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Climate and weather greatly influence global wildland fire1. 
Climate influences the type and distribution of vegetation 
(fuels), and weather is a main driver of regional fire activity2,3. 

Especially important to wildland fire management are the periods of 
extreme fire weather leading to rapidly spreading fires that are dif-
ficult to suppress, often with catastrophic impacts4. In fact, a small 
percentage of fires that occur during extreme fire weather condi-
tions are responsible for the majority of area burned regionally5,6. 
Recent decades have experienced an increase in the number of large 
and destructive wildfires in many regions5,7, and nearly all recent 
extreme wildfire events have occurred under extreme fire weather 
conditions8. In the future, the occurrence of extreme fire weather is 
expected to increase in many areas due to climate change9,10.

Extreme fire weather is typically evaluated using fire weather 
indices that incorporate daily weather variables related to fuel mois-
ture and fire behaviour. Several indices are used across the globe, 
including the Canadian Fire Weather Index System (CFWIS)11. 
The CFWIS is the most widely used approach for estimation of fire 
weather globally, both operationally and in a research context. The 
CFWIS uses meteorological inputs that have been shown to strongly 
influence the occurrence, behaviour and effects of wildfires includ-
ing air temperature, relative humidity (RH), wind speed (WS) and 
precipitation12,13. Observed increases in fire weather season length 
have been found in areas with observed increases in temperature, 
WS and rain-free intervals, and decreases in RH14. Studies using 
climate models have attributed temperature and RH to projected 
increased fire weather extremes10,15. While regional studies have 
investigated meteorological drivers of observed trends in fire 
weather16–20, the current literature still lacks a global-scale attribu-
tion of observed fire weather trends to individual meteorological 
variables. Such an analysis would greatly improve our knowledge of 
current and future global fire risk and allow for the identification of 
high-risk regions with greater potential for catastrophic fires.

This study seeks to investigate trends in extreme fire weather 
globally from 1979 to 2020, and to elucidate the meteorological  

variables behind any observed changes. We use the ERA5 reanaly-
sis21 to estimate and examine trends in extreme values of three dif-
ferent measures of fire weather (Methods): (1) the fire weather index 
(FWI), (2) initial spread index (ISI) and (3) vapour pressure deficit 
(VPD). The FWI and ISI are both indices in the CFWIS, where the  
former provides an estimate of potential fire intensity while the 
latter represents the potential rate of fire spread. The VPD is  
the difference between the saturation and actual vapour pressure; 
high VPD values brought about by the combination of high tem-
peratures and a dry airmass can, over an extended period, result in 
increased desiccation of fuels. While regional fire regime changes 
have been further linked to climate change22,23, the variables driv-
ing observed global changes have not been attributed to changes in 
individual meteorological variables. For this reason, and given the 
nonlinear nature of the CFWIS, we attribute the dominant meteoro-
logical variables responsible for trends in extreme values of ISI and 
FWI globally. Because RH and VPD are both measures of atmo-
spheric moisture, and both are largely determined by temperature 
(T) and dew point temperature (Td), we also attribute extreme FWI 
and ISI trends to VPD and further explore how trends in T and Td 
combine to influence trends in fire weather extremes.

Global trends in the 95th percentile of FWI, ISI and VPD
We evaluated trends in extreme fire weather by focusing on the 
95th percentile of the annual values of FWI, ISI and VPD (denoted 
henceforth as FWI95, ISI95 and VPD95, respectively) from 1979 to 
2020 (Methods). We also report these trends according to the global 
biome classification shown in Supplementary Fig. 1, and use only 
the fire season estimated for each biome–continent combination to 
determine annual distributions from which the percentile values 
were derived. Significant positive trends in annual FWI95 occurred 
in >26.6% of burnable global land mass although there were impor-
tant regional variations in the observed trends (Fig. 1a, Table 1 and 
Supplementary Tables 3 and 4). Positive trends in FWI95 occurred 
predominantly in western North America (for example, subtropical 
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desert, subtropical mountain system, temperate desert, temperate 
mountain system west), South America (for example, tropical moist 
forest south, tropical rainforest), Africa (for example, subtropi-
cal mountain system, tropical desert, tropical moist forest north, 
tropical rainforest), western Europe (for example, subtropical dry 
forest, temperate continental forest, temperate steppe) and east-
ern Australia (for example, subtropical dry forest). In contrast, the 
greatest percentage of negative trends occurred in India (covered 
predominantly by tropical shrubland and tropical dry forest west 
biomes). Similar patterns were also seen for trends in annual ISI95, 
with significant positive trends occurring in >26.4% of global burn-
able land mass (Fig. 1b and Table 1). In contrast to FWI95 and ISI95, 
significant positive trends in annual VPD95 occurred in >45.7% of 

