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Observed increases in extreme fire weather driven
by atmospheric humidity and temperature

Piyush Jain®'™, Dante Castellanos-Acuna? Sean C. P. Coogan?, John T. Abatzoglou®3 and

Mike D. Flannigan?

Recent increases in regional wildfire activity have been linked to climate change. Here, we analyse trends in observed global
extreme fire weather and their meteorological drivers from 1979 to 2020 using the ERA5 reanalysis. Trends in annual extreme
(95th percentile) values of the fire weather index (FWL,;), initial spread index (ISl,;) and vapour pressure deficit (VPD,;) varied
regionally, with global increases in mean values of 14, 12 and 12%, respectively. Significant increases occurred over a quarter
to almost half of the global burnable land mass. Decreasing relative humidity was a driver of over three-quarters of significant
increases in FWI,; and ISl,;, while increasing temperature was a driver for 40% of significant trends. Trends in VPD,; were
predominantly associated with increasing temperature. These trends are likely to continue, as climate change projections sug-
gest global decreases in relative humidity and increases in temperature that may increase future fire risk where fuels remain

abundant.

Climate influences the type and distribution of vegetation
(fuels), and weather is a main driver of regional fire activity*’.
Especially important to wildland fire management are the periods of
extreme fire weather leading to rapidly spreading fires that are dif-
ficult to suppress, often with catastrophic impacts®. In fact, a small
percentage of fires that occur during extreme fire weather condi-
tions are responsible for the majority of area burned regionally>°.
Recent decades have experienced an increase in the number of large
and destructive wildfires in many regions™, and nearly all recent
extreme wildfire events have occurred under extreme fire weather
conditions®. In the future, the occurrence of extreme fire weather is
expected to increase in many areas due to climate change®"’.
Extreme fire weather is typically evaluated using fire weather
indices that incorporate daily weather variables related to fuel mois-
ture and fire behaviour. Several indices are used across the globe,
including the Canadian Fire Weather Index System (CFWIS)".
The CFWIS is the most widely used approach for estimation of fire
weather globally, both operationally and in a research context. The
CFWIS uses meteorological inputs that have been shown to strongly
influence the occurrence, behaviour and effects of wildfires includ-
ing air temperature, relative humidity (RH), wind speed (WS) and
precipitation'>". Observed increases in fire weather season length
have been found in areas with observed increases in temperature,
WS and rain-free intervals, and decreases in RH'. Studies using
climate models have attributed temperature and RH to projected
increased fire weather extremes'®”. While regional studies have
investigated meteorological drivers of observed trends in fire
weather'*, the current literature still lacks a global-scale attribu-
tion of observed fire weather trends to individual meteorological
variables. Such an analysis would greatly improve our knowledge of
current and future global fire risk and allow for the identification of
high-risk regions with greater potential for catastrophic fires.
This study seeks to investigate trends in extreme fire weather
globally from 1979 to 2020, and to elucidate the meteorological

( : limate and weather greatly influence global wildland fire'.

variables behind any observed changes. We use the ERA5 reanaly-
sis’! to estimate and examine trends in extreme values of three dif-
ferent measures of fire weather (Methods): (1) the fire weather index
(FWI), (2) initial spread index (ISI) and (3) vapour pressure deficit
(VPD). The FWI and ISI are both indices in the CFWIS, where the
former provides an estimate of potential fire intensity while the
latter represents the potential rate of fire spread. The VPD is
the difference between the saturation and actual vapour pressure;
high VPD values brought about by the combination of high tem-
peratures and a dry airmass can, over an extended period, result in
increased desiccation of fuels. While regional fire regime changes
have been further linked to climate change®*, the variables driv-
ing observed global changes have not been attributed to changes in
individual meteorological variables. For this reason, and given the
nonlinear nature of the CFWIS, we attribute the dominant meteoro-
logical variables responsible for trends in extreme values of ISI and
FWI globally. Because RH and VPD are both measures of atmo-
spheric moisture, and both are largely determined by temperature
(T) and dew point temperature (Td), we also attribute extreme FWI
and ISI trends to VPD and further explore how trends in T and Td
combine to influence trends in fire weather extremes.

Global trends in the 95th percentile of FWI, ISl and VPD

We evaluated trends in extreme fire weather by focusing on the
95th percentile of the annual values of FWI, ISI and VPD (denoted
henceforth as FWI,, ISL,; and VPD,;, respectively) from 1979 to
2020 (Methods). We also report these trends according to the global
biome classification shown in Supplementary Fig. 1, and use only
the fire season estimated for each biome-continent combination to
determine annual distributions from which the percentile values
were derived. Significant positive trends in annual FWI,; occurred
in >26.6% of burnable global land mass although there were impor-
tant regional variations in the observed trends (Fig. 1a, Table 1 and
Supplementary Tables 3 and 4). Positive trends in FWI,; occurred
predominantly in western North America (for example, subtropical
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Fig. 1] Significant trends in extreme fire weather. a-c, Significant trends (1979-2020) in annual FW|, (@), ISl (b) and VPDgs (c). Significance was
determined by the MK trend test, controlling for multiple testing and adjusting for spatial autocorrelation (a=0.05). White indicates where no significant
trends exist, while dark grey denotes areas predominantly barren (that is, without appreciable burnable biomass), and these are excluded from the
calculation. Light grey indicates the boundaries of biomes, which are modified from ref. °° (Methods). Displayed trends are derived from the Theil-Sen
slope estimator. Supplementary Fig. 1 shows an equivalent calculation covering all trends (that is, significant and non-significant).

