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The effects of viscoelasticity have been shown to manifest themselves via symmetry
breaking. In this investigation, we show a novel phenomenon that arises from this idea. We
observe that when a dense sphere is rotated near a wall (the rotation being aligned with the
wall-normal direction and gravity), it levitates to a fixed distance away from the wall. Since
the shear is larger in the gap (between the sphere and the wall) than in the open side of
the sphere, the shear-induced elastic stresses are thus asymmetric, resulting in a net elastic
vertical force that balances the weight of the sphere. We conduct experiments, theoretical
models and numerical simulations for rotating spheres of various sizes and densities in
a Boger-type fluid. In the small-Deborah-number range, the results are collapsed into a
universal trend by considering a dimensionless group of the ratio of elastic to gravitational
forces.

Key words: particle/fluid flow, viscoelasticity

1. Introduction
The study of classical Newtonian fluid flows constitutes the foundation of fluid mechanics.
Through experiments, theory and numerical solutions, we have gained a vast insight into
the nature of flow for a wide range of conditions, from laminar to turbulent. The situation
is very different for complex fluids (Larson 1999). In many such cases, the presence
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of memory and stress anisotropy change substantially the nature of the flow, leading to
dramatic differences. For instance, a two-dimensional shear flow gives rise to non-zero
normal stresses in a viscoelastic fluid, unlike in a Newtonian fluid. Many of the surprising
phenomena seen in the flow of complex fluids, and in viscoelastic fluids in particular, can
be understood by an examination of these normal stresses and the normal stress differences
(Morozov & Spagnolie 2015).

The general mechanism for the appearance of normal stress can be explained by the
following arguments. Polymers are stretched and rotated under the action of the local
shear and tend on average to align with the streamlines, while the entropic forces acting
to return the molecule to its undisturbed conformation lead to an extra tension in the
direction of the flow. Some well-known examples are the Weissenberg effect and die swell
in fluid extrusion. In addition to large-scale collective effects, the presence of normal
stress differences in flow can be important on smaller scales as well: cells and other
soft biological matter may experience extra polymeric stresses that lead to deformation or
possibly rupture (Morozov & Spagnolie 2015). Similar to cell migrations in blood vessels,
researchers (Halow & Wills 1970; Ho & Leal 1976; d’Avino et al. 2010) show that due
to the imbalanced normal stresses, in a simple shear flow particles close to the centre
plane of the set-up tend to move towards the nearest wall. Many microorganisms swim
through fluids that display non-Newtonian characteristics. For example, as spermatozoa
make their journey through the female reproductive tract, they encounter several complex
fluids, including glycoprotein-based cervical mucus in the cervix (Katz, Mills & Pritchett
1978), mucosal epithelium inside the fallopian tubes, and an actin-based viscoelastic gel
outside the ovum (Dunn & Picologlou 1976; Suarez & Pacey 2006). These complex
fluids often have dramatic effects on the locomotion of microorganisms. The presence of
time-dependent stresses, normal stress differences, and shear-dependent material functions
in complex fluids are able to alter fundamentally the physics of locomotion (Purcell 1977;
Lauga & Powers 2009).

Propulsive forces can also result from the secondary flows induced by non-Newtonian
normal stress differences; a theoretical investigation that further exemplifies these
complexities is that by Normand & Lauga (2008). They considered a biologically inspired
geometric example of a semi-infinite flapper performing reciprocal sinusoidal motion in
a viscoelastic Oldroyd-B fluid in the absence of inertia. They showed explicitly that the
reciprocal motion generates a net force on the flapper occurring at second order in the
flapping amplitude, and disappearing in the Newtonian limit as dictated by the scallop
theorem, but there was no time-average flow accompanying the net force generation. Also,
Pak, Normand & Lauga (2010) reported on the discovery of a net fluid flow produced by
the reciprocal flapping motion in an Oldroyd-B fluid. The net flow transport was seen to
occur at fourth order in the flapping amplitude, and was due to normal stress differences.
The dependence of the pumping performance on the actuation and material parameters
was characterized analytically, and the optimal pumping rate was determined numerically.
Through this example, they therefore demonstrated explicitly the breakdown of the scallop
theorem in complex fluids in the context of fluid pumping, and suggested the possibility
of exploiting intrinsic viscoelastic properties of the medium for fluid transport on small
scales.

