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Gait switching and targeted navigation of
microswimmers via deep reinforcement learning
Zonghao Zou 1,4, Yuexin Liu 2,4, Y.-N. Young 2✉, On Shun Pak1✉ & Alan C. H. Tsang 3✉

Swimming microorganisms switch between locomotory gaits to enable complex navigation

strategies such as run-and-tumble to explore their environments and search for specific

targets. This ability of targeted navigation via adaptive gait-switching is particularly desirable

for the development of smart artificial microswimmers that can perform complex biomedical

tasks such as targeted drug delivery and microsurgery in an autonomous manner. Here we

use a deep reinforcement learning approach to enable a model microswimmer to self-learn

effective locomotory gaits for translation, rotation and combined motions. The Artificial

Intelligence (AI) powered swimmer can switch between various locomotory gaits adaptively

to navigate towards target locations. The multimodal navigation strategy is reminiscent of

gait-switching behaviors adopted by swimming microorganisms. We show that the strategy

advised by AI is robust to flow perturbations and versatile in enabling the swimmer to

perform complex tasks such as path tracing without being explicitly programmed. Taken

together, our results demonstrate the vast potential of these AI-powered swimmers for

applications in unpredictable, complex fluid environments.
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Swimming microorganisms have evolved versatile navigation
strategies by switching their locomotory gaits in response to
their surroundings1. Their navigation strategies typically

involve switching between translation and rotation modes such as
run-and-tumble and reverse-and-flick in bacteria2–5, as well as
run-stop-shock and run-and-spin in eukaryotes6,7. Such an
adaptive, multimodal gait-switching ability is particularly desir-
able for biomedical applications of artificial microswimmers such
as targeted drug delivery and microsurgery8–12, which require
navigation towards target locations in biological media with
uncontrolled and/or unpredictable environmental factors13–15.

Pioneering works by Purcell and subsequent studies demon-
strated how simple reconfigurable systems with ingenious loco-
motory gaits can generate net translation and rotation, given the
stringent constraints for locomotion at low Reynolds numbers16.
Yet, the design of locomotory gaits becomes increasingly
intractable when more sophisticated maneuvers are required or
environmental perturbations are present. Existing micro-
swimmers are therefore typically designed with fixed locomotory
gaits and rely on manual interventions for navigation8,17–21. It
remains an unresolved challenge in developing microswimmers
with adaptive locomotory strategies similar to that of biological
cells that can navigate complex environments autonomously.
Modular microrobotics and the use of soft active materials22,23
have been proposed to address the challenge.

More recently, the rapid development of artificial intelligence
(AI) and its applications in locomotion problems24–29 have
opened different paths towards designing the next generation of
smart microswimmers30,31. Various machine learning approaches
have enabled the navigation of active particles in the presence of
background flows32,33, thermal fluctuations34,35, and obstacles36.
As minimal models, the microswimmers are often modeled as
active particles with prescribed self-propelling velocities and
certain degrees of freedom for speed variation and re-orientation.
However, the complex adjustments in locomotory gaits required
for such adaptations are typically not accounted for. Recent
studies have begun to examine how different machine learning
techniques enable reconfigurable microswimmers to evolve
effective gaits for self-propulsion37 and chemotactic repsonse38.

Here, we combine reinforcement learning (RL) with artificial
neural network to enable a simple reconfigurable system to per-
form complex maneuvers in a low-Reynolds-number environ-
ment. We show that the deep RL framework empowers a
microswimmer to adapt its locomotory gaits in accomplishing
sophisticated tasks including targeted navigation and path tra-
cing, without being explicitly programmed. The multimodel gait
switching strategies are reminiscent of that adopted by swimming
microorganisms. Furthermore, we examine the performance of
these locomotion strategies against perturbations by background
flows. The results showcase the versatility of AI-powered swim-
mers and their robustness in media with uncontrolled environ-
mental factors.