desert, subtropical mountain system, temperate desert, temperate
mountain system west), South America (for example, tropical moist
forest south, tropical rainforest), Africa (for example, subtropi-
cal mountain system, tropical desert, tropical moist forest north,
tropical rainforest), western Europe (for example, subtropical dry
forest, temperate continental forest, temperate steppe) and east-
ern Australia (for example, subtropical dry forest). In contrast, the
greatest percentage of negative trends occurred in India (covered
predominantly by tropical shrubland and tropical dry forest west
biomes). Similar patterns were also seen for trends in annual IS,
with significant positive trends occurring in >26.4% of global burn-
able land mass (Fig. 1b and Table 1). In contrast to FWI,; and ISI,;,
significant positive trends in annual VPD,; occurred in >45.7% of

global burnable lands (Fig. 1c and Table 1), albeit with similar spa-
tial variation. Conversely, significant negative trends in FWI,;, ISI,;
and VPD,, were found for <2.5% of global burnable lands, predom-
inantly occurring in India or mainland southeast Asia.

Figure 2 shows the time series of global extreme fire weather
anomalies, which are highly correlated with anomalies in global
mean land-surface temperatures (Spearman’s p>0.83). Altogether,
for the entire global burnable area the mean value over the 41-year
period for FWI,;, increased by 14.1% (that is, from 29.0 to 33.1)
while ISIy increased by 12.0% (from 12.2 to 13.7) and VPD,,
increased by 12.1% (from 26.4 to 29.6hPa). Considering only areas
that experienced significant trends, the mean changes were larger,
corresponding to an increase in mean global FWI,, ISI,; and VPD,,
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Table 1| Percentages of trends that are significant for all trends (that is, positive and negative), positive trends only and negative
trends only, for the three extreme fire weather variables (FWI,;, ISl,s and VPD,;), summarized globally and by continent

FWI,, 1Slgg VPD,,
Percentage All Positive Negative All Positive Negative All Positive Negative
significant
Global 284 26.6 1.8 28.9 26.4 2.5 47.2 457 1.5
By continent
Africa 54.2 531 1.2 50.5 491 14 76.8 75.7 11
Asia 20.6 13.9 6.6 21.9 12.4 9.4 459 421 3.9
Europe 18.5 17.8 0.7 224 20.9 1.5 341 337 0.4
North America 15.5 14.3 1.2 15.3 14.3 1.0 38.2 36.4 1.8
Oceania 229 22.3 0.6 19.5 18.8 0.7 28.7 26.2 2.5
South America 62.6 62.5 0.1 61.7 61.6 01 76.9 76.6 0.3
Mean trend size All Positive Negative All Positive Negative  All (hPa) Positive (hPa) Negative (hPa)
(1979-2020)
Global 41(11.0) 6.3(12.3) -2.3(-84) 1.5(39) 254.6) -1.0(-3.6) 3.2(5.7) 4.1(6.0) -1.8 (-5.3)
By continent
Africa 71(11.3) 8.1(11.6) -1.8 (-5.6) 3.0(1) 3653 -1.0(-20) 52(6.4) 5.6 (6.5) -1.9 (-5
Asia 1137 49(0.2) -41(-10.0) 0.1(0.3) 19(3.8) -19(-44) 23(4.4) 3.8(5.4) -2.5(-6.5)
Europe 37(023) 5103.0) -17(-4.8) 11(3.6) 1.8(4.0) -0.7(-20) 3.2(6.2) 3.6 (6.3) -11(-1.8)
North America 26(6) 50031 -1.8(-6.7) 114.7) 20(5.3) -0.7(-2.7) 1.7 3.0) 2334 -1.8 (-4.4)
Oceania 47(M.7)  63(22) -1.8(-56) 20(61)  33(64) -14(-3.0) 23(6.5) 4.5(7.8) -2.2(-7.0)
South America 9.0(129) 97029) -13(-44) 3.0(4.2) 33@43) -0.6 (-1.5) 6.7(8.3) 71(8.4) -11(-2.3)

Mean trend sizes (1979-2020) for all grid cells are also given, where values in parentheses are the corresponding mean trend sizes for significant trends only.
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Fig. 2 | Anomalies in annual extreme fire weather metrics. Anomalies in annual (fire season) global means of extreme fire weather metrics (FWlgs, ISlgs
and VPDss) between 1979 and 2020. Each bar is coloured according to annual global mean land-surface temperature anomalies (using data from ref. ).
All anomalies are calculated relative to the entire period 1979-2020.
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Fig. 3 | Global attribution of FWI, trends. a-d, FW| inputs attributed as drivers of FWIy as determined by an attribution test based on the pMK
(Methods). Red indicates where the corresponding FW/| system input variable—noon temperature (a), daily precipitation (b), noon RH (c) and noon WS
(d)—is a driver of the observed significant trend in FW|,. Blue indicates that the corresponding variable is not a driver of the observed significant trends
in FWIgys, white indicates where trends in FW|y; are not significant, dark grey indicates barren (non-burnable) lands excluded from the calculation and light
grey indicates the boundaries of biomes, which are modified from ref. °° (Methods).

of 31.6% (that is, from 34.8 to 45.9), 30.2% (from 13.0 to 16.9) and
20.8% (from 27.3 to 33.0 hPa), respectively (Table 1).

