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Abstract— Model Predictive Control (MPC) of nonlinear
hybrid systems using lifting linearization underpinned by
Koopman Operator is presented. Unlike standard linearization,
which is valid only locally, lifting linearization provides a global
linear representation of a nonlinear system in a lifted space.
This allows us to obtain a unified linear model for a class of
hybrid systems, which are otherwise modeled as a collection
of dynamic modes that are constantly switching. This linear
model created with lifting linearization is utilized to control a
multi-cable robot exhibiting hybrid dynamics due to switching
between taut and slack conditions of each cable. Applying MPC
to the cable suspension robot, we show that even though the
highly complex computation is reduced to a straightforward
convex optimization, MPC can still find dexterous control
actions for manipulating an object by taking into account
the hybrid nature of the dynamics. A drawback of lifting
linearization is that the learned model must be relearned when
parameters of the system change. Here, we exploit the linearity
of the model for transfer learning of a tuned model, adapted to
a similar system with different parameters. Using a recursive
updating method for the linear model, we demonstrate that the
transferred model is able to adapt to the dynamics of the new
nonlinear system and decrease prediction error over time. The
resulting prediction error is comparable to that of the original
model trained on its original dataset.

Index Terms— Hybrid Logical/Dynamical Planning and Veri-
fication; Optimization and Optimal Control; Transfer Learning

I. INTRODUCTION

Cable driven robotics is a significantly large field. Previous
designs have ranged from very simple cranes, to more
complex tensegrity robots which are composed of both
tension elements and compression elements [1], [2]. There
are several advantages to using cable based designs: they
are lightweight parallel manipulators, capable of high accel-
eration and velocities, and may have very large workspaces
[3]. However, the cables can only pull, not push. Thus, more
complex designs may increase the number of cables, making
the model more difficult to analyze, but making the system
more feasible to control.

The prior art regarding controls in the field of cable
driven robotics is vast. Some of these methods target specific
dynamics of the system, such as antisway control [4]. This
is done through a variety of means: linear control through
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a standard linearization [5], feedback linearization [6], ge-
ometric control [7], and data driven controllers [8]. These
works also deal with a variety of different configurations of
the system: the standard single cable configuration, multiple
cable configurations, and variations of those configurations
involving mobile suspension points like quadrotors. In these
works, it is usually assumed that the cables are in tension.
However, there are several situations neglected when not con-
sidering the dynamics of the system when the cables become
slack. By including this behavior, the system becomes more
complex and and difficult to model; the dynamics resemble
a hybrid system due to the significant difference in speed of
the dynamics. As the primary focus of this paper is control,
we simulate a simple two-cable winch design that has no
redundancies and allows for the cables to all become slack
while the load is in motion.

In this work, we aim to resolve this complex control task
by utilizing learned models involving linearizing a nonlinear
dynamic system by augmenting the state space with addi-
tional variables; this technique is based on the Koopman
Operator [9]. There are many modeling techniques that are
similar, such as Carleman embedding [10]. Prior work has
applied Koopman linearization to approximate a variety of
nonlinear systems, including fluids [11], and hybrid pendu-
lum systems [12]. However, it is also applicable to dynamic
systems for the sake of control, specifically through MPC
(model predictive control) [13]. It has been shown that MPC
using the Koopman linearized model as dynamic constraints
is comparable in performance and sometimes outperforms
MPC using the real nonlinear system [14]. The prior work
involving hybrid pendulum systems involves an autonomous
systems, differing significantly from the current work, which
involves a controlled system and application of MPC.

Substantial work has been done in researching methods to
find the additional variables necessary to create a Koopman
operator model for a nonlinear system. These works have
involved deep learning [15], optimization methods [16],
defined classes of functions that are usable as generalized
Koopman eigenfunctions [17], or created systematic methods
of finding the observable functions based on some notion
of causality [18] [19]. Recently, there has also been work
on tracking of time variant systems using Koopman based
methods through online versions of dynamic mode decom-
position [20], [21]. Other work involving online learning of
a Koopman model has been done with active learning, and
using recursive least squares to update the model [22]. In
general, these works train a model based on a set of data
and apply this model on the system that the data came



from. With that in mind, a problem arises. One of the key
benefits of using cable driven robotic systems is the ability to
interchange the load that is carried, which causes a significant
and sudden change in the dynamics of the system.