Results and discussion
Model reconfigurable system. We consider a simple reconfi-
gurable system consisting of three spheres with radius R and
centers ri (i= 1, 2, 3) connected by two arms with variable lengths
and orientations as shown in Fig. 1a. This setup generalizes
previous swimmer models proposed by Najafi and Golestanian39
and Ledesma-Aguilar et al. 40 by allowing more degrees of free-
dom. The interaction between the system and the surrounding
viscous fluid is modeled by low Reynolds number hydro-
dynamics, imposing stringent constraints on the locomotive
capability of the system. Unlike the traditional paradigm where
the locomotory gaits are prescribed in advance39–44, here we

exploit a deep RL framework to enable the system to self-learn a
set of locomotory gaits to swim along a target direction, θT. We
employ a deep neural network based on the Actor-Critic structure
and implement the Proximal Policy Optimization (PPO)
algorithm29,45 to train and update the agent (i.e., AI) in charge of
the decision making process (Fig. 1b). The deep RL framework
here extends previous studies from discrete action spaces to
continuous action spaces32,35,37,46, enhancing the swimmer’s
capability in developing more versatile locomotory gaits for
complex navigation tasks (see the “Methods” section for imple-
mentation details of the Actor-Critic neural network and PPO
algorithm).

Hydrodynamic interactions. The interaction between the
spheres and their surrounding fluid is governed by the Stokes
equation (∇ p= μ∇2u,∇ ⋅ u= 0). Here, p, μ and u represent,
respectively, the pressure, dynamic viscosity, and velocity field. In
this low Reynolds number regime, the velocities of the spheres Vi
and the forces Fi acting on them can be related linearly as

Vi ¼ GijFj; ð1Þ

where Gij is the Oseen tensor47–49 given by

Gij ¼
1

6πμR I;
1

8πμjri$rjj
ðIþ r̂ijr̂ijÞ:

(

ð2Þ

Here, I is the identity matrix and r̂ij ¼ ðri $ rjÞ=jri $ rjj
denotes the unit vector between spheres i and j. The torque
acting on the sphere i is calculated by Ti= ri × Fi. The rate of
actuation of the arm lengths _L1, _L2 and the intermediate angle _θ31
can be expressed in terms of the velocities of the spheres Vi. The
kinematics of the swimmer is fully determined upon applying the
force free (∑iFi= 0) and torque-free (∑iTi= 0) conditions. The
Oseen tensor hydrodynamic description is valid when the spheres
are not in close proximity (R≪ L). We therefore constrain the
arm and angle contractions such that 0.6L ≤ L1, L2 ≤ L and
2π/3 ≤ θ31 ≤ 4π/3.

The actuation rate of the arm lengths _L1; _L2 can be expressed in
terms of the relative velocities of the spheres parallel to the arm
orientations:

ðV2 $ V1Þ & r̂21 ¼ _L1; ð3Þ

ðV3 $ V2Þ & r̂32 ¼ _L2; ð4Þ

The actuation rate of the intermediate angle _θ31 can be expressed
in terms of the relative velocities of the spheres perpendicular to
the arm orientations:

ðV2 $ V1Þ &
dr̂21
dθ1

¼ L1 _θ1; ð5Þ

ðV3 $ V2Þ &
dr̂32
dθ2

¼ L2 _θ2; ð6Þ

_θ1 $ _θ2 ¼ _θ31; ð7Þ

where _θ1 and _θ2 are the arm rotation speeds. Together with the
Oseen tensor description of the hydrodynamic interaction
between the spheres, Eqs. (1) and (2) in the main text, and the
overall force-free and torque-free conditions, the kinematics of
the swimmer is fully determined.

In presenting our results, we scale lengths by the fully extended
arm length L, velocities by a characteristic actuation rate of the
arm Vc, and hence time by L/Vc and forces by μLVc (see Non-
dimensionalization under Supplementary methods).
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Targeted navigation. We first use the deep RL framework to
train the model system in swimming along a target direction θT,
given any arbitrary initial swimmer’s orientation θo. The swim-
mer’s orientation is defined based on the relative position
between the swimmer’s centroid rc=∑iri/3 and r1 as θo ¼
argðrc $ r1Þ (Fig. 1).

In the RL algorithm, the state s∈ (r1, L1, L2, θ1, θ2) of the
system is specified by the sphere center r1, arm lengths L1, L2, and
arm orientations θ1, θ2. The observation o 2
ðL1; L2; θ31; cos θd; sin θdÞ is extracted from the state, where θ31
is the intermediate angle and θd= θT−θo is the difference
between the target direction θT and the swimmer’s orientation θo;
note that the angle difference is expressed in terms of
ðcos θd; sin θdÞ to avoid discontinuity in the orientation space.
The AI decides the swimmer’s next action based on the
observation using the Actor neural network: for each action step
Δt, the swimmer performs an action a 2 ð _L1; _L2; _θ31Þ by actuating
its two arms, leading to swimmer displacement. To quantify the
success of a given action, the reward is measured by the
displacement of the swimmer’s centroid along the target
direction, rt ¼ ðrctþ1