The investigation by Pak et al. (2012) is very relevant for the present paper.
They reported that a two-sphere rotating dimer (snowman geometry) was capable of
self-propelling in a complex fluid if the two spheres were of different sizes. The
motion results from the asymmetry and the presence of normal stress differences
under rotational actuation. Physically, the direction in which such an object moves can
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Figure 1. (a) Schematic of a sphere of diameter D rotating above a plane wall at a constant rotational rate Ω
about the z-axis. When the levitating hydrodynamic force F H on the sphere balances its own gravitational force
F G, the bottom of the sphere stays at a levitation height h = hL above the wall. (b) The experimental set-up
consists of a spherical particle inserted with permanent magnets placed inside a container of test fluid under a
Helmholtz pair coil.

be understood by means of the hoop stresses generated along curved streamlines. A
secondary, purely elastic flow is created by each rotating sphere, contracting in along
the equator of each sphere and flowing out of the poles. Because the spheres are
unequal in size, hydrodynamic interactions due to this secondary flow are unbalanced,
leading to propulsion in the direction of the smallest sphere. Puente-Velázquez et al.
(2019) verified these findings experimentally using a magnetic snowman immersed in
a Boger-type fluid. Recently, Binagia & Shaqfeh (2021) studied a mathematical model
of two linked spheres rotating in opposite directions, which is a force- and torque-free
swimmer. For this configuration, the swimming direction was found to be towards
the larger sphere instead of the smaller one, which is opposite to what was found
previously (Pak et al. 2012; Puente-Velázquez et al. 2019). In addition, the asymmetry
between the head and tail of a helical swimmer was reported to be responsible for the
swimming speed enhancement of helical swimmers in viscoelastic fluids (Angeles et al.
2021).

Other studies have also shown that a wall can break the symmetry of flow leading to the
propulsion of a dimer with equal spheres (Keim, Garcia & Arratia 2012) and a three-sphere
microswimmer (Daddi-Moussa-Ider et al. 2018). Other related investigations include the
effect of the hydrodynamic interactions between two neighbouring microswimmers near
a wall (Li & Ardekani 2014), given that boundaries have been shown to induce order
in collective flows of bacterial suspensions (Woodhouse & Goldstein 2012; Wioland
et al. 2013, 2016), leading to potential applications in autonomous microfluidic systems
(Woodhouse & Dunkel 2017).

In this work we introduce a novel phenomenon that arises from the effect of
viscoelasticity via symmetry breaking. We observed experimentally that when a dense
sphere is rotated near a wall being immersed in a viscoelastic fluid, it levitates to a
fixed distance from the wall. We refer to this phenomena as ‘viscoelastic levitation’.
The arrangement considered here is shown schematically in figure 1(a). Spheres of
various sizes and densities were tested in a Boger-type fluid (Boger 1977; James 2009)
in experiments. We also develop a theoretical model that captures the dependence of the
levitation height on the experimental parameters. A dimensionless group is identified to
collapse the levitation results from experiments.
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Sphere Diameter (mm) Mass (mg) Density (kg m−3)

D1 (green squares) 7.99 585 2190.37
D2 (black circles) 8.72 760 2189.10
D3 (navy diamonds) 8.81 819 2287.48
D4 (red downward-pointing triangles) 9.57 1005 2189.94
D5 (cyan upward-pointing triangles) 13.0 1870 1626
D6 (magenta circles) 16.0 3170 1478

Table 1. Physical properties of the spheres used in this investigation.

Fluid ρ (kg m−3) η0 (Pa s) Power-law index n λ (s)

Newtonian fluid (NF) 1510 0.840 1.00 0.00
Boger fluid I (BF-I) 1508 0.844 0.96 0.51
Boger fluid II (BF-II) 1347 2.9 0.98 0.34

Table 2. Physical properties of the fluids used in this investigation.