The greatest percentage of significant trends showing increases
in FWI,;, ISI,; and VPD,, tended to occur in tropical, subtropical
and temperate biomes (Supplementary Tables 2 and 4). It is impor-
tant to note, however, that extreme wildfire events are generally lim-
ited by fuel availability in low-productivity climates and by mesic
conditions in very productive climates®*, with the latter exhibiting
more robust links to variability in FWI and VPD'. However, pro-
ductive tropical ecosystems are an exception because people set fires
in these regions for agricultural purposes and to clear rainforest®.
There were also positive trends in extreme fire weather in boreal
ecosystems, although both the significance and size of trends in
FWI,, ISI,; and VPD,; were generally smaller compared with tropi-
cal, subtropical and temperate biomes (Supplementary Tables 2,
4 and 5). While the polar biome showed relatively few significant
trends in ISI,; and FWI,;, there were positive trends in VPD,; across
39.5% of polar burnable area (Supplementary Table 2). In general,
although trends in all three extreme fire weather metrics largely
agreed in regard to direction, magnitude and regional variation,
there were almost double the number of significant trends in VPD,,
compared with FWI; and ISI,. This difference is not surprising
given the more direct influence of temperature on VPD,, than on
the other metrics. The more robust increase in VPD extremes may
have implications in some regions given its influence on fine fuel
flammability®.

The observed spatial patterns of positive significant trends
in historical fire weather extremes shown here are consistent
with earlier studies that include the European Mediterranean?,
North America'® and Australia®. Globally, Jolly et al."* found sig-
nificant lengthening of the potential fire season over a quarter
of the earth’s vegetated surface based on analysis of several fire
weather indices between 1979 and 2013. Our analysis, however,
is based on the more recent ERA5 reanalysis with higher spatial
resolution and an extended period of analysis, from 1979 to 2020,
the most recent decade (2011-2020), which contains the seven

29

warmest years over land on global record”, as well as the recent
record-breaking fire seasons in western USA, Siberia, Australia
and the Amazon region. We found that the most recent decade
also includes the eight most extreme fire weather years globally
for FWI,; and ISI,; and the nine most extreme years for VPD,;
(Fig. 2). This recent period is therefore likely to have been instru-
mental in driving extreme fire weather trends congruent with
observed global warming.

Trends driven by atmospheric humidity and temperature
To investigate drivers of the observed significant trends in FWI,;
and ISL;, we conducted a partial Mann-Kendall test (pMK;
Methods) where we considered the four CFWIS input variables
as covariates (that is, T, precipitation, RH and WS), as well as
VPD. The pMK test is a method used for detection of multivariate
trends that can ascertain whether a covariate has an influence on
the trend of a response variable. If any trend in the response vari-
able that is originally determined to be statistically significant is
no longer significant after accounting for the covariate and repeat-
ing the test, then the covariate has a significant influence on the
detected trend. We refer to such covariates as drivers of a signifi-
cant trend in the response variable. Using this method, RH and T
were identified as the drivers of significant trends in FWI,, in more
grid cells (Fig. 3) and for more biomes and continents (Fig. 4 and
Supplementary Tables 3 and 6) than WS or precipitation. Globally,
RH was attributed as a driver of FWI, for 75.0% of grid cells with
significant trends, while T, precipitation and WS accounted for
40.4, 11.3 and 10.6% of significant grid cells, respectively. Results
for ISI,; were quantitatively similar (Supplementary Fig. 6 and
Supplementary Tables 3 and 6). By contrast, WS and precipitation
were identified as drivers of observed trends in a few, specific parts
of the world. The minor role of precipitation identified here may
be attributable to the fact that the precipitation increases are not
sufficiently large to offset the effects of warming'’ and the stronger
links between fire activity and precipitation frequency rather than
precipitation amount'?.
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Fig. 4 | Attribution of FWI trends by region. Percentage of significant trends for FWl,, attributable to trends in FWI input variables T, precipitation (P),
RH and WS, as well as VPD, summarized globally, by continent and by biome. Results were determined using the pMK test (Methods).

Because RH was the most frequent driver of significant trends
in both FWI, and ISIL;, we also examined the covariance of
trends between these response variables and VPD (Fig. 4 and
Supplementary Tables 3 and 6). Globally, VPD trends exhibited sig-
nificant covariance with 61.6 and 59.1% of grid cells having signifi-
cant trends in FWI,; and ISI;, respectively We note that the direct
usage of RH as an input variable in the CFWIS may explain its ele-
vated importance as a driver of fire weather trends relative to VPD.

