).
Now let us turn to the fluid velocity in the ejecta. We can

define a velocity field v= E× B/B2, then E=− v×B, and
the force-free Equations (2)–(4) can be cast into the following

Figure 2. Slices of the electromagnetic field on the y = 0 (f = 0) plane, at three different time steps. In the top row, color shows the magnetic field component
perpendicular to the plane, By; in the bottom row, color shows the electric field component perpendicular to the plane, Ey. In all panels, streamlines show the in-plane
magnetic field. Hereafter lengths are in units of the inner boundary radius rin and times are in units of rin/c. Note that although we showed By and Ey here, the total
electric field E is perpendicular to the total magnetic field B.

Figure 3. 3D rendering of the energy density in the perturbed electromagnetic field δU = (δB2 + δE2)/2, where δB = B − B0 is the perturbation magnetic field and δE
is the perturbation electric field, at three time steps corresponding to Figure 2. The green lines are a bundle of field lines within the flux tube perturbed by the
Alfvén wave.
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Figure 4. Side view, front view, and top view of the toroidal magnetic field Bf in 3D, at the time step t = 20.

Figure 5. Angular distribution of the electromagnetic energy in the ejecta, measured at t = 25 (left) and t = 35 (right). The perturbation electromagnetic energy
density has been integrated along the radial direction between two spheres with radius r = t − T and r = t that enclose the ejecta shell. White dashed lines show the
20%, 40%, 60%, and 80% containment regions.

Figure 6. Tracking the evolution of the maximum perturbation electromagnetic energy density in the ejecta, and the drift proper velocity at that point. In the left panel,
the blue line shows the distance rm between the location of maximum δUr2 and the stellar center, as a function of time. The dashed line is a reference of purely radial
motion with speed c. In the middle panel, the blue line shows δUm ≡ δU(rm) as a function of rm. The dashed line and dashed–dotted line are two different scaling
relations for reference. In the right panel, the blue line shows the total magnitude of the drift proper velocity, u = γv; the orange dashed line shows its radial

component, and ur = γvr; the magenta dotted line shows its transverse component, u v v vT T
2 2g g= = +q f .
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form (e.g., Gruzinov 1999):
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This set of equations is very similar to the usual MHD
equations, except that the inertia is provided by B2. Here v is
essentially the plasma drift velocity. In FFE, the fluid velocity
itself is not defined and cannot be obtained directly from the
fields, as there can be an arbitrary velocity component along
B. However, the drift velocity can be a good reference to gain
insights into the plasma motion. In what follows, we look
into the evolution of this drift velocity v in the ejecta.
The corresponding Lorentz factor is v1 1 2g = - , and the
proper velocity is u= γv. Figure 6 (right panel) shows the
evolution of u and its components at the point of the maximum
perturbation electromagnetic energy density. The velocity field
is also smoothed using a Gaussian kernel with a standard
deviation of 24Δx. It can be seen that after the ejection,
namely, after t∼ 15, the drift proper velocity grows more or
less linearly, and at large distances, this drift velocity is mostly
radial. Another important point to note is that, although the
fluid velocity at the peak/trough of the Alfvén wave packet can
be quite large, the Alfvén wave packet is still a smooth wave
structure even after the ejection: fluid enters from the front of
the wave, then exits from behind. Shock formation is possible
at large distances; this requires taking into account the inertia of
the fluid and going beyond force-free approximation. Including
the fluid inertia and pressure may also change the acceleration
history of the ejecta. We leave this to future studies.

3.3. Magnetic Reconnection and Dissipation

When the ejection happens, magnetic field lines in the
sheared flux bundle and ahead of it are pushed open by
the Alfvén wave packet. The left panel of Figure 7 shows the
resulting current distribution in the magnetosphere. Behind
each of the half-wavelength pancakes in the ejecta, there are
current layers (which look more like current filaments)

connecting the pancake with the closed zone. A main current
sheet forms near the equatorial plane where opposite open
magnetic fluxes from the northern and southern hemispheres
meet. This can also be seen in the third panel of Figure 2.
Plasmoid-mediated reconnection happens in the equatorial
current sheet (middle and right panels of Figure 7), allowing
the open field lines to reconnect and return to the closed initial
state. From the right panel of Figure 7, we can clearly see that it
is primarily the poloidal field component that is reconnecting at
the equatorial current sheet.
Dissipation of the electromagnetic energy can happen at the