2. Experimental set-up and test fluids

2.1. Experimental set-up
All experiments in this paper were conducted using the magnetic set-up developed by
Godínez, Chávez & Zenit (2012), shown in figure 1(b). The device is capable of producing
a magnetic field of 6 mT of uniform strength; the field is rotated mechanically. The spheres
were placed inside a rectangular tank (160 mm × 100 mm × 100 mm) that fits into the
region of uniform magnetic field inside the coils of approximately 100 × 100 × 100 mm3

in size where the test fluids were contained. The spheres were made out of plastic, inside
which several permanent magnets were inserted (Magcraft, models NSN0658). For all
the cases, the angular frequency of the rotating coils was below the step-out frequency
(Godínez et al. 2012); in other words, the sphere rotated at the same rate as the external
magnetic field.

Six spheres were tested. Table 1 shows the properties of all spheres. Two spheres (D2
and D3) had approximately the same diameter but different densities; and three spheres
(D1, D2 and D4) had approximately the same density but different diameters. Two spheres
(D5 and D6) had small densities but larger diameters. The sphere was placed initially at
the bottom of the tank at rest, and then driven by the external magnetic field to rotate with
the rotating velocity vector normal to the horizontal plane wall (figure 1). A camera was
used to record the motion of the sphere rotating in the fluid, and the recorded videos were
used in the data analysis to track the vertical position of the sphere.

2.2. Test fluids
Two types of fluids were fabricated, tested and used: one is Newtonian reference fluid
(NF), and the other is Boger-type fluid (BF) (nearly constant shear viscosity but with
viscoelastic properties). Table 2 summarizes the rheological properties of both fluids. To
test the effect of changing the viscoelastic relaxation time, two different Boger fluids were
prepared (BF-I and BF-II).

The Boger-type fluids were prepared by dissolving polyacrylamide (PAA, molecular
weight 5 × 106 g mol−1) in non-ionic water with slow mixing for 24 hours.
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Afterwards, the polymeric solution was added to a corn syrup solution with slow mixing
over four days. The recipes (mass percentage of glucose, water and PAA) are (84.96 %,
15 %, 0.04 %) and (87.95 %, 12 %, 0.05 %), respectively. After the mixing, the solution
was left untouched for 2 weeks to remove the residual bubbles in the fluid before testing.
The Newtonian fluid was made by mixing non-ionic water with glucose and adjusting the
percentage of water until the fluid showed a viscosity similar to that of the Boger fluid. All
the fluids were stored and used in closed containers to avoid free surface crystallization.
The rheological properties of the fluids were measured using a shear-rate controlled
rheometer (Anton Paar, and ARES-G2, TA Instruments) with a cone-plate geometry. Both
steady shear and oscillatory tests were conducted. Note that different batches of corn syrup
were used to prepare BF-I and BF-II. In both cases, the fluids had nearly constant viscosity
and strong viscoelastic behaviour, but their rheological characterizations were different.

The details of the rheological characterization of the BF-I fluid can be found in Castillo
et al. (2019), but its salient features are summarized here. The steady shear behaviour of
this fluid was found to agree very well with the the Oldroyd-B model (Oldroyd 1950). The
measured first normal stress difference, N1, agreed very closely with

N1 = 2η0(1 − ζ )λγ̇ 2, (2.1)

where η0 = ηp + ηs is the total viscosity (with ηp and ηs the polymer and solvent
viscosities, respectively), ζ is the ratio of solvent to total viscosities, γ̇ is the shear rate and
λ is the relaxation time. For the composition of the BF-I fluid, we found that ζ = 0.225
and η0 = 0.844 Pa s, β = 0.225. By fitting (2.1) to the rheological data, we obtain the
relaxation time of the Boger fluid, λ = 0.51 s.

