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Understanding the physical mechanisms governing the response of lipid vesicles under an osmotic
imbalance is crucial not only for advancing our knowledge of osmoregulation in living cells but also
for guiding the design of biomedical vesicular systems. When placed under osmotic stress, lipid vesicles
exhibit a variety of responses, from simple engorgement, to swelling with eventual pore formation, to the
only recently observed irreversible explosion triggered by photoreactions. Here, we present a unifying
model that incorporates all of these dynamic responses by elucidating the associated energy landscape of
vesicle outcomes. We demonstrate the essential, yet previously unrecognized, role of the spontaneous cur-
vature in determining vesicle responses under extreme osmotic stress. We utilize numerical experiments
to construct phase diagrams of pore dynamics, which are consistent with the experimental observations,
and we further discuss the impacts of compositional lipid properties. Our work not only advances a funda-
mental understanding of vesicle response in nonequilibrium environments, but also extends the possibility
for precise design of vesicle systems regarding controlled release of therapeutic substances in biomedical

applications.
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I. INTRODUCTION

Vesicles, small compartments bounded by lipid bilayer
membranes, have been widely considered as an essential
rudimentary biophysical model for enriching our under-
standing of the origins of life [1] and the physiology of
biological cells [2]. In cellular physiology, one widely
encountered environmental assault on cells is osmotic
stress, which may cause the cell to swell, rupture, and
die [2]. Therefore, studying vesicle mechanical responses
in a nonequilibrium osmotic environment is of general
interest to the biophysics community, with an ultimate
goal of mapping biological cell-membrane functions [3—8].
In addition, artificial biomembrane systems have recently
been developed to leverage osmotically induced lysing in
applications such as vesicle-based delivery of nutrients,
biological actives, and pharmaceuticals [9—12].

Rudimentary giant unilamellar vesicles (GUVs) can
respond in a number of ways to an osmotic imbalance,
crucially depending on the degree of osmotic imbalance
across the vesicle membrane as well as the vesicle size.
Smaller vesicles achieve osmotic equilibrium by leak-
ing their contents through a series of transient pores,
while larger vesicles tend to open a long-lived pore to
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relax osmotic stress [13]. A classical form of the total
energy of a vesicle E = 2w yRsina + 024/2K, which
neglects bending energy, has been employed to model
lipid vesicles” osmotic response [3—8,13—15]. The first
term 2wy R sin«, represents the pore-edge energy, where
y is the line tension of the lipid membrane, R the vesicle
radius, and « the angle subtended by the pore edge and
vesicle center, respectively. The second term O'EAU/QK ,
contributes to the elastic energy due to membrane stretch-
ing, as introduced by Helfrich [16]. Here, K, o, and 4y
are the elastic stretching modulus of the lipid membrane,
the membrane tension, and the initial area of the vesicle,
respectively. Following the energy argument proposed by
Lister [3], Taupin ef al. [4] successfully explained osmotic-
pressure-induced leakage in lipid vesicles, and Koslov
and Markin [5] further predicted a swell-burst-reseal cycle
as the most probable path for vesicle relaxation in an
osmotic imbalance. Later, theoretical and experimental
studies performed by Brochard-Wyatt and co-workers [6,
7,17] established that vesicles relax following the release
of inner contents by opening only a single pore. The pore-
opening events in vesicles were presumably analogous to
the opening of a hole in a viscous film. Using this model,
Levin and Idiart [13,14] predicted the existence of short-
and long-lived pores in lipid membranes under osmotic
stress. However, not accounting for the aqueous viscosity
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resulted in an unphysical value of approximately 100 Pa s
for membrane internal viscosity, extracted by fitting the
theoretical pore size to the available experimental data.
Ryham et al. [18] resolved this discrepancy by incorpo-
rating the aqueous viscous dissipation in the governing
equation of pore opening and showed that, in fact, the
aqueous viscous dissipation dominates the internal mem-
brane viscous dissipation. These modeling effects have
been successfully employed to a variety of situations of
vesicles under osmotic stress [8,15,19-21].

This classical model, however, cannot predict the disin-
tegration of the vesicle membrane, i.e., a vesicle explosion,
as observed in recent experiments [22,23]. It has been
shown that, under an osmotic shock, vesicles can undergo
irreversible bursting by disintegrating into several daugh-
ter structures [22,23], a hitherto unexplained regime of
vesicle response to osmotic stress. Figure 1 shows the
schematic of vesicle explosion aligned with experimental
images from Zhu and Szostak [22]. We have previously
demonstrated that a rapid and extreme osmotic imbalance,
as generated by photochemical reactions, induces vesicle
swelling at an acutely fast rate. The high loading rate asso-
ciated with this rapid size expansion increases the lytic
tension oy, causing the vesicle to grow a large pore and
ultimately disintegrate. In addition, we highlighted the sig-
nificance of the bending energy and spontaneous curvature
in modeling vesicle explosion [24].