current sheets. In our simulation, the dissipation is numerical and
occurs through three channels: (1) Kreiss–Oliger dissipation that
filters out the high frequency noise; (2) when E>B, E is reduced
to B; (3) when E ·B≠ 0, the component of E that is parallel to B
is cut away. It turns out that most of the dissipation is accounted
for by the first channel, the Kreiss–Oliger dissipation. In Figure 8,
we show where this dissipation is triggered in a snapshot. It can be
seen that the dissipation is concentrated along the current sheets.
This is indeed consistent with our expectation that current sheets
are natural sites for energy dissipation. These are likely sites for
efficient X-ray emission.
We use the numerically dissipated energy as a proxy, to

provide a picture of how the X-ray light curve behaves. In
particular, since the physical dissipation preferably happens at
reconnection sites where the magnetic field changes direction
significantly, these reconnection sites tend to have weaker
magnetic field compared to other types of dissipation sites. So
we useU UBKO as a proxy for the emissivity, where UB= B2/2
is the local magnetic energy density. We assume that the
emission is isotropic in the fluid rest frame; we also assume that
the fluid moves with the drift velocity v= E× B/B2, so the
beaming of the received emission is affected by the fluid
velocity. We calculate the sky map as a function of the observer
angle and the observer time, taking into account the light travel
time across the simulation box. This is done using a Monte
Carlo approach: we assign 1–2 particles per grid cell; for each
particle, the emissivity is assigned to be U UBKO in the lab
frame, and the beaming direction is randomly drawn from an
isotropic distribution in the fluid frame then boosted into the
lab frame using the fluid drift velocity. Figure 9 (left panel)
shows a few snapshots of the sky map, at different observer

Figure 7. Left panel shows the 3D volume rendering of the magnitude of the current density in the global simulation, at the time step t = 30. Middle panel shows a
zoom-in view of the equatorial current sheet; the region corresponds to the small box in the left panel. Right panel shows the same region as the middle panel, where
we also plot the field lines near the current sheet. The field lines are colored according to the value of Bxr.
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times. It can be seen that the emission first beams around the
equator, then expands and moves downward. It turns out that
most of this beamed emission comes from the portion of the
current sheet within the ejecta, namely, the vertical current
sheet that shows up in the bottom panels of Figure 8. This part
moves relativistically with the ejecta; its Lorentz factor is
already a few at r∼ 2Rej, as shown in the upper right panel of
Figure 8. This results in beamed X-ray emission. We see two
peaks offset in f angle in the sky map; this is because the half
cycles in the Alfvén wave with different twisting directions
move slightly sideways with respect to each other (Figure 4),

and the emission from the current sheet within each of the half
cycles also beams differently.
In Figure 9 (right panel), we show the light curve at a

particular observer angle, corresponding to the small white box
in Figure 9 (left panel). As a comparison, we also show the
total dissipated energy in the simulation box, as a function of
the simulation time. Although the overall dissipation happens
on a timescale∼ Rej/c, the observed light curve is much more
peaked. This is also due to the relativistic effect: as the ejecta
moves relativistically toward the observer, the arrival time of
the emission is compressed by a factor (1−β).

Figure 8. A slice on the f = 0.305 plane at time t = 30, showing the energy density of the electromagnetic field U = (B2 + E2)/2, the fluid proper velocity γβ
calculated using the E × B drift (the proper velocity γβ has been smoothed using a Gaussian kernel with a standard deviation of 24Δx, where Δx = 1/128 is the grid
resolution), the current density, and the numerical dissipation rate UKO weighted by the local magnetic energy density.
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4. Discussion

First, considering the energetics, if we scale our simulation
to realistic parameters of SGR 1935+2154, the stellar magnetic
field is B0= 4.4× 1014 G at the pole, and the ejection radius is
Rej= 108 cm, then the injected Alfvén wave packet has an
energy 1.3 10A

40= ´E erg, and the initial relative amplitude
of the Alfvén wave is δB/B∼ 10−3 at the maximum. As a
comparison, the background magnetospheric energy at Rej is
roughly ( )B R 8 7.7 10bg

