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Abstract. Motivated by modern parallel computing applications, we consider the problem
of scheduling parallel-task jobs with heterogeneous resource requirements in a cluster of
machines. Each job consists of a set of tasks that can be processed in parallel; however, the
job is considered completed only when all its tasks finish their processing, which we refer
to as the synchronization constraint. Furthermore, assignment of tasks to machines is subject
to placement constraints, that is, each task can be processed only on a subset of machines,
and processing times can also be machine dependent. Once a task is scheduled on a ma-
chine, it requires a certain amount of resource from that machine for the duration of its
processing. A machine can process (pack) multiple tasks at the same time; however, the cu-
mulative resource requirement of the tasks should not exceed the machine’s capacity. Our
objective is to minimize the weighted average of the jobs’ completion times. The problem,
subject to synchronization, packing, and placement constraints, is NP-hard, and prior theo-
retical results only concern much simpler models. For the case that migration of tasks
among the placement-feasible machines is allowed, we propose a preemptive algorithm
with an approximation ratio of (6+ ε). In the special case that only one machine can pro-
cess each task, we design an algorithm with an improved approximation ratio of four. Fi-
nally, in the case that migrations (and preemptions) are not allowed, we design an algo-
rithm with an approximation ratio of 24. Our algorithms use a combination of linear
program relaxation and greedy packing techniques. We present extensive simulation re-
sults, using a real traffic trace, that demonstrate that our algorithms yield significant gains
over the prior approaches.

Funding: This work was supported by the National Science Foundation [Grants CNS-1652115 and CNS-
1717867].

Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2021.2198.
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1. Introduction
Modern parallel computing frameworks, for example,
Hadoop and Spark (Apache 2018a, c), have enabled
large-scale data processing in computing clusters. In
such frameworks, the data are typically distributed
across a cluster of machines and are processed in mul-
tiple stages. In each stage, a set of tasks is executed on
the machines, and once all the tasks in the stage finish
their processing, the job is finished or moved to the
next stage. For example, in MapReduce (Dean and
Ghemawat 2008), in the map stage, each map task per-
forms local computation on a data block in a machine
and writes the intermediate data to the disk. In the re-
duce stage, each reduce task pulls intermediate data
from different maps, merges them, and computes its
output. Although the reduce tasks can start pulling
data as map tasks finish, the actual computation by

the reduce tasks can only start once all the map tasks
are done and their data pieces are received. Further-
more, the job is not completed unless all the reduce
tasks finish. Similarly, in Spark (Zaharia et al. 2016),
the computation is done in multiple stages. The tasks
in a stage can run in parallel; however, the next stage
cannot start unless the tasks in the preceding stage(s)
are all completed.

We refer to such constraints as synchronization con-
straints, that is, a stage is considered completed only
when all its tasks finish their processing. Such syn-
chronizations could have a significant impact on the
jobs’ latency in parallel computing clusters (Cheatham
et al. 1996, Zaharia et al. 2008, Ananthanarayanan et al.
2010, Kambatla et al. 2010, Zaharia et al. 2016). Intui-
tively, an efficient scheduler should complete all the
(inhomogeneous) tasks of a stage more or less around
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the same time while prioritizing the stages of different
jobs in an order that minimizes the overall latency in
the system. The scheduler can only make scheduling
decisions for the stages that have been released from
various jobs up to that point (i.e., those that their pre-
ceding stages have been completed). In our model, we
use the terms stage and job interchangeability.

Another main feature of parallel computing clusters
is that jobs can have diverse tasks and processing
requirements. This has been further amplified by the
increasing complexity of workloads, that is, from tra-
ditional batch jobs, to queries, graph processing,
streaming, and machine learning jobs, that all need to
share the same cluster. The cluster manager (scheduler)
serves the tasks of various jobs by reserving their re-
quested resources (e.g., CPU, memory). For example,
in Hadoop (Apache 2018a), the resource manager re-
serves the tasks’ resource requirements by launching
containers in machines. Each container reserves re-
quired resources for processing of a task. To improve
the overall latency, we therefore need a scheduler that
packs as many tasks as possible in the machines while
retaining their resource requirements.

In practice, there are further placement constraints
for processing tasks on machines. For example, each
task is preferred to be scheduled on one of the ma-
chines that has its required data block (Dean and Ghe-
mawat 2008, Ananthanarayanan et al. 2011) (a.k.a.
data locality); otherwise, processing can slow down
because of data transfer. The data block might be stored
in multiple machines for robustness and failure consid-
erations. However, if all these machines are highly
loaded, the scheduler might actually need to schedule
the task in a less loaded machine that does not contain
the data.

Despite the vast scheduling literature, scheduling
algorithms with theoretical results (approximation ra-
tios) are mainly based on simple models, where each
machine processes one task at a time, each job is a sin-
gle task, or tasks can be processed on any machine ar-
bitrarily (see Section 1.1). Such models do not fully
capture the modern features of data-parallel computing
clusters, namely,

• Packing: each machine is capable of processingmul-
tiple tasks at a time subject to its capacity.

• Synchronization: tasks that belong to the same job
have a collective completion time which is determined
by the slowest task in the collection.

• Placement constraint: a task’s processing time is ma-
chine dependent, and a task is typically preferred to be
processed on a subset of machines (e.g., where its input
data block is located). Furthermore, each task at each
time can get processed on at most a single machine.

The goal of this paper is to design scheduling algo-
rithms, with theoretical guarantees, under the previ-
ous features of modern parallel computing clusters.

For simplicity, we consider one dimension for task re-
source requirement (e.g., memory). Although task re-
source requirements are in general multidimensional
(CPU, memory), it has been observed that memory is
typically the bottleneck resource (Apache 2018b, Nitu
et al. 2018).

Our objective is to minimize the weighted sum of
completion times of existing jobs in the system, where
weights can encode different priorities for the jobs.
Clearly, minimization of the average completion time
is a special case of this problem with equal weights.
We consider both preemptive and nonpreemptive
scheduling. In a nonpreemptive schedule, a task cannot
be preempted (and hence cannot be migrated among
machines) once it starts processing on a machine until
it is completed. In a preemptive schedule, a task may be
preempted and resumed later in the schedule, and we
further consider two cases depending on whether mi-
gration of a task among machines is allowed or not.

1.1. Related Work
Default cluster schedulers in Hadoop (Zaharia et al.
2010, Apache 2018a) focus primarily on fairness and
data locality. Such schedulers can make poor schedul-
ing decisions by not packing tasks well together or
having a task running long without enough parallel-
ism with other tasks in the same job. Several cluster
schedulers have been proposed to improve job com-
pletion times (Jin et al. 2011, Schwarzkopf et al. 2013,
Grandl et al. 2015, Verma et al. 2015, Grandl et al.
2016, Liu and Shen 2016, Rasley et al. 2016, Wang et al.
2016, Yekkehkhany et al. 2018). However, they either
do not consider all aspects of packing, synchroniza-
tion, and data locality or use heuristics that are not
necessarily efficient.

We highlight four relevant papers (Grandl et al.
2015, Verma et al. 2015, Wang et al. 2016, Yekkeh-
khany et al. 2018) here. Tetris (Grandl et al. 2015) is
a scheduler that assigns scores to tasks based on best-
fit bin packing and shortest-remaining-time-first
(SRPF) heuristic and gives priority to tasks with high-
er scores. The data locality is encoded in scores by
imposing a remote penalty to penalize use of remote
resources. Borg (Verma et al. 2015) packs multiple
tasks of jobs in machines from high to low priority,
modulated by a round-robin scheme within a priority
to ensure fairness across jobs. The scheduler considers
data locality by assigning tasks to machines that al-
ready have the necessary data stored. The papers by
Wang et al. (2016) and Yekkehkhany et al. (2018) focus
on single-task jobs and study the mean delay of tasks
under a stochastic model where, if a task is scheduled
on one of the remote servers that do not have the in-
put data, its average processing time will be larger, by
a multiplicative factor, compared with the case that it
is processed on a local server that contains the data.
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They propose algorithms based on join-the-shortest-
queue and max-weight (JSQ-MW) to incorporate data
locality in load balancing. This model is generalized
by Yekkehkhany et al. (2018) to more levels of data lo-
cality. However, these models do not consider any
task packing in servers or synchronization issue
among multiple tasks of the same job.

From a theoretical perspective, our problem of
scheduling parallel-task jobs with synchronization,
packing, and placement constraints can be seen as a
generalization of different scheduling problems in
which only one or two of the constraints are consid-
ered. There is a vast amount of literature for the prob-
lems under each of the constraints in isolation. Here,
we review some of these works.