To deal with this issue, we look towards the concept of
transfer learning. In machine learning, transfer learning has
been consistently used to apply models that are trained for
a specific task and and adapted to a new task; in some
cases, the model is updated. It has been used for image
classification [23], feature recognition [24], defect prediction
[25], and robotics [26]. The primary benefits shown from
transfer learning in these works are of two parts: 1) prior
models can be used for new problems with relative high
success, and 2) less data needs to be collected to successfully
train a model for a new task. By applying the concept of
transfer learning to this problem, we seek to adapt and use
a model for multiple similar systems.

We attempt to model this hybrid system behavior as a
linear system using the Koopman Operator. Through mod-
eling the system linearly in a higher dimension, we are
able to embed both the incredibly fast dynamics caused
from the cables going into tension and the slow dynamics
of the motion of the winches and projection motion of
the mass into the lifted space and then apply MPC to the
system without explicitly modeling discrete dynamics that
would typically make the system difficult to control [27].
This allows the controller to quickly determine the control
sequence of the system, and approximate when the discrete
dynamics should take place according to the optimization
problem. We demonstrate this method on a simulated system
with applications to cable suspended systems. Lastly, we
address the idea of transfer learning; as a solution to the
issue of significant changes in parameters and characteristics
of a nonlinear system after creating a Koopman model,
we implement an adaptive method for updating an existing
Koopman model and demonstrate success across significant
changes in parameters and characteristics of the nonlinear
system. This would resolve the problem of needing to train
a new linear predictor model whenever changing the load or
the cables.

A. Outline

Section II gives a brief overview on the Koopman Operator
and its uses for nonlinear systems, as well as recursive least
squares and its relevance in adapting linear models. In section
III, the model is introduced. Section IV motivates the use of
MPC and lifted linearizations through discussion of issues
when using optimal control for hybrid systems. Section V
presents the results of the simulation with regards to the
estimation of the linear predictor model and utilization of that
model for model predictive control. Section VI showcases the
transfer learning and model adaptation of a Koopman model
under parameter changes. Concluding remarks are then given
in section VII.

Through this paper, we demonstrate:
1) modeling a controlled hybrid system with lifted lin-

earization models.

2) model predictive control for this hybrid system.
3) transfer learning and adaptation for this lifted model.

II. PRELIMINARIES

In this section, we give a brief overview of the Koopman
Operator and its application to linearizing nonlinear control
systems and the application of weighted recursive least
squares.

A. Koopman Operator: Linearization

Consider a discrete-time dynamical system, given by

xk+1 = f(xk) (1)

where x ∈ Rn is the independent state variable vector repre-
senting the system, f is a nonlinear function f : Rn → Rn,
and k is the current time step. Also consider a real-valued
observable function of the state variables φ : Rn → R. The
Koopman Operator is an infinite-dimensional linear operator
acting on the observable φ [28]:

(Kφ)(x) = φ(f(x)) (2)

where the Koopman operator K is linear, even though the
dynamic system is nonlinear.

Although the original Koopman Operator is infinite dimen-
sional, effective methods have been established for truncating
the system order [16]–[18]. Furthermore, the original theory
is for autonomous systems with no exogenous input, but
has been extended to non-autonomous systems with control
inputs [29].

These allow us to represent a nonlinear control system
accurately in a higher dimensional space, or lifted space, as
The state space is projected into a larger state space In this
space, the system is represented as

zk+1 = Azk +Buk (3)
x̂k = Czk (4)

where u ∈ Rm is input, and z ∈ Ro is high-dimensional
state variables in the lifted space, o ≥ n, x̂ is the estimate
of x and

zk = φφφ(xk) =


φ1(xk)
φ2(xk)
...