global burnable lands (Fig. 1c and Table 1), albeit with similar spa-
tial variation. Conversely, significant negative trends in FWI95, ISI95 
and VPD95 were found for <2.5% of global burnable lands, predom-
inantly occurring in India or mainland southeast Asia.

Figure 2 shows the time series of global extreme fire weather 
anomalies, which are highly correlated with anomalies in global 
mean land-surface temperatures (Spearman’s ρ > 0.83). Altogether, 
for the entire global burnable area the mean value over the 41-year 
period for FWI95 increased by 14.1% (that is, from 29.0 to 33.1) 
while ISI95 increased by 12.0% (from 12.2 to 13.7) and VPD95 
increased by 12.1% (from 26.4 to 29.6 hPa). Considering only areas 
that experienced significant trends, the mean changes were larger, 
corresponding to an increase in mean global FWI95, ISI95 and VPD95, 
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Fig. 1 | Significant trends in extreme fire weather. a–c, Significant trends (1979–2020) in annual FWI95 (a), ISI95 (b) and VPD95 (c). Significance was 
determined by the MK trend test, controlling for multiple testing and adjusting for spatial autocorrelation (α = 0.05). White indicates where no significant 
trends exist, while dark grey denotes areas predominantly barren (that is, without appreciable burnable biomass), and these are excluded from the 
calculation. Light grey indicates the boundaries of biomes, which are modified from ref. 50 (Methods). Displayed trends are derived from the Theil–Sen 
slope estimator. Supplementary Fig. 1 shows an equivalent calculation covering all trends (that is, significant and non-significant).
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Table 1 | Percentages of trends that are significant for all trends (that is, positive and negative), positive trends only and negative 
trends only, for the three extreme fire weather variables (FWI95, ISI95 and VPD95), summarized globally and by continent

FWI95 ISI95 VPD95

Percentage 
significant

All Positive Negative All Positive Negative All Positive Negative

Global 28.4 26.6 1.8 28.9 26.4 2.5 47.2 45.7 1.5

By continent

 Africa 54.2 53.1 1.2 50.5 49.1 1.4 76.8 75.7 1.1

 Asia 20.6 13.9 6.6 21.9 12.4 9.4 45.9 42.1 3.9

 Europe 18.5 17.8 0.7 22.4 20.9 1.5 34.1 33.7 0.4

 North America 15.5 14.3 1.2 15.3 14.3 1.0 38.2 36.4 1.8

 Oceania 22.9 22.3 0.6 19.5 18.8 0.7 28.7 26.2 2.5

 South America 62.6 62.5 0.1 61.7 61.6 0.1 76.9 76.6 0.3

Mean trend size 
(1979–2020)

All Positive Negative All Positive Negative All (hPa) Positive (hPa) Negative (hPa)

Global 4.1 (11.0) 6.3 (12.3) -2.3 (-8.4) 1.5 (3.9) 2.5 (4.6) –1.0 (–3.6) 3.2 (5.7) 4.1 (6.0) –1.8 (–5.3)

By continent

 Africa 7.1 (11.3) 8.1 (11.6) –1.8 (–5.6) 3.0 (5.1) 3.6 (5.3) –1.0 (–2.0) 5.2 (6.4) 5.6 (6.5) –1.9 (–5.1)