The concurrent open shop (COS) problem (Ahmadi
et al. 2005) considers the synchronization constraint.
In COS, each job consists of a set of tasks, each ma-
chine processes one task at a time, and each task can
be processed on a specific machine. Unlike COS, in
our model a machine can process (pack) multiple
tasks simultaneously subject to its capacity, and
there are further task placement constraints for as-
signing tasks to machines. Minimizing the weighted
sum of completion times in COS is known to be
Approximation (APX)-hard (Garg et al. 2007), with
several two-approximation algorithms (Chen and
Hall 2007, Garg et al. 2007, Leung et al. 2007, Bansal
and Khot 2010, Mastrolilli et al. 2010, Sachdeva and
Saket 2013). At a higher level, the synchronization
constraint in our setting can be seen as a special case
of the precedence constraint in which there exists a
partial ordering among tasks of each job. Scheduling
problems under precedence constraint are widely
studied in the literature (Coffman and Bruno 1976,
Munier et al. 1998, Goldberg et al. 2001, Queyranne
and Schulz 2006, Li 2020).

There is also a line of research on the parallel tasks
scheduling (PTS) problem (Garey and Graham 1975)
where the focus is on the packing constraint. In PTS,
each job is only a single task that requires a certain
amount of resource for its processing time and can be
served by any machine subject to its capacity. This dif-
fers from our model where each job has multiple
tasks, each task can be served by a set of machines,
and the job’s completion time is determined by its last
task. Minimizing the weighted sum of completion
times in the PTS is also NP-complete in the strong
sense (Blazewicz et al. 1983). In the case of a single
machine, Schwiegelshohn (2004) proposed a non-
preemptive algorithm that can achieve approximation
ratio of 7.11, and a preemptive algorithm, called
PSRS, that can achieve approximation ratio of 2.37. In
the case of multiple machines, there is only one result
in the literature, which is a 14.85-approximation non-
preemptive algorithm (Remy 2004).

Furthermore, our setting is closely related to unre-
lated machine scheduling. In the unrelated machine
scheduling (Skutella 2001, Schulz and Skutella 2002,
Im and Li 2016, Bansal et al. 2019), each job is only a
single task that can be scheduled on a subset of ma-
chines, and its processing time is machine dependent.
Both preemptive and nonpreemptive versions of the
problem are APX-hard. When preemption is not al-
lowed and all the jobs are present at time 0, the best
result is a (3=2− c)-approximation algorithm for some
fixed c > 0 (Bansal et al. 2019). For the preemptive
case, if migration is allowed, Skutella (2001) gives a
two-approximation solution, and if migration is not
allowed, Schulz and Skutella (2002) provide a (3=2+ ε)-
approximation solution.

We emphasize that our setting of parallel-task jobs,
subject to synchronization, packing, and placement
constraints, is more challenging than the previous
problems, and algorithms from these problems cannot
be applied to our setting. Although we use some of
the classical techniques such as relaxed linear pro-
gramming formulation (Lenstra et al. 1990, Qiu et al.
2015) and Slow-Motion (Schulz and Skutella 1997) in
our setting, as we will see, we need to carefully adjust
them and add new ideas to make them work in our
setting. To the best of our knowledge, this is the first
paper that provides constant-approximation algo-
rithms for this problem subject to synchronization,
packing, and placement constraints.

1.2. Main Contributions
We briefly summarize our main results and describe
our techniques. We propose scheduling algorithms
for three cases.
• Task Migration Allowed. When migration is al-
lowed, a task might be preempted several times and re-
sume possibly on a different machine within its
placement-feasible set. Our algorithm in this case is
based on greedy scheduling of task fractions (fraction
of processing time of each task) on each machine, sub-
ject to capacity and placement constraints. The task
fractions are found by solving a relaxed linear program
(LP), which divides the time horizon into geometrically
increasing time intervals and uses interval-indexed varia-
bles to indicate what fraction of each task is served at
which interval on each machine. We show that our
scheduling algorithm has an approximation ratio better
than (6+ ε), for any ε > 0.
• TaskMigration Not Allowed.Whenmigration is not
allowed, the schedule can be nonpreemptive or pre-
emptive while all preemptions occur on the same ma-
chine. In this case, our algorithm is based on mapping
tasks to proper time intervals on the machines. We use
the interval-indexed variables to form a relaxed LP. We
then use the LP’s optimal solution to construct a weight-
ed bipartite graph representing tasks on one side and
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machine intervals on the other side and fractions of
tasks completed in machine intervals as weighted
edges. We then use an integral matching in this graph
to construct a mapping of tasks to machine intervals.
Finally, the tasks mapped to intervals of the same ma-
chine are packed in order and nonpreemptively using
a greedy policy. We prove that this nonpreemptive al-
gorithm has an approximation ratio better than 24. Fur-
thermore, we show that the algorithm’s solution is also
a 24-approximation for the case that preemption on the
samemachine is allowed.
• Preemption and Single-Machine Placement Set.
When preemption is allowed, and there is a specific
machine for each task, we propose an algorithm with
an improved approximation ratio of four. The algo-
rithm first finds a proper ordering of jobs by solving a
relaxed LP of our scheduling problem. Then, for each
machine, it lists its tasks, with respect to the obtained
ordering of jobs, and apply a simple greedy policy to
pack tasks in the machine subject to its capacity. The
methods of LP relaxation and list scheduling have been
used in scheduling literature; however, the application
and analysis of such techniques in presence of packing,
placement, and synchronization is very different.
• Empirical Evaluations.We evaluate the performance
of our preemptive and nonpreemptive algorithms com-
pared with the prior approaches using a Google traffic
trace (Wilkes 2011). We also present online versions of
our algorithms that are suitable for handling dynamic
job arrivals. Our 4− approximation preemptive algo-
rithm outperforms PSRS (Schwiegelshohn 2004) and
Tetris (Grandl et al. 2015) by up to 69% and 79%, re-
spectively, when jobs’ weights are determined using
their priority information in the data set. Furthermore,
our nonpreemptive algorithm outperforms JSQ-MW
(Wang et al. 2016) and Tetris (Grandl et al. 2015) by up
to 81% and 175%, respectively, under the same place-
ment constraints. Because these algorithms do not con-
sider all aspects of packing, synchronization, and data
locality, we combined them with reasonable heuristics
to enforce all the constraints in our settings.

2. Formal Problem Statement
2.1. Cluster and Job Model
Consider a collection of machines M � {1, : : : ,M},
where machine i has capacity mi > 0 on its available
resource. We use J � {1, : : : ,N} to denote the set of ex-
isting jobs (stages) in the system that need to be served
by the machines. Each job j ∈ J consists of a set of tasks
Kj, where we use (k, j) to denote task k of job j, k ∈ Kj.
Task (k, j) requires a specific amount akj of resource for
the duration of its processing. Machine i can process
multiple tasks at the same time, however, the sum of re-
source requirements of tasks running in machine i
should not exceed its capacity mi at any time.

2.2. Task Processing and Placement Constraint
Each task (k, j) can be processed on a machine from a
specific set of machines Mkj ⊆M. We refer to Mkj as
the placement set of task (k, j). For generality, we let pikj
denote the processing time of task (k, j) on machine
i ∈Mkj. Such placement constraints can model data lo-
cality. For example, we can set Mkj to be the set of ma-
chines that have task (k, j)’s data, and pikj � pkj, i ∈Mkj.
Or, we can considerMkj to be as large asM, and incor-
porate the data transfer cost as a penalty in the process-
ing time on machines that do not have the task’s data.

Throughout the paper, we refer to akj as size or re-
source requirement of task (k, j), and to pikj as its
length, duration, or processing time on machine i. We
also define the volume of task (k, j) on machine i as
vikj � akjpikj. Without loss of generality, we assume proc-
essing times are nonnegative integers and duration of
the smallest task is at least one. This can be done by
defining a proper time unit (slot) and representing the
task durations using integer multiples of this unit.

2.3. Synchronization Constraint
Tasks can be processed in parallel on their corre-
sponding machines; however, a job is considered com-
pleted only when all of its tasks finish. Hence, using
Ckj to denote the completion time of task (k, j), the
completion time of job j, denoted by Cj, satisfies

Cj � max
k∈Kj

Ckj: (1)

Let 1(i ∈Mkj) be the indicator function, which is
one if i ∈Mkj and zero otherwise. Define

T �max
i∈M

∑
j∈J

∑
k∈Kj

pikj1(i ∈Mkj), (2)

which is clearly an upper bound on the time required
for processing all the jobs. We define 0-1 variables
Xi

kj(t), i ∈M, j ∈ J , k ∈Kj, t ≤ T, where Xi
kj(t) � 1 if task

(k, j) is served at time slot t on machine i, and zero
otherwise. We also make the following definition.