Prior work on closed vesicle shape transformations has
shown the vital contributions of the bending energy in
determining morphological outcomes [25,26]. This moti-
vates us to consider how the bending energy might impact
the phase diagram for open vesicle systems, such as a
vesicle with a pore. The bending energy is related to the
spontaneous curvature H; of the lipid membrane [16],
which is defined as the preferred curvature of membranes
in mechanically relaxed states [27]. H, arises due to asym-
metric adsorption of solutes or different depletion layers
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across the membrane because of repulsive interactions
between solutes and lipid membrane [28]. For instance,
lyotropic ions or molecules, such as sucrose and glucose,
can disrupt the hydrogen-bond network of water, causing
the attractive or repulsive interactions with the membrane
lipids [29]. Indeed, the photochemical reaction product
bicarbonate ion HCO;I, a known chaotrope [30], also
present in vesicle explosion experiments [22], may disrupt
the hydrogen-bonding network between water molecules
and induce a spontaneous curvature. In particular, at high
concentration differences like those generated with an
active chemical reaction [24], the effect of the spontaneous
curvature could become significant [31,32] and thus the
bending energy should be taken into account. While prior
work on open vesicles in a hypotonic environment has
typically neglected the bending energy by assuming spon-
taneous curvature to be absent [4-8,13], we incorporate
the contributions of the bending energy into our formu-
lation of the total energy, and integrate vesicle exploding
with the known swell-burst-reseal regime regarding the
pore dynamics to produce a general framework applicable
across a wide range of experimental parameters.

To systematically investigate different pore dynamics
across vesicle sizes ranging from the nano- to microscale,
we present a quantitative regime map, incorporating the
previously unincluded explosion under hypotonic condi-
tions. We show how the bending energy plays a crucial
role in vesicle explosion. Taking this into account, we
further establish a lower limit at which long-lived pores
cease to exist. Additionally, we discuss the influence of
different membrane properties—such as bending rigidity,
elastic modulus, and the permeability coefficient—on the
phase diagram of pore stability. In particular, we unravel
the impact of chemical rate constants on vesicle response
to an active osmotic gradient by showing the competition
between the chemical reaction and swelling time scales of
vesicles.
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Schematic illustrations of giant unilamellar vesicle explosion under light-induced osmotic stress (top row), with the corre-

sponding experimental images showing different stages of explosion [22] (bottom row). Light illumination causes rapid decomposition
of photosensitive solutes inside a vesicle. Due to an osmotic influx, the vesicle swells rapidly. The vesicle membrane ruptures once the
membrane tension o > oy (lytic tension). If the pore becomes large enough, the vesicle enters the buckling regime, undergoing large
membrane undulations and ultimately disintegrating into daughter structures.
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II. FORMULATION

We begin by modeling a vesicle with a single pore
formation in a hypotonic environment. In our model, we
consider the vesicle shape as a sphere even after the pore
has opened. The assumptions of the spherical shape of a
ruptured vesicle and the existence of only a single pore in
a hypotonic solution are corroborated by previous experi-
mental observations [6,7]. Figure 2 depicts a schematic of
such a vesicle containing a single pore opening with an
embedded coordinate system. The vesicle radius R and the
angle o (measure of pore size), constitute the configura-
tion space. To derive the governing equations of vesicle
dynamics under hypotonic conditions, we utilize the con-
servation principle of mass for solvent and solutes. In
addition, the Lagrangian framework for nonconservative

systems is used to develop the governing equation of pore
growth.

A. Stochastic membrane rupture

Previous experimental observations have demonstrated
that membrane lytic tension, o, follows a strain-rate-
dependent probability distribution [33,34]. To model this
stochasticity and the strain-rate dependence of membrane
rupture, we adopt the formulation of a survival probabil-
ity S(#), following Evans and Smith [34], as a first-order
kinetic rate equation given by

as

- = —kholeS (1), (H

where kpole is the frequency of appearance of an unsta-
ble initial prepore, which has the potential to subsequently
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FIG. 2. Model setup for a spherical vesicle with an embedded
circular pore. The radius of vesicle R and the angle « subtended
by a pore at the center of the vesicle provide a configuration space
with a spherical coordinate system. Here gj, and gq denote,
respectively, mass transport in and out of the vesicle, and Ap =
Pin — Pout Tepresents the pressure jump across the membrane.

form a pore. kpole 15 given by

kse?/%
1+ e(ﬂﬁ!ﬂ)[l—(ﬂrah')]z) '

knole = (2)
(

The parameters k; and rs used to evaluate kg, are the
preexponential frequency factor, and the mean radius of
symmetry breaks, respectively [34]. o5 = kpT/mrs? is a
surface tension scale set by rs, while og = ny2/kgT is a
thermal tension scale set by y. A typical range of k5 and r;
for phosphatidylcholine (PC) bilayers are k5 = 0.005 — 4
Hz and r; = 0.4 — 1.5 nm [33,34]. We use k; = 0.04 Hz
and rs = 0.42 nm in the following discussion. We sam-
ple #;, the moment of membrane rupture, from S(#) using a
Monte Carlo sampling approach to combine the kinetics of
membrane rupture and subsequent pore dynamics.