φo(xk)

 (5)

Matrices A and B are constant matrices with consistent
dimensions.

It should be noted that, unlike standard linearization,
which is valid only locally, the lifted linearization under-
pinned by the Koopman Operator theory is global. Another
unique feature is that the system matrices A and B can be
determined from data.

Given a dataset, the Koopman operator can be found
through a least squares minimization

min
∑
||z(xi+1)− (Az(xi) +Bui)||2 (6)

The solution then equates to[
A B

]
= FG† (7)



where
F = [z2, ..., zk+1] (8)

G =

[
z1, ..., zk
u1, ..., uk

]
(9)

and G† is the pseudoinverse of the G matrix.

B. Weighted Recursive Least Squares

The method used in this paper to adapt the system is a
weighted recursive least squares method with no forgetting
factor based on previous work [30] [31] [22]. For this
method, the error vector at time step i is

ei = xi − x̂i (10)

where
x̂i = Hxi−1 (11)

The weighted error cost function is then

J =
1

2

t∑
i=1

eTi Wei (12)

where W is a diagonal weight matrix that emphasizes the
different elements of the error vector, and t is the number of
measurements. This cost function can then substitute in (11)
and (10), and then the partial derivative with respect to H
and set to zero which yields

∂J

∂H
=W

t∑
i=1

(−xixTi−1 +Hxi−1x
T
i−1) = 0 (13)

In the application to the Koopman operator, the coefficient
matrix H to be updated is composed of A and B. This
enables us to find that

R =

t∑
i=1

(xi−1x
T
i−1) (14)

Q =
t∑
i=1

(xix
T
i−1) (15)

H = QR−1 (16)

This extends to the time-varying situation where the co-
efficient H matrix is considered to be time-varying at each
time step. This matrix, Hi is updated using the equation

Hi+1 = Hi + ei+1x
T
i+1WPi+1 (17)

where ei is found at each time step and P = R−1 is
recursively updated at each time step using the Matrix
Inversion Lemma:

Pi+1 = Pi − Pixi+1[1 + xTi+1WPixi+1]
−1xTi+1WPi (18)

III. MODELING OF CABLE SUSPENSION SYSTEMS

In this section, we introduce the system, and the address
how the system was modeled in a lifted space.

Fig. 1. Diagram of the hybrid system involving two winches, two cables,
and a suspended mass. The winches are each driven directly by a motor.
The point at which the cable departs from the winch is maintained as a
fixed point for simplicity. We refer to the cable on the left as cable A and
the cable on the right as cable B.

A. Modeling as a Hybrid System

The simulated system is based on a real robotic system
from a prior work which utilized three winches and a very
similar design [32]. The simulated system is a simplified
version of this robotic system and a diagram for this system
that can be found in Figure 1.

The object suspended by the cable system is treated as a
point with mass m. Because the system is constrained to two
dimensions, the state vector is defined as:

x =
[
x y ẋ ẏ LA LB L̇A L̇B

]T
where LA and LB are unstretched cable lengths and L̇A and
L̇B are their time derivatives.

The unstretched cable lengths and their velocities are
functions of the winch rotation θi and θ̇i respectively, where
i corresponds to the cable identifier, A or B. The unstretched
cable length is defined as

Li = L0 + rwiθi

and the unstretched cable length velocity is the time deriva-
tive of the above function and is also a state variable.

Considering this, there are four state variables associated
with the winches and cables, and four state variables asso-
ciated with the suspended mass.

The winch positions are fixed in place, but allowed to
rotate. The winch rotation dynamics are written as

Iiθ̈i = ui − τwi

where τwi
is the torque due to the cable when in tension,

and ui is the input torque from the motor attached to the
winch. This torque is defined as

τwi
= rwi

nwi
× Tini

where rwi
is the radius of the winch, and ni corresponds to

the unit vector in the direction of the departure point of the
cable from the center of the winch.