Definition 1 (Height of Machine i at Time t). The height
of machine i at time t, denoted by hi(t), is the sum of
resource requirements of the tasks running at time t in
machine i, that is,

hi(t) �
∑

j∈J ,k∈Kj

akjXi
kj(t): (3)

Given these definitions, a valid schedule Xi
kj(t) ∈{0, 1}, i ∈M, j ∈ J , k ∈ Kj, 0 < t ≤ T, must satisfy the

following three constraints:
i. Packing: the sum of resource requirements of the

tasks running in machine i at time t (i.e., tasks with
Xi

kj(t) � 1) should not exceed machine i’s capacity, that
is, hi(t) ≤mi, ∀t ≤ T, ∀i ∈M.

ii. Placement: each task at each time can get processed
on at most a single machine selected from its feasible
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placement set, that is, ∑i∈Mkj
Xi

kj(t) ≤ 1, and Xi
kj(t) � 0 if

i ∉Mkj.
iii. Processing: each task must be processed complete-

ly. Noting thatXi
kj(t)=pikj is the fraction of task (k, j) com-

pleted on machine i in time slot t, we need∑
i∈Mkj

∑T
t�1X

i
kj(t)=pikj � 1.

2.4. Preemption and Migration
We consider three classes of scheduling policies. In a
nonpreemptive policy, a task cannot be preempted
(and hence cannot be migrated among machines) once
it starts processing on its corresponding machine until
it is completed. In a preemptive policy, a task may be
preempted and resumed several times in the schedule,
and we can further consider two subcases depending
on whether migration of a task among machines is al-
lowed or not. When migration is not allowed, the
scheduler must assign each task (k, j) to one machine
i ∈Mkj on which the task is (preemptively or non-
preemptively) processed until completion.

2.5. Main Objective
Given positive weights wj, j ∈ J , our goal is to find
valid nonpreemptive and preemptive (under with
and without migrations) schedules of jobs (their tasks)
in machines to minimize the sum of weighted comple-
tion times of jobs, that is,

minimize
∑
j∈J

wjCj: (4)

The weights can capture different priorities for jobs.
Clearly the case of equal weights reduces the problem
to minimization of the average completion time.

Here, we use the three-field notation to specify our
problems. Although we use some of the notations
from the scheduling literature, we need to define new
ones to capture all the constraints in our model. We
consider the following problems:

• PRP|mgr|∑jwjCj
• PRP||∑jwjCj and PRP|pmtn|∑jwjCj
• PDP|pmtn|∑jwjCj
In the first field of the notations, the first letter P

stands for parallel and specifies the fact that the ma-
chines can process different tasks of a given job in
parallel. The letter R means that the machines are un-
related, that is, a task has different processing times
on different machines. The letter D stands for dedicat-
ed and shows that there is a dedicated machine for
processing of each task. Finally, the last letter P stands
for packing and shows that a machine can pack tasks
subject to its capacity. In the second field, pmts and
mgr indicate that processing of a task can be pre-
empted and a task can migrate among machines, re-
spectively. Finally, the objective function is specified
in the third field.

3. Scheduling When Migration Is Allowed
We first consider the case that migration of tasks
among machines is allowed. This is equivalent to
PRP|mgr|∑jwjCj. In this case, we propose a preemptive
algorithm, called SynchPack-1, with approximation ra-
tio (6+ ε) for any ε > 0. We will use the construction
ideas and analysis arguments for this algorithm to con-
struct our preemptive and nonpreemptive algorithms
when migration is prohibited in Section 4.

To describe SynchPack-1, we first present a relaxed
linear program. We will utilize the optimal solution to
this LP to schedule tasks in a preemptive fashion.

3.1. Relaxed Linear Program (LP1)
Recall that without loss of generality, the processing
times of tasks are assumed to be integers (multiples
of a time unit) and therefore Cj ≥ pikj ≥ 1 for all j ∈ J ,
k ∈Kj, and i ∈Mkj. We use interval indexed variables
using geometrically increasing intervals (Lenstra et al.
1990, Queyranne and Sviridenko 2002, Qiu et al. 2015)
to formulate a linear program for our problem.

Let ε > 0 be a constant. We choose L to be the small-
est integer such that (1+ ε)L ≥ T (recall T in (2)). Sub-
sequently, define

dl � (1+ ε)l, for l � 0, 1, ⋯ ,L, (5)

and define d−1 � 0. We partition the time horizon into
time intervals (dl−1,dl], l � 0, : : : ,L. The length of the
lth interval, denoted by Δl, is

Δ0 � 1, Δl � ε(1+ ε)l−1 ∀l ≥ 1: (6)

We define zilkj to be the fraction of task (k, j) ( fraction
of its required processing time) that is processed in inter-
val l on machine i ∈Mkj.

To measure completion time of job j, for each inter-
val l, we define an integer variables xjl, which is one if
job j finishes in interval l and zero otherwise. Consider
the following constraints, ∀j ∈ J :∑l

l′�0
xjl′ ≤

∑l

l′�0

∑
i∈Mkj

zil
′

kj , k ∈Kj, l � 0, : : : ,L, (7a)

∑L
l�0

xjl � 1, xjl ∈ {0, 1}, l � 0, ⋯ ,L: (7b)

Note that (7b) implies that only one of the variables
{xjl}Ll�0 can be nonzero (equal to one). (7a) implies that
xjl can be one only for one of the intervals l ≥ l?, where
l? is the interval in which the last task of job j finishes
its processing. Now define

Cj �
∑L
l�0

dl−1xjl j ∈ J : (8)

If we can guarantee that xjl? � 1 for l? as defined previ-
ously, then Cj will be equal to the starting point dl?−1
of that interval, and the actual completion time of job j
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will be bounded above by dl? � (1+ ε)Cj, thus imply-
ing that Cj is a reasonable approximation for the actual
completion time of job j. This can be done by minimiz-
ing the objective function in the following linear pro-
gram:

min
∑
j∈J

wjCj (LP1), (9a)

∑L
l�0

∑
i∈Mkj

zilkj � 1, k ∈Kj, j ∈ J , (9b)

∑l

l′�0

∑
i∈Mkj

zil
′

kj p
i
kj ≤ dl, k ∈Kj, j ∈ J , l � 0, : : : ,L, (9c)

∑l

l′�0

∑
(k, j):i∈Mkj

zil
′

kj p
i
kjakj ≤midl, i ∈M, l � 0, : : : ,L, (9d)

zilkj ≥ 0, k ∈Kj, j ∈ J , i ∈Mkj, l � 0, : : : ,L, (9e)∑l

l′�0
xjl′ ≤

∑l

l′�0

∑
i∈Mkj

zil
′

kj , k ∈Kj, j ∈ J , l � 0, : : : ,L, (9f)

Cj �
∑L
l�0

dl−1xjl, j ∈ J , (9g)

∑L
l�0

xjl � 1, xjl ≥ 0, l � 0, : : : ,L, j ∈ J : (9h)

Constraint (9b) means that each task must be proc-
essed completely. (9c) is because during the first l in-
tervals, a task cannot be processed for more than dl,
the end point of interval l, which itself is because of re-
quirement (ii) of Section 2. (9d) bounds the total vol-
ume of the tasks processed by any machine i in the
first l intervals by dl ×mi. (9e) indicates that z variables
must be nonnegative.

Constraints (9f), (9h), and (9g) are the relaxed ver-
sion of (7a), (7b), and (8), respectively, where the inte-
gral constraint in (7b) has been relaxed to (9h). To give
more insight, (9f) has the interpretation of keeping
track of the fraction of the job processed by the end of
each time interval, which is bounded from above by
the fraction of any of its tasks processed by the end of
that time interval. We should finish processing of all
jobs as indicated by (9h). Also (9g) computes a relaxa-
tion of the job completion time Cj, as a convex combi-
nation of the intervals’ left points, with coefficients xjl.

3.2. Scheduling Algorithm: SynchPack− 1
In the following, a task fraction (k, j, i, l) of task (k, j) cor-
responding to interval l, is a task with size akj and du-
ration zilkjp

i
kj that needs to be processed on machine i.

The SynchPack-1 (Synchronized Packing-1) algo-
rithm has three main steps:

Step 1: Solve (LP1). We first solve (LP1) and obtain
the optimal solution of {zilkj}, which we denote by {z̃ilkj}.

Step 2: Pack task fractions greedily to construct
schedule S. To schedule task fractions, we use a
greedy list scheduling policy as follows:

Consider an ordered list of the task fractions such
that task fractions corresponding to interval l appear
before the task fractions corresponding to interval l′, if
l < l′. Task fractions within each interval and corre-
sponding to different machines are ordered arbitrari-
ly. Let t denote a time at which the algorithm makes
some scheduling decision. The algorithm scans the list
starting from the first task fraction and schedules task
fraction (k, j, i, l) on machine i,if some fraction of task
(k, j) is not already scheduled on some other machine
at time t and machine i has sufficient capacity, that is,
hi(t) + akj ≤mi (recall hi(t) in Definition 1). It then
moves to the next task fraction in the list, repeats the
same procedure, and so on. Upon completion of a
task fraction, it preempts the task fractions corre-
sponding to higher indexed intervals on all the ma-
chines if there is some unscheduled task fraction of a
lower-indexed interval in the list. It then removes the
completed task fraction(s) from the list, updates the
remaining processing times of the task fractions in
the list, and starts scheduling the updated list. The set
of times at which scheduling decisions are made con-
sists of time 0 and task fractions’ completion times.
This greedy list scheduling algorithm schedules task
fractions in a preemptive fashion. We refer to the con-
structed schedule as S.

