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Biological and artificial microswimmers often encounter fluid media with non-Newtonian
rheological properties. In particular, many biological fluids such as blood and mucus are
shear-thinning. Recent studies have demonstrated how shear-thinning rheology can impact
substantially the propulsion performance in different manners. In this work, we examine
the effect of geometrical shape upon locomotion in a shear-thinning fluid using a prolate
spheroidal squirmer model. We use a combination of asymptotic analysis and numerical
simulations to quantify how particle geometry impacts the speed and the energetic cost of
swimming. The results demonstrate the advantages of spheroidal over spherical swimmers
in terms of both swimming speed and energetic efficiency when squirming through a
shear-thinning fluid. More generally, the findings suggest the possibility of tuning the
swimmer geometry to better exploit non-Newtonian rheological behaviours for more
effective locomotion in complex fluids.

Key words: micro-organism dynamics

1. Introduction
Locomotion of microorganisms plays vital roles in various biological processes, including
reproduction, foraging and biofilm formation (Fauci & Dillon 2006; Lauga 2016). Artificial
microswimmers that move like their biological counterparts also show great promise
for different biomedical applications such as drug delivery and microsurgery (Nelson,
Kaliakatsos & Abbott 2010; Sengupta, Ibele & Sen 2012; Li et al. 2017). For their
fundamental biological importance and potentially transformative applications, there have
been growing interdisciplinary efforts in recent years to better understand the locomotion
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of these biological and artificial microswimmers (Moran & Posner 2017; Hu, Pané
& Nelson 2018; Wu et al. 2020; Tsang et al. 2020a). These microswimmers employ
a variety of mechanisms to overcome the dominance of viscous over inertial forces
for self-propulsion at low Reynolds numbers. Extensive studies have shed light on the
hydrodynamics of swimming microorganisms (Lauga & Powers 2009; Yeomans, Pushkin
& Shum 2014; Elgeti, Winkler & Gompper 2015), which has also contributed to the
development of various biomimetic or bioinspired artificial swimmers (Bente et al. 2018;
Fu et al. 2021). More recently, there has also been a growing interest in exploring the
application of machine learning in designing artificial microswimmers (Colabrese et al.
2017; Schneider & Stark 2019; Cichos et al. 2020; Tsang et al. 2020b; Hartl et al. 2021;
Liu et al. 2021; Muiños-Landin et al. 2021).

Many microorganisms utilize one or more flexible appendages called flagella and cilia
(short flagella) for locomotion. For instance, some spermatozoa of eukaryotic cells swim
by propagating bending waves travelling along their flagellum. Colonies of flagellates
such as Volvox (Goldstein 2015) and ciliates such as Paramecium and Tetrahymena have
their surface covered by arrays of cilia beating in a coordinated manner. Lighthill (1952)
and Blake (1971) first studied ciliary propulsion with the squirmer model, where the
motion of closely packed cilia tips is represented by distribution of slip velocities on a
spherical squirmer surface. In addition to representing specific ciliated microorganisms,
the distribution of slip velocity can be adjusted to present different types of swimmers.
Based on the representation by Lighthill (1952) and Blake (1971), the slip velocity is
decomposed into a series of Legendre polynomials, where the coefficients of the series are
associated with Stokes flow singularity solutions (Ghose & Adhikari 2014; Pak & Lauga
2014; Pedley 2016). The first mode of the decomposition corresponds to a source dipole
and accounts for the swimming of the organism, and the second mode corresponds to a
force dipole that characterizes the type of the swimmer. Many studies considered these
two squirming modes to represent pushers and pullers, which obtain their thrust from,
respectively, the rear (e.g. Escherichia coli) and front (e.g. Chlamydomonas) part of their
body. The squirmer model has therefore become a widely used generic locomotion model
for various problems in low-Reynolds-number swimming, including nutrient uptake by
microorganisms (Magar, Goto & Pedley 2003; Magar & Pedley 2005; Michelin & Lauga
2011; Eastham & Shoele 2020), optimization (Michelin & Lauga 2010), hydrodynamic
interactions (Ishikawa, Simmonds & Pedley 2006; Drescher et al. 2009), collective motion
(Ishikawa & Pedley 2007; Ishikawa, Simmonds & Pedley 2007), inertial effects (Wang &
Ardekani 2012; Chisholm et al. 2016) and swirling motion (Pedley, Brumley & Goldstein
2016; Binagia et al. 2020; Nganguia et al. 2020; Housiadas 2021; Housiadas, Binagia &
Shaqfeh 2021), among others (Pedley 2016).

Of particular recent interest is the use of the squirmer model to probe the impact of
non-Newtonian rheology on swimming (Zhu et al. 2011; Zhu, Lauga & Brandt 2012;
Montenegro-Johnson, Smith & Loghin 2013; De Corato, Greco & Maffettone 2015; Datt
et al. 2015; Binagia et al. 2020; Housiadas et al. 2021). Most biological fluids display
non-Newtonian rheological behaviours, including viscoelasticity and shear-thinning
viscosity. While extensive studies focused on the effect of fluid elasticity (Elfring & Lauga
2015; Sznitman & Arratia 2015; Li, Lauga & Ardekani 2021), recent studies have revealed
how shear-thinning rheology can also affect locomotion in substantial and non-trivial
ways (Lauga 2015; Montenegro-Johnson 2017). The impact of shear-thinning rheology
varies among different types of swimmers and the details of their swimming gaits: while
the propulsion speed of undulatory (Vélez-Cordero & Lauga 2013; Gagnon, Keim &
Arratia 2014; Li & Ardekani 2015; Gagnon & Arratia 2016) and helical (Gómez et al.
2017; Demir et al. 2020; Qu & Breuer 2020) swimmers can be enhanced significantly,
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Figure 1. (a) An image of ciliate Tetrahymena thermophila. Image courtesy of Brian Bayless, Santa Clara
University/Bayless Lab. (b) The geometrical set-up of a squirmer with a prolate spheroidal body, where a and
b are, respectively, the semi-major and semi-minor axes. The unit normal n = eτ and tangent s = −eζ vectors
to the spheroidal surface S are expressed in terms of the basis vectors in the prolate spheroidal coordinates.

all two-mode squirmers (pushers, pullers or neutral squirmers) swim slower in a
shear-thinning fluid (Montenegro-Johnson et al. 2013; Datt et al. 2015); it is noteworthy
that speed enhancement is possible for squirmers with other squirming modes in the slip
velocity (Datt et al. 2015; Pietrzyk et al. 2019). In addition, shear-thinning rheology can
render ineffective swimming gaits in a Newtonian fluid (e.g. reciprocal motion) useful
in a non-Newtonian fluid (Qiu et al. 2014; Han et al. 2020). Collectively, these studies
demonstrate the profound impact of shear-thinning rheology on low-Reynolds-number
locomotion.