$ rct Þ & ðcos θT; sin θTÞ.
We divide the training process into a total of Ne episodes, with

each episode consisting of Nt= 150 learning steps. To ensure a
full exploration of the observation space o, both the initial
swimmer state s and the target direction θT are randomized in
each episode. Based on the training results after every 20 episodes,
the critic neural network updates the AI to maximize the expected
long-term rewards E[Rt=0∣πθ], where πθ is the stochastic control
policy, Rt ¼ ∑1

t0 γt
0$trt0 is the infinite-horizon discounted future

returns, and γ is the discount factor measuring the greediness of
the algorithm45,50. A large discount factor γ= 0.99 is set here to
ensure farsightedness of the algorithm. As the episodes proceed,
the Actor-Critic structure progressively trains the AI and thereby
enhances the performance of the swimmer.

In Fig. 2 (Supplementary Movie 1) we visualize the navigation
of a trained swimmer along a target direction θT, given a
substantially different initial orientation, θo. The swimmer’s
targeted navigation is accomplished in three stages: (1) in the
initial phase (blue curve and regime), the swimmer employs

“steering” gaits primarily for re-orientation, followed by (2)
“transition” phase (red curve and regime) in which the swimmer
continues to adjust its direction while self-propelling, before
reaching (3) the “translation” phase (green curve and regime), in
which the re-orientation is complete and the swimmer simply
self-propels along the target direction. This example illustrates

Fig. 1 Schematics of the model microswimmer and the deep neural network with Actor-Critic structure. a Schematic of the model microswimmer
consisting of three spheres with raidus R and centers ri (i= 1, 2, 3). We mark the leftmost sphere r1 as red and the other two spheres r2, r3 as blue to
indicate the current orientation of the swimmer. The spheres are connected by two arms with variable lengths L1, L2 and orientations θ1, θ2, where θ31 is the
intermediate angle between two arms. The swimmer's orientation θo is defined based on the relative position between the swimmer's centroid rc=∑iri/3
and r1 as θo ¼ argðrc $ r1Þ. The swimmer is trained to swim along a target direction θT. b Schematic of Actor-Critic neural networks. Both networks consist
of three sets of layers (input layer, hidden layer, and output layer). Each layer is composed of neurons (marked as nodes). The weights of the neural
network are illustrated as links in between the nodes. The input layer has the same dimension as the observation. The three linear hidden layers have the
dimension of 64,32,32, respectively. The output layer dimension of the actor network is the same as the action space dimension, whereas the output layer
of the actor network has only 1 neuron. We discuss the general idea as follows: based on the current observation, a reinforcement learning agent decides
the next action using the Actor neural network. The next action is then evaluated by the Critic neural network to guide the training process. The swimmer
performs the action advised by the agent and interacts with the hydrodynamic environment, leading to movements that constitute the next observation and
reward. Both the Actor and Critic neural network are updated periodically to improve the overall performance. See more details in the “Methods” section.

Fig. 2 Example of target navigation utilizing three distinct locomotory
gaits. The Artificial Intelligence powered swimmer switches between
distinct locomotory gaits (steering, transition, translation) advised by the
reinforcement learning algorithm to steer itself towards a specified target
direction θT (black arrow) and swim along the target direction afterwards.
Different parts of the swimmer's trajectory are colored to represent the
locomotion due to different locomotory gaits, where the steering, transition,
and translation gaits are marked as blue, red, green, respectively.
Schematics of the swimmer configurations (not-to-scale) are shown for
illustrative purpose, where the leftmost sphere is marked as red and other
two spheres marked as blue to indicate the swimmer's current orientation
(gray arrows). The inset shows the change in swimmer's orientation θo over
action steps. An animation of this simulation is shown in Supplemental
Movie 1.
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how an AI-powered reconfigurable system evolves a multimodal
navigation strategy without explicitly programmed or relying on
any prior knowledge of low-Reynolds-number locomotion. We
next analyze the locomotory gaits in each mode in the evolved
strategy.