 Asia 1.1 (3.7) 4.9 (10.2) –4.1 (–10.0) 0.1 (0.3) 1.9 (3.8) –1.9 (–4.4) 2.3 (4.4) 3.8 (5.4) –2.5 (–6.5)

 Europe 3.7 (12.3) 5.1 (13.0) –1.7 (–4.8) 1.1 (3.6) 1.8 (4.0) –0.7 (–2.0) 3.2 (6.2) 3.6 (6.3) –1.1 (–1.8)

 North America 2.6 (11.6) 5.0 (13.1) –1.8 (–6.7) 1.1 (4.7) 2.0 (5.3) –0.7 (–2.7) 1.7 (3.0) 2.3 (3.4) –1.8 (–4.4)

 Oceania 4.7 (11.7) 6.3 (12.2) –1.8 (–5.6) 2.0 (6.1) 3.3 (6.4) –1.4 (–3.0) 2.3 (6.5) 4.5 (7.8) –2.2 (–7.0)

 South America 9.0 (12.9) 9.7 (12.9) –1.3 (–4.4) 3.0 (4.2) 3.3 (4.3) –0.6 (–1.5) 6.7 (8.3) 7.1 (8.4) –1.1 (–2.3)

Mean trend sizes (1979–2020) for all grid cells are also given, where values in parentheses are the corresponding mean trend sizes for significant trends only.
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Fig. 2 | Anomalies in annual extreme fire weather metrics. Anomalies in annual (fire season) global means of extreme fire weather metrics (FWI95, ISI95 
and VPD95) between 1979 and 2020. Each bar is coloured according to annual global mean land-surface temperature anomalies (using data from ref. 29). 
All anomalies are calculated relative to the entire period 1979–2020.
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of 31.6% (that is, from 34.8 to 45.9), 30.2% (from 13.0 to 16.9) and 
20.8% (from 27.3 to 33.0 hPa), respectively (Table 1).

The greatest percentage of significant trends showing increases 
in FWI95, ISI95 and VPD95 tended to occur in tropical, subtropical 
and temperate biomes (Supplementary Tables 2 and 4). It is impor-
tant to note, however, that extreme wildfire events are generally lim-
ited by fuel availability in low-productivity climates and by mesic 
conditions in very productive climates8,24, with the latter exhibiting 
more robust links to variability in FWI and VPD1. However, pro-
ductive tropical ecosystems are an exception because people set fires 
in these regions for agricultural purposes and to clear rainforest25. 
There were also positive trends in extreme fire weather in boreal 
ecosystems, although both the significance and size of trends in 
FWI95, ISI95 and VPD95 were generally smaller compared with tropi-
cal, subtropical and temperate biomes (Supplementary Tables 2, 
4 and 5). While the polar biome showed relatively few significant 
trends in ISI95 and FWI95, there were positive trends in VPD95 across 
39.5% of polar burnable area (Supplementary Table 2). In general, 
although trends in all three extreme fire weather metrics largely 
agreed in regard to direction, magnitude and regional variation, 
there were almost double the number of significant trends in VPD95 
compared with FWI95 and ISI95. This difference is not surprising 
given the more direct influence of temperature on VPD95 than on 
the other metrics. The more robust increase in VPD extremes may 
have implications in some regions given its influence on fine fuel 
flammability26.

The observed spatial patterns of positive significant trends 
in historical fire weather extremes shown here are consistent 
with earlier studies that include the European Mediterranean27, 
North America18 and Australia28. Globally, Jolly et al.14 found sig-
nificant lengthening of the potential fire season over a quarter 
of the earth’s vegetated surface based on analysis of several fire 
weather indices between 1979 and 2013. Our analysis, however, 
is based on the more recent ERA5 reanalysis with higher spatial 
resolution and an extended period of analysis, from 1979 to 2020, 
the most recent decade (2011–2020), which contains the seven 

warmest years over land on global record29, as well as the recent 
record-breaking fire seasons in western USA, Siberia, Australia 
and the Amazon region. We found that the most recent decade 
also includes the eight most extreme fire weather years globally 
for FWI95 and ISI95 and the nine most extreme years for VPD95 
(Fig. 2). This recent period is therefore likely to have been instru-
mental in driving extreme fire weather trends congruent with 
observed global warming.