The steady and oscillatory shear tests of the BF-II fluid are shown in figure 2. The fluid
showed a nearly constant viscosity for the entire range of shear rates. The viscosity and
the shear stress of the Boger fluid were fit to a power-law model, leading to a power-law
index n = 0.98. Therefore, we consider that the viscosity of the Boger fluid is effectively
constant. The first normal stress difference (not shown) was not quadratic with shear rate.

To find the relaxation time for the BF-II fluid, we used the oscillatory tests. Since there
is no crossover of the storage modulus, G′(ω), and loss modulus, G′′(ω), for this fluid, as
shown in figure 2(b), the generalized Maxwell model was used to fit the experimental
values of G′(ω) and G′′(ω) following Baumgaertel & Winter (1989), Liu, Powers &
Breuer (2011), and Espinosa-Garcia, Lauga & Zenit (2013). The storage modulus and loss
modulus are given by

G′(ω) =
N∑

i=1

giλ2
i ω

2

1 + λ2
i ω

2
and G′′(ω) = ωηs +

N∑

i=1

giλiω

1 + λ2
i ω

2
, (2.2a,b)

where ω is the oscillation frequency, ηs is the viscosity of the Newtonian solvent, and gi
is the corresponding fitting parameter for relaxation time τi. The corresponding relaxation
time is determined by fitting the experimental data using (2.2a,b) with N = 4.

3. Results and discussion

3.1. Experimental results
Figure 3 shows the experimental results of the levitation height, hL, as a function of
rotational speed, Ω , for all the spheres tested in the Boger fluids. In the case of Newtonian
fluids (data not shown), the levitation distance is zero for all spheres and rotational speeds.
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Figure 2. Rheology of the BF-II fluid: (a) shear stress τ (left axis) and viscosity ηo (right axis) as a function
of shear rate γ̇ ; (b) oscillation test for the relaxation time measurement, storage modulus (red circles) and
loss modulus (blue circles) versus oscillating frequency Ω . The solid lines show the fit to the data using the
generalized Maxwell model (2.2a,b).

This is expected since there is no shear-induced normal stress generated for Newtonian
fluids. When experiments were conducted with the spheres immersed in the Boger fluids
(BF-I and BF-II), a significant levitation height hL was observed, with the error bars
showing the variations of the levitation motion in the equilibrium state (gravity force
balanced by levitating force). Videos of associated experiments can be found in the
supplementary materials https://doi.org/10.1017/jfm.2022.418. In general, the levitation
height increases with the rotating speed Ω , indicating that there is a significant viscoelastic
reaction from the fluid as a result of the rotation-induced shear in the gap between the
sphere and the wall. Clearly, the levitation is a result of solely the viscoelastic nature of
the fluid. The Reynolds number based on the rotating speed ranges from 0.5 to 3, for which
inertial effects are small.

In particular, from the data shown in figure 3, we can see that for spheres of the same
diameter (D2, black solid circle and D3, blue solid diamond), the levitation height is larger
for the sphere of a smaller density (D2, black solid circle) at the same rotation rate; for
spheres of the same density (D1, green solid square and D4, red solid reverse triangle), the
levitation height is larger for the sphere of a larger diameter (D4, red solid reverse triangle)
considering the same rotational speed. To understand the levitation height dependence on
the experimental parameters (density and diameter), we compose a theoretical model that
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Figure 3. Levitation height hL (mm) as a function of the rotational speed Ω (s−1) for the Boger fluids (BF-I
and BF-II). The symbols for the experiments correspond to those in table 1. The dashed line shows the
measurements for the Newtonian case (no levitation observed).

can be compared with the experimental results. The model, however, is valid only for small
values of the Deborah number De.