2
ej
3 39p~ ~ ´E erg, so the Alfvén

wave can successfully break out from the magnetosphere. Another
run we did with half the perturbation magnitude, thus 1/4 of the
energy in the Alfvén wave packet, 3 10A

39~ ´E erg, did not
successfully produce an ejecta. AE must be well above bgE for the
nonlinear wave packet to overcome confinement by the
surrounding background field. This threshold is comparable to
that found in our axisymmetric simulations (Yuan et al. 2020),
although it is somewhat lower because the 3D Alfvén wave
packet needs to push open only a portion of the magnetosphere to
break out.

A few features are robust across 2D and 3D simulations.
Although the initial Alfvén wave perturbations are different in the
2D and 3D models, the ejecta structure on a poloidal plane looks
remarkably similar. The ejecta is mainly composed of the current
carrying, twisted field of the Alfvén wave packet, plus a fast wave
in front of it, generated as the initial Alfvén wave propagates
along curved background field lines. After the ejection, in both 2D
and 3D, the ejecta retains its radial thickness and solid angle,
expands ballistically from the star, and becomes a pancake-like
structure at large distances. As the ejecta pushes open the
magnetospheric field lines, the main current sheet is formed near
the equatorial plane behind the ejecta.

However, the 3D nature of the initial Alfvén wave
perturbation and its subsequent evolution does produce a few
new features. First, the angular distribution of the ejecta energy
is not axisymmetric in the 3D model. The angular size is

ultimately determined by the disturbed region on the stellar
surface that launches the Alfvén wave. The wave initially
evolves linearly along the background dipole field lines, its
angular size growing proportional to r; after the ejection, the
angular size becomes frozen. A compact wave launching
region can thus produce an ejecta compact in angular size.
Second, the current distribution shows a more complex
structure in the case of the localized 3D wave launching.
Besides the equatorial current sheet, there are quite a few
current filaments, especially near the lateral boundary of the
perturbed magnetosphere.
We also find that at the majority of the reconnecting current

sheets, it is the poloidal component of the magnetic field that
reconnects, not the transverse field in the Alfvén wave.
Although most of the magnetic energy in the Alfvén wave
initially resides in the transverse component, the wave packet
gives part of its energy to the poloidal component by deforming
the background magnetic field. The deformed poloidal
magnetic field then reconnect and dissipates the energy.
Our simulations are carried out in the FFE limit, neglecting the

plasma inertia and pressure effects. As a result, there are only two
characteristic wave modes, the Alfvén mode and the fast mode,
both having a group speed of c. Therefore, shocks cannot form in
the FFE framework. To understand physically how the ejecta
accelerates with radius, and how the shock forms as the ejecta
runs into the magnetar wind, one would need to go beyond force-
free approximation. This will be investigated using relativistic
magnetohydrodynamics simulations in the future.
In addition, our force-free simulations cannot capture the

microphysics of the dissipation processes happening at the
current sheet and other locations. In reality, the reconnection
physics at the current sheet is governed by kinetic plasma
processes. Furthermore, due to the relatively strong magnetic
field and small length scales, the resulting radiation field is
compact and the plasma strongly interacts with the radiation.
Photons initially emitted through synchrotron radiation can

Figure 9. Left: sky map of the X-ray emission, at three different observer times. We use U UBKO as a proxy for the emissivity. We include emission from regions
outside r = 5. The flux shown is in arbitrary units. Right top panel: light curve of the X-ray emission within the small white box in the left panel. F is the flux averaged
over the small white box, in arbitrary units. Right bottom panel: total energy dissipation rate as a function of time. Red line shows the energy dissipation rate outside
r = 5, while the blue line shows that outside r = 10. In both panels, times are in units of rin/c = 107 cm/c = 0.33 ms.
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experience additional inverse Compton scatterings and photon-
photon pair production; photons can also be regenerated
through pair annihilation. These processes will influence the
plasma dynamics and shape the emergent radiation spectrum
(Beloborodov 2021). Kinetic plasma simulations including all
the relevant radiative processes are needed for a complete
description of the reconnection process.