As an illustration, Figure 1 shows execution of Step 2
in a systemwith three machines and three jobs.

Step 3: Apply Slow-Motion technique to construct
schedule S̄. Unfortunately, we cannot bound the val-
ue of Objective Function (9a) for schedule S, because
completion times of some jobs in S can be very long
compared with the completion times returned by
(LP1).1

Therefore, we construct a new feasible schedule S̄ ,
by stretching S, for which we can bound the value of
its objective function. This method is referred to as
Slow-Motion technique (Schulz and Skutella 1997). Let
Z̃i

kj � ∑L
l�0z̃

il
kj denote the total fraction of task (k, j) that

is scheduled in machine i according to the optimal so-
lution to (LP1). We refer to Z̃i

kj as the total task fraction
of task (k, j) on machine i. The Slow-Motion technique
works by choosing a parameter λ ∈ (0, 1] randomly
drawn according to the probability density function
f (λ) � 2λ. It then stretches schedule S by a factor 1=λ.
If a task is scheduled in S during an interval [τ1,τ2),
the same task is scheduled in S̄ during [τ1=λ,τ2=λ)
and the machine is left idle if it has already processed its to-
tal task fraction Z̃i

kj completely. We may also shift back
future tasks’ schedules as far as the machine capacity
allows and placement constraint is respected.

Figure 2 shows the execution of this step on the ex-
ample of Figure 1 for λ � 1=2.
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A pseudocode for SynchPack-1 can be found in
Online Appendix G. The obtained algorithm is a ran-
domized algorithm; however, we will show in Online
Appendix C how we can de-randomize it to get a de-
terministic algorithm.

3.3. Performance Guarantee
We now analyze the performance of SynchPack-1.
The result is stated by the following proposition.

Theorem 1. For any ε > 0, the sum of weighted com-
pletion times of jobs, for the problem of parallel-task job
scheduling with packing and placement constraints, under
SynchPack-1, is at most (6+ ε) ×OPT.

The rest of the section is devoted to the proof of
Theorem 1. We use C̃j to denote the optimal solution
to (LP1) for completion time of job j ∈ J . The optimal
objective value of (LP1) is a lower bound on the

optimal value of our scheduling problem as stated in
the following lemma whose proof is provided in On-
line Appendix B.1.

Lemma 1. The optimal objective value of (LP1) is a lower
bound on the optimal value of our scheduling problem, i.e.,∑N

j�1wjC̃j ≤ ∑N
j�1wjC?

j �OPT.

Constraint (9d) bounds the volume of all the task
fractions corresponding to the first l intervals on ma-
chine i by dl ×mi. However, the (LP1)’s solution does
not directly provide a feasible schedule as task frac-
tions of the same task on different machines might
overlap during the same interval, and machines’ ca-
pacity constraints might be also violated as Constraint
(9d) in (LP1) bounds the total volume of the processed
tasks and ignores their sizes and durations. Next, we
show under the greedy list scheduling policy (Step 2
in SynchPack-1), the completion time of task fraction

Figure 1. (Color online) Example for Execution of Step 2 of SynchPack-1 for Three Jobs in a Systemwith ThreeMachines

(a) (b)

(c) (d)

Notes. Different tasks of a job have the same color and different patterns. Task fraction (1, 2, 2, 1), which is at the head of the list in (a), cannot get
scheduled on machine 2 as task fraction (1, 2, 1, 1) (of the same task (1, 2)) is already scheduled onmachine 1. At time t1, task fraction (1, 2, 1, 1) is
finished processing as shown in (b). At this time, while task fraction (2, 3, 2, 2) is running on machine 2 (whose corresponding interval is 2), two
task fractions, namely (1, 2, 2, 1) and (1, 1, 1, 1) (whose corresponding intervals are 1), have remained unscheduled in the list. Therefore, task frac-
tion (2, 3, 2, 2) is preempted and its remaining duration is updated. Then, the algorithm scans the list and schedules the task fractions as shown in
(c). The next time that a completion occurs is denoted by t2. (d) Schedule at this time. The rest of the schedule can be determined in a similar fash-
ion. (a) A list of task fractions is given. The first three task fractions in the list are already scheduled on the machines at time t0 � 0. (b) Because of
placement constraint, task fractions (1, 2, 2, 1) and (1, 1, 1, 1) cannot get scheduled. However, machine 2 can accommodate task fraction (2, 3, 2, 2).
(c) At t1 task fraction (1, 2, 1, 1) completes and task fraction (2, 3, 2, 2) is preempted. Task fractions (1, 2, 2, 1) and (2, 3, 1, 2) are scheduled. (d) Both
task fractions (1, 1, 2, 1) and (1, 3, 3, 1) complete, and task fraction (2, 3, 1, 2) is preempted at time t2. Then task fractions (1, 1, 1, 1), (2, 3, 2, 2), and
(2, 2, 3, 2) are scheduled.
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(k, j, i, l) is bounded from above by 3 × dl, that is, we
need a factor of three to guarantee a feasible schedule.

Lemma 2. Let τl denote the time that all the task fractions
(k, j, i, l′), for l′ ≤ l, are completed in schedule S. Then,
τl ≤ 3dl.

Proof. Consider the nonzero task fractions (k, j, i, l′),
i ∈M, l′ ≤ l (according to an optimal solution to
(LP1)). Without loss of generality, we normalize the
processing times of task fractions to be positive inte-
gers, by defining a proper time unit and representing
the task durations using integer multiples of this unit.
Let Dl and Tl be the value of dl and τl using the new
unit. Let i? denote the machine that schedules the last
task fraction among the nonzero task fractions of
the first l intervals. Note that Tl is the time that this
task fraction completes. If Tl ≤Dl, then Tl ≤ 3Dl,
and the lemma is proved. Hence, consider the case
that Tl > Dl.

Define hil(t) to be the height of machine i at time t in
schedule S considering only the task fractions of the
first l intervals. First, we note that∑l

l′�0

∑
(k, j):i∈Mkj

zil
′

kj p
i
kjakj �(a)

∑Tl

t�1
hil(t) ≤

(b)
miDl, ∀i ∈M: (10)

Using the definition of hil(t), the right-hand side of
equality (a) is the total volume of task fractions corre-
sponding to the first l intervals that are processed
during the interval (0,Tl] on machine i, which is the
left-hand side. Furthermore, inequality (b) is by Con-
straint (9d).

Let Sil(θ) denote the set of tasks whose some task
fraction is running at time θ, θ ∈ {1, : : : ,Tl}, on machine i.

Consider machine i?. Consider machine i*. We con-
struct a bipartite graph G�(U ∪ V, E)2 as follows. With
a slight abuse of notations, for each time θ ∈ {1, : : : ,Tl},
we consider a node θ, and define V � {θ|1 ≤ θ ≤
Tl −Dl}, and U � {θ|Tl −Dl + 1 ≤ θ ≤ Tl}. For any s ∈U
and t ∈ V, we add an edge (s, t) if hi?l(s) + hi?l(t) ≥mi? .
This implies that if hi?l(s) + hi?l(t) <mi? , then there is no
edge between s and t, and we can write

(⋃i∈MSil(s))\(⋃i∈MSil(t)) �Ø: (11)

This is because otherwise SynchPack-1 would have
scheduled the task(s) in Si?l(s) at time t (note that t < s).

Let | · | denote set cardinality (size). For any set of
nodes Ũ ⊆U, we define set of its neighbor nodes as
NŨ � {t ∈ V|∃ s ∈ Ũ : (s, t) ∈ E}. There are Tl −Dl − |NŨ |
nodes in V, which do not have any edge to some node
in Ũ. We consider two cases.