These findings are consistent with earlier global studies that
documented the concurrence of observed fire weather trends with
changes in weather variables'. Regional studies have also linked
observed trends in fire weather to changes in meteorological vari-
ables'*". However, only one study also employed a formal statis-
tical test to attribute the drivers of observed regional fire weather
trends®. Climate models have further illustrated the influence of
changing meteorological variables on fire weather conditions at
both the global'®"® and regional scale’”!. These observation- and
simulation-based studies predominantly found that T and RH
were the main drivers of trends in fire weather and that changes
in WS or precipitation played a minor role, which aligns well with
our results. Our finding that decreasing RH is the most frequent
driver of observed increases in extreme fire weather also aligns with
projected decreases in RH over land with anthropogenic climate
change™. The identification of location-specific drivers of extreme
fire weather may inform the use of climate model output for projec-
tion of future fire weather indices.
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Relationship between temperature, humidity and fire
weather

The pMK trend attribution analysis presented here does not
explicitly consider correlations between covariates. Notably, T is
correlated with both RH and VPD, most directly through satu-
rated vapour pressure (e,), which represents the vapour pressure
at which the air is in equilibrium with liquid water and the actual
vapour pressure (e,), which depends on the dew point temperature
Td. The functional form of these quantities can be approximated
by the Clausius-Clapeyron relation such that positive changes in
temperature and negative changes in Td are always associated with
increasing VPD (or decreasing RH). When changes in T'and Td are
in the same direction (for example, positive), the resulting changes
in VPD (or RH) depend on the relative magnitudes of the underly-
ing changes. To investigate these relationships, we further examined
trends in the fire season 2m noon T and Td, and their influence
on trends in the extreme fire weather metrics considered here (Fig.
5a,b). Significant positive trends in T were found for 73.5% of global
burnable land mass, with negative significant trends accounting for
only 0.4%. In contrast, significant positive trends for Td were found
for 44.3% of global burnable land mass, with negative significant
trends found in 12.4% of burnable lands. Overall, locations with
both positive T and Td trends occurred for 68.3% of all observed
trends. Moreover, increasing T and decreasing Td accounted for
27.1% of all trends, decreasing T and increasing Td accounted for
only 3.3% while both negative T and Td trends accounted for only
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Fig. 5| Trends in T and Td and relationship with extreme fire weather trends. a,b, Significant trends in mean 2-m T (a) and 2-m Td (b) over the fire season
from 1979 to 2020. Light grey indicates the boundaries of biomes, modified from ref. °° (Methods). c-e, Mean magnitude of significant trends in FWIg (c),
ISlgs (d) and VPDg (e) are binned to show their dependence on trends in mean fire season T and Td. Diagonal black line indicates where trends in T equal

those in Td.

1.3%. Interestingly, there were regional differences in directions of
observed T and Td trends: some regions showed significant posi-
tive T trends and positive Td trends (for example, North America,
Eurasian Boreal, India) whereas other regions recorded significant
positive T trends and negative Td trends (for example, western USA,
Amazon, southern Africa; Fig. 5a,b). These Td trends are consistent
with observed atmospheric moisture trends found in other global
studies™* and in regional studies of the USA*, Australia® and the
Amazon”.

In general, the moisture-holding capacity of the atmosphere
increases by approximately 7% per 1°C of warming under cli-
mate change, assuming Clausius—Clapeyron scaling®”. However,
actual atmospheric moisture content is related to Td, which may
not increase at the same rate. In fact, as we have observed here, Td
trends are negative in many regions, which help further to drive
increases in VPD (and decreases in RH) where temperatures are
increasing. Regional differences in Td trends are strongly influenced
by the terrestrial water cycle and can often be explained by vegeta-
tion—atmosphere dynamics or broad-scale land-use changes®. For
example, in semi-arid regions such as in western North America,
Australia and South Africa, evapotranspiration rates are strongly
moisture limited” and land-atmosphere feedbacks can further
enhance aridity under climate change®. Recent deforestation in the
Amazon basin has also been linked to reduced evapotranspiration
and increased VPD; in contrast, increases in specific humidity in
India have been driven by increased irrigation, particularly in the
Indo-Gangetic Plain*'.

These regional differences for trends in T and Td underlie many
of the observed variations in trends for extreme fire weather. To
verify this, we also examined significant trends in FWI,, ISI,; and
VPD,; as a function of those in T and Td (Fig. 5c—¢). For all three
variables, positive trends co-occurred predominantly where T

trends are greater in value than Td trends, a condition that occurred
for 99.4, 99.3 and 90.9% of the identified positive significant trends
in FWI,, ISL; and VPD,,, respectively, whereas this condition
occurred for 73.5% of all global burnable lands; the strongest trends
in these variables occurred where trends in T were positive and
those in Td were negative.

Finally, we do not explicitly attribute observed changes in fire
weather extremes to anthropogenic climate change in this study.
While observed changes in meteorological variables and fire
weather metrics largely reflect those in climate model simulations'’,
observed regional differences in recent trends may also be tied to
internal multi-decadal variability*”.