5. Conclusion

We have carried out fully 3D FFE simulations of a localized
Alfvén wave packet launched by a magnetar quake into the
magnetosphere. We find that if the Alfvén wave packet propagates
to a radius R and has a total energy greater than the magneto-
spheric energy B2R3/(8π), then the wave can become quite
nonlinear and get ejected from the magnetosphere. The ejecta can
carry a large portion of the initial Alfvén wave energy. The ejecta
preserves its radial thickness during its expansion from the star, so
it becomes a pancake-like structure. Its angular size Ω is
determined by the initial Alfvén wave perturbation at the stellar
surface: Ω∼Ω0Rej/r*, where Ω0 is the perturbation solid angle at
the stellar surface, and Rej is the ejection radius. The ejecta pushes
open the magnetospheric field lines, creating current sheets behind
it that connect back to the closed zone. Magnetic reconnection can
happen at these current sheets; this will lead to plasma
energization and X-ray emission. The energy source of this
dissipation is the magnetic energy contained in the stretched
poloidal field lines. Some of the current sheets move relativisti-
cally with the ejecta; they can produce beamed X-ray emission,
and may be responsible for the sharp spikes coincident with the
radio bursts from SGR 1935+2154.
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Software: COFFEE, https://github.com/fizban007/CoffeeGPU,
Chen et al. (2020)

Appendix A
Convergence of the Force-free Code COFFEE

COFFEE (Chen et al. 2020) uses an algorithm similar to that
of East et al. (2015) and Zrake & East (2016): we use fourth-
order central finite difference stencils on a uniform Cartesian
grid and a five-stage fourth-order low storage Runge–Kutta

scheme for time evolution (Carpenter & Kennedy 1994). We
use hyperbolic divergence cleaning (Dedner et al. 2002) to
damp any violations of ∇ ·B= 0. To enforce the force-free
condition, we explicitly remove any E∥ by setting
E→ E− (E ·B)B/B2 at every time step, and whenever E> B
happens, we reset E→ E(B/E). We apply standard sixth order
Kreiss–Oliger numerical dissipation to all hyperbolic variables
to suppress high frequency noise from truncation error (Kreiss
& Oliger 1973):

⎜ ⎟
⎛
⎝

⎞
⎠

( )( )U U
x y z

U
1

64
, A1t t

new
KO

6

6

6

6

6

6
¶ = ¶ +

¶
¶

+
¶
¶

+
¶
¶

where U represents any hyperbolic variables, òKO< 1 is a
constant parameter, and we use a second order stencil for the
sixth order derivative. The code is parallelized and optimized to
run on GPUs as well as CPUs with excellent scaling.
We carried out convergence tests for the code COFFEE,

following the procedures discussed by Mahlmann et al. (2021).
We show the results from two most important tests below.

A.1. Planar Alfvén Wave Test

In this test, we set up a 3D Cartesian periodic box with size
L× L× L, and a uniform background magnetic field B0 along
the x direction. We initialize a planar Alfvén wave, with
wavevector k= (2, 0, 1)2π/L, and relative amplitude
ξ= δB/B0= 0.1. We let the wave evolve for a long time.
Due to numerical diffusion, The wave magnetic field will
slowly decay with time according to

( )B B e , A2i
td d= -D

where δBi is the magnetic field of the ideal wave solution in the
absence of any numerical diffusion, andD is the damping rate.
In force-free codes, D is related to the numerical resistivity
through

( )k

2
, A3

2
h=D

where k is the wavevector and η is the numerical resistivity
(Mahlmann et al. 2021, and references therein). The numerical
resistivity can be written in the form

⎛
⎝

⎞
⎠

( )x
, A4

r




h =
D

where  is a resolution independent numerical coefficient, 
and  are the characteristic length and speed of the problem,
Δx is the grid spacing, and r is the measured order of
convergence.
In this Alfvén wave test, we only change the grid resolution,

namely, Δx, to measure the damping rate D and the order of
convergence r. The damping rate is more conveniently
measured using the total wave energy d :

( )e . A5i
t2 d d= - D

We use a simulation grid with a number of N3 points, where N is
the number of cells on each side of the box, which ranges from
16–320 in the series of simulations. Figure 10 (left panel) shows
the measured D from these runs. We can see that the order of
convergence r is around 5 for our scheme. It turns out that the
Kreiss–Oliger dissipation is one of the most important source for
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the numerical resistivity; it seems to determine the convergence
order. The wave damping rate D also directly depends on the
prefactor òKO of the Kreiss–Oliger dissipation term. Figure 10 (left
panel) shows a direct proportionality betweenD and òKO. We use
òKO= 0.1 for the global simulations presented in the paper. We
can also see that the wave damping rate is less than 10−2 c/L
when there are more than 16 grid points per side of the box, or
more than 8 points per wavelength.