This system’s different dynamic modes can be represented
visually by Fig. 2. By modeling the system as a hybrid



Fig. 2. The different dynamic modes of the system that are determined
by whether the cables are in tension. From left to right: both cables are in
tension, cable A is in tension and cable B is slack, cable A is slack and
cable B is in tension, both cables are slack.

system, we have two options: 1) choose to ignore the
dynamics of the system when the cable suddenly goes in
tension and causes the mass to “bounce”, and instead model
it as a discrete reset map, or 2) use the guard function to map
the dynamic transition from slack to tension and tension to
slack for each cable. For example, when not modeling the
system with a discrete “bounce” the system has dynamic
modes defined by

m

[
ẍ
ÿ

]
=



[
0

mg

]
if dA ≤ 0 ∧ dB ≤ 0

TAnA +

[
0

mg

]
if dA > 0 ∧ dB ≤ 0

TBnB +

[
0

mg

]
if dA ≤ 0 ∧ dB > 0

TAnA + TBnB +

[
0

mg

]
otherwise

(19)
and where di is the elongation length of cable i subtracted by
its unstretched length based on the positioning of the mass
relative to the respective winch.

B. Linearization in Lifted Space

As opposed to modeling the system as a hybrid system
as mentioned above, we can utilize the Koopman Operator
methodology to linearize the system similar to prior work
[12]. Instead of having the several conditions defining the
different dynamic modes, we use a data driven method to
create a higher dimensional linear system that attempts to
embed the dynamic modes and reset maps. The dataset used
to estimate the Koopman operator is created by feeding a
pseudorandom binary signal to each of the winch inputs
beginning from five randomized initial conditions that fulfill
one of four categories of situations as shown in Fig. 2. The
observable functions composing the Koopman operator are a
set of radial basis functions that cover the dynamic range of
the dataset, and also the horizontal and vertical components
of the tension for the cables.

These radial basis functions are of the form

φ = e−α(xj−xja )
2

(20)

where α is a parameter that was tuned for different state
variables that tunes the shape of the function and xj is the
jth state variable, and xja is the center of the radial basis

function. To model this system, 150 radial basis functions are
used for x and y position, 6 radial basis functions are used
for x and y velocities, 10 radial basis functions are used for
LA and LB , and 4 functions which are the horizontal and
vertical components for the tension in each cable.

A dynamic mode decomposition (DMD) model is created
based on the same dataset [33]. This DMD model truncates
the dynamic modes to a rank that contains 99% of the
information based on the singular value decomposition.

IV. MODEL PREDICTIVE CONTROL

The cable suspension system is a complex hybrid system
as shown in its original dynamical model. Once a cable goes
slack, the mass freely drops, followed by an impact at the
instant when the cable becomes taut. It tends to bounce
back, unless the velocity in the direction of the cable is
zero. It should be noted that, once the cable goes slack, the
winch of the cable is essentially disconnected and becomes
unable to influence the motion of the mass. Thus, the winch
loses controllability. To maintain controllability, the robot
controller must reduce the impact and extend the controllable
duration by keeping the cable taut. To find such an intelligent,
skillful control action, the robot must be able to predict the
dynamic behavior, in particular, the consequence of impact
and bouncing. Here, we consider Model Predictive Control
(MPC) for realizing such skillful actions. With MPC we can
expect that the robot can find an optimal control sequence,
which would minimize a potential impact and retain the
controllability for better manipulating the mass.

A. Standard MPC Formulation

For the model predictive control section, we solve an
optimization problem of the form

min V =φ(xN (t)) +
N−1∑
i=0

`(xi(t), ui(t))dτ (21)

s.t. xi+1(t) = xi(t) + f(xi(t), ui(t))dτ (22)
x0(t) = x0 (23)
C(xi(t), ui(t)) ≤ 0 (24)

where dτ = T/N , T is the time horizon, and N is the
number of time steps. We use an objective function of the
form

`(x, u) =(x− xd)TQ(x− xd) + uTRu (25)

φ(x) =(x− xd)TP (x− xd) (26)

where φ is the end stage cost. The parameters chosen for the
cost function are included in the Appendix.