Case i: There exists a set Ũ for which |NŨ | < |Ũ |.
Consider a node s ∈ Ũ and a task with duration p run-
ning at time slot s. Let pU denote the amount of time
that this task is running on time slots of set U. Note
that pU ≥ 1. By Equation (11), a task that is running at
time s is also running at Tl −Dl − |NŨ | many other time
slots whose corresponding nodes are in V.

p � Tl −Dl − |NŨ | + pU ≤Dl,

where the inequality is by Constraint (9c). Therefore,

Tl ≤ 2Dl + |NŨ | − pU < 2Dl + |Ũ | ≤ 3Dl:

Case ii: For any Ũ ⊆U, |Ũ | ≤ |NŨ |. Hence, |V| ≥ |U|,
which implies that Tl ≥ 2Dl. Furthermore, Hall’s theo-
rem (Hall 1935) states that a perfect matching3 of nodes
in U to nodes in V always exists in G in this case. The

Figure 2. (Color online) Example for Execution of Slow-Motion Technique in Step 3 of SynchPack-1

(a) (b) (c)

Notes. (a) Final schedule of the example in Figure 1 is shown. (b) Result after applying Slow-Motion with λ � 1=2. If a machine has already proc-
essed total task fraction of a task completely, it is left idle. For instance, consider the task fraction (2,3,2,2) on machine 2, that is the task with hori-
zontal strips. Some portion of its schedule in the second part is shadowed and crossed and machine 2 is left idle, because machine 2 has already
processed this task fraction for the total time that it does originally in (a). (c) Result after shifting back future tasks’ schedules while respecting the
constraints. For instance, see the task fraction with vertical strips (i.e., (1, 2, 2, 1) on machine 2 and part of the task fraction with crossed pattern
(i.e., (1, 1, 1, 1)) on machine 1. The idle times on the machines are left blank in (c). This last action (shifting back future tasks’ schedules) is option-
al. (a) Schedule S for the example of Figure 1. (b) Schedule S̄ for stretch factor λ � 1=2. The machines are left idle in the shadowed crossed parts.
(c) Final schedule after shifting back future tasks’ schedules while respecting the constraints.
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existence of such a matching then implies that any time
slot s ∈ (Tl −Dl,Tl] can be matched to a time slot ts ∈
(0,Tl −Dl] and hi?l(s) + hi?l(ts) ≥mi. This implies that∑

s∈U
(hi?l(s) + hi?l(ts)) ≥mi?Dl ≥

(c)∑Tl

t�1
hi?l(t), (12)

where inequality (c) is by Equation (10). From this,
one can conclude that no nonzero task fraction
(k, j, i?, l′), i?, l′ ≤ l is processed at time slots V′ �
V\⋃s∈U{ts}. This is because the right-hand side of in-
equality (c) is the total amount of task fractions that is
processed up to time Tl. Hence, V′ �Ø, because other-
wise SynchPack-1 would have scheduled some of the
tasks running at time slots of set U at V′. We then can
conclude that Tl � 2Dl < 3Dl. This completes the proof. w

Recall that schedule S̄ is formed by stretching
schedule S by factor 1=λ. Let C̄λ

j denote the comple-
tion time of job j in S̄ . Next, we need to relate C̄λ

j and
C̃j, the optimal solution to (LP1) for completion time
of job j. For this purpose, we first make the following
definition regarding schedule S.

Definition 2. We define Cj(α), for 0 < α ≤ 1, to be the
time at which α-fraction of job j is completed in sched-
ule S (i.e., at least α-fraction of each of its tasks has
been completed.).

The following lemma shows the relationship
between Cj(α) and C̃j. The proof is provided in Online
Appendix B.2.

Lemma 3. The following inequality holds,
∫ 1

α�0
Cj(α)dα

≤ 3(1+ ε)C̃j.

Now, we can show that the following lemma holds.

Lemma 4. We can bound the expected completion time of
job j in S̄ as follows, E[C̄λ

j ] ≤ 6(1+ ε)C̃j .

Proof. The proof is based on Lemma 3 and taking ex-
pectation with respect to probability density function of
λ. The details can be found in Online Appendix B.3. w

In constructing S̄ , we may shift scheduling time of
some of the tasks on eachmachine to the left and construct
a better schedule. Nevertheless, we have the performance
guarantee of Theorem 1 evenwithout this shifting.

Proof of Theorem 1. Let Cj denote the completion
time of job j under SynchPack-1. Then

E

[∑
j∈J

wjCj

]
≤ E

[∑
j∈J

wjC̄λ
j

]
≤(a)6(1+ ε)∑

j∈J
wjC̃j

≤(b)6(1+ ε)∑
j∈J

wjC?
j ,

where (a) is by Lemma 4, and (b) is by Lemma 1. In
Online Appendix C, we discuss how to derandomize
the random choice of λ ∈ (0, 1], which is used to

construct schedule S̄ from schedule S. Therefore, the
proof is complete. w

4. Scheduling When Migration Is
Not Allowed

The algorithm in Section 3 is preemptive, and tasks can
be migrated across the machines in the same placement
set. Implementing such an algorithm can be complex
and costly in practice. In this section, we consider the
case that migration of tasks among machines is not al-
lowed. We propose a nonpreemptive scheduling algo-
rithm for this case. Using the three-field notation, this
case is represented by PRP| |∑jwjCj. We also show that
its solution provides a bounded solution for the case
that preemption of tasks (in the same machine, without
migration) is allowed (PRP|pmtn|∑jwjCj).

Our algorithm is based on a relaxed LP that is very sim-
ilar to (LP1) of Section 3; however, a different constraint is
used to ensure that each task is scheduled entirely by the
endpoint of some time interval of amachine.Next, we in-
troduce this LP and describe how to generate a non-
preemptive schedule based on its solution.

4.1. Relaxed Linear Program (LP2)
We partition the time horizon into intervals (dl−1,dl]
for l � 0, : : : ,L, as defined in (5) by replacing ε by one.
Define 0-1 variable zilkj to indicate whether task (k, j) is
completed on machine i by the end point of interval l,
that is, by dl. The interpretation of variables zilkj is
slightly different from their counterparts in (LP1). By
relaxing integrality of z variables, we formulate (LP2):

min
∑
j∈J

wjCj (LP2), (13a)

zilkj � 0 if pikj > dl, j ∈ J , k ∈Kj, i ∈Mkj, l � 0, : : : ,L,

(13b)
Constraints (9b)–(9h): (13c)

Constraint (13b) allows zilkj to be positive only if the
end point of the l-th interval is at least as long as task
(k, j)’s processing time on machine i ∈Mkj. We would
like to emphasize that this is a valid constraint for
both the preemptive and nonpreemptive cases when
migration is not allowed. We will see shortly how this
constraint helps us construct our nonpreemptive algo-
rithm. We interpret fractional values of zilkj as the
fraction of task (k, j) that is processed in interval l of
machine i (as in Section 3).

4.2. Scheduling Algorithm: SynchPack− 2
Our nonpreemptive algorithm, which we refer to as
SynchPack-2, has three main steps:

Step 1: Solve (LP2). We first solve the linear pro-
gram (LP2) to obtain the optimal solution of {zilkj} de-
noted by {z̃ilkj}.
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Step 2: Apply Slow-Motion. Before constructing
the actual schedule of tasks, the algorithm applies the
Slow-Motion technique (see Section 3.2). We pause here
to clarify the connection between z̃ilkj and those obtained
after applying Slow-Motion, which we denote by z̄ilkj.

Recall that z̃ilkj is the fraction of task (k, j) that is
scheduled in interval l of machine i in the optimal so-
lution to (LP2), and Δl is the length of the lth interval.
Also, recall that Z̃i

kj � ∑L
l�0z̃

il
kj is the total task fraction

to be scheduled on machine i corresponding to task
(k, j). Similarly, we define Δ̄l and d̄l to be the length
and the end point of the lth interval after applying the
Slow-Motion using a stretch parameter λ ∈ (0, 1], re-
spectively. Therefore,

Δ̄l � Δl

λ
, d̄l � dl

λ
: (14)

Furthermore, we define z̄ilkj to be the fraction of task
(k, j) to be scheduled during the lth interval on ma-
chine i after applying Slow-Motion. Then it holds that

z̄ilkj �

z̃ilkj
λ
, if

∑l

l′�0

z̃il
′

kj

λ
< Z̃

i
kj

max 0, (Z̃i
kj −

∑l−1
l′�0

z̃il
′

kj

λ
)
}
, otherwise:

{
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

To see (15), note that in Slow-Motion, both variables
and intervals are stretched by factor 1=λ, and after
stretching, the machine is left idle if it has already
processed its total task fraction completely. Hence, as
long as Z̃i

kj fraction of task (k, j) is not completely proc-
essed by the end of the lth interval in the stretched so-
lution, it is processed for z̃ilkjp

i
kj=λ amount of time in

the lth interval of length Δ̄l � Δl=λ. Hence, z̄ilkj � z̃ilkj=λ.
Now suppose l? is the first interval for which∑l?

l′�0z̃
il′
kj =λ ≥ Z̃i

kj. Then, the remaining processing
time of task (k, j) to be scheduled in the l? th interval
of machine i in the stretched schedule is pikj(Z̃i

kj−∑l?−1
l′�0 z̄

il′
kj ) � pikj(Z̃i

kj −∑l?−1
l′�0 z̃

il′
kj =λ) > 0. Therefore, the sec-

ond part of (15) holds for l? and for intervals l > l?, z̄ilkj
will be zero, because Z̃

i
kj −∑l−1

l′�0z̄
il′
kj =λ ≤ 0. Observe that∑

i∈Mkj

∑L
l�0z̄

il
kj � 1.