A.2. Tearing Mode Test

In this test, we set up a force-free current sheet similar to that
of Mahlmann et al. (2021). Our simulation box has a length of
L= 2 along the x and y directions, and a length of 3L= 6 along
the z direction. The background magnetic field has the
following form:

( ) ( )B B z atanh , A6x0 0=
( )B B z asech ,y0 0=

and we set a= 0.1. The field is initially perturbed by

( ) ( ) ( ) ( )
( ) ( ) ( )

B ak B kx z a z a
B B kx z a

sin tanh sech ,
cos sech , A7

x

z

1
1

0

1 0




=
=

-

where k= 2π/L is the perturbation wavenumber. We set the
perturbation amplitude to be ò= 10−4. The boundary condition is
periodic in the x and y directions, and has zero derivative in the z
direction. The growth rate of the tearing mode can be traced using
the Bz component, which grows exponentially with time:
Bz= Bz(t= 0)eγ t. Figure 10 (right panel) shows the measured
tearing mode growth rate for a series of runs with different
resolutions. We find that roughly γ∝N−1.54, where N is the
number of grid points within the current sheet thickness scale a.

In the resistive MHD description of the tearing mode, the
growth rate of a single k tearing mode is given by (e.g.,
Rembiasz et al. 2017; Mahlmann et al. 2021)

⎛
⎝

⎞
⎠

( ) ( )v a ak
ak

ak1.06
1

, A8A
4 5 3 5 2 5 8 5 2 5

4 5

g h= -- -

where η is the resistivity, and vA is the Alfvén speed. On the
other hand, the growth rate of the fastest-growing mode is

(Furth et al. 1963)

( )a v0.6 . A9Amax
3 2 1 2 1 2g h» -

Suppose the growth rate we measured is the maximum growth
rate, then we would obtain the relation between the resistivity
and the grid resolution as η∝ N−3.08. This order of conv-
ergence seems to be different from what we found in
Appendix A.1. This is because in the tearing mode experiment,
there can be locations where the force-free condition is
violated; therefore, the enforcement of the force-free condition
is activated and the components of the electric field that violate
E< B or E ·B= 0 are cut away. This will affect the actual
numerical resistivity. We expect the convergence order to
follow the order of the time integration in this case. The
conclusion is similar to that of Mahlmann et al. (2021).

Appendix B
Fast Waves Launched from the Inner Boundary

To understand the wave modes launched from the inner
boundary, let us consider the following simplified problem.
Consider an infinitely large conductor covering the space z< 0,
while the region z> 0 is filled with a force-free plasma. There
is a uniform magnetic field making an angle θ0 with respect to
the normal of the conductor. Without loss of generality we
assume that the magnetic field lies in the x–z plane,

( ˆ ˆ)B x zB sin cos0 0 0 0q q= + . A circular region on the surface
of the conductor is twisted with a radially dependent angular
velocity ( ) ẑR t,W = W , as shown in Figure 11. On the surface
of the rotating region, a point with cylindrical coordinates
(R, f, z= 0) has the following velocity:

ˆ ˆ ˆ ( )v x yv v vsin cos , B1f f f= = - +f f f

where vf=Ω(R)R. The rotation induced electric field at this
point is then

( ˆ ˆ)
( )

E v B

R z

E E

B v cos sin cos

. B2R z

0

0 0 0q q f
=- ´

= - +
º +

f

Figure 10. Left: convergence of the Alfvén wave test. The data points are the measured damping rate D (in units of c/L) of the Alfvén wave magnetic field as a
function of the number of grid points N on each side of the simulation box. The red dots correspond to runs with òKO = 0.1, and the blue dots correspond to òKO = 0.4.
The dashed line is fitted to the red points. Right: convergence of the tearing mode test. The data points are the measured tearing mode growth rate γ for a series of runs
with different resolution. N is the number of points resolving the current sheet thickness scale a.
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The magnitude of E is