B. Pore dynamics

To model the pore growth, once the membrane has rup-
tured, we make use of Helfrich’s spontaneous curvature-
elasticity framework [16]. Thus, we write the total energy
E of the vesicle system as

ol

1
E =2ayRsi — Ao + —k H — H,)*dA
Ty 51na+2K 0+2b[4( )

R
— f Ap2nR* (1 + cosa)dR. (3)
R

0

At the right-hand side of Eq. (3), we incorporate the mem-
brane bending energy as the third term. Here, k; represents
the membrane bending rigidity. The work done by pres-
sure is incorporated as the fourth term [24]. We recognize
that work done by pressure has been included in prior
models to describe vesicle dynamics in hypotonic envi-
ronments [35]. Note that Eq. (3) could be interpreted as
a generalized potential [36] under an external force, e.g.,
as proposed in the case of microtubule formation when the
membrane is pulled by a point force [37]. In addition, the
work done by excess pressure Ap across the membrane
is only nonzero when there is a change in vesicle radius
R. As the Ap changes with the radius R, this work done
has been expressed in an integral form. Since the vesicle
osmotic response dynamics depends only on the gradient
of the total energy E, the gradient of the work done by Ap
is independent of Ry, the initial radius of the vesicle.

For a spherical vesicle, H = 2/R is the instantaneous
curvature. In our system, solute concentration asymme-
try between the inner and outer environments gives rise
to the spontaneous curvature, H;. This increases the sig-
nificance of the bending-energy contributions to the total
energy of vesicle in the case of a large pore [24]. As
established in previous studies [31,32], we adopt a lin-
ear relationship between the spontaneous curvature H; and
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the concentration difference across the membrane, Ac, as
it accommodates both modes of spontaneous curvature
generation by asymmetric adsorptions as well as forma-
tion of asymmetric depletion layers across the membrane
[38]. Therefore, Hy is coupled with Ac and will evolve
as the chemical reaction progresses. Specifically, we use
H; = BAc, with B as a constant of proportionality. Here,
B is related to the strength of the molecular interaction with
the lipid membrane as well as membrane bending rigidity
kp. Assuming an average molecular size of 0.5 nm (e.g.,
the size of a glucose molecule is 0.6 nm) and a mem-
brane thickness of d = 4 nm, |f] is estimated to be in a
range between 0.006-0.03 M~! nm~! [31,38]. In our sim-
ulations, unless stated otherwise, we use a constant § =
—0.005 M~! nm~! (a negative sign signifies that the mem-
brane bends locally away from the inner compartment,
consistent with the sign convention used by Lipowsky
[28]). Even for a maximum Acp = 10 M considered in
this work, the maximum spontaneous curvature generated
is |H,| = 0.05 nm™! < 1/d = 0.25 nm~! and still within
the practical range as shown in prior work [32].

As the pore grows, the viscous forces in both the mem-
brane and the surrounding fluid dissipate the energy. To
model the dissipation experienced by the growing pore,
we formulate the damping using a Rayleigh dissipation
function [36,39] as

& = 7CinsRsinaR*@® + 27 ConndR26®,  (4)

where the first term on the right-hand side corresponds
to dissipation in the aqueous solution, while the sec-
ond term corresponds to membrane internal dissipation.
Here C; and C; are geometric coefficients derived from
a detailed flow-field analysis [15]. 5y, n,,, and d are solvent
viscosity, membrane viscosity, and membrane thickness,
respectively. The overhead dot () represents the time
derivative.

Now we can follow the Lagrangian framework [15,36]
for Eqgs. (3) and (4). The governing equations for the
evolution of the vesicle system are

10E 3 s
Roa  d(Ra)’ (5a)
dE 9
E__T (5b)
3R~ oR

Following Eq. (5a), we obtain the governing equation for
pore evolution as

(CImR sina + 2Cm,,,d)a
ycosa 20R:d0 1 2 .
_ [_ LS 22T 4 Jh(H — Hy) sma]
x O(t—t)). (6)

Here, we use the Heaviside function to incorporate the
stochasticity of membrane rupture, such that the membrane
remains intact until the sampled time #; (i.e.,& = 0 for f <
f;). Additionally, using Eq. (5b), we obtain the governing
relation for excess pressure as

Ap — y sina 20R2 do
p_Rz(l +cosa) KR?(1+ cosa)dR
H! 2H, .
kp | = — . 7
+ b( 2R ) (7)

Here, the pressure jump across the membrane is not only
caused by the membrane tension, but also from the pore-
edge energy and membrane-bending energy. Equation (7),
under the assumptions of the classical model, which
includes only pore-edge energy and membrane-stretching
energy, can be reduced to a classical excess Laplace pres-
sure as Ap = 20 /R. Moreover, we note that Eq. (7) can
be derived following the principle of virtual work as in
Refs. [40,41].