Step 3: Construct a nonpreemptive schedule. Ac-
cording to variables z̄ilkj, a task possibly is set to get proc-
essed in different intervals and machines. The last step of
SynchPack-2 is the procedure of constructing a non-
preemptive schedule using these variables. This proce-
dure involves two substeps: (1) mapping of tasks to
machine-intervals and (2) nonpreemptive scheduling of tasks
mapped to each machine-interval using a greedy scheme. We
now describe each of these substeps in detail.

Substep 3.1: Mapping of tasks to machine inter-
vals. For each task (k, j), the algorithm uses a mapping
procedure to find a machine and an interval in which it
can schedule the task entirely in a nonpreemptive fashion.
The mapping procedure is based on constructing a
weighted bipartite graph G � (U⋃

V,E), followed by
an integral matching of nodes in U to nodes in V on
edges with nonzero weights, as described here:

i. Construction of Graph G � (U⋃
V,E): For each task

(k, j), j ∈ J , k ∈ Kj, we consider a node in U. Therefore,
there are∑

j∈J |Kj| nodes inU. Furthermore,V �⋃
i∈MVi,

where Vi is the set of nodes that we add for machine i to
represent intervals. To construct graph G, we start from
the first machine, say machine i, and sort tasks in nonin-
creasing order of their volume vikj � akjpikj inmachine i. Let
Ni denote the number of tasks onmachine iwith nonzero
volumes.Without loss of generality, suppose

vik1j1 ≥ vik2j2 ≥ : : :vikNi jNi
> 0: (16)

For each interval l, we consider 
z̄il� � 
∑j∈J
∑

k∈Kj
z̄ilkj�

(recall the definition of z̄ilkj in (15)) consecutive nodes
in Vi, which we call copies of interval l.
Starting from the first task in the ordering (16), we
draw edges from its corresponding node in U to the
interval copies in Vi in the following manner. Assume
we reach at task (k, j) in the process of adding edges.
For each interval l, if z̄ilkj > 0, first set R � z̄ilkj. Consider
the first copy of interval l for which the total weight of
its current edges is strictly less than one and set W to
be its total weight. We draw an edge from the node of
task (k, j) in U to this copy node in Vi and assign a
weight equal to min {R, 1−W} to this edge. Then we
update R← R−min{R, 1−W}, consider the next
copy of interval l, and apply the same procedure, until
R � 0 (or equivalently, the sum of edge weights from
node (k, j) to copies of interval l becomes equal to z̄ilkj). We
use wilc

kj to denote the weight of edge that connects task (k,
j) to copy c of interval l of machine i, and if there is no
such edge, wilc

kj � 0. We then move to the next machine
and apply the similar procedure and so on. See Figure 3
for an illustrative example.
In G, the weight of any node u ∈U (the sum of weights of
its edges) is equal to one (because ∑L

l�0z̄
il
kj � 1, for any

task (k, j)), whereas the weight of any node v ∈ V is at
most one.
ii. Integral Matching: Finally, we find an integral

matching on the nonzero edges of G, such that each
nonzero task is matched to some interval copy. As we
will show shortly in Section 4.3, we can always find an
integral matching of size ∑

j∈J |Kj|, the total number of
tasks, in G, in polynomial time, in which each task is
matched to a copy of some interval.

A pseudocode for the mapping procedure can be
found in Online Appendix H.
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Substep 3.2: Greedy packing of tasks in machine
intervals. We use a greedy packing to schedule all the
tasks that are mapped to a machine-interval non-
preemptively. More precisely, on each machine, the
greedy algorithm starts from the first interval and
considers an arbitrary ordered list of its correspond-
ing tasks. Starting from the first task, the algorithm
schedules it, and moves to the second task. If the
machine has sufficient capacity, it schedules the task;
otherwise, it checks the next task and so on. Once it is
done with all the tasks of the first interval, it considers
the second interval, applies the similar procedure, and
so on. We may also shift back future tasks’ schedules
as far as the machine capacity allows.

This greedy algorithm is simpler than the one de-
scribed in Section 3, because it does not need to con-
sider requirement (ii) of Section 2 as here each task
only appears in one feasible machine.

As we prove in the next section, we can bound the to-
tal volume of tasks mapped to interval l on machine i in
the mapping phase by miΔ̄l. Furthermore, by Constraint
(13b) and the fact that the integral matching in Substep
3.1 was constructed on nonzero edges, the processing
time of any task mapped to an interval is not greater
than the interval’s end point, which is twice the interval
length. Hence, we can bound the completion time of
each job and find the approximation ratio that our algo-
rithm provides. A pseudocode for the SynchPack-2 al-
gorithm can be found in Online Appendix H.

4.3. Performance Guarantee
In this section, we analyze the performance of our
nonpreemptive algorithm SynchPack-2. The main re-
sult of this section is as follows.

Theorem 2. The scheduling algorithm SynchPack-2 is a
24-approximation algorithm for the problem of parallel-task

jobs scheduling with packing and placement constraints,
when preemption and migration is not allowed.

Because the constraints of (LP2) also hold for the pre-
emptive case whenmigration is not allowed, the optimal
solution of this case is also lower bounded by the opti-
mal solution to the LP. Therefore, the algorithm’ solution
is also a bounded solution for the case that preemption
is allowed (while still migration is not allowed).

Corollary 1. The scheduling algorithm SynchPack-2, in
Section 4.2, is a 24-approximation algorithm for the prob-
lem of parallel-task jobs scheduling with packing and place-
ment constraints, when preemption is allowed and migra-
tion is not.

The rest of this section is devoted to the proof of The-
orem 2. With a minor abuse of notation, we use C̃kj
and C̃j to denote the completion time of task (k, j) and
job j, respectively, in the optimal solution to (LP2).
Also, let C?

kj and C?
j denote the completion time of task

(k, j) and job j, respectively, in the optimal non-
preemptive schedule. We can bound the optimal val-
ue of (LP2) as stated here. The proof is provided in
Online Appendix D.1.

Lemma 5. The following inequality holds, ∑N
j�1wjC̃j

≤ ∑N
j�1wjC?

j �OPT.

Definition 3. Given 0 < α ≤ 1, define Ĉj(α) to be the
starting point of the earliest interval l for which
α ≤ x̃jl, where x̃jl is solution of (LP2).

Note that Ĉj(α) is slightly different from Definition 2,
because we do not construct an actual schedule yet. We
then have the following corollary that is a counterpart
of Lemma 3. See Online Appendix D.2 for the proof.

Corollary 2. The following equality holds,
∫ 1

α�0
Ĉj(α)dα � C̃j.

Consider the mapping procedure where we construct
bipartite graph G and match each task to a copy of
some machine-interval. We state a lemma that ensures
that indeed we can find an integral (i.e., zero or one)
matching in G. The proof can be found in Online Ap-
pendix D.3.

Lemma 6. Consider graph G constructed in the mapping
procedure. There exists an integral matching on the nonzero
edges of G in which each task is matched to some interval copy.
Furthermore, this matching can be found in polynomial time.

Let Vil denote the total volume of the tasks mapped to
all the copies of interval l of machine i. The following
lemma bounds Vil, whose proof is provided in Online
Appendix D.4.
Lemma 7. For any machine-interval (i, l), we have

Vil ≤ d̄lmi +
∑
j∈J

∑
k∈Kj

vikjz̄
il
kj: (17)

Figure 3. (Color online) Illustrative Example for Construc-
tion of Graph G in Substep 3.1

Notes. Task (k, j) requires z̄ilkj � 0:4 and z̄il
′

kj � 0:3. When we reach at
task (k, j), the total weight of the first copy of interval l is 1 and that of
its second copy is 0.7. Also, the total weight of the first copy of inter-
val l′ is 0.9. Hence, the procedure adds two edges to copies of interval
l with weights 0.3 and 0.1 and two edges to copies of interval l′ with
weights 0.1 and 0.2.
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The second term on the right side of (17) can be
bounded by d̄lmi, which results in the inequality
Vil ≤ 2d̄lmi. However, the provided bound is tighter
and allows us to prove a better bound for the algo-
rithm. We next show that, using the greedy packing
algorithm, we can schedule all the tasks of an interval
l in a bounded time.

In the case of packing single tasks in a single ma-
chine, the greedy algorithm by Garey and Graham
(1975) is known to provide a two-approximation solu-
tion for minimizing makespan. The situation is slight-
ly different in our setting because we require bound-
ing of the completion time of the last task as a
function of the total volume of tasks, when the maxi-
mum duration of all tasks in each interval is bounded.
We state the following lemma and its proof in Online
Appendix D.5 for completeness.

Lemma 8. Consider a machine with a capacity of one and
a set of tasks J � {1, 2, : : : ,n}. Suppose each task j has
size aj ≤ 1, processing time pj ≤ 1, and ∑

j∈Jajpj ≤ v.
Then, we can schedule all the tasks within the interval
(0, 2max{1,v}] using the greedy algorithm.