In this work, we extend the spherical squirmer model to examine the effect of particle
geometry on swimming in a shear-thinning fluid. While the squirmer model by Lighthill
(1952) and Blake (1971) may be adequate for spherically shaped organisms like Volvox,
swimmers with non-spherical shapes are commonly found in nature. To better represent
ciliates such as Paramecium and Tetrahymena (see figure 1a) and, more generally, to
probe the effect of geometrical shape upon ciliary locomotion, Keller & Wu (1977)
generalized the squirmer model to a prolate spheroidal body of arbitrary eccentricity. The
theoretical prediction of streamlines in their spheroidal model found good agreement with
experimental streak photographs of freely swimming and inert sedimenting Paramecium
caudatum. The original spheroidal squirmer model by Keller & Wu (1977) includes only
the swimming mode without a force-dipole mode, which has been incorporated into the
model by more recent studies (Ishimoto & Gaffney 2013; Theers et al. 2016; Pöhnl,
Popescu & Uspal 2020) to represent other types of swimmers. In addition to representing
ciliates with spheroidal bodies, the spheroidal model serves as a first approximation to
other non-spherical swimmers (e.g. E. coli) to assess how geometrical shape affects
swimming performance. Here, we extend the analysis to the non-Newtonian regime
and probe the role of particle geometry on swimming in a shear-thinning fluid via the
spheroidal squirmer model. A combined theoretical and numerical framework is used to
quantify the impact on both the speed and the energetic cost of swimming. The results
reveal key features that are distinct from the spherical case, suggesting the possibility for
biological and artificial microswimmers to tune their geometrical shape for improving their
swimming performance in complex fluids.

This paper is organized as follows. We formulate the problem in § 2 by introducing
the prolate spheroidal squirmer model, the governing equations, and the rheological
constitutive model employed in this work. In § 3, we present the asymptotic analysis
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and numerical simulations used to quantify the locomotion of a spheroidal squirmer in
a shear-tinning fluid. Results on the swimming speed, power dissipation and swimming
efficiency, as well as their implications for the design of artificial microswimmers, are
discussed in § 4. Finally, we conclude this work with closing remarks in § 5.

2. Problem formulation

2.1. Geometrical set-up
We use a spheroidal squirmer model to examine the effect of geometrical shape on
locomotion in a shear-thinning fluid. Since many ciliates such as Paramecium and
Tetrahymena have prolate spheroidal bodies (see figure 1a), we focus on the locomotion
of a prolate spheroidal squirmer in this work for its biological relevance. See figure 1(b)
for notations and geometrical set-up. The equation describing the surface of the prolate
spheroidal body reads

z2

a2 + r2

b2 = 1, (2.1)

where r2 = x2 + y2, a is the semi-major axis, and b ≤ a is the semi-minor axis. The
spheroidal coordinate system that we use is given by (τ, ζ,φ), where 1 ! τ ! ∞, −1 !
ζ ! 1 and 0 ! φ ! 2π. The position vector is given by

x = c
√
τ 2 − 1

√
1 − ζ 2 er + cτζ ez, (2.2)

where er = cosφ ex + sinφ ey, c =
√

a2 − b2 is half of the focal length, and e = c/a is
the eccentricity. Here, we define τ0 = 1/e, with τ > τ0 corresponding to the fluid domain
exterior to the surface (τ = τ0) of the squirmer. The unit vectors of the prolate spheroidal
coordinates eτ and eζ are related to those of the Cartesian coordinates as

eτ = τ
√

1 − ζ 2
√
τ 2 − ζ 2

er + ζ
√
τ 2 − 1

√
τ 2 − ζ 2

ez, eζ = −ζ
√
τ 2 − 1

√
τ 2 − ζ 2

er + τ
√

1 − ζ 2
√
τ 2 − ζ 2

ez. (2.3a,b)

The metric coefficients for the prolate spheroidal coordinates are given by

hτ = c

√
τ 2 − ζ 2

√
τ 2 − 1

, hζ = c

√
τ 2 − ζ 2

√
1 − ζ 2

, hφ = c
√

1 − ζ 2
√
τ 2 − 1. (2.4a–c)

The unit normal and tangent vectors on the spheroidal surface are given by the basis
vectors, respectively, as n = eτ and s = −eζ .

2.2. The squirmer model
Similar to the spherical squirmer model (Lighthill 1952; Blake 1971), surface velocities are
prescribed on a prolate spheroidal squirmer to represent the effect of the ciliary motion on
the fluid. Following Keller & Wu (1977), a steady tangential velocity distribution of the
form uS = −B1(s · ez)s is prescribed on the squirmer surface S (figure 1b). In the spherical
limit, s → eθ , and the squirming velocity reduces to the first mode uS = B1 sin θ eθ
considered by Lighthill (1952) and Blake (1971). Subsequent studies have included
additional modes of surface velocities (Ishimoto & Gaffney 2013; Theers et al. 2016;
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Effect of geometry on squirming in a shear-thinning fluid

Eastham & Shoele 2020; Pöhnl et al. 2020). In particular, Theers et al. (2016) included
the contribution of a force-dipole as a second mode (B2) in the form

uS = −B1(s · ez)s − B2ζ(s · ez)s (2.5)

= −B1τ0(1 + αζ )

√
1 − ζ 2

τ 2
0 − ζ 2

eζ , (2.6)

where the sign of the ratio α = B2/B1 represents a pusher (α < 0) or puller (α > 0), and
the case α = 0 corresponds to a neutral squirmer. The two-mode spheroidal squirmer
reduces to the spherical model by Lighthill (1952) and Blake (1971) in the limit of
zero eccentricity (e = 0). Here, we extend previous analyses on spherical squirmers in
a shear-thinning fluid (Montenegro-Johnson et al. 2013; Datt et al. 2015) and examine the
effect of particle geometry via the spheroidal squirmer model given by (2.6).