To compute do/dR in Eq. (6) and do/da in Eq. (7),
we define the membrane tension o using the constitutive
relation described in Ref. [42] such that

4 kT oA o |
Z 1= m(14+22)4+Z 8
4, 8k, “( + 24::5:5) tx ®)

Here, A = 2w R*(1 + cosa) is the vesicle surface area,
kp is the bending rigidity of the membrane, and kpT is
the thermal energy scaling factor. The first term on the
right-hand side of Eq. (8), represents the flattening of mem-
brane undulations, which mostly preserves the area per
lipid molecule. However, the second term accounts for
the direct stretching of the membrane. It has been shown
that under compression, the membrane tension reaches a
small negative plateau value. In compression, the mem-
brane prefers bending, which reveals the buckling of the
membrane [43,44]. The onset of buckling is predicted by
Eq. (8) for o &~ —24mkpy/A¢ where the first mode of the
thermal undulations become unbounded [44].

C. Mass transport across vesicle membrane

In addition to pore dynamics, we further consider
mass transport of the solute and solvent across the vesi-
cle membrane. This is motivated by the observation
that the vesicle volume changes because of the osmotic
influx across the membrane and leakout through the pore.
The osmotic influx results from two competitive pres-
sures—the osmotic pressure driven by the solute differ-
ential Ac = ¢jp — coue > 0, and the pressure jump Ap in
Eq. (7), and thus is written as g;, = Pvy(Ac — Ap/R¢T).
Here, P is the permeability coefficient, v, is the solvent
molar volume, Rg is the universal gas constant, and T is
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temperature. On the other hand, the outflux of inner con-
tents through the pore, in a low Reynolds number regime,
can be described as gy = ApRsina/Qn, where 17, is the
solvent viscosity and Q is a geometric coefficient account-
ing for the finite spherical geometry of the vesicle [15].
Therefore, mass conservation of the solvent is governed by

- QOutA P (9}

Here, V = (/3)R’ (2 + % cosq — i cos 30:), A =2nR?
(1 4+cosa), and 4, = 7R?sin? @ is the vesicle volume,
surface area, and circular pore area, respectively. By sub-
stituting ¥ in Eq. (9), we formulate the time rate of change
of vesicle radius R as

(4 + 4, cos@) R = gind — (qouwt — Rasina) 4,.  (10)

Next, the mass conservation of solute molecules is gov-
erned by the phototriggered chemical decomposition, the
diffusion and convection of solution through the pore,
which gives the governing equation as follows:

d(VAc)
dt

= VZkcgp, — GouApAc — %APAC, (11)
where Z, k, cqyp, and V are, respectively, the net stoichio-
metric coefficient, the chemical rate constant, the substrate
concentration, and the vesicle volume. D, the diffusion
constant of the solute, is estimated as the diffusion coef-
ficient of sucrose (Dsolute as noted in Table I). In writing
Eq. (11), we presume that the chemical reaction is occur-
ring in a spatially uniform manner and that it follows
first-order kinetics [24]. The first term, Zkcgup, on the right-
hand side of Eq. (11), represents the contribution occurring
from the generation of solute moles. The second term con-
stitutes the loss of solute via bulk mass transport out of the
vesicle, while the third term accounts of diffusive loss of
the solute through the circular pore. Now, using the prod-
uct rule of derivatives and substituting dV/dt from Eq. (9),
we obtain

dA A
_C = Zkcaup — _C(

dt V 12

D

QinA —+ EAP) .

The coupled equations, Egs. (1), (6), (10), and (12),
constitute our model for vesicle dynamics. Equations (1)
and (6) control the membrane rupture and pore growth
dynamics, while Eqgs. (10) and (12) govern the continuum
mass transport across the vesicle as well as contribu-
tions from the chemical reaction. To obtain the vesicle
dynamics under osmotic imbalance, we solve Eqgs. (1),
(6), (10), and (12) numerically. We compute the excess
pressure Ap, and membrane tension o using Eqs. (7)
and (8), respectively, which depends only on the con-
figuration state, at the current time step. We note that

TABLE 1. Characteristic values for the physical parameters
used in the simulation.

Parameters Values References
d 3.5nm [42]

Vs 18.04 x 10~ m*® /mol [8]

Ns 0.001 Pas [8]

N 5% 10°Pas [45]
Dsolute 5x 10719 m?/s [46]

y 8.6 pN [47]

kg 6x10720] [42]

K 0.15 N/m [42,48]
P 50 pm/s [49]

rs 0.42 nm [33,34]
ks 0.04 Hz [33,34]

a validation study performed in our previous work [24]
shows good agreement between the model predictions and
experimental results regarding the time period of swell-
burst-reseal cycles reported by Chabanon ef al. [8]. In the
current work, the parameter values used in the numerical
experiments are representative of PC bilayers, as listed in
Table L.