Now consider a machine-interval (i, l). Lemma 7
bounds the total volume of tasks while Constraint
(13b) ensures that duration of each task is less than
dl. Thus, by applying Lemma 8 on the normalized
instance, in which size and length of tasks are nor-
malized by mi and dl, respectively, we guarantee
that we can schedule all the task within a time
interval of length 2dl + 2∑j∈J

∑
k∈Kj

vikjz̄
il
kj=mi. More-

over, the factor of two is tight as stated in the fol-
lowing lemma whose proof can be found in Online
Appendix D.6.

Lemma 9. We need an interval of length at least
2max (1,v) to be able to schedule any list of tasks as in
Lemma 8 using any algorithm.

Hence, Lemmas 8 and 9 imply that applying the
greedy algorithm to schedule the tasks of each ma-
chine interval provides a tight bound with respect to
the total volume of tasks in that machine interval. Let
Ckj denote the completion time of task (k, j) under
SynchPack-2. Then we have the following lemma,
whose proof can be found in Online Appendix D.7.

Lemma 10. Suppose that task (k, j) is mapped to the lth
interval of machine i at the end of Substep 3.1. Then,
Ckj ≤ 6d̄l.

Proof of Theorem 2. Let l denote the end point of the
interval in which task (k, j) has the last nonzero frac-
tion according to z̄ilkj. Then,

d̄l � 2l=λ ≤(?)2Ĉj(λ)=λ: (18)

First note that ε is replaced by one in Equation (5).
Furthermore, inequality (?) follows from the defini-
tion of Ĉj(λ) (Definition 3), and the fact that dls are
multiplied by 1=λ. Therefore, Ĉj(λ)=λ is the start point
of the interval in which job j is completed, and, ac-
cordingly, 2Ĉj(λ)=λ is the end point of that interval.
Thus, 2l=λ, the end point of the interval in which task
(k, j) is completed, has to be at most 2Ĉj(λ)=λ, the end
point of the interval in which job j is completed.

Let Ckj and Cj be the completion time of task (k, j)
and job j under SynchPack-2. Recall that in the map-
ping procedure, we only map a task to some interval
l′ in which part of the task is assigned to that interval
after Slow-Motion applied (in other words, z̄il

′
kj > 0).

Thus, task (k, j) that has its last nonzero fraction in in-
terval l (by our assumption) is mapped to some inter-
val l′ ≤ l, because z̄il′′kj � 0 for intervals l′′ > l. Suppose
task (kj, j) is the last task of job j and finishes in interval
lj in our nonpreemptive schedule. Then, by Lemma 10
and Equation (14), we have Cj � Cijj ≤ 6d̄l � 6

λ2
lj . Recall

that C̃j denotes the completion time of job j in an opti-
mal solution of (LP2). Hence,

E

[∑
j∈J

wjCj

]
≤ E

[∑
j∈J

wj
6
λ
2lj
]
≤(a)12 × E

[∑
j∈J

wjĈj(λ)=λ
]

�(b)12 ×∑
j∈J

wj

∫ 1

λ�0

Ĉj(λ)
λ

2λdλ≤(c)24 ×∑
j∈J

wjC̃j,

where (a) is by the second part of (18) for l � lj, (b) is
by definition of expectation with respect to λ, with
pdf f (λ) � 2λ, and (c) is by Corollary 2. Using the pre-
vious inequality and Lemma 5,

E

[∑
j∈J

wjCj

]
≤ 24 × ∑

j∈J
wjC?

j � 24 ×OPT: (19)

By applying the derandomization procedure (see
Online Appendix C), we can find λ � λ? in polynomi-
al time for which the total weighted completion time
is less that its expected value in (19). This completes
the proof of Theorem 2. w

5. Special Case: Preemption and Single-
Machine Placement Set

In previous sections, we studied the parallel-task job
scheduling problem for both cases when migration of
tasks (among machines in its placement set) is allowed
or not and provided (6+ ε)- and 24-approximation al-
gorithms, respectively. In this section, we consider a
special case when only one machine is in the place-
ment set of each task (e.g., it is the only machine that
has the required data for processing the task), and
preemption is allowed. Using the three-field notation,
this case is represented by PDP|pmtn|∑jwjCj.
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Corollary 3. Consider the parallel-task job scheduling
problem when there is a specific machine to process each
task and preemption is allowed. For any ε > 0, the sum of
the weighted completion times of jobs under SynchPack-1,
in Section 3.2, is at most (4+ ε) ×OPT.

Proof. The proof is straight forward and similar to
proof of Theorem 1. Specifically, the factor of three
needed to bound the solution of the greedy policy is
reduced to two because placement constraint is not
needed to be enforced here, because there is only one
machine for each task. w

We can show that there is a slightly better approxi-
mation algorithm to solve the problem in this special
case that has an approximation ratio of four. The algo-
rithm uses a relaxed LP, based on linear ordering vari-
ables (Gandhi et al. 2008, Mastrolilli et al. 2010, Shafiee
and Ghaderi 2018) to find an efficient ordering of jobs.
Then it applies a simple list scheduling to pack their
tasks in machines subject to capacity constraints. The
details are as follows.

5.1. Relaxed Linear Program (LP3)
Each task must be processed in a specific machine. Each
job consists of up to M (number of machines) different
tasks. We useMj to denote the set of machines that have
tasks for job j. Task i of job j, denoted as task (i, j), re-
quires a specific amount aij of machine i’s resource
(aij ≤mi) for a specific time duration pij > 0. We also de-
fine its volume as vij � aijpij. The results also hold in the
case that a job has multiple tasks on the same machine.

For each pair of jobs, we define δjj′ ∈ {0, 1} such that
δjj′ � 1 if job j is completed before job j′, and δjj′ � 0
otherwise. Note that by the synchronization constraint
(1), the completion of a job is determined by its last
task. If both jobs finish at the same time, we set either
one of δjj′ or δj′j to one and the other one to zero, arbi-
trarily. By relaxing the integral constraint on binary
variables, we formulate the following LP:

min
∑
j∈J

wjCj (LP3), (20a)

miCj ≥ vij +
∑

j′∈J , j′≠j
vij′δj′j, j ∈ J , i ∈Mj, (20b)

Cj ≥ pij, j ∈ J , i ∈Mj, (20c)
δjj′ + δj′j � 1, j≠ j′, j, j′ ∈ J , (20d)
δjj′ ≥ 0, j, j′ ∈ J : (20e)

Recall the definition of job completion time Cj and
task completion time Cij in Section 2. In (LP3), (20b)
follows from the definition of δjj′ , and the fact that the
tasks that need to be served on machine i are proc-
essed by a single machine of capacity mi. It states that
the total volume of tasks that can be processed during
the time period (0,Cj] by machine i is at most miCj.

This total volume is given by the right-hand side of
(20b), which basically sums the volumes of the tasks
on machine i that finish before job j finishes its corre-
sponding tasks at time Cj, plus the volume of task (i, j)
itself. Constraint (20c) is because Cj ≥ Cij and each task
cannot be completed before its processing time pij.
(20d) indicates that for each two jobs, one precedes
the other. Furthermore, we relax the binary ordering
variables to be fractional in (20e).

The optimal solution to (LP3) might be an infeasible
schedule because (LP3) replaces the tasks by sizes of
their volumes, and it might be impossible to pack the
tasks in a way that matches the obtained completion
times from (LP3).

Remark 1. (LP3) can be easily modified to allow each
job to have multiple tasks on the same machine. We
omit the details to focus on the main ideas.

5.2. Scheduling Algorithm: SynchPack− 3
The SynchPack-3 algorithm has two steps:

Step 1: Solve (LP3) to find an ordering of jobs. Let
C̃j denote the optimal solution to (LP3) for completion
time of job j ∈ J . We order jobs based on their C̃j val-
ues in a nondecreasing order. Without loss of general-
ity, we reindex the jobs such that

C̃1 ≤ C̃2 ≤ : : : ≤ C̃N: (21)

Ties are broken arbitrarily.
Step 2: List scheduling based on the obtained or-

dering. For eachmachine i, the algorithmmaintains a list
of tasks such that for every two tasks (i, j) and (i, j′) with
j < j′ (according to ordering (21)), task (i, j) appears before
task (i, j′) in the list. Onmachine i, the algorithm scans the
list starting from the first task. It schedules a task (i, j)
from the list if the machine has sufficient remaining re-
source to accommodate it. Upon completion of a task, the
algorithmpreempts the schedule, removes the completed
task from the list and updates the remaining processing
time of the tasks in the list, and starts scheduling the tasks
in the updated list. Observe that this list scheduling is
slightly different from the greedy scheme used in
SynchPack-1. A pseudocode for the algorithm can be
found inOnlineAppendix I.