2.3. Governing equations
The momentum and continuity equations in the limit of low Reynolds number are,
respectively, given by

∇ · σ = 0, (2.7)
∇ · u = 0, (2.8)

where σ = −pI + T , p is the pressure, I is the identity tensor, and T is the deviatoric
stress tensor. To capture the reduction in the viscosity due to increased shear rates in
a shear-thinning fluid, we use the Carreau constitutive equation (Bird, Armstrong &
Hassanger 1987), where

T = [µ∞ + (µ0 − µ∞)(1 + λ2|γ̇ |2)(n−1)/2]γ̇ . (2.9)

Here, µ0 and µ∞ are, respectively, the zero and infinite shear rate viscosities, and the strain
rate tensor γ̇ = ∇u + (∇u)T has magnitude |γ̇ | = (γ̇ijγ̇ij/2)1/2. The power-law index
n < 1 characterizes the degree of shear-thinning, and 1/λ characterizes the critical shear
rate at which the non-Newtonian behaviour becomes significant. The Carreau model has
been shown to be effective in describing the rheological behaviours of different biological
fluids, and has been employed in previous studies of locomotion in a shear-thinning fluid
(Montenegro-Johnson et al. 2013; Vélez-Cordero & Lauga 2013; Datt et al. 2015; Li &
Ardekani 2015; Nganguia et al. 2020).

In the laboratory frame, the flow decays to zero in the far field

u(τ → ∞, ζ ) = 0, (2.10)

and the boundary condition on the surface of the squirmer is given by

u(τ = τ0, ζ ) = uS + U, (2.11)

where the squirming velocity distribution uS given by (2.6) causes the squirmer to translate
with an unknown swimming velocity U . The system is closed by enforcing the force-free
condition ∫

S
n · σ dS = 0, (2.12)

where n = eτ is the unit normal vector on the squirmer surface. We note that the
axisymmetric velocity distribution in (2.6) does not induce any rotational velocity and
the squirmer is torque-free. By symmetry, swimming occurs in the z-direction, U = Uez.

938 A3-5
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We non-dimensionalize the problem by scaling lengths by a, velocities by B1, strain
rates by ω = B1/a, and stresses by µ0ω. The dimensionless momentum and continuity
equations are given by, respectively, ∇ · σ ∗ = 0 and ∇ · u∗ = 0, where the stars (∗) denote
dimensionless variables. The deviatoric stress tensor T ∗ takes a dimensionless form

T ∗ = [β + (1 − β)(1 + Cu2|γ̇ ∗|2)(n−1)/2]γ̇ ∗, (2.13)

where the Carreau number Cu = ωλ compares the characteristic strain rate ω to the
critical strain rate 1/λ, and the viscosity ratio β = µ∞/µ0 compares the zero and infinite
shear rate viscosities. Both dimensionless groups measure the extent of the shear-thinning
effect. Hereafter we refer only to dimensionless variables and therefore drop the stars for
convenience.

3. Asymptotic analysis and numerical simulations

3.1. Asymptotic analysis
The Carreau constitutive equation (2.13) reduces to the Newtonian constitutive equation
when Cu = 0 or β = 1. We can therefore examine the weakly non-Newtonian behaviour
by expanding variables in the limits of small Cu (ε = Cu2 ' 1) or small deviation of β
from unity (ε = 1 − β ' 1) in perturbation series

{u, σ , T , γ̇ , U} =
{
u0, σ 0, T 0, γ̇ 0, U0

}
+ ε

{
u1, σ 1, T 1, γ̇ 1, U1

}
+ O(ε2). (3.1)

The zeroth-order solution corresponds to the flow around a spheroidal squirmer in a
Newtonian fluid, which satisfies

∇ · σ 0 = 0, (3.2)
∇ · u0 = 0, (3.3)

where σ 0 = −p0I + γ̇ 0 and γ̇ 0 = ∇u0 + (∇u0)
T. The boundary condition on the

squirmer surface is given by u0(τ = τ0, ζ ) = uS + U0, and the flow decays to zero in the
far field. The Newtonian solution was obtained in previous analyses (Keller & Wu 1977;
Theers et al. 2016; Pöhnl et al. 2020). In terms of streamfunction ψ0 in prolate spheroidal
coordinates, where

u0 = 1
hζhφ

∂ψ0

∂ζ
eτ − 1

hτhφ
∂ψ0

∂τ
eζ , (3.4)

the solution is given by

ψ0 = C1 H2(τ ) G2(ζ ) + C2τ (1 − ζ 2) + C3 H3(τ ) G3(ζ ) + C4ζ(1 − ζ 2), (3.5)

where Gn(x) and Hn(x) are, respectively, the Gegenbauer functions of the first and second
kind of degree −1/2, and the coefficients are determined as

C1 =
2U0(τ

2
0 + 1) − 4τ 2

0

τ 2
0 [(τ 2

0 + 1) coth−1 τ0 − τ0]
, C2 =

τ0
[
τ0 − (τ 2

0 − 1) coth−1 τ0
]
− U0

τ 2
0 [(τ 2

0 + 1) coth−1 τ0 − τ0]
,

C3 = 4α
τ0[3τ0 + (1 − 3τ 2

0 ) coth−1 τ0]
, C4 =

α
[
2/3 − τ 2

0 + τ0(τ
2
0 − 1) coth−1 τ0

]

τ0[3τ0 + (1 − 3τ 2
0 ) coth−1 τ0]

.