Discussion and conclusions

Our findings are important for several main reasons. First, our
observational trend analysis extends the time period of earlier stud-
ies' and uses a modern global reanalysis dataset (ERA5)”', which
greatly improves both spatial resolution and accuracy compared
with previous reanalyses. Second, in contrast to earlier studies, we
have chosen to focus here on extreme fire weather, which is known
to be responsible for the majority of large fire events®’. Third, we
statistically attributed the meteorological drivers of observed fire
weather trends at the global scale. Better understanding of regional
differences in fire weather trends and their drivers will help inform
adaptation and mitigation strategies at scales appropriate for fire and
land-use management. Our global study also provides insights into
fire weather trends for lesser-studied fire-prone regions of the earth
(for example, Asia, South America and Africa). Last, our findings
that T and RH are driving observed global trends in fire weather
are consistent with simulation-based studies'”'>; in fact, these two
variables generally have robust agreement among climate change
projections in terms of thermodynamics®. This yields greater
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confidence in projections of future fire weather under global warm-
ing in spite of remaining uncertainties in projections of future pre-
cipitation and winds.

Wildfire management is challenging at the best of times, but
the increasing demands on fire management agencies operating
in complicated, multiple-use landscapes have made it even more
difficult”. Many of the regions identified here as having positive
trends in extreme fire weather have, in recent decades, experienced
extreme wildfire events, some of which were disastrous®. We may
see even more catastrophic fires in the future due to climate change,
as we expect the increasing trend in extreme fire weather to cover
more regions of the world and for fire weather to become even more
extreme”*. In addition to an increase in extreme fire weather, it is
also likely that in the future there will be a greater number of wild-
land fire ignitions in some regions due to climate-driven increases
in lightning activity, especially in the Arctic tundra and boreal for-
est ecosystem™. It is therefore distinctly possible that some of the
regions displaying positive trends in extreme fire weather will face
a future with more wildland fire. Without changes in fire manage-
ment practices, climate change is therefore expected to increase the
economic costs of fire suppression*” and may lead to fire seasons
that overwhelm fire suppression agencies***. Thus, although wild-
fire management is adaptive, substantive changes may be required
in the future as the current status quo may no longer be a viable
option in areas of the world facing increasing extreme fire weather.

In summary, our analysis based on three fire weather metrics
(FWI, ISI and VPD) shows that extreme fire weather has signifi-
cantly increased over a quarter to nearly half of the Earth’s burn-
able surface over the past four decades (1979-2020), with important
regional differences. Annual anomalies in the global means of
extreme fire weather variables are highly correlated with global
land-surface temperature anomalies, with the most recent decade
containing the eight most extreme fire weather years on record. We
have demonstrated that decreases in RH and increases in T were
primarily responsible for increases in extreme fire weather globally;
conversely, changes in WS and daily precipitation were contribut-
ing factors for relatively few trends. Furthermore, positive trends in
fire weather extremes overwhelmingly occurred where trends in T
outpace trends in Td. Our results are consistent with climate change
studies, and extreme fire weather is likely to continue to increase,
occur in more areas and become more severe in the future as the
climate continues to warm.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41558-021-01224-1.

Received: 5 June 2021; Accepted: 20 October 2021;
Published online: 25 November 2021

References

1. Abatzoglou, J. T., Williams, A. P,, Boschetti, L., Zubkova, M. & Kolden, C. A.
Global patterns of interannual climate-fire relationships (2018). Glob. Change
Biol. 24, 5164-5175 (2018).

2. Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and
wildfire area burned in western US ecoprovinces, 1916-2003. Ecol. Appl. 19,
1003-1021 (2009).

3. Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and
macroscale area burned in the western United States. Int. J. Wildland Fire 22,
1003-1020 (2013).

4. Wang, X. et al. Projected changes in daily fire spread across Canada over the
next century. Environ. Res. Lett. 12, 025005 (2017).

5. Hanes, C. C. et al. Fire-regime changes in Canada over the last half century.
Can. J. Res. 49, 256-269 (2019).

NATURE CLIMATE CHANGE | VOL 12 | JANUARY 2022 | 63-70 | www.nature.com/natureclimatechange

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

31.

32.

33.

34.

35.

36.

Amiro, B. D. et al. Fire weather index system components of large fires in the
Canadian boreal forest. Int. J. Wildland Fire 13, 391-400 (2004).

Flannigan, M. D., Krawchuck, M. A., de Groot, W. J., Wotton, B. M. &
Gowman, L. M. Implications of changing climate for global wildland fire. Int.
J. Wildland Fire 18, 483-507 (2009).

Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally
extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).

Coogan, S. C. P, Robinne, E-N,, Jain, P. & Flannigan, M. D. Scientists’
warning on wildfire—a Canadian perspective. Can. J. Res. 49, 1015-1023
(2019).

. Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of

anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46,
326-336 (2019).

. Van Wagner, C. E. et al. Development and Structure of the Canadian Forest

Fire Weather Index System (Canadian Forestry Service Headquarters, 1987);
https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/
camia-et-al.-2008-past

. Flannigan, M. D. & Harrington, J. B. A study of the relation of meteorological

variables to monthly provincial area burned by wildfire in Canada (1953-80).
J. Appl. Meteorol. 27, 441-452 (1988).

. Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and

precipitation: climate change implications. Clim. Change 134, 59-71 (2016).

. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from

1979 to 2013. Nat. Commun. 6, 7537 (2015).