Multimodal locomotory gaits. Here we examine the details of
the locomotory gaits acquired by the swimmer for targeted
navigation in the steering, transition, and translation modes. We
distinguish these gaits by visualizing their configurational changes
in the three-dimensional (3D) configuration space of the swim-
mer (L1, L2, θ31) in Fig. 3. Here we utilize an example of a
swimmer navigating towards a target direction with ∣θd∣ > π/2 to
illustrate the switching between different locomotory gaits
(Fig. 3a), Supplementary Movies 2 and 3). The swimmer needs to
re-orient itself in the counter-clockwise direction in this example;
an example for the case of clockwise rotation is included in the
Supplementary Note 1 (Supplementary Fig. 1, Movies 7 and 8).
The dots in Fig. 3a represent configurations at different action
steps. The configurations for the steering (blue dots), transition
(red dots), and translation (green dots) gaits are clustered in
different regions in the configuration space. A representative

sequence of configurational changes for each mode of gaits are
shown as solid lines to aid visualization (Fig. 3a).

We further examine the evolution of L1, L2, and θ31 using the
representative sequences of configurational changes identified in
Fig. 3a for each mode of gaits. For the steering gaits (Fig. 3b, blue
lines and Fig. 3d, blue box), the swimmer repeatedly extends and
contracts L2 and θ31, but keeps L1 constant (the left arm rests in
the fully contracted state). The steering gaits thus reside in the
L2−θ31 plane in Fig. 3a (blue line). The large variation in θ31
generates net rotation, substantially re-orientating the swimmer
orientation with a relatively small net translation (Fig. 3c). For the
transition gaits (Fig. 3b, red lines and Fig. 3d, red box), the
swimmer repeatedly extends and contracts all L1, L2 and θ31,
leading to significant amounts of both net rotation and
translation (Fig. 3c). In the configuration space (Fig. 3a), the
transition gaits tilt into the L1−L2 plane with an average θ31 less
than π (red line). Compared with the steering gaits, the variation
of θ31 becomes more restricted (Fig. 3b), resulting in smaller net
rotation for fine tuning of the swimmer’s orientation in the
transition phase. Finally, for the translation gaits (Fig. 3b, green
lines and Fig. 3d, green box), the swimmer’s orientation is aligned
with the target direction (θd ≈ 0); the swimmer repeatedly extends
and contracts L1 and L2, while keeping θ31 close to π (i.e., all three

Fig. 3 Analysis of configurational changes revealing three distinct modes of locomotory gaits. The steering, transition, and translation gaits are marked
as blue, red, green, respectively. a A 3D configuration plot for a typical simulation which the swimmer aligns with the target direction via a
counterclockwise rotation, where L1, L2 are the arm lengths and θ31 is the intermediate angle. Each dot represents one specific configuration of a locomotory
gait. The solid lines mark an example cycle of each locomotory gait. b The changes in the arm lengths L1 and L2 and the intermediate angle θ31 with respect
to the configuration number for each locomotory gait. c The average translational velocity h _xi and rotational velocity h _θi are calculated by averaging the
centroid translation along the target direction θT and the change of swimmer's orientation θo over the total number of action steps for each locomotory
gaits. d Representative configurations labeled with the configuration number are displayed to illustrate the configurational changes for each selected
sequence of locomotory gaits for the steering (blue box), transition (red box), and translation (green box) modes. The leftmost sphere of the swimmer is
marked as red and other two spheres are marked as blue to indicate the swimmer's current orientation. The gray arrows indicate the contraction/extension
of the arms and the intermediate angle. For illustration, the reference frame of the configurations are rotated consistently such that the left arm of the first
configuration is aligned horizontally in each sequence. The animation of counterclockwise and clockwise simulations are shown in the Supplementary
Movies 2, 3 and 7, 8.
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spheres of the swimmer are aligned), resembling the swimming
gaits of Najafi–Golestanian swimmers39,51. In the configuration
space (Fig. 3a), the translation gaits reside largely in the L1−L2
plane with an approximately zero average θ31, generating the
maximum net translation with minimal net rotation (Fig. 3c).
The details of gaits categorization are summarized under Supple-
mentary methods.

It is noteworthy that the multimodal navigation strategy
emerges solely from the AI without relying on prior knowledge of
locomotion. The switching between rotation, transition, and
translation gaits is analogous to the switching between turning
and running modes observed in bacterial locomotion2,5. These
results demonstrate how an AI-powered swimmer, without being
explicitly programmed, self-learns complex locomotory gaits
from rich action and configuration spaces and undergoes
autonomous gait switching in accomplishing targeted navigation.