(3.6)
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Effect of geometry on squirming in a shear-thinning fluid

Upon enforcing the force-free condition (2.12), the swimming speed of a spheroidal
squirmer in a Newtonian fluid is equal to (Keller & Wu 1977; Theers et al. 2016)

U0 = τ0[τ0 − (τ 2
0 − 1) coth−1 τ0]. (3.7)

At O(ε), the momentum and continuity equations are, respectively, given by

∇ · σ 1 = 0, (3.8)
∇ · u1 = 0, (3.9)

where σ 1 = −p1I + T 1 and the first non-Newtonian correction to the deviatoric stress is
T 1 = γ̇ 1 + A; here, the tensor A depends on the choice of the asymptotic limit, ε = Cu2

or ε = 1 − β. Expanding (2.13) with ε = Cu2 gives

A = (1 − β)(n − 1)

2
|γ̇ 0|2γ̇ 0, (3.10)

whereas expanding (2.13) with ε = 1 − β gives

A =
[
−1 + (1 + Cu2|γ̇ 0|2)(n−1)/2

]
γ̇ 0. (3.11)

We consider results in both asymptotic limits in the following sections.
To obtain the first non-Newtonian correction to the swimming speed U1, we use the

Lorentz reciprocal theorem (Stone & Samuel 1996; Lauga 2014; Elfring 2017; Masoud &
Stone 2019) to bypass solving (3.8) and (3.9) for the first-order flow, (u1, p1). To apply the
reciprocal theorem, we consider an auxiliary Stokes flow problem of the same geometry,
satisfying

∇ · σ̂ = 0, (3.12)
∇ · û = 0, (3.13)

where σ̂ = −p̂I + ∇û + (∇û)T. From (3.8) and (3.12), we take the inner products between
the flow fields and the divergence of the stress fields in the auxiliary and first-order
problems to obtain the relation

û · (∇ · σ 1) = u1 · (∇ · σ̂ ) = 0. (3.14)

With the identity û · (∇ · σ 1) − u1 · (∇ · σ̂ ) = ∇ · (û · σ 1 − u1 · σ̂ ) + (∇u1 : σ̂ − ∇û :
σ 1), we integrate (3.14) over the fluid volume and use the divergence theorem to obtain

∫

S
n · σ̂ · u1 dS −

∫

S
n · σ 1 · û dS =

∫

V
σ 1 : ∇û dV −

∫

V
σ̂ : ∇u1 dV. (3.15)

By substituting the expression of the stresses σ̂ and σ 1 in the auxiliary and first-order
problems into the right-hand side of (3.15), we obtain

∫

S
n · σ̂ · u1 dS −

∫

S
n · σ 1 · û dS =

∫

V
A : ∇û dV. (3.16)

In order to determine U1, we choose the auxiliary Stokes flow problem to be the flow
due to the translation of a prolate spheroid with velocity Û (Happel & Brenner 1965).

938 A3-7
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The relation (3.16) thus becomes

F̂ · U1 − F 1 · Û =
∫

V
A : ∇û dV, (3.17)

where F̂ =
∫

S n · σ̂ dS = −8πÛ/τ0[(τ 2
0 + 1) coth−1 τ0 − τ0] is the force experienced by

a translating spheroid in the auxiliary problem. By enforcing the force-free condition (2.12)
at O(ε), F 1 =

∫
S n · σ 1 dS = 0, the reciprocal theorem gives the final result

F̂ · U1 =
∫

V
A : ∇û dV, (3.18)

where only two known Stokes flow solutions, namely the zeroth-order (u0) and auxiliary
(û) problems, are required to determine the non-Newtonian swimming velocity U1.

In addition to the first-order swimming velocity, the reciprocal theorem can be applied to
obtain the first-order power dissipation when considering the energetic cost of squirming
through a shear-thinning fluid (Nganguia, Pietrzyk & Pak 2017), which we will examine
in more detail in § 4.2.

3.2. Numerical simulations
To compare with the results from the asymptotic analysis, we also perform fully coupled
numerical simulations of the momentum and continuity equations (2.7) and (2.8), together
with the Carreau constitutive equation (2.9), using the finite element method implemented
in the COMSOL Multiphysics environment. To take advantage of the axial symmetry of
the problem, an axisymmetric computational domain in the r–z plane is used to simulate
only half of the full flow domain. The squirmer is modelled as a half spheroid whose
major axis coincides with the axis of symmetry. To simulate the locomotion of a squirmer
in an unbounded fluid, we ensure that the computational domain (of size 500a × 500a) is
sufficiently large so that the numerical results are independent of the size of the domain.
We perform the simulations in a reference frame moving with the squirmer, which leads
to a uniform flow in the far field as the inflow boundary condition. The magnitude of
the inflow is equal to the unknown swimming speed of the squirmer, which is obtained
by solving the momentum and continuity equations simultaneously, with the force-free
swimming condition (2.12) as a global equation. A zero pressure is specified for the
outflow boundary condition. P2 + P1 discretization is applied to the flow field: namely,
second-order elements are used for the velocity components, and first-order elements
are used for the pressure. Triangular mesh elements are used for the simulations, with
local mesh refinement near the squirmer to resolve properly the spatial variation of the
viscosity. The degrees of freedom are of the order of 1.8 × 105 for the simulations. We
used PARDISO (the Parallel Direct Solver) for all simulations.

In addition to comparing with the asymptotic results in this work, we have validated
our numerical implementation against previous results for both spherical (Lighthill 1952;
Blake 1971) and spheroidal (Keller & Wu 1977; Theers et al. 2016) squirmers in a
Newtonian fluid, as well as spherical squirmers in a shear-thinning fluid (Datt et al. 2015).