III. RESULTS AND DISCUSSION

A. Energy landscape

To investigate the stability of the system, we first ana-
lyze the evolution of the total energy E of the vesicle as the
pore angle a grows. Using Eq. (3) for a constant R/Ry > 1,
we show the typical evolution of the total energy of a vesi-
cle with @ in Fig. 3(a). As the pore grows, the vesicle
membrane relaxes, lowering the total energy E. Figure 3(a)
reveals two stationary points, ¢, and a; of an energy pro-
file with respect to «. For smaller R/Ry, the pore grows
up to the first stationary point, a,. Between ¢, and a;, the
pore-edge energy dominates the bending energy, imposing
an energy barrier. The growing pore then experiences an
adverse energy gradient causing it to reseal. At the sec-
ond stationary point «;, most of the stretching energy has
relaxed, leaving only the bending and pore-edge energy to
compete. However, beyond «p, the bending energy begins
to dominate, curving the energy profile downwards and
creating favorable energy gradient for larger «v. As in the
case for larger R/Ry, if the pore grows larger than «p,
the vesicle keeps unfolding until it buckles. By increasing
R/Ry, as shown in Fig. 3(a), the difference between ¢, and
ap decreases and finally merge. We refer to this configu-
ration (R/Ry,a)., as the critical configuration, where the
energy barrier between «, and « vanishes. The conditions
of critical configuration (R/Ry, &) are given by dE /da =
0 and 8%E/da* = 0. Once the vesicle attains this critical
configuration, pore growth become unbounded, leading the
vesicle to eventual disintegration into multiple daughter
structures.
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Energy landscape and critical configuration of an osmotically stressed vesicle with a pore formation (Ry = 0.1 pm). (a)

Typical energy profile (H, = 0.05 nm~!) of a vesicle as the pore grows at constant R/Ry. &, and a; are the stationary points with
respect to . (b) Dependence of critical configuration (R/Ryp, &) on the induced spontaneous curvature H; due to asymmetric solute
concentrations across the vesicle membrane. The values of relevant parameters are listed in Table 1.

As the induced spontaneous curvature H; increases, so
does its contribution in the bending energy. The critical
configuration reveals the dominance of the bending energy,
given that it is mainly affected by the spontaneous cur-
vature H;. At a higher asymmetry of inner and outer
concentration, the induced spontaneous curvature is sig-
nificant enough that the bending energy of the membrane
becomes comparable in magnitude to the membrane-
stretching energy. Figure 3(b) shows the dependence of
the critical configuration on the induced spontaneous cur-
vature H;. When the induced spontaneous curvature H,
increases (i.e., at higher degrees of asymmetry in concen-
trations across the vesicle membrane), the critical config-
uration becomes less stringent in the sense that it moves
towards the initial configuration (R/Rp, &) = (1,0). We
can then infer that at higher osmotic stress the vesicle is
more likely to explode as soon as it ruptures.

Next, to show how a pore evolves in an osmotically
stressed vesicle, we present the dynamics of the pore
radius under three different hypotonicity conditions (Ac =
0.1, 0.4, and 1.5 M) as shown in Fig. 4. Figure 4(a) shows
the pore evolution while in Figs. 4(b)4(d) we plot the
vesicle dynamics in the configuration space R/Ry—a. For
a short-lived pore, as shown in Fig. 4(b), it completes a
closed loop, indicating resealing of the pore. This loop rep-
resents the characteristic response of a vesicle as a series
of swell-burst-reseal cycles. For long-lived pores, the pore
maintains an equilibrium size near the closure of the pore,
settling at an equilibrium configuration with an open pore
instead of completing the loop [Fig. 4(c)]. An exploding
vesicle, however, buckles as the pore grows so large that it
enters the buckling regime [Fig. 4(d)], with a consequent
disintegration into daughter structures.

Although the bending energy plays a crucial role
at larger pore sizes, historically it has been neglected
in modeling pore dynamics in nonequilibrium osmotic
environments [4-8,13]. In earlier models, once the vesi-
cle membrane is relaxed by the opening of a pore, it
leaves only the pore-edge energy, driving the pore clo-
sure, therefore no explosion event is even likely. In reality,
at large o and H;, the bending energy alters the curva-
ture of the total energy, signifying its dominance over
the pore-edge energy, causing the pore to grow large and
ultimately resulting in vesicle buckling. Therefore, consid-
eration of the bending energy is vital to integrate explosion
with other known pore dynamics. Meanwhile, another fac-
tor influencing the vesicle response is the dependence of
membrane lytic tension oy on the swelling rate of the vesi-
cle. Higher loading rates makes the lipid bilayers rupture
at a higher strain [33,34]. As shown in Fig. 4(d), higher
rupture strains lead to increased likelihood of vesicle
explosion.