Trends driven by atmospheric humidity and temperature
To investigate drivers of the observed significant trends in FWI95 
and ISI95, we conducted a partial Mann–Kendall test (pMK; 
Methods) where we considered the four CFWIS input variables 
as covariates (that is, T, precipitation, RH and WS), as well as 
VPD. The pMK test is a method used for detection of multivariate 
trends that can ascertain whether a covariate has an influence on 
the trend of a response variable. If any trend in the response vari-
able that is originally determined to be statistically significant is 
no longer significant after accounting for the covariate and repeat-
ing the test, then the covariate has a significant influence on the 
detected trend. We refer to such covariates as drivers of a signifi-
cant trend in the response variable. Using this method, RH and T 
were identified as the drivers of significant trends in FWI95 in more 
grid cells (Fig. 3) and for more biomes and continents (Fig. 4 and 
Supplementary Tables 3 and 6) than WS or precipitation. Globally, 
RH was attributed as a driver of FWI95 for 75.0% of grid cells with 
significant trends, while T, precipitation and WS accounted for 
40.4, 11.3 and 10.6% of significant grid cells, respectively. Results 
for ISI95 were quantitatively similar (Supplementary Fig. 6 and 
Supplementary Tables 3 and 6). By contrast, WS and precipitation 
were identified as drivers of observed trends in a few, specific parts 
of the world. The minor role of precipitation identified here may 
be attributable to the fact that the precipitation increases are not 
sufficiently large to offset the effects of warming13 and the stronger 
links between fire activity and precipitation frequency rather than 
precipitation amount12.
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Fig. 3 | Global attribution of FWI95 trends. a–d, FWI inputs attributed as drivers of FWI95 as determined by an attribution test based on the pMK 
(Methods). Red indicates where the corresponding FWI system input variable—noon temperature (a), daily precipitation (b), noon RH (c) and noon WS 
(d)—is a driver of the observed significant trend in FWI95. Blue indicates that the corresponding variable is not a driver of the observed significant trends 
in FWI95, white indicates where trends in FWI95 are not significant, dark grey indicates barren (non-burnable) lands excluded from the calculation and light 
grey indicates the boundaries of biomes, which are modified from ref. 50 (Methods).
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Because RH was the most frequent driver of significant trends 
in both FWI95 and ISI95, we also examined the covariance of 
trends between these response variables and VPD (Fig. 4 and 
Supplementary Tables 3 and 6). Globally, VPD trends exhibited sig-
nificant covariance with 61.6 and 59.1% of grid cells having signifi-
cant trends in FWI95 and ISI95, respectively We note that the direct 
usage of RH as an input variable in the CFWIS may explain its ele-
vated importance as a driver of fire weather trends relative to VPD.

These findings are consistent with earlier global studies that 
documented the concurrence of observed fire weather trends with 
changes in weather variables14. Regional studies have also linked 
observed trends in fire weather to changes in meteorological vari-
ables16–20. However, only one study also employed a formal statis-
tical test to attribute the drivers of observed regional fire weather 
trends30. Climate models have further illustrated the influence of 
changing meteorological variables on fire weather conditions at 
both the global10,15 and regional scale30,31. These observation- and 
simulation-based studies predominantly found that T and RH 
were the main drivers of trends in fire weather and that changes 
in WS or precipitation played a minor role, which aligns well with 
our results. Our finding that decreasing RH is the most frequent 
driver of observed increases in extreme fire weather also aligns with 
projected decreases in RH over land with anthropogenic climate 
change32. The identification of location-specific drivers of extreme 
fire weather may inform the use of climate model output for projec-
tion of future fire weather indices.