4. Results and discussion

4.1. Swimming speed
We use results from both the asymptotic analysis and numerical simulations to examine
the effect of particle geometry on squirming through a shear-thinning fluid. We first
938 A3-8
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e

U
/U
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β = 0.1
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β = 0.7

e

U/U0 >1

U/U0 < 1

α

e = 0.81 e = 0.99e = 0.9e = 0.6
(a) (b)

0
0

0.25
0.998

0.999

1.000

1.001

1.002 1.00
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0.50

0.25

0.50 0.75 1.00 0.80 0.85 0.90 0.95 1.00

Figure 2. (a) Swimming speed of a spheroidal squirmer U in a shear-thinning fluid relative to its
corresponding Newtonian value U0 as a function of eccentricity e for different values of viscosity ratio β. Here,
α = 0, n = 0.25 and Cu = 0.1. Both asymptotic (lines) and numerical (symbols) results predict that enhanced
swimming (U/U0 " 1) occurs when the eccentricity exceeds a critical value ec ≈ 0.81. (b) For a pusher/puller
(α /= 0), the α–e diagram maps the regimes where enhanced (U/U0 > 1) and hindered (U/U0 < 1) swimming
occur.

consider the small Carreau number limit, ε = Cu2, by substituting the expression (3.10)
into (3.18) to obtain the swimming speed in a shear-thinning fluid as U ∼ U0 + Cu2U1.
The Newtonian speed U0 is given by (3.7), and the first non-Newtonian correction reads

U1 = (1 − β)(n − 1)

2

[ 3∑

i=0

γi(τ0) + α2χ(τ0)

7∑

i=0

δi(τ0)

]

, (4.1)

where γi(τ0), δi(τ0) and χ(τ0) are constants depending on τ0; their expressions are given
in Appendix A. Figure 2(a) shows the results from the asymptotic analysis (lines) given
by (4.1) and numerical simulations (symbols). The asymptotic result (4.1) reveals that the
propulsion speed varies linearly with 1 − β and n − 1; in numerical simulations we set n =
0.25 for its relevance to biological mucus (Hwang, Litt & Forsman 1969; Vélez-Cordero
& Lauga 2013). Previous studies (Montenegro-Johnson et al. 2013; Datt et al. 2015)
found that cylindrical and spherical squirmers with the first two modes (pushers, pullers
and neutral squirmers) swim consistently slower in a shear-thinning fluid (U/U0 < 1).
Interestingly, the asymptotic analysis reveals that it is possible for a spheroidal squirmer to
swim faster in a shear-thinning fluid than in a Newtonian fluid (U/U0 > 1; figure 2a): for
a neutral squirmer (α = 0), enhanced swimming occurs when

∑3
i=0 γi(τ0) < 0, which can

be solved numerically to obtain a critical eccentricity, ec ≈ 0.81, above which a spheroidal
squirmer swims at a speed higher than its Newtonian value, as shown in figure 2(a). For
a pusher/puller (α /= 0), an increase in the magnitude of α acts to reduce the swimming
speed in the small Cu limit. Figure 2(b) maps the regimes where enhanced (U/U0 > 1)
and hindered (U/U0 < 1) swimming occur in this asymptotic limit. The critical value of
α is determined from (4.1) as

αc =

√√√√√√√√√√

−
3∑

i=0

γi(τ0)

χ(τ0)

7∑

i=0

δi(τ0)

, (4.2)

938 A3-9
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Figure 3. (a) Swimming speed of a spheroidal squirmer U in a shear-thinning fluid relative to its
corresponding Newtonian value U0 as a function of Cu for different values of eccentricity e when β = 0.9.
The asymptotic results in the small ε = 1 − β limit (lines) agree well with numerical simulations (symbols).
An increased value of eccentricity enhances the swimming speed in general. For values of eccentricity above
the critical value (e.g. e = 0.9 and 0.99), the squirmer can swim faster in a shear-thinning fluid than in a
Newtonain fluid. The qualitative behaviours remain the same beyond the weakly non-Newtonian regime when
β = 0.1 as shown by numerical simulations in (b); we also note the substantially larger speed variations in (b).
In both (a,b), α = 0 and n = 0.25.

for different values of the eccentricity (solid line, figure 2b). We note that the above result
is independent of β and n, which appear only in the prefactor in the asymptotic expression
(4.1). We also remark that the quadratic dependence on α in (4.1) shows that the swimming
speed does not depend on the sign of α (i.e. a pusher versus a puller), which still holds
beyond the asymptotic regime considered here, as shown by numerical simulations (see
Appendix B for more details). While the sign of α does not affect the swimming speed, the
detailed velocity and pressure fields surrounding a squirmer depend on both the magnitude
and sign of α.

To examine the dependence of swimming speed over a full range of Cu, we consider
the other asymptotic limit, ε = 1 − β, and use (3.11) in the integral theorem (3.18). Figure
3(a) displays different types of non-monotonic variations with Cu in this asymptotic limit,
depending on the value of eccentricity. Here, we focus on the results for neutral squirmers
(α = 0); the results for pushers (α < 0) and pullers (α > 0) can be obtained in a similar
fashion (see Appendix B). For a spherical squirmer (e = 0) and a spheroidal squirmer with
an eccentricity below the critical value (e = 0.6 < ec), the swimming speed first decays
with increased Cu, reaching a local minimum before approaching the Newtonian value
as Cu continues to increase. However, for squirmers with eccentricities above the critical
value (e > ec ≈ 0.81; e.g. e = 0.9 and 0.99 in figure 3a), the speed first increases with
Cu, attaining a local maximum speed that is faster than the corresponding Newtonian
value before approaching the Newtonian value at larger values of Cu. We note that the
seemingly minute variations are merely consequences of the use of small parameters
in the asymptotic analysis. In figure 3(b) we verify through numerical simulations with
β = 0.1 that these features remain the same beyond the weakly non-Newtonian regime;
the speed variations are substantially larger compared with the asymptotic results. These
results highlight the importance of particle geometry on swimming in a shear-thinning
fluid: while shear-thinning rheology acts to retard the motion of a spherical squirmer,
increasing the eccentricity (or slenderness) of the particle helps to mitigate the speed
reduction generally; moreover, the speed could even be enhanced relative to the Newtonian

938 A3-10
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value at certain values of Cu when the eccentricity is above the critical value. In particular,
it is noteworthy that a spheroidal squirmer with e = 0.99 has only relatively minute
variations of swimming speed over a wide range of Cu, as shown in figure 3. This feature
illustrates the possibility of designing a spheroidal swimmer that can restore effectively
the substantial loss of swimming speed due to shear-thinning viscosity in the spherical
case. Such a robust performance is especially desirable for swimmers that need to traverse
complex media with vastly varying rheological properties.

