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ABSTRACT We report the 3.5-Mb draft genome sequence of the cyanobacterium
Synechococcus sp. strain Nb3U1, which was isolated from a microbial mat sample collected
from Nakabusa Hot Spring, Nagano, Japan.

Synechococcus sp. strain Nb3U1 was isolated from a microbial mat sample collected
from Nakabusa Hot Spring, Nagano, Japan; mat homogenates were grown in BG11

medium under far-red light, and individual cyanobacterial cells were isolated microscopically
from these enrichments (1). 16S rRNA sequence analysis identified Nb3U1 as a member
of lineage T1 (2). T1 cyanobacteria are a cosmopolitan but poorly understood group from
mesothermic to moderately high-temperature habitats in alkaline geothermal environments.
Notably, T1 cyanobacteria appear to be the less-thermotolerant sister taxa of the Synechococcus
A/B clade, members of which define the upper temperature limit for phototrophy on Earth
(;74°C [3]).

Strain Nb3U1 was grown in liquid BG11 medium under ;75 mmol photons m22 s21 of
cool white fluorescent light with a 12-h/12-h photoperiod. Genomic DNA (gDNA) for paired-
end, short-read sequencing was extracted from the growing cells using Qiagen’s DNeasy
PowerBiofilm kit. A library was prepared using a Nextera DNA Flex kit, followed by 150 cycles
of paired-end sequencing on an Illumina NextSeq 550 platform. High-molecular-weight
gDNA for long-read sequencing was later extracted from the same culture using Qiagen’s
Genomic-tip 20/G protocol, prepared using the Nanopore ligation sequencing kit without
shearing or size selection and sequenced for 48 h using a Nanopore MinION sequencer
(FLO-MIN106D, R9.4.1); GUPPY v4.5.4 (https://staff.aist.go.jp/yutaka.ueno/guppy/) was used
for Nanopore base calling. Prior to sequencing, DNA quality and quantity were assessed
by spectrophotometry (Agilent Tape Station) and fluorimetry (Qubit 2.0), respectively. The
quality of all sequenced reads was checked using FastQC v0.11 (https://www.bioinformatics
.babraham.ac.uk/projects/fastqc/), but none were removed. A hybrid draft assembly using
8,011,914 paired-end Illumina short reads (35 to 151 bp) and 141,038 Nanopore long reads
(83 to 51,308 bp) was built de novo using SPAdes v3.12.0 (4). Following the assembly, contigs
shorter than 1 kbp were removed prior to subsequent analyses. Kraken v2.1.2 (5) and BLAST1
v2.2.31 (6) were used to identify and extract contigs with high sequence similarity to cyano-
bacteria if (i) the contig returned significant local BLAST hits (E values, #1e2100) to two
Synechococcus A/B reference genomes (7) and/or (ii) Kraken assigned an NCBI TaxID from the
phylum Cyanobacteria, the order Synechococcales, or either of the above reference genomes.

Genomic statistics for these extracted contigs were measured using QUAST v4.5 (8). The
total size of the refined assembly is 3,487,976 bp in 4 contigs, with an N50 value of
2,215,988 bp, a GC content of 55.19%, and a mean coverage of 73.0�. The Nb3U1 ge-
nome was estimated to be 93.8% complete using BUSCO v5.2.2 (9) with reference to the
Synechococcales lineage. In identical analyses, the closed Synechococcus A/B reference
genomes were estimated to be 94.4% and 94.9% complete. We therefore conclude that the
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Nb3U1 genome assembly is essentially complete. The refined assembly was annotated
using NCBI’s PGAP software (10). Of the 3,300 predicted features, 3,209 are protein coding,
42 are tRNAs, 4 are noncoding RNAs (ncRNAs), and 3 are rRNAs. All software tools were
run with default parameters unless otherwise specified.

Data availability. This whole-genome shotgun sequencing project has been deposited
at DDBJ/ENA/GenBank under accession number JAKFYQ000000000.1. The version described
in this paper is version JAKFYQ010000000. These data are associated with BioProject accession
number PRJNA795194 under BioSample accession number SAMN24695622. The raw data
from the Illumina and Nanopore sequencing are available under SRA accession numbers
SRR17483484 and SRR17483483, respectively.
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