Relationship between temperature, humidity and fire 
weather
The pMK trend attribution analysis presented here does not 
explicitly consider correlations between covariates. Notably, T is 
correlated with both RH and VPD, most directly through satu-
rated vapour pressure (es), which represents the vapour pressure 
at which the air is in equilibrium with liquid water and the actual 
vapour pressure (ea), which depends on the dew point temperature 
Td. The functional form of these quantities can be approximated 
by the Clausius–Clapeyron relation such that positive changes in 
temperature and negative changes in Td are always associated with 
increasing VPD (or decreasing RH). When changes in T and Td are 
in the same direction (for example, positive), the resulting changes 
in VPD (or RH) depend on the relative magnitudes of the underly-
ing changes. To investigate these relationships, we further examined 
trends in the fire season 2 m noon T and Td, and their influence 
on trends in the extreme fire weather metrics considered here (Fig. 
5a,b). Significant positive trends in T were found for 73.5% of global 
burnable land mass, with negative significant trends accounting for 
only 0.4%. In contrast, significant positive trends for Td were found 
for 44.3% of global burnable land mass, with negative significant 
trends found in 12.4% of burnable lands. Overall, locations with 
both positive T and Td trends occurred for 68.3% of all observed 
trends. Moreover, increasing T and decreasing Td accounted for 
27.1% of all trends, decreasing T and increasing Td accounted for 
only 3.3% while both negative T and Td trends accounted for only 
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1.3%. Interestingly, there were regional differences in directions of 
observed T and Td trends: some regions showed significant posi-
tive T trends and positive Td trends (for example, North America, 
Eurasian Boreal, India) whereas other regions recorded significant 
positive T trends and negative Td trends (for example, western USA, 
Amazon, southern Africa; Fig. 5a,b). These Td trends are consistent 
with observed atmospheric moisture trends found in other global 
studies33,34 and in regional studies of the USA35, Australia36 and the 
Amazon37.

In general, the moisture-holding capacity of the atmosphere 
increases by approximately 7% per 1° C of warming under cli-
mate change, assuming Clausius–Clapeyron scaling33. However, 
actual atmospheric moisture content is related to Td, which may 
not increase at the same rate. In fact, as we have observed here, Td 
trends are negative in many regions, which help further to drive 
increases in VPD (and decreases in RH) where temperatures are 
increasing. Regional differences in Td trends are strongly influenced 
by the terrestrial water cycle and can often be explained by vegeta-
tion–atmosphere dynamics or broad-scale land-use changes38. For 
example, in semi-arid regions such as in western North America, 
Australia and South Africa, evapotranspiration rates are strongly 
moisture limited39 and land–atmosphere feedbacks can further 
enhance aridity under climate change40. Recent deforestation in the 
Amazon basin has also been linked to reduced evapotranspiration 
and increased VPD37; in contrast, increases in specific humidity in 
India have been driven by increased irrigation, particularly in the 
Indo-Gangetic Plain41.

These regional differences for trends in T and Td underlie many 
of the observed variations in trends for extreme fire weather. To 
verify this, we also examined significant trends in FWI95, ISI95 and 
VPD95 as a function of those in T and Td (Fig. 5c–e). For all three 
variables, positive trends co-occurred predominantly where T 

trends are greater in value than Td trends, a condition that occurred 
for 99.4, 99.3 and 90.9% of the identified positive significant trends 
in FWI95, ISI95 and VPD95, respectively, whereas this condition 
occurred for 73.5% of all global burnable lands; the strongest trends 
in these variables occurred where trends in T were positive and 
those in Td were negative.

Finally, we do not explicitly attribute observed changes in fire 
weather extremes to anthropogenic climate change in this study. 
While observed changes in meteorological variables and fire 
weather metrics largely reflect those in climate model simulations10, 
observed regional differences in recent trends may also be tied to 
internal multi-decadal variability42.