Performance evaluation. Here we investigate the improvement
of swimmer’s performance with increased number of training
episodes Ne. At initial stage of training with a small Ne, the
swimmer may fail to identify the right sets of locomotory gaits to
achieve targeted navigation due to insufficient training. Con-
tinuous training with increased number of episodes would enable
the swimmer to identify better locomotory gaits to complete
navigation tasks. Here we measure the improvement of swim-
mer’s performance with increased Ne by three locomotion tests:
(1) Random target test: the swimmer is assigned a target direction
selected randomly from a uniform distribution in [0, 2π]; (2)
Rotation test: the swimmer is assigned a targeted direction with a
large angle of difference with swimmer’s orientation (i.e., θd= ±
π/2); (3) Translation test: the swimmer is assigned a target
direction equal to the swimmer’s orientation (i.e., θd= 0). A test
is considered to be successful if the swimmer travels along the

Fig. 4 Analysis of the swimmer’s performance with increasing number of episodes. Number of episodes Ne indicates the total training time of the
swimmer. Each episode during training contains a fixed amount of action steps Nl= 150. a We used three tests (random target test, rotation test and
translation test) to measure the swimmer's performance in a fixed number of training steps Nl= 150. For all tests, the swimmer starts with a random initial
configuration to ensure a full exploration of the observation space. A total of 100 trials are considered for each test with swimmers trained at different Ne. A
swimmer with insufficient training (3 × 104 episodes) may occasionally fails in the three tests (success rate≈ 90%). At Ne= 9 × 104, the swimmer masters
translation and improves its rotation ability. When Ne increases to 1.5 × 105, the swimmer obtains a 100% success rate in all tests. b Schematics of the
random target test, rotation test, and translation test. The leftmost sphere is marked as red and other spheres are marked as blue to indicate the swimmer's
orientation θo (red dashed arrows). Given a random initial configuration, we test the swimmer's ability to translate along or rotate towards a target
direction θT (solid red arrows). The black dashed arrows indicate the swimmer's intended moving direction.

Fig. 5 Demonstration of complex navigation capability of Artificial Intelligence powered swimmer. The Artificial Intelligence powered swimmer switches
between various locomotory gaits autonomously in tracing a complex trajectory “SWIM". The trajectory of the central sphere of the swimmer is colored
based on the mode locomotory gaits: steering (blue), transition (red), and translation (green). The swimmer is given a lists of target points (1–17) with one
target point at a time. The black arrows at each point indicate the intended direction of the swimmer. From the current target point, the swimmer
determines the target direction for the next action step t+ 1, θTtþ1

and adapts the locomotory gaits based on its AI in navigating towards that direction.
Schematics of the swimmer configurations (not-to-scale) are shown for illustrative purposes, where the leftmost sphere is marked as red and other two
spheres are marked as blue to indicate the swimmer's current orientation. An animation of this simulation is shown in Supplemental Movie 4.
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target direction for a distance of 5 unit in 10,000 action steps.
These tests ensure that the trained swimmer acquires a set of
effective locomotory gaits to swim along any specified direction
with robust rotation and translation.

We consider the success rates of the three tests over 100 trials
(Fig. 4). For Ne= 3 × 104, success rates of around 90% are
obtained for the three tests. When Ne is increased to 9 × 104, the
swimmer masters translation with a 100% success rate but still
needs more training for rotation. When Ne is increased further to
15 × 104, the swimmer obtains 100% success rates for all tests.
This result demonstrates the continuous improvement in the
robustness of targeted navigation with increased Ne up to
15 × 104. As we further increase Ne, we found the relationship
between Ne and performance to be non-monotonic. For a total
training episodes much greater than Ne= 15 × 104, the overall
success rate will begin to drop and eventually fluctuate around
95%. We selected the trained result at Ne= 15 × 104 for the best
overall performance.

To better understand the swimmer’s training process, we also
varied the number of steps in each episodes, Nl. For a range from
100 to 300 and a fixed total episodes Ne, we found Nl= 150
provides the most efficient way to balance translation and
rotation and require least amount of action steps to complete
both the rotation and translation tests. We remark that, when
Nl= 100, the swimmer was only able to translate but not to
rotate, indicating the significant role Nl plays in learning.

Lastly, we remark that the swimmer appears to require more
training, both in Ne and Nl, to learn rotation compared to
translation. This may be attributed to the inherit complexity of
rotation gaits, where the swimmer needs to actuate its
intermediate angle in addition to the actuation of the two arms
required in translation gaits.