We further compare our model predictions [Figs. 4(e)
and 4(f)] against the experimentally observed vesicle
explosion [22]. In plotting Figs. 4(e) and 4(f), we choose
the parameters as g = —0.013 M~ nm™!, ks = 0.023 Hz,
and rs = 0.42 nm, which predict the similar swelling time,
and rupture strain as observed in experiments [22]. From
the available experimental data of the vesicle-swelling
phase, we obtain the relevant parameters Z and k [24] for
Eq. (12). Figure 4(e) presents the simulated vesicle dynam-
ics, with experimental parameters of all available cases in
prior work [22], in R/Ry — « configuration space. We note
here that the rupture strain for all of the five vesicles is sim-
ilar to experimental observations. All these vesicles grow
a large pore and enter the buckling regime shown as the
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FIG. 4. Pore dynamics of an osmotically stressed vesicle with an initial radius Ry = 5 pum, and experimental comparison of vesicle
explosion. (a) Evolution of pore in time. The dashed, solid, and dash-dot curves show the short-lived pore, long-lived pore, and
explosion under increasing osmotic stress with Ac = 0.1,0.4, and 1.5 M, respectively. (b) Short-lived pore dynamics forming a loop
in the configuration space. The gray shaded area indicates the buckling regime. (c) Long-lived pore dynamics showing the vesicle
approaching an equilibrium state. Inset shows the oscillations around the equilibrium state. (d) Explosion event. The intersection of the
pore dynamics with the buckling regime indicates occurrence of membrane disintegration. The values of relevant parameters are listed
in Table I. (e) Comparison of pore dynamics with experiments of vesicle explosion. The curves show the simulated explosion dynamics
of vesicles response, where V; represents the ith vesicle. (f) Phase diagram of vesicles under light-induced osmotic imbalance. The
markers show theoretically predicted vesicles response, where V; represents the ith vesicle. The boundaries, solid gray curves, between
different regimes are plotted for an average chemical rate constant k = 5.07 1/s of the five vesicles extracted from experiments [22].

shaded gray area, subsequently disintegrating into smaller
daughter structures. Thus, the comparison shows that our
model predictions are consistent with the experimental
results.

Meanwhile, to better quantitatively map the regimes of
vesicle osmotic responses, we present the phase diagram in
Acmax — Ro phase space where Acmax = Zcsub,. Here, Caup,
represents the initial concentration of a substrate encap-
sulated inside vesicles. To plot such a phase diagram,
we perform numerical experiments solving Egs. (1), (6),
(10), and (12) simultaneously for different configurations.
As shown in Fig. 4(f), we identify four regimes regard-
ing the pore dynamics. Regime I indicates no pore being
formed under the given osmotic imbalance. Physically,
given the smaller size of the vesicles in regime | and the
inverse relationship of excess pressure Ap with the vesicle
size, even a small level of swelling will generate enough
pressure to balance the osmotic pressure without caus-
ing the membrane to rupture. For the mid-size vesicles
(i.e., those represented in regime 1I), formation of a series
of short-lived pores comprises the well-known response

to an osmotic imbalance adopting a characteristic swell-
burst-reseal cycle. However, vesicles in regime II1 open a
stable long-lived pore under osmotic stress. Finally, regime
IV represents the extreme event of vesicle explosion. In
this regime, a vesicle that attains the critical configura-
tion (R/Ry, ). explodes. It is worthwhile to note here
that regime III vanishes at extreme osmotic stress—i.e.,
high Ac. This exhibits a scenario in which there is com-
petition only between the stretching energy and bending
energy. At an extreme osmotic imbalance, due to a large
induced spontaneous curvature Hj, the contribution of the
bending energy is comparable to stretching energy. The
gray solid phase boundaries between each regime are plot-
ted for an average chemical rate constant & of five vesicles
extracted from experiments [22]. We map the five exper-
imental cases on the phase diagram and show that the
vesicles lie in the predicted explosion regime. Therefore,
we can infer, from Fig. 4(f), that the model predictions
align well with the observed experimental exploding. We
note that we do not realize any prior work showing regime
IV for pore dynamics. Therefore, via the general model
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presented in this work, which takes into account both the
bending energy and lytic tension, we are able to capture
all experimentally observed vesicle responses to differing
amounts of hypotonicity in nonequilibrium environments.