. Touma, D., Stevenson, S., Lehner, E & Coats, S. Human-driven greenhouse

gas and aerosol emissions cause distinct regional impacts on extreme fire
weather. Nat. Commun. 12, 212 (2021).

. Clarke, H. G., Smith, P. L. & Pitman, A. J. Regional signatures of future fire

weather over eastern Australia from global climate models. Int. J. Wildland
Fire 20, 550-562 (2011).

. Bedia, J. et al. Sensitivity of fire weather index to different reanalysis products

in the Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 12, 699-708 (2012).
Jain, P, Wang, X. & Flannigan, M. D. Trend analysis of fire season length and
extreme fire weather in North America between 1979 and 2015. Int. J.
Wildland Fire 26, 1009-1020 (2017).

Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl.
Meteorol. Climatol. 57, 221-234 (2018).

Zhao, E, Liu, Y. & Shu, L. Change in the fire season pattern from bimodal to
unimodal under climate change: the case of Daxing’anling in Northeast
China. Agric. Meteorol. 291, 108075 (2020).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146,
1999-2049 (2020).

Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change
on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113,
11770-11775 (2016).

Kirchmeier-Young, M. C,, Gillet, N. P, Zwiers, E. W., Cannon, A. J. & Anslow,
E S. Attribution of the influence of human-induced climate change on an
extreme fire season. Earths Future 7, 2-10 (2019).

Pausas, J. G. & Ribeiro, E. The global-fire productivity relationship. Glob. Ecol.
Biogeogr. 22, 728-736 (2013).

Cochrane, M. A. Fire science for rainforests. Nature 421, 913-919 (2003).
Ziel, R. H. et al. A comparison of fire weather indices with MODIS fire days
for the natural regions of Alaska. Forests 11, 516 (2020).

Giannaros, T. M., Kotroni, V. & Lagouvardos, K. Climatology and trend
analysis (1987-2016) of fire weather in the Euro-Mediterranean. Int. J.
Climatol. 41, E491-E508 (2021).

. Harris, S. & Lucas, C. Understanding the variability of Australian fire weather

between 1973 and 2017. PLoS ONE 14, €0222328 (2019).

. Climate at a Glance (NOAA, 2021); https://www.ncdc.noaa.gov/cag/
. van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to

anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941-960
(2021).

Barbero, R., Abatzoglou, J. T., Pimont, E, Ruffault, J. & Curt, T. Attributing
increases in fire weather to anthropogenic climate change over France. Front.
Earth Sci. https://doi.org/10.3389/feart.2020.00104 (2020).

Byrne, M. P. & O’Gorman, P. A. Understanding decreases in land relative
humidity with global warming: conceptual model and GCM simulations. J.
Clim. 29, 9045-9061 (2016).

Willett, K. M., Jones, P. D,, Gillett, N. P. & Thorne, P. W. Recent changes in
surface humidity: development of the HadCRUH dataset. J. Clim. 21,
5364-5383 (2008).

Matsoukas, C. et al. Potential evaporation trends over land between
1983-2008: driven by radiative fluxes or vapour-pressure deficit? Atmos.
Chem. Phys. 11, 7601-7616 (2011).

Grotjahn, R. & Huynh, J. Contiguous US summer maximum temperature and
heat stress trends in CRU and NOAA climate division data plus comparisons
to reanalyses. Sci. Rep. 8, 11146 (2018).

Denson, E., Wasko, C. & Peel, M. C. Decreases in relative humidity across
Australia. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0aca (2021).

69


https://doi.org/10.1038/s41558-021-01224-1
https://doi.org/10.1038/s41558-021-01224-1
https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/camia-et-al.-2008-past
https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/camia-et-al.-2008-past
https://www.ncdc.noaa.gov/cag/
https://doi.org/10.3389/feart.2020.00104
https://doi.org/10.1088/1748-9326/ac0aca
http://www.nature.com/natureclimatechange

ARTICLES

NATURE CLIMATE CHANGE

37.

38.

39.

40.

4

—

42.

43.

44,

70

Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C.
R. A recent systematic increase in vapor pressure deficit over tropical South
America. Sci. Rep. 9, 15331 (2019).

Findell, K. L. et al. The impact of anthropogenic land use and land cover
change on regional climate extremes. Nat. Commun. 8, 989 (2017).
McKinnon, K. A., Poppick, A. & Simpson, L. R. Hot extremes have become
drier in the United States Southwest. Nat. Clim. Change https://doi.org/
10.1038/541558-021-01076-9 (2021).

Berg, A. et al. Land-atmosphere feedbacks amplify aridity increase over land
under global warming. Nat. Clim. Change 6, 869-874 (2016).

. Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation.

Nat. Geosci. 13, 722-728 (2020).

Dong, B. & Dai, A. The influence of the interdecadal Pacific oscillation on
temperature and precipitation over the globe. Clim. Dyn. 45, 2667-2681
(2015).

Fischer, E. M. & Knutti, R. Robust projections of combined humidity and
temperature extremes. Nat. Clim. Change 3, 126-130 (2013).

Tymstra C., Flannigan M. D., Stocks B. J., Cai X. & Morrison K. Wildfire
management in Canada: review, challenges and opportunities. Prog. Disaster
Sci. https://doi.org/10.1016/j.pdisas.2019.100045 (2020).