The challenge in implementing the above MPC is due to
the dynamic constraints on the problem. Because the system
has hybrid dynamics, it must not only optimize the control
input, but also optimize the switching times between dynamic
modes. Though work has been done in creating a framework
to use MPC for hybrid systems [34], the framework requires
denoting a set of terminal times. In essence, the problem
with implementing MPC directly onto a hybrid system



is that optimal sequence of modes may not be known a
priori and leaving the solver of the optimization program
to discover this sequence is computationally expensive and
can sometimes be intractable.

B. MPC Formulation Using Lifting Linearization

With this in mind, creating a linear model where the
system is no longer modeled as a hybrid system with
guards, modes or reset maps is very attractive. The dynamic
constraints can replaced with a linear time invariant model,
causing the problem to become a linear MPC problem.
Linear MPC is known to be convex, and simple to solve.
We no longer need to solve for a sequence of modes, nor
incorporate any additional constraints on the time steps for
each mode. This does require having an accurate linear model
for the system throughout the time horizon of the problem,
which is feasible because of the Koopman operator.

V. CABLE MANIPULATION BASED ON MPC IN LIFTED
SPACE

In this section the MPC formulation using lifting lin-
earization is implemented for a multi-cable robot system.
We create a realistic model of tension using experimental
data, demonstrate the accuracy of the linearized system in
comparison to the full nonlinear system, and apply the lifted
linear model to MPC for driving the system to specific
reference states from randomized initial conditions.

A. Tension Modeling

The tension in the cables was assumed to be elastic and
modeled through taking experimental data of the cables used
in the real robotic system. The model does not include any
damping component; this assures that no causality problem
arises from lifting the space, since anti-causal observables
pertain to damping elements alone [19]. This experimental
data is shown in Fig. 3 and the parameters found from this
experimental data is shown in Table I.

Fig. 3. Tension-Displacement data gathered from the motivating robotic
system. The data is fit to polynomial models. Models of higher than 2nd
order were deemed unreasonable as they gave the possibility of negative
tension. The models were also required to intersect with zero tension at
zero displacement.

Polynomial models were considered, and only two rea-
sonable models were found, the linear and quadratic model.

TABLE I
TENSION MODELS

Model R2 Equation
Linear 0.8914 F = 1699x

Quadratic 0.9673 F = 206015x2 + 613.99x

Fig. 4. Example of the estimation provided from the Koopman linear
system and the DMD system for a state variable; in this plot it is the length
of cable A.

For the simulations, the linear model was chosen though it
had a lower R2 value, as it emphasized the hybrid dynamic
nature of the system more than the quadratic model which
was continuous and differentiable through the entire domain
of the system, including “negative” displacements where the
tension remains zero. The quadratic model is instead used
as a possible change to the underlying nonlinear system for
transfer learning.

B. Model Training

Both Fig. 4 and 5 were produced for trajectories where the
control law applied was a proportional controller on cable
length. In Fig. 4, an estimation of the linearized system

Fig. 5. A plot of MSE over time for the linear predictor models. Each
predictor begins with the correct initial state and attempts to predict the
next time steps. The plot demonstrates that for small amounts of time, the
Koopman model is much more accurate than the DMD model, but after
enough time has passed, both models approach the same level of accuracy.
The shaded regions represent the variation in mean squared error over twenty
five different initial conditions.



compared to the real system for one of the state variables is
shown. In Fig. 5, a plot of the MSE (mean squared error) for
the eight state variables is shown as a function of the length
of the prediction time. As the prediction time increases,
the mean squared error tends to increase. In the numerical
results presented, we find that the system can be reasonably
estimated using the Koopman linear system and by the DMD
system, though less so, which is expected. The truncation of
the system also appears to cause a significant increase in
variation of the prediction error for the system, however, it
is within reason for small time horizons to still be used for
model predictive control.