Discussion and conclusions
Our findings are important for several main reasons. First, our 
observational trend analysis extends the time period of earlier stud-
ies14 and uses a modern global reanalysis dataset (ERA5)21, which 
greatly improves both spatial resolution and accuracy compared 
with previous reanalyses. Second, in contrast to earlier studies, we 
have chosen to focus here on extreme fire weather, which is known 
to be responsible for the majority of large fire events8. Third, we 
statistically attributed the meteorological drivers of observed fire 
weather trends at the global scale. Better understanding of regional 
differences in fire weather trends and their drivers will help inform 
adaptation and mitigation strategies at scales appropriate for fire and 
land-use management. Our global study also provides insights into 
fire weather trends for lesser-studied fire-prone regions of the earth 
(for example, Asia, South America and Africa). Last, our findings 
that T and RH are driving observed global trends in fire weather 
are consistent with simulation-based studies10,15; in fact, these two 
variables generally have robust agreement among climate change 
projections in terms of thermodynamics43. This yields greater  
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confidence in projections of future fire weather under global warm-
ing in spite of remaining uncertainties in projections of future pre-
cipitation and winds.

Wildfire management is challenging at the best of times, but 
the increasing demands on fire management agencies operating 
in complicated, multiple-use landscapes have made it even more 
difficult44. Many of the regions identified here as having positive 
trends in extreme fire weather have, in recent decades, experienced 
extreme wildfire events, some of which were disastrous8. We may 
see even more catastrophic fires in the future due to climate change, 
as we expect the increasing trend in extreme fire weather to cover 
more regions of the world and for fire weather to become even more 
extreme7,45. In addition to an increase in extreme fire weather, it is 
also likely that in the future there will be a greater number of wild-
land fire ignitions in some regions due to climate-driven increases 
in lightning activity, especially in the Arctic tundra and boreal for-
est ecosystem46. It is therefore distinctly possible that some of the 
regions displaying positive trends in extreme fire weather will face 
a future with more wildland fire. Without changes in fire manage-
ment practices, climate change is therefore expected to increase the 
economic costs of fire suppression47 and may lead to fire seasons 
that overwhelm fire suppression agencies48,49. Thus, although wild-
fire management is adaptive, substantive changes may be required 
in the future as the current status quo may no longer be a viable 
option in areas of the world facing increasing extreme fire weather.

In summary, our analysis based on three fire weather metrics 
(FWI, ISI and VPD) shows that extreme fire weather has signifi-
cantly increased over a quarter to nearly half of the Earth’s burn-
able surface over the past four decades (1979–2020), with important 
regional differences. Annual anomalies in the global means of 
extreme fire weather variables are highly correlated with global 
land-surface temperature anomalies, with the most recent decade 
containing the eight most extreme fire weather years on record. We 
have demonstrated that decreases in RH and increases in T were 
primarily responsible for increases in extreme fire weather globally; 
conversely, changes in WS and daily precipitation were contribut-
ing factors for relatively few trends. Furthermore, positive trends in 
fire weather extremes overwhelmingly occurred where trends in T 
outpace trends in Td. Our results are consistent with climate change 
studies, and extreme fire weather is likely to continue to increase, 
occur in more areas and become more severe in the future as the 
climate continues to warm.
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Methods
Data. We used the recently released ERA5 reanalysis data21 to provide the 
meteorological variables required for input into the calculation of the CFWIS 
variables, including FWI and ISI. The ERA5 global reanalysis is a fifth-generation 
product, produced by the European Centre for Medium-range Weather Forecasts, 
that replaced ERA-Interim. The large spatial coverage of reanalysis data typically 
offers a better alternative to weather station data for larger-scale analyses such 
as this, while the ERA5 reanalysis offers several improvements over earlier 
reanalysis products and its predecessor, ERA-Interim21,51. One key improvement 
is that ERA5 offers much higher spatial and temporal resolution by providing 
hourly analysis fields for 137 levels (from the surface up to a height of 80 km) on a 
31-km horizontal grid. Various studies have shown that ERA5 improves on other 
surface weather reanalyses with respect to WS52, precipitation53 and hydrological 
modelling54, for example. It should be noted, however, that there are uncertainties 
in regard to WS values and their trends between various reanalyses that may bias 
fire weather calculations55. We downloaded ERA5 hourly single-pressure-level 
(surface) data for the period 1979–2020 (available from https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview).