45.

46.

47.

48.

49.

50.

Flannigan, M. D., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate
change on fire activity and fire management in the circumboreal forest. Glob.
Change Biol. 15, 549-560 (2009).

Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost
carbon. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01011-y
(2021).

Hope, E. S., McKenney, D. W,, Pedlar, J. H., Stocks, B. J. & Gauthier, S.
Wildfire suppression costs for Canada under a changing climate. PLoS ONE
11, 0157425 (2016).

Podur, J. & Wotton, B. M. Will climate change overwhelm fire management
capacity? Ecol. Modell. 221, 1301-1309 (2010).

Abatzoglou, J. T, Juang, C. S., Williams, A. P, Kolden, C. A. & Westerling, A.
L. Increasing synchronous fire danger in forests of the western United States.
Geophys. Res. Lett. 48, €2020GL091377 (2021).

Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on
Earth. Bioscience 51, 933-938 (2001).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© Crown 2021

NATURE CLIMATE CHANGE | VOL 12 | JANUARY 2022 | 63-70 | www.nature.com/natureclimatechange


https://doi.org/10.1038/s41558-021-01076-9
https://doi.org/10.1038/s41558-021-01076-9
https://doi.org/10.1016/j.pdisas.2019.100045
https://doi.org/10.1038/s41558-021-01011-y
http://www.nature.com/natureclimatechange

NATURE CLIMATE CHANGE

ARTICLES

Methods

Data. We used the recently released ERA5 reanalysis data*' to provide the
meteorological variables required for input into the calculation of the CFWIS
variables, including FWI and ISI. The ERA5 global reanalysis is a fifth-generation
product, produced by the European Centre for Medium-range Weather Forecasts,
that replaced ERA-Interim. The large spatial coverage of reanalysis data typically
offers a better alternative to weather station data for larger-scale analyses such

as this, while the ERA5 reanalysis offers several improvements over earlier
reanalysis products and its predecessor, ERA-Interim’""'. One key improvement
is that ERAS5 offers much higher spatial and temporal resolution by providing
hourly analysis fields for 137 levels (from the surface up to a height of 80km) on a
31-km horizontal grid. Various studies have shown that ERA5 improves on other
surface weather reanalyses with respect to WS*, precipitation™ and hydrological
modelling™, for example. It should be noted, however, that there are uncertainties
in regard to WS values and their trends between various reanalyses that may bias
fire weather calculations™. We downloaded ERA5 hourly single-pressure-level
(surface) data for the period 1979-2020 (available from https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview).

We defined global regions based on the biome categorization from ref. *°,
which captures homogeneous climate and vegetation characteristics at a broad
scale and is therefore appropriate for determination of fire regimes and fire
seasons for global-scale studies. Biomes of >1,000,000 ha were split into smaller
ecoregions based on the latest classification from the World Wildlife Fund*®. In
total we partitioned the globe into 20 biomes (Fig. 1a), with further stratification by
continent resulting in 105 distinct regions (biomes X continents).

We downloaded global fire data from the Global Fire Atlas (GFA), which is
based on the MODIS satellite record”’, for estimation of fire season length for each
biome (below). The GFA provided day of burn at 500-m resolution for each year
for the period 2003-2016. Many regions of the globe were affected by wildfires each
year, as indicated by the mean annual percentage of area burned by biome (Fig. 1b).

FWI calculation. We used the ERA5 reanalysis to estimate the CFWIS variables
ISI and FWI for our global trend analysis. Both ISI and FWI provide numeric
ratings of relative wildland fire potential using surface weather variables as inputs,
and are based on tracking moisture in three fuel layers of varying depth with
corresponding moisture codes: fine fuel moisture code (FEMC, litter and fine
fuels), Duff moisture code (organic fuels at moderate depth) and drought code
(deep and compact organic fuels). The calculation of these CFWIS components is
based on daily observations of T, RH, WS and 24-h accumulated precipitation'’.
The ISI combines WS and FFMC to give an index of a fire’s rate of spread and is

a useful indicator across a range of forest types™. The FWI index combines ISI

and the build-up index (a measure of cumulative fuel dryness) and represents
potential fire intensity®'?. Although the CFWIS was originally developed for use in
the Canadian boreal forest, it has been calibrated for use in many regions and has
also found global application in several research studies"'***®. The FWI has strong
positive correlations with area burned across the majority of global burnable land
mass, but the relationship is weaker in arid ecosystems"’. However, it should be
noted that both ISI and FWI, like all CFWIS variables, are qualitative—fuel type
needs to be accounted for to generate quantitative values of fire behaviour, and they
do not incorporate changes in other elements of fire potential.

The ERA5 meteorological data required preprocessing before calculation of
FWI and ISI. For T, we used 2-m T, where units were converted from K to °C. We
calculated 2-m RH from 2-m T and 2m Td based on equations 1 and 2 in ref. ©'. We
calculated 10-m WS in kmh' from the 10-m U (zonal velocity) and V (meridional
velocity) wind components, as required by the FWT system. Finally, we used
hourly total precipitation to calculate 24-h accumulated precipitation, which was
converted to units of millimetres. All variables were obtained for noon local time to
provide daily inputs as required for the FWI system calculations.