C. Model Predictive Control

For all implementations of MPC, the time horizon was
chosen to be one hundred time steps, or one second, and was
selected based on the accuracy of prediction over time shown
in Fig. 5. The weight matrices are defined in the Appendix.

In Fig. 6, the resultant trajectory simulated from model
predictive control that used the Koopman linearized model
as the dynamic constraints for the optimization problems
is juxtaposed with the control input that was generated for
cable A. Initially, the mass was placed 3 meters vertically
above the goal position with both cables being slack. With
MPC+Koopman, the mass trajectory smoothly converged to
the goal position, as shown by the red line in the vertical
position plot. For comparison, a naive PD control that
controls the individual cable length without predicting the
mass behavior is plotted by blue lines. Note that the mass
bounced when the two cables became taut consecutively at
t = 1.1 ∼ 1.7 sec, as indicated by notches in the plots.
This resulted in a pronounced bouncing motion of the mass,
leading to the slow conversion of the naive cable length
control. In contrast, MPC+Koopman could smoothly move
the mass towards the goal. Interestingly, the MPC control
input did not attempt to lengthen the cable rapidly, unlike
the naive PD control, as seen in section A indicated by the
orange circle. Instead, the MPC control allowed the mass
to pull on the cable, and dampened the motion of of the
mass. These behaviors cannot be created unless the robot can
predict the nonlinear hybrid nature of the system dynamics.

As stated previously, the dynamic constraints are all that
are necessary to generate a solution for this MPC problem,
and no additional constraints or equations were set on time.
The MPC result is successful in that it does rapidly decrease
the SSE with respect to the reference trajectory as shown
in Fig. 7; the slight differences between using the Koopman
linear system as dynamic constraints and the DMD system
as linear constraints is expected given prior work.

VI. TRANSFER LEARNING AND MODEL ADAPTATION

For adapting the model, the weight matrix from Eq. 12 was
manually tuned to emphasize the errors of the state variables
as this tended to yield faster adaptation during experiments
than otherwise. The control inputs were disregarded because
as it is not necessary to predict the control input at the future
time steps. The actual weight matrix can be found in the

Fig. 6. A juxtaposition of the input used for cable A and the trajectory of
the length of cable A over time when using model predictive control with
the Koopman linearization as the dynamic constraints. This is compared to
the trajectory found from using a PD controller.

Fig. 7. SSE (Sum of Squared Error) over the trajectory comparing an
MPC scheme using the DMD model and the Koopman model as dynamic
constraints. The number indicated in the legend denotes the prediction time
horizon in time steps for the model. It was found that after approximately
100 time steps that MPC began performing poorly, likely due to inaccuracy
of the linear model.

Appendix. The adaptation process is visually interpreted in
Fig. 8.

To demonstrate the ability for the system to adapt using
recursive least squares, we isolate the situation to a scenario
that does not utilize model predictive control. Instead, the
system uses a naive proportional controller for each winch
that attempts to maintain a constant length for each cable.
Results of this method in terms of mean squared error
(MSE) are shown in Fig. 9, where all estimators are given
the correct initial state and attempt to predict the next one
hundred time steps, or one second. They then reinitialize
at each time step at the correct initial condition and repeat
the prediction process, comparing the estimated trajectory to
the real trajectory. In the first experiment, the mass of the



Fig. 8. Visual representation of the experiments run in the transfer learning
and model adaptation experiment.

Fig. 9. Comparison between different estimators for tracking a nonlinear
system that the models were not trained on. All estimators were trained on
a cable system with a 10 kg mass load, and attempted to predict a cable
system with a 5 kg mass. The shaded regions indicate the range between
minimum and maximum of the MSE across 25 trajectories for the specified
estimator. The plotted line is the average MSE for the estimator across all
trials.

system is reduced from 10 kg to 5 kg, and 25 different initial
conditions with the same distribution as the initial conditions
used for training the system.