We defined global regions based on the biome categorization from ref. 50, 
which captures homogeneous climate and vegetation characteristics at a broad 
scale and is therefore appropriate for determination of fire regimes and fire 
seasons for global-scale studies. Biomes of >1,000,000 ha were split into smaller 
ecoregions based on the latest classification from the World Wildlife Fund56. In 
total we partitioned the globe into 20 biomes (Fig. 1a), with further stratification by 
continent resulting in 105 distinct regions (biomes × continents).

We downloaded global fire data from the Global Fire Atlas (GFA), which is 
based on the MODIS satellite record57, for estimation of fire season length for each 
biome (below). The GFA provided day of burn at 500-m resolution for each year 
for the period 2003–2016. Many regions of the globe were affected by wildfires each 
year, as indicated by the mean annual percentage of area burned by biome (Fig. 1b).

FWI calculation. We used the ERA5 reanalysis to estimate the CFWIS variables 
ISI and FWI for our global trend analysis. Both ISI and FWI provide numeric 
ratings of relative wildland fire potential using surface weather variables as inputs, 
and are based on tracking moisture in three fuel layers of varying depth with 
corresponding moisture codes: fine fuel moisture code (FFMC, litter and fine 
fuels), Duff moisture code (organic fuels at moderate depth) and drought code 
(deep and compact organic fuels). The calculation of these CFWIS components is 
based on daily observations of T, RH, WS and 24-h accumulated precipitation11. 
The ISI combines WS and FFMC to give an index of a fire’s rate of spread and is 
a useful indicator across a range of forest types58. The FWI index combines ISI 
and the build-up index (a measure of cumulative fuel dryness) and represents 
potential fire intensity6,12. Although the CFWIS was originally developed for use in 
the Canadian boreal forest, it has been calibrated for use in many regions and has 
also found global application in several research studies1,14,59,60. The FWI has strong 
positive correlations with area burned across the majority of global burnable land 
mass, but the relationship is weaker in arid ecosystems1,60. However, it should be 
noted that both ISI and FWI, like all CFWIS variables, are qualitative—fuel type 
needs to be accounted for to generate quantitative values of fire behaviour, and they 
do not incorporate changes in other elements of fire potential.

The ERA5 meteorological data required preprocessing before calculation of 
FWI and ISI. For T, we used 2-m T, where units were converted from K to °C. We 
calculated 2-m RH from 2-m T and 2m Td based on equations 1 and 2 in ref. 61. We 
calculated 10-m WS in km h–1 from the 10-m U (zonal velocity) and V (meridional 
velocity) wind components, as required by the FWI system. Finally, we used 
hourly total precipitation to calculate 24-h accumulated precipitation, which was 
converted to units of millimetres. All variables were obtained for noon local time to 
provide daily inputs as required for the FWI system calculations.

Using these inputs, we calculated ISI and FWI according to the procedure 
outlined in ref. 61. In particular, an overwintering procedure was applied to adjust 
the spring start-up value of the drought code based on the amount of overwinter 
precipitation for regions with seasonal snow cover. A meteorological proxy for 
continuous snow cover at each grid cell was used to determine when to start and 
stop the calculation. Specifically, maximum daily T (Tmax) was used to determine 
when the FWI calculation was to be deactivated (after 3 consecutive days with Tmax 
<5 °C) or reactivated (after 3 consecutive days with Tmax >12 °C), as per ref. 62.

Fire season estimation. Because we were interested in fire weather trends during 
the fire season, we estimated the observed fire season for each biome using data 
from the Global Fire Atlas57. We aggregated the day of burn fire data (2003–2016) 
over each biome and then defined the biome-level fire season as the minimum 
number of months accounting for at least 90% of the area burned for each biome 
(Supplementary Table 1). Although we used fixed fire seasons for our analysis, it 
should be noted that these may change over time because there have been observed 
increases in fire season length in several regions as well as globally14,18.

VPD. We also examined trends in VPD, a metric that provides a measure of the 
atmosphere’s capacity to extract moisture from surface vegetation. Several studies 
have found linkages between VPD and fire ignitions, growth and burned area63–66. 