Using these inputs, we calculated ISI and FWT according to the procedure
outlined in ref. °'. In particular, an overwintering procedure was applied to adjust
the spring start-up value of the drought code based on the amount of overwinter
precipitation for regions with seasonal snow cover. A meteorological proxy for
continuous snow cover at each grid cell was used to determine when to start and
stop the calculation. Specifically, maximum daily T (T,,,,) was used to determine
when the FWI calculation was to be deactivated (after 3 consecutive days with T,
<5°C) or reactivated (after 3 consecutive days with T,,,, >12°C), as per ref. ©*.

Fire season estimation. Because we were interested in fire weather trends during
the fire season, we estimated the observed fire season for each biome using data
from the Global Fire Atlas”. We aggregated the day of burn fire data (2003-2016)
over each biome and then defined the biome-level fire season as the minimum
number of months accounting for at least 90% of the area burned for each biome
(Supplementary Table 1). Although we used fixed fire seasons for our analysis, it
should be noted that these may change over time because there have been observed
increases in fire season length in several regions as well as globally'*'*.

VPD. We also examined trends in VPD, a metric that provides a measure of the

atmosphere’s capacity to extract moisture from surface vegetation. Several studies
have found linkages between VPD and fire ignitions, growth and burned area®-*°.
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VPD was calculated using hourly ERA5 2-m T and 2-m Td using the conversion
equation from ref. ©” and implemented in the R package bigleaf".

Trend analysis. We examined trends in the time series of ISI,;, FWIy; and VPD,,
values at each grid cell, globally. Annual values were calculated at each grid cell
and for each biome from 1979 to 2020 (42 years in total). In each case, the annual
percentile values included only data contained in the observed fire season months.
We further masked out barren areas using land-cover MODIS satellite data® and
defined according to the International Geosphere-Biosphere Program land-cover
classification system”, because these areas did not contain significant burnable
biomass and many would otherwise skew the results due to their highly arid
climate (for example, North Africa). Trend analysis was performed on the time
series using the Mann-Kendall (MK) test, a robust non-parametric test for trend
detection’” Linear trends were determined using the Theil-Sen estimator’*.
We tested for both temporal and spatial autocorrelation and found the data to be
spatially autocorrelated, as expected with climate data. It is well known that the
presence of autocorrelation can lead to the detection of spurious trends™. Here
multiple testing and spatial autocorrelation were respectively accounted for by
controlling the false discovery rate (FDR)’® and by setting the global significance
level (tyopy) €qual to 0.5 agpy (ref. 7); here we set g, to 0.05. We display the
results of our significant trends in Figs. 2, 3 and 4 at this significance level. The
95th percentiles we examined represent extreme values in fire weather metrics,
however, and we also examined trends in the 50th and 75th percentiles and found
similar results (Supplementary Figs. 3 and 4), indicating that our results are not
overly sensitive to the choice of percentile.

Drivers of trends in FWI,; and ISI,;. We used the pMK test to assess the influence
of covariates on the trend of our response variables™. The pMK test modifies the
MK test by removing the contribution of a covariate of interest that correlates
with the response variable. If any trend in the response variable that was originally
determined to be statistically significant is no longer significant (here, tested at the
a=0.05 level) after accounting for the covariate and repeating the test, then the
covariate has a significant influence on the detected trend; in this case, we refer
to the corresponding covariate as a driver of a significant trend in the response
variable. For example, ref. 7 used this method to link trends in flood metrics
to increases in evapotranspiration. Here, because the four FWI inputs (T, RH,
WS and precipitation) can combine nonlinearly to generate FWI outputs, the
association between FWI,; or ISLy and the upper (or lower) annual quantiles of
the inputs may not necessarily be strong. To determine the influence of each of the
inputs, we extracted input values that corresponded to the response variable (for
example, FWI,; or ISLy;) of interest; this was achieved by binning all input values
corresponding to values of the response variable in a range centred on the 95th
percentile (92.5-97.5%) and taking the median value of each of the binned inputs.
Note that the pMK test we used to determine drivers of FWIy; and ISI; is a test
that determines whether trends in covariates display significant covariance with
observed trends, but is not equivalent to a sensitivity analysis'**. It should further
be noted that because multiple covariates can be drivers of observed trends, the
attribution percentages summed over all variables considered can be >100%.

The MK and pMK tests were performed using the R packages EnvStats® and
trend*. FDR correction was applied using the p.adjust function in the Rbase stats
package. All analyses were performed using Rv.4.0.1.

Data availability

The hourly ERA5 data used for this study are available at https://doi.org/10.24381/
cds.adbb2d47. The fire weather metrics derived for the period 1979-2020 that
support the findings of this study are available from https://doi.org/10.5281/
zenodo.5567021 (daily ISI and FWI) and https://doi.org/10.5281/zenodo.5567062
(daily maximum VPD). Global mean land-surface temperatures are available from
the NOAA National Centers for Environmental information, Climate at a Glance:
Global Time Series (published July 2021), at https://www.ncdc.noaa.gov/cag/. The
global biomes used in this study are available at https://www.worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world and land-cover data are available
at https://doi.org/10.5067/MODIS/MCD12Q1.006.
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