The second experiment has similar structure to the first,
but instead involved significantly changing the underlying
nonlinear system. For that, the tension model of the cables
was changed from the linear model to the quadratic model
mentioned in Table I. Notably, the prediction error is signifi-
cantly higher with this change in the nonlinear system when
compared to changing the mass of the system. The prediction
errors as a function of time step can be seen in Fig. 10, for
a single trajectory of the system.

When changing the tension model as in Fig. 10, the MSE
falls significantly, but not to the same range as before. This
is somewhat expected as the observable functions used for
the system may not be as informative for this new tension
model. The chosen observable functions are static, which
may be less useful depending on how the dynamics of the

Fig. 10. Another comparison between different estimators, predicting a
system that they were not trained on. In this case, the system was changed
to have a different tension model, changing from quadratic to linear. Again,
the shaded regions indicate the range between minimum and maximum of
the MSE across 25 trajectories for the specified estimator. The plotted line
is the average MSE for the estimator across all trials.

nonlinear system change. Implementing adaptable hyperpa-
rameters into these observable functions may lead to an
alternative adaptive method. Despite this issue, the accuracy
is significantly high considering how little training and data
were required for this model and not alternative observable
functions when transferring from another model. In that
regard, the experiments are successful in demonstrating the
application of transfer learning for Koopman models, not
only for parameter changes but also for changes in the
underlying nonlinear dynamics; the original systems had
over ten thousand data points to be trained from, whereas
the transferred system only had hundreds of additional data
points. This fact warrants additional investigation into the
bounds of which a Koopman model can be transferred, the
number and range of measurements required for reasonable
accuracy for the transferred model, and the possibility of
convergence. After this analysis is completed, there may be
significant benefit in using this transfer learning model in
combination with MPC.

VII. CONCLUSION

In this paper, we presented a novel approach to using
optimal control for hybrid systems using the Koopman
operator and applied it to an elastic cable suspension system.
This allowed us to use model predictive control without the
difficulty of determining controllable hybrid sequences nor
switching times as the hybrid dynamics were encoded into a
linear time invariant system. The model predictive control
input was also analyzed on its behavior, showing that it
demonstrated proper model predictive behavior despite using
a linear model to represent an inherently hybrid dynamic
system. In addition, we presented a method to adapt the
linearized model not only to parameter changes but also func-
tional changes in the underlying nonlinear system, through
recursive updates of the model based on the error of the
prediction at each time step. As a future work, analysis of



the adaptive properties in relation to transfer learning and its
robustness will be necessary. Further investigation may also
be beneficial in adapting the observable functions chosen to
accommodate the use of adaptation.

APPENDIX

A. Model Predictive Control

The weight matrices used in the experiments are P = 0,
Q is of the form

Q =

[
Qx 0
0 0

]
(27)

where Qx ∈ Rn×n and is diagonal; the diagonal elements
of Qx are {6, 0, 0.3, 0.3, 1, 1, 0.5, 0.5}. R is a diagonal
matrix with values {0.01, 0.01}.

No inequality constraints are used in our implementation
of the optimization problem.

B. Weighted Recursive Least Squares

For the updating of the Koopman system in both
cases, the weight matrix W ∈ R180×180 is a diago-
nal matrix where the first eight diagonal elements are
{0.01, 0.01, 0.01, 0.01, 0.001, 0.001, 0.001, 0.001} and the
rest are 10−5. The error covariance matrix P is the identity
matrix with the same dimensionality as W .
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[13] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” arXiv
e-prints, p. arXiv:1611.03537, Nov 2016.

[14] Y. Igarashi, M. Yamakita, J. Ng, and H. Asada, “Mpc performance for
nonlinear systems using several linearization models,” 2020 American
Control Conference, vol. 35, pp. 718–730, July 2020.

[15] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning
for universal linear embeddings of nonlinear dynamics,” Nature
Communications, vol. 9, no. 1, Nov 2018. [Online]. Available:
http://dx.doi.org/10.1038/s41467-018-07210-0
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