5.3. Performance Guarantee

Theorem 3. The scheduling algorithm SynchPack-3 is a
four-approximation algorithm for the problem of parallel-
task jobs scheduling with packing and single-machine
placement constraints.

The proof of the theorem, and any supporting lem-
mas, is presented in Online Appendix E.

Shafiee and Ghaderi: Scheduling Parallel-Task Jobs Subject to Constraints
Operations Research, Articles in Advance, pp. 1–17, © 2022 INFORMS 13

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.5

9.
65

.1
64

] o
n 

11
 A

ug
us

t 2
02

2,
 a

t 1
4:

47
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

Published in Operations Research on January 18, 2022 as DOI: 10.1287/opre.2021.2198. 
This article has not been copyedited or formatted. The final version may differ from this version.



6. Complexity of Algorithms
The complexity of our algorithms is mainly dominat-
ed by solving their corresponding LPs, which can be
solved in polynomial time using efficient linear pro-
gramming solvers. The rest of the operations have
low complexity and can be parallelized on the ma-
chines. We provided a detailed discussion of the com-
plexity in Online Appendix A.

7. Evaluation Results
In this section, we evaluate the performance of our al-
gorithms using a real traffic trace from a large Google
cluster (Wilkes 2011) and compare with prior algo-
rithms. The original data set only contains the ma-
chine to which each task is assigned by the resource
manager, and the information regarding the place-
ment constraints (data locality) is missing. The setting
is then similar to our model for preemptive algorithm
SynchPack-3 in Section 5. To incorporate placement
constraints, we modify the data set as follows. For
each task, we randomly choose three machines and
assume that processing time of the task on these ma-
chines is equal to the processing time given in the
data set. We allow the task to be scheduled on other
machines; however, its processing time will be penal-
ized by a factor α > 1. This is consistent with the data
locality models in previous work (Grandl et al. 2015,
Wang et al. 2016). The details of the data set can be
found in Online Appendix F.

We consider three prior algorithms, PSRS (Schwie-
gelshohn 2004), Tetris (Grandl et al. 2015), and JSQ-
MW (Wang et al. 2016), to compare with our algorithms

SynchPack-2 and SynchPack-3. PSRS is a preemptive
algorithm for the parallel task scheduling problem
(see Section 1.1) on a single machine. Tetris is a heu-
ristic that schedules tasks on each machine according
to an ordering based on their scores (Section 1.1). In
our evaluations, we consider two versions of Tetris,
preemptive (Tetris-p) and nonpreemptive (Tetris-
np). Finally, JSQ-MW is a nonpreemptive algorithm
in presence of data locality (Section 1.1). An over-
view of these algorithms can be found in Online
Appendix F.

7.1. Results in Offline Setting
We use SynchPack-3, Tetris-p, and PSRS to schedule
tasks of the original data set preemptively and use
SynchPack-2, Tetris-np, and JSQ-MW to schedule
tasks of the modified data set (with placement con-
straints) nonpreemptively. We then compare the
weighted average completion time of jobs, ∑

jwjCj=∑
jwj, under these algorithms for the three weight

cases, that is, equal, random, and priority-based
weights. Weighted average completion time is equiva-
lent to the total weighted completion time (up to the
normalization ∑

jwj). We first report the ratio between
the total weighted completion time obtained from
SynchPack-2 (for α�2) and SynchPack-3 and their
corresponding optimal value of their relaxed LPs (13)
and (20) (which are lower bounds on the optimal total
weighted competition times) to verify Theorems 2 and
3. Table 1 shows this performance ratio for the three
cases of job weights. All ratios are within our theoreti-
cal results of 24 and 4. In fact, the approximation ra-
tios are much smaller.

Figure 4(a) shows the performance of SynchPack-3,
Tetris-p, and PSRS in the offline setting. As we see,
SynchPack-3 outperforms the other two algorithms in
all the cases and performance gain varies from 33% to
132%. Furthermore, Figure 4(b) depicts performance
of SynchPack-2, Tetris-np, and JSQ-MW for different

Table 1. Performance Ratio of SynchPack-3 with Respect
to (LP3) and SynchPack-2 with Respect to (LP2)

Jobs’ weights Equal Random Priority based

Ratio for SynchPack-2 2.87 2.90 2.98
Ratio for SynchPack-3 1.34 1.35 1.31

Figure 4. (Color online) Performance of Algorithms in the Offline Setting

(a) (b) (c)

Notes. (a) Performance of SynchPack-3, Tetris− p, and PSRS for different weights. (b) Performance of SynchPack− 2, Tetris− np, and
JSQ−MW for different weights and remote penalty α � 2. (c) Performance of SynchPack− 2, Tetris− np, and JSQ−MW for different remote
penalties and equal weights.

Shafiee and Ghaderi: Scheduling Parallel-Task Jobs Subject to Constraints
14 Operations Research, Articles in Advance, pp. 1–17, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.5

9.
65

.1
64

] o
n 

11
 A

ug
us

t 2
02

2,
 a

t 1
4:

47
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

Published in Operations Research on January 18, 2022 as DOI: 10.1287/opre.2021.2198. 
This article has not been copyedited or formatted. The final version may differ from this version.



weights, when α�2. The performance gain of
SynchPack-2 varies from 81% to 420%. Figure 4(c)
shows the effect of remote penalty α in the perfor-
mance of SynchPack-2, Tetris-np, and JSQ-MW. As
we see, SynchPack-2 outperforms the other algo-
rithms by 85%–273%.

7.2. Results in Online Setting
In the online setting, jobs arrive dynamically over
time, according to the arrival time information in the
data set, and we are interested in the weighted aver-
age delay of jobs. The delay of a job is measured from
the time that it arrives to the system until its comple-
tion. See Online Appendix F for details on implemen-
tation of the algorithms in the online setting.

Figure 5(a) shows the performance results, in terms of
the weighted average delay of jobs, under SynchPack-
3, Tetris-p, and PSRS. Performances of Tetris-p is worse
than our algorithm by 11%–27%, whereas PSRS pre-
sents the poorest performance and has 36%–65% larger
weighted average delay compared with SynchPack-3.
Moreover, performance of SynchPack-2, Tetris-np, and
JSQ-MW for different weights is depicted in Figure 5(b).
As we see, SynchPack-2 outperforms the other two algo-
rithms in all the cases, and performance gain varies from
109% to 189%. Furthermore, by multiplying arrival times
by constant values, we can change the traffic intensity
and study its effect on algorithms’ performance. Figure
5(c) shows the results for equal job weights. As we can
see, SynchPack-2 outperforms the other algorithms and
the performance gain increases as traffic intensity grows.

8. Conclusions
We studied the problem of scheduling jobs, each job
with multiple resource constrained tasks, in a cluster of
machines. We proposed the first constant-approximation
algorithms for minimizing the total weighted completion
time of such jobs. The model and analysis in our setting
of tasks with packing, synchronization, and placement

constraints are new. The approximation results are upper
bounds on the algorithms’ performance, and in fact, our
simulation results showed that the approximation ratios
are very close to one in practice.

As we showed, applying our simple greedy packing
to schedule tasks mapped to each interval in
SynchPack-2 provides a tight bound on the total vol-
ume of tasks and its relation to the associated linear
program. Therefore, we cannot improve the final re-
sult by replacing this step with more intelligent bin
packing algorithms like BestFit (Coffman et al. 1980).
However, in practice, applying such bin packing
schemes can give a better performance. Improving the
performance bound of 24 requires a more careful and
possibly different analysis. We leave further improve-
ment of the result as a future work. Extension of our
model to capture multidimensional task resource re-
quirements and analysis of online algorithms for our
problem are also interesting and challenging topics
for future work.
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Endnotes
1 This is because of how Cj is defined as a convex combination of
the interval left points in Constraint (9g). More specifically, assume
job j consists of one task and completes at interval lj; however, only
a very small fraction of its task is scheduled in lj, that is, xjlj is very
small. Furthermore, assume the rest of the task is scheduled at some
interval lwhere l << lj. Then, we can choose xjlj such that Cj ~ dl (ac-
cording to (9g)), while the actual completion time of job j in sched-
ule S can be ~ dlj .
2 G � (U⋃

V,E) is a bipartite graph iff for any edge e � (u,v) ∈ E, we
have u ∈U and v ∈ V.
3 A perfect matching in G (with size |U|) is a subset of E such that
every node in set U is matched to one and only one node in set V by
an edge in the subset.

Figure 5. (Color online) Performance of Algorithms in the Online Setting

(a) (b) (c)

Notes. (a) Performance of SynchPack− 3, Tetris− p, and PSRS for different weights. (b) Performance of SynchPack− 2, Tetris− np, and
JSQ−MW for different weights. (c) Performance of SynchPack− 2, Tetris− np, and JSQ−MW for different traffic intensities.
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