VPD was calculated using hourly ERA5 2-m T and 2-m Td using the conversion 
equation from ref. 67 and implemented in the R package bigleaf 68.

Trend analysis. We examined trends in the time series of ISI95, FWI95 and VPD95 
values at each grid cell, globally. Annual values were calculated at each grid cell 
and for each biome from 1979 to 2020 (42 years in total). In each case, the annual 
percentile values included only data contained in the observed fire season months. 
We further masked out barren areas using land-cover MODIS satellite data69 and 
defined according to the International Geosphere-Biosphere Program land-cover 
classification system70, because these areas did not contain significant burnable 
biomass and many would otherwise skew the results due to their highly arid 
climate (for example, North Africa). Trend analysis was performed on the time 
series using the Mann–Kendall (MK) test, a robust non-parametric test for trend 
detection71,72. Linear trends were determined using the Theil–Sen estimator73,74. 
We tested for both temporal and spatial autocorrelation and found the data to be 
spatially autocorrelated, as expected with climate data. It is well known that the 
presence of autocorrelation can lead to the detection of spurious trends75. Here 
multiple testing and spatial autocorrelation were respectively accounted for by 
controlling the false discovery rate (FDR)76 and by setting the global significance 
level (αglobal) equal to 0.5 αFDR (ref. 77); here we set αglobal to 0.05. We display the 
results of our significant trends in Figs. 2, 3 and 4 at this significance level. The 
95th percentiles we examined represent extreme values in fire weather metrics, 
however, and we also examined trends in the 50th and 75th percentiles and found 
similar results (Supplementary Figs. 3 and 4), indicating that our results are not 
overly sensitive to the choice of percentile.

Drivers of trends in FWI95 and ISI95. We used the pMK test to assess the influence 
of covariates on the trend of our response variables78. The pMK test modifies the 
MK test by removing the contribution of a covariate of interest that correlates 
with the response variable. If any trend in the response variable that was originally 
determined to be statistically significant is no longer significant (here, tested at the 
α = 0.05 level) after accounting for the covariate and repeating the test, then the 
covariate has a significant influence on the detected trend; in this case, we refer 
to the corresponding covariate as a driver of a significant trend in the response 
variable. For example, ref. 79 used this method to link trends in flood metrics 
to increases in evapotranspiration. Here, because the four FWI inputs (T, RH, 
WS and precipitation) can combine nonlinearly to generate FWI outputs, the 
association between FWI95 or ISI95 and the upper (or lower) annual quantiles of 
the inputs may not necessarily be strong. To determine the influence of each of the 
inputs, we extracted input values that corresponded to the response variable (for 
example, FWI95 or ISI95) of interest; this was achieved by binning all input values 
corresponding to values of the response variable in a range centred on the 95th 
percentile (92.5–97.5%) and taking the median value of each of the binned inputs. 
Note that the pMK test we used to determine drivers of FWI95 and ISI95 is a test 
that determines whether trends in covariates display significant covariance with 
observed trends, but is not equivalent to a sensitivity analysis13,80. It should further 
be noted that because multiple covariates can be drivers of observed trends, the 
attribution percentages summed over all variables considered can be >100%.

The MK and pMK tests were performed using the R packages EnvStats81 and 
trend82. FDR correction was applied using the p.adjust function in the R base stats 
package. All analyses were performed using R v.4.0.1.

Data availability
The hourly ERA5 data used for this study are available at https://doi.org/10.24381/
cds.adbb2d47. The fire weather metrics derived for the period 1979–2020 that 
support the findings of this study are available from https://doi.org/10.5281/
zenodo.5567021 (daily ISI and FWI) and https://doi.org/10.5281/zenodo.5567062 
(daily maximum VPD). Global mean land-surface temperatures are available from 
the NOAA National Centers for Environmental information, Climate at a Glance: 
Global Time Series (published July 2021), at https://www.ncdc.noaa.gov/cag/. The 
global biomes used in this study are available at https://www.worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world and land-cover data are available 
at https://doi.org/10.5067/MODIS/MCD12Q1.006.
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