∣ ∣ ( )E B v cos sin cos , B30
2

0
2

0
2q q f= +f

and for small θ0, ∣ ∣E E tan 1z R 0 q . Since the conductor is
surrounded by a perfectly conducting plasma, immediately outside
the conductor, the electric field should be continuous. To
determine the nature of the modes, we carry out a local expansion
of the electric field immediately outside the conductor around the
point (R, f, z= 0+) into force-free normal modes. Since Alfvén
modes have E lying in the k–B0 plane, while the fast modes have
E perpendicular to the k–B0 plane, we can find the component of
the fast mode by projecting the electric field onto the normal of
the k–B0 plane.

We look at the ER component first. It does not have f
dependence; therefore, the wavevector only has R̂ and ẑ
components: ˆ ˆk R zk kR z= + . The unit vector along the normal
of the k–B0 plane can be written as

∣ ∣
( )n

k b
k b

, B40

0
=

´
´

where b0=B0/B0 is a unit vector along the background
magnetic field,

ˆ
( ) ˆ

ˆ ( )

k b x
y

z

k

k k
k

cos sin
cos cos sin

sin sin , B5

R

R z

R

0 0

0 0

0

q f
q f q

q f

´ =
+ - +
+

∣ ∣ (
( ) ( )

k b k k k

k k

cos 2 sin cos cos

sin sin . B6
R R z

R z

0
2 2

0 0 0

2
0

2 2 2 1 2

q q q f

q f

´ = -

+ +

The magnitude of the fast mode electric field is then

∣ ∣ ∣ · ∣
∣ ∣

( )E E n
k b

B v k sin cos sin
. B7f R

z
1

0 0 0

0

q q f
= =

´
f

Typically in our boundary condition, kR? kz, and θ0 0.3, so
we can see that ∣ ∣ ∣ ∣ ( )E E k k sin 1f R z R1 0 q~ .
Now let us look at the Ez component in Equation (B2). For

this component, the wavevector does have f dependence:
ˆ ˆ ˆk R zk k kR zf= + +f . The unit vector along the normal of

the k–B0 plane is still given by Equation (B4), but with

( ) ˆ
( ( )) ˆ

( ) ˆ
( )

k b x

y

z

k k

k k k

k k

cos cos sin

sin cos cos sin

sin cos sin ,

B8

R

z R

R

0 0

0 0

0

q f f
q q f f

q f f

´ = +
+ + - +
- +

f

f

f

and its norm is

∣ ∣ [ ( ( ) )
( )( ))

( ) ] ( )

k b k k k

k k k

k k

sin cos sin

sin 2 cos sin

cos . B9

z R

z R
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2

0
2 2

0

2 2 2
0

1 2

q f f
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q
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f

The magnitude of the fast mode electric field is

∣ ∣ ∣ · ∣
( )

∣ ∣
( )

E E n
k b

B v k ksin cos cos sin
.

B10

f z
R

2
0

2
0

0

q f f f
= =

+

´
f f

As a result, ∣ ∣ ∣ ∣E E sinf R2
2

0q~ .
Putting together the above results, we can see that if θ0= 0,

namely, B0 is perfectly perpendicular to the conductor surface,
and the launched wave mode is purely Alfvénic. For small
angle θ0, the fast mode electric field is a factor of

( )k kmax sin , sinz R0
2

0q q compared to the total electric field.
In our boundary condition for the global simulation, typically
kz/kR= 0.1, and θ0 0.3; therefore, the fast mode electric field
amplitude is at most 0.1 of the total electric field, and its energy
is at most 1% of the total perturbation. Furthermore, fast
modes, unlike Alfvén waves, are not collimated by the field
lines and therefore propagate more or less isotropically out and
decrease more quickly than Alfvén waves; and in the case of
our boundary perturbations, the two sides of the rotating region
will create fast wave contributions that will be negatively
interfering after the wave propagates far enough. Therefore, the
effect of the fast waves launched from the boundary is
negligible in our simulations.
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