B. Phase diagrams

To provide engineering design guidelines across a wide
range of parameters, we explore the impact of key lipid
membrane properties such as kp, K, and P on the bound-
aries of the phase diagrams (Fig. 5). We focus on these
properties as k; and K influence the bending and elastic
energies of a vesicle, while P predominantly changes the
vesicle swelling rate—all of which are factors in determin-
ing the vesicle response to an osmotic gradient. Moreover,
these properties can be manipulated within a wide range,
by changing the composition of the lipid bilayer such as
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FIG. 5.

moderating the fraction of cholesterol lipids during vesicle
fabrication. In particular, prior work shows that the bend-
ing rigidity k; of lipid membranes typically ranges from
10-60kpT [42,50], and could be altered up to threefold,
for, e.g., by incorporating cholesterol [51] or by manip-
ulating the salt concentration of the surrounding aqueous
environment when using charged lipid membranes [52].
In our simulations, bending rigidity ranges from kp =
15-45kgT. On the other hand, the stretching modulus K
varies in between K ~ 100300 mN/m [42,50,53], and a
similar range for Fig. 5(b) is considered in simulations.
For Fig. 5(c), we use a value of the permeability coef-
ficient ranging between P = 10-100 pm/s as has been
observed in experiments [49]. In addition, we consider
the vesicle with a size of 100 nm—50 pum, which covers
the typical size range produced with various experimen-
tal techniques [54]. We construct the phase diagram of

(®) 10 ——— K =100 mN/m 3
Vv = = K =200 mN/m
= K = 300 mN/m
)
S 1
<

0.1}k
1 10 50
Ry (pm)
100 . .
) \ ——— k=151
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N — k=100s""
—~ 10} .
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<1 1

1 10 50
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Phase diagrams of a vesicle under hypotonic conditions for different values of (a) bending rigidity of the membrane, k.

(b) Elastic modulus of the membrane, K. (c) Permeability coefficient, P. (d) Chemical reaction rate constant, k. Here, regime I: the
vesicles remains intact (no pore formation); regime II: formation of short-lived pores; regime IIl: the long-lived pore; regime IV:
vesicle disintegration into daughter structures. The values of relevant parameters are listed in Table I, except indicated in the figure.
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vesicle responses in a phase space of Ac — Ry. In plotting
these phase diagrams, we perform numerical experiments
solving Egs. (1), (6), and (10) simultaneously for differ-
ent configurations in the Ac — Ry phase space with dAc/
dt = 0. We consider constant Ac due to the following:
(1) such a system can be realized for vesicles with
an internal chemical reaction; (2) changes in the con-
centration difference across the membrane are typically
much slower than the time scale of pore growth and
collapse [8,13].

Figure 5(a) shows the impact of bending rigidity ks, on
the phase boundaries of vesicle responses under an osmotic
imbalance. The lipid bilayers are extremely compliant to
bending, owing to very small values of k; (of the order of
few tens of kpT [42,50]), thus it does not play a signifi-
cant role during the swelling or initial pore growth phase.
We note, in Fig. 5(a), that the phase boundary of regime [ is
not affected as the mechanical response is dominated by the
membrane elastic energy. However, the membrane elastic
energy is relaxed in regimes II1 and I'V, and the significance
of the bending energy increases to counter the pore-edge
energy in resealing the membrane. As shown in Fig. 5(a),
the phase boundaries between regimes Il and III, and IV
are altered significantly. As the membrane becomes more
resistant to bending, the bending energy effectively coun-
ters the pore-edge energy, therefore the boundaries shift
towards the origin, expanding the long-lived pore regime
III and exploding regime IV. This behavior establishes
the significance of the bending energy in modeling the
vesicle’s osmotic response. Given the membrane-bending
rigidity of only tens of kT, it may not be immediately
apparent that there exists such a regime where the bend-
ing energy is dominating the vesicle’s response. However,
for a large spontaneous curvature Hy, such as in the present
case of a large concentration difference, Ac, and asymmet-
ric vesicles (composed of different inner and outer leaflets)
[55,56], the bending energy would become essential for
accurately modeling vesicle lysis.

On the other hand, Fig. 5(b) demonstrates that the mem-
brane elastic modulus K, does not alter the phase bound-
aries significantly. The vesicle loading rate depends on the
elastic modulus as ¢ o« K&,. Meanwhile, the membrane
tension, generated due to swelling, is also directly pro-
portional to K. As K increases, the loading rate increases,
making the membrane rupture at a higher membrane lytic
tension o;; however, with increased K, the membrane
lytic tension can be achieved at lower area strain. The
mild impact of membrane-stretching modulus K on the
vesicle dynamics results from two counteracting effects:
increasing the membrane loading rate ¢, and reducing the
membrane area strain g, at rupture.

The permeability coefficient of the membrane P is
expected to influence the membrane lytic tension oy,
because the vesicle loading rate is directly proportional
to the swelling rate as & & R« PvyAc/Ry. As shown in

Fig. 5(c), regime | expands away from the origin when the
membrane becomes permeable, indicating that more per-
meable vesicles are capable of tolerating higher osmotic
imbalance. Along the boundary between regime Il and
I1I, the pore maintains an equilibrium size governed by
qin = PvyAc/Ry = ApRsina /On; = g, By increasing
the permeability coefficient P, the equilibrium can be
maintained at a smaller Ac as exemplified by the trend in
Fig. 5(c). For regime IV, the higher the permeability, the
higher the loading rate, hence the vesicle will rupture at
a higher strain. Therefore, vesicles comprising more per-
meable membranes are more likely to explode under a
given osmotic imbalance, as regime IV expands towards
the origin [Fig. 5(c)].