In figure 4, we examine the distributions of flow speed, pressure and viscosity around
a spheroidal squirmer with different eccentricities obtained by numerical simulations. As
the eccentricity increases, the variations of flow speed (figure 4a), pressure (figure 4b)
and viscosity (figure 4c) all become increasingly localized at the poles of the squirmer.
In particular, the viscosity distributions in figure 4(c) provide some insights that may
help us to understand the observed dependence of propulsion speed on the squirmer
geometry. For a spherical squirmer, the viscosity reduction in a shear-thinning fluid is
fairly uniform around the squirmer, as shown in figure 4(c) (e = 0). The physical scenario
may therefore be akin to a squirmer immersed in a low-viscosity inner fluid surrounded by
a high-viscosity outer fluid. Such a confinement effect was shown to reduce the propulsion
speed of the squirmer (Reigh & Lauga 2017), consistent with the speed reduction of a
spherical squirmer in a shear-thinning fluid. When the squirmer becomes more eccentric,
the viscosity reduction becomes more non-uniform, with the reduction concentrating
around the poles and diminished reduction near the equator. Such localization of viscosity
reduction disrupts the uniform confinement effect in the spherical case, contributing
plausibly to the increasingly restored propulsion speed in a shear-thinning fluid as the
squirmer becomes more spheroidal. As shown in figure 4(c), the localization is particularly
apparent for a highly eccentric squirmer (e = 0.99), which indeed can swim faster in a
shear-thinning fluid than in a Newtonian fluid, in stark contrast to the case of a spherical
squirmer.

As a remark, the (soft) confinement effect may have qualitatively different consequences
on the propulsion of different types of swimmers. In particular, the enhanced propulsion
of undulatory (Li & Ardekani 2015; Riley & Lauga 2017) and helical (Gómez et al.
2017; Demir et al. 2020) swimmers was attributed to the soft confinement effect, which
could instead cause the speed reduction of a spherical squirmer (Reigh & Lauga 2017).
The results on spheroidal squirmers here further illustrate how the effect may manifest
differently depending on the particle geometry, highlighting this subtle and significant
factor in understanding locomotion in a shear-thinning fluid.

4.2. Power dissipation and swimming efficiency
We next consider the effect of particle geometry on the energetic cost of squirming through
a shear-thinning fluid. We calculate the power P expended by the squirmer during the
swimming process, which is equal to the power dissipation in the fluid:

P = −
∫

S
n · σ · u dS. (4.3)

Here, we focus on results for a neutral squirmer; contributions from other modes can be
calculated in a similar fashion. We expand P in the asymptotic limit of small ε,

P = P0 + εP1 + O(ε2), (4.4)

938 A3-11
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Figure 4. Distributions of (a) flow speed |u|, (b) pressure p, and (c) viscosity µ around a spheroidal squirmer
with different eccentricities in the co-moving frame in a shear-thinning fluid. From left to right, the eccentricity
is e = 0, 0.6, 0.9 and 0.99. Here, α = 0, β = 0.1, Cu = 100.4 and n = 0.25.

where the Newtonian power dissipation is given by Keller & Wu (1977) as

P0 =
4π(τ 2

0 − 1)
[
(1 + τ 2

0 ) coth−1 τ0 − τ0
]

τ0
, (4.5)

and the first non-Newtonian correction is given by P1 = −
∫

S n · σ 1 · u0 dS −
∫

S n · σ 0 ·
u1 dS. By applying the boundary condition u1 = U1 on the squirmer surface, the second
integral in P1 becomes

∫
S n · σ 0 dS · U1, which vanishes due to the force-free condition∫

S n · σ 0 dS = 0. The first non-Newtonian correction to the power dissipation is therefore
given by

P1 = −
∫

S
n · σ 1 · u0 dS. (4.6)

We can again bypass the calculation of the first-order stress σ 1 and obtain P1 via the
reciprocal theorem (3.16) by choosing an appropriate auxiliary problem. Specifically, here
we choose the auxiliary problem to be the zeroth-order (or Newtonian) flow around a
spheroidal squirmer (Keller & Wu 1977): (p̂, û) = ( p0, u0). The integral relation (3.16)
hence becomes

∫

S
n · σ 0 · u1 dS −

∫

S
n · σ 1 · u0 dS =

∫

V
A : ∇u0 dV, (4.7)
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Figure 5. (a) Power dissipation of a spheroidal squirmer P in a shear-thinning fluid relative to its
corresponding Newtonian value P0 as a function of Cu for different values of eccentricity e when β = 0.9.
The asymptotic results in the small ε = 1 − β limit (lines) agree well with numerical simulations (symbols).
The qualitative behaviours remain the same beyond the weakly non-Newtonian limit when β = 0.1, as shown
by numerical simulations in (b). In both (a,b), α = 0 and n = 0.25. While the behaviours are qualitatively
similar in (a,b), we note the substantially larger variations in (b).

where the first integral on the left-hand side vanishes,
∫

S n · σ 0 · u1 dS =
∫

S n · σ 0 dS ·
U1 = 0, due to the boundary condition u1 = U1 on S and the force-free condition∫

S n · σ 0 dS = 0. The reciprocal theorem therefore allows us to express (4.6) as (De Corato
et al. 2015; Nganguia et al. 2017)

P1 =
∫

V
A : ∇u0 dV. (4.8)

We use quadrature to calculate the power dissipation from (4.8) for a wide range of Cu
in the small ε = 1 − β limit. Figure 5(a) displays results from the asymptotic analysis
and numerical simulations, which both show that the power dissipation decreases with
Cu in general. In addition, an increased eccentricity further reduces the energetic cost
of squirming through a shear-thinning fluid. We verify by numerical simulations that the
same trends hold beyond the weakly non-Newtonian regime in figure 5(b).