3.2. Theoretical model
We consider a sphere of diameter D rotating at a constant velocity Ω near an infinitely
large wall (see figure 1a). The rotational axis is along the wall-normal direction (z),
and the bottom of the sphere is above the wall by distance h. Hence the configuration
is axisymmetric and can be described by the r, z cylindrical coordinates. The density
of the sphere is assumed to be larger than that of the carrier fluid, hence their density
difference satisfies )ρ > 0. We use the the Oldroyd-B constitutive model to capture the
viscoelasticity of the fluid, which was shown to agree well with the rheological behaviour
of fluid BF-I. Although the Oldroyd-B model does not predict the second normal stress
difference, the magnitude of the second normal stress difference is typically much smaller
compared with that of the first normal stress difference, making the Oldroyd-B model a
reasonable approximation of a Boger fluid. The governing equations of the fluid are

∇ · u = 0,

∇ · σ = 0,

}

(3.1)

where σ = −pI + ηsE + τ p, p and u denote the pressure and velocity, respectively, and
E = ∇u + (∇u)T denotes the rate of strain tensor. The relative viscosity ζ = ηs/η0 < 1
is defined as the ratio between ηs and the total viscosity η0. The polymeric stress τ p is
governed by the upper-convected Maxwell equation

λ
!
τ p + τ p = ηpE, (3.2)

where the upper-convected derivative
!
A on a tensor A is defined as

!
A = ∂A/∂t + u · ∇A −

(∇u)T · A − A · ∇u. Here, λ denotes the relaxation time of the polymeric fluid, and the
polymeric viscosity is ηp = (1 − ζ )η0.

Due to axisymmetry, the levitating force due to the viscoelastic stress F H is along the z
direction, which should balance the gravity-induced force F G = −(π/6))ρ gD3 ez, where
g denotes the gravitational acceleration. For a given polymeric fluid and a given rotational
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speed, we seek a levitation height hL such that F H(Ω, h = hL) = −F G, when the rotating
sphere suspends above the wall by a finite distance, with hL > 0.

3.2.1. Non-dimensionalization
We scale lengths by D, time by 1/Ω , velocities by ΩD, and stresses by η0Ω , with the
non-dimensional variables denoted with tildes. The non-dimensional governing equations
are therefore given by

∇̃ · ũ = 0,

−∇̃p̃ + ζ ∇2ũ + ∇̃ · τ̃ p = 0,

De τ̃ p +
!
τ̃ p = (1 − ζ )Ẽ,





(3.3)

where De = λΩ is the Deborah number indicating the non-dimensional relaxation time of
the viscoelastic fluid. We hence seek a non-dimensional levitation height h̃ = h̃L such that

F̃H(De, h̃L) = G, (3.4)

where

G = πgD )ρ

6η0Ω
(3.5)

is the dimensionless gravitational force.

3.2.2. Small Deborah number analysis: a reciprocal theorem approach
We first consider the small-De limit of (3.3) and adopt the second-order fluid model to
describe the first departure from Newtonian behaviour. In a retarded motion expansion,
the non-dimensional shear stress tensor of a second-order fluid reads

τ̃ = Ẽ − De0

(!
Ẽ − 2Ψ2

Ψ1
Ẽ · Ẽ

)

, (3.6)

where Ψ1 and Ψ2 are the first and second normal stress coefficients, respectively. Here,
De0 = Ψ1Ω/η defines the Deborah number of the second-order fluid, and it relates to
De by De0 = (1 − ζ )De. For comparison with the Oldroyd-B model, where the second
normal stress difference is zero, we set Ψ2 = 0 to recover the Oldroyd-B model in the
small-De limit.

First, we calculate asymptotically the hydrodynamic force F̃ H = F̃Hez on a rotating
sphere suspended at a given height h̃. We expand the variables in powers of De0 as

{σ̃ , ũ, Ẽ, F̃ H} = {σ̃ 0, ũ0, Ẽ0, F̃ 0} + De0{σ̃ 1, ũ1, Ẽ1, F̃ 1} + O(De2
so). (3.7)

The zeroth-order solution {ũ0, σ̃ 0 = −p̃0I + Ẽ0} is a known Newtonian (Stokes flow)
solution for a rotating sphere above a wall (Jeffery 1915), where the zeroth-order
hydrodynamic force on the sphere is F̃ 0 = 0. Levitation of a rotating sphere near a wall is
therefore impossible in a Newtonian fluid.