Path tracing–"SWIM". Next we showcase the swimmer’s cap-
ability in tracing complex paths in an autonomous manner. To

illustrate, the swimmer is tasked to trace out the English word
“SWIM" (Fig. 5, Supplementary Movie 4). We note that the
hydrodynamic calculations required to design the locomotory
gaits to trace such complex paths become quickly intractable as
the complexity increases. Here, instead of explicitly programming
the gaits of the swimmer, we only select target points (pi,
i= 1, 2, . . . , 17, red spots in Fig. 5) as landmarks and require the
swimmer to navigate towards these landmarks with its own AI,
with the target directions at action step t+ 1 given by
θTtþ1

¼ argðpi $ rct Þ. The swimmer is assigned with the next
target point pi+1 when its centroid is within a certain threshold
(0.1 of the fully extended arm length) from pi. The completion of
these multiple navigation tasks sequentially enables the swimmer
to successfully trace out the word “SWIM" with a high accuracy
(Fig. 5, Supplementary Movie 4). In accomplishing this task, the
swimmer switches between the three modes of locomotory gaits
autonomously to swim towards individual target points and turn
around the corners of the path based on the AI-powered navi-
gation strategy. It is noteworthy that the swimmer is able to
navigate around some corners (e.g., at target points 4 and 6)
without activating the steering gaits, which are employed for
corners with more acute angles (e.g., at target points 8, 14, and
16). While past approaches based on detailed hydrodynamic
calculations, manual interventions, or other control methods may
also complete such tasks, here we present reinforcement learning
as an alternative approach in accomplishing these complex
maneuvers in a more autonomous manner.

Robustness against flows. Last, we examine the performance of
targeted navigation under the influence of flows (Fig. 6a, b,
Supplementary Movies 5, 6). In particular, to determine to what
extent the AI-powered swimmer is capable of maintaining its
target direction against flow perturbations, we use the same AI-
powered swimmer trained without any background flow, and
impose a rotational flow generated by a rotlet at the origin47,48,

Fig. 6 Analysis of the performance of targeted navigation under the influence of flows. a The Artificial Intelligence powered swimmer and the
Najafi–Golestanian (NG) swimmer escape from a relatively weak rotlet flow, u∞=−γ × r/r3, where γ= γez prescribes the strength of the rotlet in the z-
direction, r= ∣r∣ is the magnitude of the position vector r from the origin (γ= 0.15). The leftmost sphere of the AI-powered swimmer is marked as red and
other spheres are marked as blue to indicate the swimmer's current orientation (blue dashed arrow). The NG swimmer is colored red with its orientation
marked as red dashed arrows. Three sets of trajectories (dashed, dotted, and solid lines) are shown with different initial swimmer orientation θo0 . The AI-
powered swimmer travels to the right regardless of its initial orientation whereas the trajectory for the NG swimmer is highly affected by the rotlet flow.
b We compare the trajectories of the AI-powered swimmer and the NG swimmer in a strong rotlet flow (γ= 1.5). The NG swimmer completely loses
control in the flow, while the AI-powered swimmer maintains its orientation towards the positive x-direction, with similar trajectories for different initial
orientations. The animation of the two simulations are shown in Supplemental Movies 5 and 6.
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u∞=−γ × r/r3, where γ= γez prescribes the strength of the rotlet
in the z-direction, r= ∣r∣ is the magnitude of the position vector r
from the origin (see the section “Simulations of background flow”
under Supplementary methods). Here the AI-powered swimmer
is tasked to navigate towards the positive x-direction under flow
perturbations due to the rotlet. We examine how the swimmer
adapts to the background flow when performing this task. For
comparison, we contrast the resulting motion of the AI-powered
swimmer with that of an untrained swimmer (i.e., a
Najafi–Golestanian (NG) swimmer that performs only fixed
locomotory gaits without any adaptivity39). Without the back-
ground flow, both swimmers self-propel with the same speed.
Both swimmers are initially placed close to the rotlet with rc=
−5ex and we sample their performance with three different initial
orientations: θo0 ¼ $π=3, 0, and π/3, under different flow
strengths. Under a relatively weak flow (γ= 0.15, Fig. 6a), Sup-
plementary Movie 5), the AI-powered swimmer is capable of
navigating towards the positive x-direction regardless of its initial
orientations against flow perturbations. In contrast, the trajec-
tories of the NG swimmer are largely influenced by the rotlet flow
passively depending on the initial orientation of the swimmer. For
an increased flow strength (γ= 1.5, Fig. 6b, Supplementary
Movie 6), the NG swimmer completely loses control of its
direction and is scattered by the rotlet into different directions
again due to the absence of any adaptivity. Under such a strong
flow, the AI-powered swimmer initially circulates around the
rotlet but eventually manages to escape from it, navigating to the
positive x-direction successfully with similar trajectories for all
initial orientations. We note that the vorticity experienced by the
swimmer in this case is comparable with typical re-orientation
rates of the AI-powered swimmer. We also remark that when
navigating under flow perturbations, the AI-powered swimmer
adopts the transition gaits to constantly re-orient itself towards
the positive x-direction and self-propels along that direction
eventually. These results showcase the AI-powered swimmer’s
capability in adapting its locomotory gaits to navigate robustly
against flows.