To investigate how phototriggered chemical reactions
can be harnessed for control over vesicle content release,
we present the impact of the chemical rate constant on the
vesicle response to an internally generated active osmotic
gradient as shown in Fig. 5(d). We plot the phase diagram
in Acmax — Ro phase space. An exemplar chemical rate
constant, in the case of phototriggered chemical reactions,
is k=~ 10 1/s, which was inferred from previous experi-
mental work [22,24]. Therefore, we choose k = 1,10 and
100 1/s, which span a range of three orders of magni-
tude. As shown in Fig. 5(d), regime 1 boundary shifts
away from the origin for a smaller reaction rate constant,
as higher Acmax would be required to compensate for a
slower chemical reaction. The boundary between regime
IT and I1I shows pronounced deviation from a straight line
[as seen in Figs. 5(a)-5(c)] curving upwards for smaller
vesicle sizes, and a similar trend for the boundary of the
exploding regime IV is also observed. The influx time scale
Ro/PvyAcmay scales with the vesicle initial radius Ry. For
smaller vesicles, Ry/PviAcy.. < 1/k, the vesicle swells
quickly with not enough time for the chemical reaction to
complete. Therefore, the vesicle membrane ruptures when
only a small fraction of chemical reaction has been com-
pleted. Even if in general, higher permeability increases
the chances of a vesicle exploding, the higher permeabil-
ity with slower osmotic buildup may ultimately prevent
explosion. This view aligns with previous observations
of vesicles with higher permeability being less likely to
explode [23] once the rate of osmotic change is accounted
for. In such cases, the slow chemical reactions of these
experiments drive the vesicles to enter a swell-burst-reseal
regime.

In the present model, we do not consider the changes in
the composition of the lipid membrane due to phototrig-
gered products generated during the chemical reaction
or the lipid damage caused by temperature generated by
light exposure. The control experiments performed by Zhu
and Szostak [22] show that the explosion of the vesi-
cle was mainly attributed to the induced osmotic imbal-
ance by phototriggered chemical reaction, and they ruled
out the contribution of lipid membrane damage from the
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photochemistry and temperature increase from illumina-
tion. Another potential limitation of the model is the
assumption of a linear relationship of spontaneous curva-
ture Hy with Ac, which may not hold for the entire range
of Ac encountered in experiments. Additionally, while the
line tension ¥ may change due to the addition of molecules
in the pore edge [7], we consider y as a constant.

IV. CONCLUSION

In this study, we present a comprehensive model for pore
dynamics of the vesicle response to a hypotonic osmotic
gradient. This model could be extended to other processes
generating an osmotic imbalance, such as active solute
transports or metabolic activities by adapting the equation
of mass conservation for solute. We further utilize numer-
ical experiments to construct phase diagrams of the pore
dynamics. Of note, we account for the exploding regime
which was absent in previous studies. To account for sys-
tems of asymmetrical solute concentration, we consider the
impact of an induced spontaneous curvature, which signif-
icantly alters the contribution of the bending energy. We
demonstrate that it is imperative to account for the bending
energy at large pore sizes as a driver of vesicle explosion.
In the course of constructing an expanded phase diagram,
strain at rupture also emerges as a key factor affecting vesi-
cle outcomes. Vesicles that rupture at higher strain, tend
to develop larger pores, causing the vesicle to explode.
Vesicles with a membrane more rigid to bending or those
that are more permeable are more likely to explode. We
note that, the elastic modulus does not affect the vesicle
responses significantly due to its counterbalancing effects
on the vesicle loading rate and membrane lytic tension.
In the case of an active osmotic gradient, the effect of a
chemical rate constant is crucial with respect to the vesi-
cle size. With smaller vesicle sizes, the swelling time scale
is much shorter than the rate of chemical reaction, causing
explosion to become unlikely.

By outlining key system properties that shift the phase
boundaries of vesicle osmotic response, our work holds
promise to aid in strategizing the release rate of vesi-
cle’s inner contents. The ability to rapidly release vesicle
contents opens the possibility of engineering vesicles for
precision drug delivery, such as targeted delivery of can-
cer chemotherapy medicines. Furthermore, it could serve
as a first step towards designing multicompartmentalized
cell mimetic systems with reaction cascades occurring
in a spatiotemporally controlled manner, which may fur-
ther contribute to understanding the osmosensing and
enzymatic functions of living cells. Additionally, interac-
tions of lipid membranes and proteins have been shown
to induce local spontaneous curvature [57,58]. Such an
induced spontaneous curvature may cause the membrane
to rupture and form nanopores [59,60]. Therefore, our
model may also provide perspectives about the role of the

spontaneous curvature in the formation and stabilization of
nanopores via pore-forming proteins, which has been cru-
cial for defense and attack strategies in many organisms as
well in the process of regulated cell death via membrane
permeabilization.
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