Next, we calculate the first-order non-Newtonian correction {ũ1, σ̃ 1 = −p̃1I+Ẽ1−
!
Ẽ0}

via a reciprocal theorem approach (Lauga 2014; Elfring 2017; Masoud & Stone 2019).
By considering an auxiliary problem in Stokes flow (ũ′, σ̃ ′), where a sphere translates
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perpendicularly to a wall, which has an exact solution given by Brenner (1961), the
reciprocal theorem leads to

∫

V

(
∇̃ũ′ : σ̃ 1 − ∇̃ũ1 : σ̃ ′) dV =

∫

V
∇̃ ·

(
ũ′ · σ̃ 1 − ũ1 · σ̃ ′) dV. (3.8)

Upon the substitution of the first-order constitutive equation σ̃ 1 = −p̃1I + Ẽ1 −
!
Ẽ0 and

the use of the divergence theorem, we obtain
∫

V

!
Ẽ0 : ∇̃ũ′ dV =

∫

S
n ·
(
ũ′ · σ̃ 1 − ũ1 · σ̃ ′) dS, (3.9)

where the surface integral on the stationary wall vanishes due to the no-slip and
no-penetration boundary conditions, and S and n denote the surface of the sphere and
its outward normal, respectively. In (3.9), the first-order velocity on the surface S vanishes
because the rotational velocity has been accounted for by the zeroth-order solution, and
a fixed distance from the wall is considered here. Furthermore, by considering a sphere
translating at a unit speed ũ′ = ez in the auxiliary problem, (3.9) is simplified to

F̃1 = −
∫

V

!
Ẽ0 : ∇̃ũ′ dV, (3.10)

where F̃1 = ez · F̃ 1 = ez ·
∫

S (−n · σ̃ 1) dS represents the first-order levitating force. In
other words, the leading-order levitating force therefore reads

F̃H = De0 F̃1 = −De (1 − ζ )

∫

V

!
Ẽ0 : ∇̃ũ′ dV. (3.11)

The above analysis, valid in the small-De regime, provides the theoretical foundation for
the levitation of a rotating sphere in a viscoelastic fluid.

For illustration, the levitating force F̃H is calculated as a function of distance from the
wall h̃ at fixed De = 0.1 and ζ = 0.225 (figure 4(a), dashed line). The levitating force
decays as the rotating sphere is further away from the wall. For verification, F̃H is also
computed numerically using a commercial finite-element solver COMSOL based on our
legacy implementation (Pak et al. 2012; Zhu, Lauga & Brandt 2012; Nadal et al. 2014; Datt
et al. 2015). The numerical results (represented by circles in figure 4a) display excellent
agreement with the asymptotic solution for De = 0.1. We remark that both Newtonian
solutions (Jeffery 1915; Brenner 1961) employed in (3.11) are series solutions. Although
the solutions are valid for all distances above the wall, as the sphere gets closer to the wall,
an increasingly higher number of terms is required in the series for accurate solutions. We
therefore limit our consideration of the distance to h̃ > 0.01 in this work.

In figure 4(b), we test the effect of higher Deborah number numerically (circles),
and compare with the asymptotic solution (solid line). At a fixed distance from the
wall, the levitating force increases with De. The asymptotic solution displays excellent
agreement with the numerical results up to De ≈ 1, beyond which the asymptotic
solution overestimates the levitating force, which is reasonable considering the small-De
assumption in the asymptotic analysis. We note that currently we have no access to
numerical results at even higher De due to the limitations by the high Weissenberg number
problem (Keunings 1986; Owens & Phillips 2002).
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Figure 4. Non-dimensional hydrodynamic force F̃H on a rotating sphere as a function of (a) its
non-dimensional height h̃ from the wall when De = 0.1, and (b) Deborah number De at a fixed height h̃ = 1.
In both cases, ζ = 0.225. Lines and circles denote the theoretical and numerical results, respectively.