Conclusions
In this work, we present a deep RL approach to enable navigation
of an artificial microswimmer via gait switching advised by the
AI. In contrast to previous works that considered active particles
with prescribed self-propelling velocities as minimal
models32,34,35 or simple one-dimensional swimmers37,38,46, here
we demonstrate how a reconfigurable system can learn complex
locomotory gaits from rich and continuous action spaces to
perform sophisticated maneuvers. Through RL, the swimmer
develops distinct locomotory gaits for a multimodal (i.e., steering,
transition, and translation) navigation strategy. The AI-powered
swimmer can adapt its locomotory gaits in an autonomous
manner to navigate towards any arbitrary directions. Further-
more, we show that the swimmer can navigate robustly under the
influence of flows and trace convoluted paths. Instead of explicitly
programming a swimmer to perform these tasks in the traditional
approach, the swimmer is advised by the AI to perform complex
locomotory gaits and autonomous gait switching in accomplish-
ing these navigation tasks. The multimodal strategy employed by
the AI-powered swimmer is reminiscent of the run-and-tumble in
bacteria2,5. Taken together, our results showcase the vast potential
of this deep RL approach in realizing adaptivity similar to that of
biological organisms for robust locomotive capabilities. Such
adaptive behaviors are crucial for future biomedical applications
of artificial microswimmers in complex media with uncontrolled
and/or unpredictable environmental factors.

We finally discuss several possibilities for subsequent investi-
gations based on this deep RL approach. While we demonstrate
only planar motion in this work, the approach can be readily
extended to three-dimensional navigation by allowing out-of-
plane rotation the swimmer’s arms with expanded observation
and action spaces for the additional degrees of freedom. More-
over, the deep RL framework is not tied to any specific swimmers;
a simple multi-sphere system is used in this work for illustration,
and the same framework applies to other reconfigurable systems.
We also remark that the AI-powered swimmer is able to over-
come some influences of flows even though such flows were
absent in the training. Subsequent investigations including the
flow perturbation in the training may lead to even more powerful
AI that could exploit the flows to further enhance the navigation
strategies. Another practical aspect to consider is the effect of
Brownian noise52–54. Specifically, the characterization of the
effect of thermal fluctuations in both the training process of the
swimmer and its resulting navigation performance is currently
underway. In addition to flow and thermal fluctuations, other
environmental factors, including the presence of physical
boundaries and obstacles, may be addressed in similar manners in
future studies. The deep RL approach here opens an alternative
path towards designing adaptive microswimmers with robust
locomotive and navigation capabilities in more complex, realistic
environments.

Methods
Here we briefly explain the Proximal Policy Optimization (PPO) alogrithm we used
to train our AI-powered swimmer.

In the PPO algorithm, the agent’s motion control is managed with a neural
network with an Actor-Critic structure. The Actor network can be considered as a
stochastic control policy πθ(at∣ot), where it generates an action at given an obser-
vation ot following a Gaussian distribution. Here θ represents all the parameters of
the actor neural network. The Critic network is used to compute the value function
Vϕ by assuming the agent starts at an observation o and acts according to a
particular policy πθ. The parameters in the critic network is represented as ϕ.

To effectively train the swimmer, we divide the total training process into epi-
sodes. Each episode can be considered as one round, which terminates after a fixed
amount of training steps (Nl= 150). To ensure fully exploration of the observation
space, we randomly initialize the swimmer’s geometric configurations (L1, L2, θ1, θ2)
and the target direction (θT) at the beginning of each episode.