Next, we use the power dissipation to calculate the efficiency of swimming through a
shear-thinning fluid. Lighthill (1975) introduced the Froude efficiency, a concept borrowed
from propeller theory, to characterize the efficiency of swimming at low Reynolds
numbers. The swimming efficiency is defined as

η = P̃
P

, (4.9)

which compares the power expended by the squirmer swimming in the shear-thinning
fluid, P , to the power required to tow a particle of the same geometry at the same
swimming speed, P̃ . The power in the towing problem is given by P̃ = F̃ · U , where
F̃ is the force required to tow a rigid spheroid at the swimming velocity U in the same
shear-thinning fluid. We calculate the efficiency asymptotically (De Corato et al. 2015;
Nganguia et al. 2017) as

η = η0 + εη1 + O(ε2). (4.10)

938 A3-13
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η
/η

0

Cu Cu

e = 0
e = 0.6
e = 0.9
e = 0.99

e = 0
e = 0.6
e = 0.9
e = 0.99

10–3 10–1 101 103
1.00

1.01

1.02

1.03

1.04

1.05

10–3 10–1 101 103

1.2

1.0

1.4

1.6

1.8(b)(a)

Figure 6. (a) Swimming efficiency of a spheroidal squirmer η in a shear-thinning fluid relative to its
corresponding Newtonian value η0 as a function of Cu for different values of eccentricity e when β = 0.9.
The asymptotic results in the small ε = 1 − β limit (lines) agree well with numerical simulations (symbols).
The qualitative behaviours remain the same beyond the weakly non-Newtonian limit when β = 0.1, as shown
by numerical simulations in (b). In both (a,b), α = 0 and n = 0.25. While the behaviours are qualitatively
similar in (a,b), we note the substantially larger variations in (b).

The zeroth-order (Newtonian) value is given by Keller & Wu (1977) as η0 = 2τ 2
0 [τ0 +

(1 − τ 2
0 ) coth−1 τ0]2/(τ 2

0 − 1)[τ0 − (1 + τ 2
0 ) coth−1 τ0]2, and the first-order correction η1

is calculated with asymptotic expansions of P ∼ P0 + εP1 and P̃ ∼ P̃0 + εP̃1. The
expansion of the towing power is given by

P̃ = F̃ 0 · U0 + ε(F̃ 1 · U0 + F̃ 0 · U1) + O(ε2), (4.11)

which involves expansions of the swimming velocity U ∼ U0 + εU1 and towing force
F̃ ∼ F̃ 0 + εF̃ 1, where the first-order corrections to both quantities are again determined
by the reciprocal theorem (Datt et al. 2015; Nganguia et al. 2017). Figure 6(a) displays the
asymptotic results for swimming efficiency in the small ε = 1 − β limit (lines), which
agree well with results by full numerical simulations (symbols). First, the swimming
efficiency is enhanced generally relative to the Newtonian case, η/η0 > 1. Second, for
a given eccentricity, there exists an optimal value of Cu that maximizes the swimming
efficiency. Finally, the maximum swimming efficiency attainable increases with the
eccentricity. We verify by numerical simulations that the same trends hold beyond
the weakly non-Newtonian regime in figure 6(b); when the viscosity is β = 0.1, an
eccentricity of e = 0.99 allows the swimming efficiency to be enhanced significantly
by almost 80 % relative to the Newtonian efficiency in a shear-thinning fluid. We also
remark that, unlike propulsion speed, there is no qualitative change in terms of propulsion
efficiency below or above the critical eccentricity; the squirmer consistently propels more
efficiently in a shear-thinning fluid for all eccentricities considered.

Overall, the asymptotic and numerical results presented here demonstrate that a
spheroidal squirmer can swim both faster (§ 4.1) and more efficiently (this subsection)
compared with its spherical counterpart in a shear-thinning fluid.

5. Conclusion
Biological and artificial microswimmers often need to traverse biological fluids with
complex rheological properties. In particular, shear-thinning viscosity is a ubiquitous
non-Newtonian fluid behaviour of many biological fluids, which can impact swimming
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in substantial and non-trivial ways. Via a spherical squirmer model, previous works
showed that shear-thinning viscosity can lead to substantial loss of swimming speed
compared with swimming in a Newtonian fluid. In this work, we extend these previous
analyses and consider a spheroidal squirmer to probe the effect of particle geometry on
the performance of swimming in a shear-thinning fluid. Through asymptotic analysis and
numerical simulations, our results show that by increasing its eccentricity, a spheroidal
squirmer can effectively restore the loss of swimming speed in a shear-thinning fluid.
Indeed, when the eccentricity exceeds a critical value, the spheroidal squirmer can swim
faster in a shear-thinning fluid than in a Newtonian fluid, a feature in stark contrast to the
corresponding cases of spherical squirmers. As a particular example, we demonstrate that
a spheroidal squirmer with a large eccentricity can have a robust swimming performance
over a wide range of Carreau numbers, a feature particularly desirable for swimmers that
need to traverse environments with vastly varying properties. In addition to the swimming
speed, the energetic cost of swimming through a shear-thinning fluid reduces with an
increased eccentricity. The swimming efficiency of a spheroidal squirmer can be enhanced
substantially as a result.