3.3. Determination of the levitation height
From the levitating force on the rotating sphere as a function of its distance from the wall,
we can determine the levitation height of the sphere at which the levitating force balances
the gravitational force. Substituting the leading-order viscoelastic force in the small-De
limit given by (3.11), F̃H(De, h̃) ∼ De (1 − ζ ) F̃1(h̃), into the force balance (3.4), we have

De (1 − ζ ) F̃1(h̃ = h̃L) = G, (3.12)

which, upon bringing the relevant dimensionless groups together, yields

F̃1(h̃ = h̃L) = G
De (1 − ζ )

. (3.13)

Therefore, the solution for the non-dimensional levitation height h̃L in the above force
balance should depend only on the dimensionless group, De (1 − ζ )/G, in the regime of
small De. For a given value of De (1 − ζ )/G, we obtain the solution h̃ = h̃L by evaluating
numerically the levitating force using (3.10) such that (3.13) is satisfied. We remark that
typically, the De values in the experiments are large, so the asymptotic theory is not
expected to capture quantitatively the experimental measurements. Instead, the asymptotic
analysis here serves only to predict the plausibility of viscoelastic levitation and suggest
the relevant dimensionless group De (1 − ζ )/G for collapsing the data in the asymptotic
regime of small De (1 − ζ )/G.

Figure 5 shows the non-dimensional levitation height (h̃L = hL/D) from both
asymptotic theory predictions (dashed lines) and experimental measurements (symbols)
as functions of the dimensionless group De (1 − ζ )/G. It is to be noted that there is a
good agreement between the asymptotic and experimental results when De (1 − ζ )/G is
small. At larger De (1 − ζ )/G, the asymptotic theory overestimates the levitation height,
which is due to the small-De assumption in the asymptotic theory. This overprediction at
large De can also be seen in the force comparison between the asymptotic theory and the
numerical simulations in figure 4(b). In figure 5(b), we show a magnified view of results
for small values of De (1 − ζ )/G. In addition, we superimpose results from numerical
simulations for De = 1 (×), De = 1.5 (+), and De = 2 (∗), for comparison. We can see
that the numerical results agree well with the asymptotic theory when De (1 − ζ )/G is
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De(1 − ζ) /G De(1 − ζ) /G
0 4 8 12 16

–0.5

0

0.5

1.0

1.5

2.0

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

Figure 5. (a) Dimensionless levitation height h̃L = hL/D of the rotating sphere as a function of the
dimensionless group De (1 − ζ )/G. The dashed line represents predictions by the asymptotic theory in the
small-De limit, whereas the symbols correspond to experimental data presented previously. (b) A magnified
view of results in (a) for small values of De (1 − ζ )/G, with the addition of results from numerical simulations
for De = 1 (×), De = 1.5 (+), and De = 2 (∗). In all simulations, ζ = 0.225.

small; in this regime, the data collapse well, confirming that the levitation height depends
only on the dimensionless group De (1 − ζ )/G.

4. Conclusions
In this study, we conducted experiments and theoretical analysis on spheres of different
sizes and densities immersed in two fluids: Newtonian and viscoelastic Boger fluids.
With a constant rotating rate, the sphere levitates to a fixed distance from the bottom
in the viscoelastic fluid, instead of no levitation in Newtonian fluids. The viscoelastic
normal stress between the sphere and the bottom wall is responsible for this ‘viscoelastic
levitation’. In the small-De asymptotic analysis, based on the balance between the
viscoelastic levitating force and the gravitational force on the sphere, a dimensionless
group was formulated in terms of the Deborah number De, the relative viscosity ζ , and
the dimensionless gravitational force G. Using this dimensionless group, experimental
measurements of the levitation height display a good collapse onto a single curve. The
agreement between experiments and asymptotic results is very good when De is small,
consistent with the small-De assumption in the asymptotic analysis.

It can be argued that this configuration can be used as a rheometer. If the density and size
of a sphere that rotates above a wall are known, then a measurement of the levitation height
can be used to infer the value of the Deborah number, from which the fluid relaxation time
could be obtained. This method could be implemented easily considering the experimental
device shown here, for small Deborah numbers. Other rotation directions and non-constant
rotation speeds could also be considered to obtain other viscoelastic characteristics of the
fluid. We plan to pursue these ideas in the future.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.418.
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