At time t, the agent receives its current observation ot and samples action at
based on the policy πθ. Given at, the swimmer interacts with its surrounding and
calculates the next state st+1 and reward rt. The next observation ot+1 extracted
from st+1 is sent to the agent for the next iteration. All the observations, actions,
rewards and sampling probabilities are stored for the agent’s update. The update
process begins after running fix amount of episodes NE= 20 (Total training steps
of an update is therefore: N=NE*Nl= 3000). The goal for the update is to opti-
mize θ so that the expected long term rewards J(πθ)= E[Rt=0∣πθ] is maximized.

The expectation is taken with respect to each running episode, τ. Here, we use
the infinite-horizon discounted returns rt ¼ ∑1

t0 γt
0$t rt0 , where γ is the discount

factor measuring the greediness of the algorithm. We set γ= 0.99 ensuring its
farsightedness. To solve this optimization problem, we use the typical policy gra-
dient approach estimation: ∇θJ(πθ). More specifically, we implemented the clipped
advantage PPO algorithm to avoid large changes in each gradient update. We
estimated the surrogate objective J(πθ) by clipping the probability ratio r(θ) times
the advantage function Ât . The probability ratio measures the probability of
selecting an action for the current policy over the old policy (rðθÞ ¼ πθ ðajoÞN ´ 1

πθold ðajoÞN ´ 1
).

The advantage function Ât describes the relative advantage of taking an action a
based on an observation o over a randomly selected action and is calculated by
subtracting the value function VN×1 from the discounted return RN×1
(Ât ¼ RN ´ 1 $ VN ´ 1).

We then update the parameters θ, ϕ via a typical gradient descent algorithm:
Adam optimizer. The full detail for our implementation is included in the Algo-
rithm 1 and 2 below. Here, K is the total epoch number. Nl is the number of steps
in one episode, and N is the total number of steps for each update. The PPO
algorithm uses fixed-length trajectory segments τ. During each iteration, each of NA
parallel actors collect T time steps of data, then we construct the surrogate loss on
these NAT time steps of data, and optimize it with Adam for K epochs.

In the following we present the algorithm tables for the PPO algorithm
employed in this work. We refer the readers to classical monographs for more
details45.
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Algorithm 1. Environment

1: for time step t= 0, 1, . . . do
2: if mod(t,Nl)= 0 then
3: Reset state st
4: Compute observation ot
5: end if
6: Sample action at from policy πθ
7: Evaluate the next state st+1 and reward rt following the swimmer’s

hydrodynamics
8: Compute the next observation ot+1 from state st+1
9: if t= 0 or mod(t,N) ≠ 0 then
10: append observation ot+1, action at, reward rt and action sampling

probability πθ(at∣ot) to observation list oN×5, action list aN×3, reward list RN×1
and action sampling probability list πθold ðajoÞN ´ 1

11: else
12: Update the Agent using Algorithm 2
13: end if
14: end for

Algorithm 2. Proximal Policy Optimization, Actor-Critic, Update the Agent

1: Input: Initial policy parameter θ, initial value function parameter ϕ
2: for k = 0, 1, 2,…K do
3: Compute infinite-horizon discounted returns RN×1
4: Evaluate expected returns VN×1 using observations oN×5 and value function

Vϕ

5: Compute the advantage function: Ât ¼ RN ´ 1 $ VN ´ 1
6: Evaluate the probability for policy πθ using observations oN×5 and actions

aN×3, store the probability to πθ(a∣o)N×1
7: Compute the probability ratio: rðθÞ ¼ πθ ðajoÞN ´ 1

πθold ðajoÞN ´ 1
8: Compute the clipped surrogate loss function:

LCLIPðθÞ ¼ E½minðrðθÞÂt ; clip ðrðθÞ; 1$ ϵ; 1þ ϵÞÂtÞ(, with constant ϵ
9: Compute the value-function loss: LVFðϕÞ ¼ 1

2E½ðRN ´ 1 $ VN ´ 1Þ
2(

10: Compute the entropy loss: LS= αS[πθ], with constant α
11: Compute the total loss: L(θ, ϕ)=−LCLIP(θ)+ LVF(ϕ)−LS
12: Optimize surrogate L with respect to (θ, ϕ), with K epochs and minibatch

size M≤NAT, with NA is the number of parallel actors and T is the time step.
13: θold← θ, ϕold← ϕ
14: end for

Data availability
The data and Supplementary movies 1–8 that support the findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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