Taken together, the results here demonstrate the advantages of spheroidal over spherical
swimmers in terms of locomotion performance in a shear-thinning fluid, which call
for comparisons with future experiments with biological and artificial microswimmers.
Recent studies have shed light on optimal swimming of non-spherical swimmers in a
Newtonian fluid (Guo et al. 2021; Daddi-Moussa-Ider et al. 2021). The findings here
suggest the possibility and hence opportunity of fine-tuning the swimmer geometry to
better exploit non-Newtonian rheological behaviours for more effective locomotion in
complex fluids.
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Appendix A
In this appendix, we list the expressions for the constants in the swimming speed given by
(4.1) in the small Carreau number limit. The constants associated with the B1 squirming
mode are given by

γ0 = 1
τ0(τ

2
0 − 1)

7∑

k=0

D0
kτ

2k+1
0 , (A1)

γ1 =
(τ 2

0 − 1) coth−1 τ0

τ0

6∑

k=0

D1
kτ

2k
0 , (A2)

γ2 =
(τ 2

0 − 1)3(coth−1 τ0)
2

τ0

1∑

k=0

D2
kτ

2k+6
0 , (A3)
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k D0
k D1

k D2
k D3

k

0 − 35
128

35
128 − 9

16
9
16

1 85
384

15
64 − 15

2
15
2

2 − 107
384

67
128 — —

3 31
128

103
64 — —

4 713
128 − 743

128 — —

5 − 30 559
1920 − 17

8 — —

6 5801
384

613
128 — —

7 − 613
128 — — —

Table 1. Values of Di
k in the constants associated with the B1 squirming mode given by (A1)–(A4).

γ3 =
λ(τ 2

0 − 1)3

τ0

1∑

k=0

D3
kτ

2k+6
0 , (A4)

where λ = Li2[(1 − τ0)/(1 + τ0)] + π2/12 − 2 ln[(2τ0)/(1 + τ0)] coth−1 τ0, Li2(x) is the
dilogarithm function of the variable x, and the values of Di

k are given in table 1.
The constants associated with the B2 squirming mode are given by

χ = 1
[
(3τ 2

0 − 1) coth−1 (τ0) − 3τ0
]2 , (A5)

δ0 = 1
τ 2

0 − 1

5∑

k=0

E0
kτ

2k+4
0 , (A6)

δ1 = coth−1 τ0

τ 2
0 − 1

6∑

k=0

E1
kτ

2k+3
0 , (A7)

δ2 = (coth−1 τ0)
2

τ 2
0 − 1

14∑

k=0

E2
kτ

k+2
0 , (A8)

δ3 = (τ 2
0 − 1)(coth−1 τ0)

3
12∑

k=0

E3
kτ

k+1
0 , (A9)

δ4 = (τ 2
0 − 1)2(coth−1 τ0)

4
5∑

k=0

E4
kτ

k+6
0 , (A10)

δ5 = λ(τ 2
0 − 1)

3∑

k=0

E5
kτ

2k+5
0 , (A11)
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k E0
k E1

k E2
k E3

k E4
k E5

k E6
k E7

k

0 435
128 − 245

128 − 155
128 − 35

128 96 − 15
4 − 33

4
3
2

1 − 25 061
128

35 285
192 0 0 3

2 − 99
4 54 − 57

4

2 26 907
64 − 20 579

128
1973
384

35
64 0 177

4 − 297
4 —

3 − 195 679
960 − 8061

32
15
4 0 − 63

4 − 57
4

57
2 —

4 − 24 539
384

208 931
1920 − 186 809

384
8535
128 0 — — —

5 3943
128

42 665
192

69
4

33
4

57
4 — — —

6 — − 11 829
128

151 519
128

6921
32 — — — —

7 — — −90 −54 — — — —

8 — — − 370 531
384 − 29 597

128 — — — —

9 — — 255
2

297
4 — — — —

10 — — 270 489
640

2099
64 — — — —

11 — — − 291
4 − 57

2 — — — —

12 — — − 97 043
384 − 3943

128 — — — —

13 — — 57
4 — — — — —

14 — — 11 829
128 — — — — —

Table 2. Values of Ei
k in the constants associated with the B2 squirming mode given by (A6)–(A13).

δ6 = λ(τ 2
0 − 1) coth−1 τ0

3∑

k=0

E6
kτ

2k+6
0 , (A12)

δ7 = λ(τ 2
0 − 1)3(coth−1 τ0)

2
1∑

k=0

E7
kτ

2k+7
0 , (A13)

where the values of Ei
k are given in table 2.

Appendix B
In this appendix, we remark on the effect of an increased magnitude of α on the swimming
speed for pushers (α < 0) and pullers (α > 0) beyond the weakly non-Newtonian regime
discussed in the main text. Figure 7 displays results from numerical simulations when α =
0, ±0.5 and ±1 for a spheroidal squirmer with eccentricity e = 0.6 (figure 7a) and e = 0.9
(figure 7b). These values of eccentricity are chosen to capture the two distinct scenarios
when a neutral spheroidal squirmer (α = 0) could swim slower (e = 0.6; figure 7a)
and faster (e = 0.9; figure 7b) than its Newtonian speed in a shear-thinning fluid. In both
cases, the qualitative behaviours of increasing the magnitude of α are similar. First, the
asymptotic result (4.1) predicts that the swimming speed is independent of the sign of α
at small Cu. Consistent with the asymptotic result, pushers and pullers have the same
swimming speeds in a shear-thinning fluid even beyond the asymptotic regime, when
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U
/U

0

Cu Cu

α = 0
α = 0.5
α = −0.5
α = 1
α = −1

10–3 10–1 101 103

0.80

0.85

0.90

0.95

1.00

10–3 10–1 101 103

0.90

0.98

0.96

0.94

0.92

1.00
(a) (b)

Figure 7. Swimming speed of a spheroidal squirmer U in a shear-thinning fluid relative to its corresponding
Newtonian value U0 for different values of α when (a) e = 0.6 and (b) e = 0.9. Consistent with the asymptotic
results, numerical simulations here show that pushers (α < 0) and pullers (α > 0) have indistinguishable
swimming speeds in a shear-thinning fluid. In both (a,b), n = 0.25 and β = 0.1.

the shear-thinning effect becomes more substantial. Second, the swimming speed decays
generally with an increased magnitude of α in the small Cu regime, as the asymptotic
analysis suggests. More complex variations with α occur at larger values of Cu, and the
speed can grow with the magnitude of α; nevertheless, the speed is still smaller than the
corresponding value in a Newtonian fluid. Overall, an increased magnitude of α is found
to reduce the local minimum speeds in both figures 7(a) and 7(b), as well as the local
maximum speed that appears when α = 0 in figure 7(b).
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